The minimum number of triangular edges and a symmetrization method for multiple graphs

Zoltán Füredi * Zeinab Maleki ${ }^{\dagger}$
This work was done while the authors visited the Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA.

Abstract

We give an asymptotic formula for the minimum number of edges contained in triangles in a graph having n vertices and e edges. Our main tool is a generalization of Zykov's symmetrization method that can be applied for several graphs simultaneously.

1 Graphs with few triangular edges

Erdős, Faudree, and Rousseau [3] showed that a graph on n vertices and at least $\left\lfloor n^{2} / 4\right\rfloor+1$ edges has at least $2\lfloor n / 2\rfloor+1$ edges in triangles. To see that this result is sharp, consider the graph obtained by adding one edge to the larger side of the complete bipartite graph $K_{[n / 2\rceil,\lfloor n / 2\rfloor}$. We consider a more general problem, where the number of edges may be larger than $\left\lfloor n^{2} / 4\right\rfloor+1$. Given a graph G, denote by $\operatorname{Tr}(G)$ the number of edges of G contained in triangles, and let $\operatorname{Tr}(n, e):=\min \{\operatorname{Tr}(G):|V(G)|=n, e(G)=e\}$. With this notation the above result of Erdős, Faudree, and Rousseau can be reformulated as

$$
\begin{equation*}
\operatorname{Tr}\left(n,\left\lfloor n^{2} / 4\right\rfloor+1\right)=2\lfloor n / 2\rfloor+1 \tag{1}
\end{equation*}
$$

Note that $\operatorname{Tr}(n, e)=0$ whenever $e \leq n^{2} / 4$, because in that case there exist triangle-free (even bipartite) graphs with n vertices and e edges. To avoid trivialities, we usually implicitly assume that $e>n^{2} / 4$.

[^0]Given integers a, b and $c,(a \geq 2)$, we define a family of graphs $\mathcal{G}(a, b, c)$ as follows, see Figure 1 below. The vertex set V of a graph G in this class has a partition $V=A \cup B \cup C$ where $|A|=a,|B|=b$, and $|C|=c$, such that B and C are independent sets, $B \cup C$ induces a complete bipartite graph $K_{b, c}$, the vertices of C have neighbors only in B, and $G[A]$ and $G[A, B]$ are 'almost complete graphs', namely, they span more than $\binom{|A|-1}{2}+|A||B|$ edges. The edges of $G[B, C]$ are the non-triangular edges.

Figure 1: A graph from $\mathcal{G}(a, b, c)$.
Given integers $n \geq 3$ and $n^{2} / 4<e \leq\binom{ n}{2}$, we define a class of graphs, $\mathcal{G}(n, e)$, with many non-triangular edges as follows. Put a graph $G \in \mathcal{G}(a, b, c)$ into the class $\mathcal{G}(n, e)$ if it has n vertices and e edges. Define $g(n, e)$ as $\min \{\operatorname{Tr}(G): G \in \mathcal{G}(n, e)\}$. We have

$$
\begin{equation*}
\operatorname{Tr}(n, e) \leq g(n, e)=\min \left\{e-b c: a+b+c=n, a, b, c \in \mathbb{N} \cup\{0\},\binom{a}{2}+a b+b c \geq e\right\} . \tag{2}
\end{equation*}
$$

We believe that one can extend the Erdős, Faudree, Rousseau theorem [3] as follows.
Conjecture 1. Suppose that G is an n-vertex graph with e edges, such that $e>n^{2} / 4$ and it has the minimum number of triangular edges, i.e., $\operatorname{Tr}(G)=\operatorname{Tr}(n, e)$. Then $G \in \mathcal{G}(n, e)$.

In particular, we conjecture that $\operatorname{Tr}(n, e)=g(n, e)$. We prove a slightly weaker result.
Theorem 2. For $e>n^{2} / 4$ we have $g(n, e)-(3 / 2) n \leq \operatorname{Tr}(n, e) \leq g(n, e)$.
Our main tool, presented in Section 2, is a new symmetrization method, a generalization of previous results by Zykov and Motzkin and Straus such that it can be applied to more than one graph simultaneously.

In Section 3, we use the new symmetrization method to prove a lemma about triangular edges of a given graph. In Section 4, using the lemma of Section 3 we complete the proof of Theorem 2 . In Section 5 we introduce more problems for future research, our method can be used to solve some of them (see [5]).

2 The symmetrization method

In this section, we describe Zykov's symmetrisation process [10]. It starts with a K_{p}-free graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ and at each step takes two nonadjacent vertices v_{i} and v_{j} such that $\operatorname{deg}\left(v_{i}\right)>\operatorname{deg}\left(v_{j}\right)$ and replaces all edges incident to v_{j} by new edges incident to v_{j} and
to the neighborhood $N\left(v_{i}\right)$. We do the same if $\operatorname{deg}\left(v_{i}\right)=\operatorname{deg}\left(v_{j}\right), N\left(v_{i}\right) \neq N\left(v_{j}\right)$ and $i<j$. Symmetrization does not increase the size of the largest clique and does not decrease the number of edges. When the process terminates it yields a complete multipartite graph with at most $p-1$ parts.

This way Zykov [10] gave a proof of Turán's theorem which states that the number of edges of a K_{p}-free graph is at most as large as in a complete $(p-1)$-partite graph with almost equal parts. It seems that this method cannot be used directly to determine $\operatorname{Tr}(n, e)$ because we need to increase simultaneously the number of edges and the number of non-triangular edges. In the rest of the section this method will be generalized to settings involving more than one graph.

Let us recall a continuous version of Zykov's symmetrisation method, due to Motzkin and Straus [8]. Given a graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ define a real polynomial

$$
f(G, \mathbf{x}):=\sum\left\{x_{i} x_{j}: v_{i} v_{j} \in E\right\} .
$$

Define a simplex $S_{n}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: \forall x_{i} \geq 0\right.$ and $\left.\sum x_{i}=1\right\}$. Let $f(G):=\max \left\{f(G, \mathbf{x}): \mathbf{x} \in S_{n}\right\}$. Motzkin and Straus [8] provided an alternative proof of an asymptotic version of Turán's theorem by observing a remarkable connection between the clique number, $\omega(G)$, and $f(G)$. They proved that $f(G)=(\omega-1) /(2 \omega)$. Their main tool was a continuous version of Zykov's symmetrization as follows.

Theorem 3. (Motzkin and Straus [8]) Given a graph G on n vertices and a vector $\mathbf{x} \in S_{n}$, there exists $\mathbf{y} \in S_{n}$ such that $f(G, \mathbf{x}) \leq f(G, \mathbf{y})$ and $\operatorname{support}(\mathbf{y})$ induces a complete subgraph.

We generalize this result so that it can be applied simultaneously for several graphs.
Theorem 4. Let G be a graph on n vertices and let $G_{1}, G_{2}, \ldots, G_{d}$ be subgraphs of G with the same vertex set. For every $\mathbf{x} \in S_{n}$ there exists a subset $K \subseteq V(G)$ and a vector $\mathbf{y} \in S_{n}$ with support K such that $f\left(G_{i}, \mathbf{x}\right) \leq f\left(G_{i}, \mathbf{y}\right)$ for every $1 \leq i \leq d$ and $\alpha(G[K]) \leq d$.

To prove Theorem 4 we need the following lemma.
Lemma 5. Suppose that $\mathbf{a}_{1}, \ldots, \mathbf{a}_{d} \in \mathbb{R}^{d+1}$. Then there exists a non-zero vector $\mathbf{z} \in \mathbb{R}^{d+1}$ such that $\mathbf{a}_{i}^{T} \mathbf{z} \geq 0$ for every $1 \leq i \leq d$ and the sum of the coordinates is 0 , namely $\sum_{1 \leq i \leq d+1} z_{i}=0$.

Proof. Let $\mathbf{j} \in \mathbb{R}^{d+1}$ be the all 1 vector and define the matrix A as $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{d}, \mathbf{j}\right\}$. If $\operatorname{det}(A)=0$, then there are non-trivial solutions of $A^{T} \mathbf{z}=\mathbf{0}$. If $\operatorname{det}(A) \neq 0$ define $\mathbf{a}:=(1, \ldots, 1,0)^{T} \in \mathbb{R}^{d+1}$. There is a unique solution \mathbf{z} of $A^{T} \mathbf{z}=\mathbf{a}$. Clearly, $\mathbf{z} \neq 0$ so we are done.

Proof of Theorem 4. Let $\mathrm{y} \in S_{n}$ be a vector whose support has minimum size among vectors $\mathbf{y}^{\prime} \in S_{n}$ satisfying $f\left(G_{i}, \mathbf{x}\right) \leq f\left(G_{i}, \mathbf{y}^{\prime}\right)$ for every $1 \leq i \leq d$. If $\left\{v_{1}, v_{2}, \ldots, v_{d+1}\right\} \subseteq \operatorname{support}(\mathbf{y})$ is an independent set, then for any $\mathbf{z}=\left(z_{1}, \ldots, z_{d+1}, 0,0, \ldots\right)^{T} \in \mathbb{R}^{n}, t \in \mathbb{R}$, and $1 \leq i \leq d$ we have $f\left(G_{i}, \mathbf{y}+t \mathbf{z}\right)=f\left(G_{i}, \mathbf{y}\right)+t\left(\mathbf{a}_{i}^{T} \mathbf{z}\right)$ for some $\mathbf{a}_{i} \in \mathbb{R}^{d+1}$. Here \mathbf{a}_{i} depends only on G_{i} and \mathbf{y}, not on \mathbf{z} or t. Apply Lemma 5 to obtain a non-zero vector $\mathbf{z}=\left(z_{1}, \ldots, z_{d+1}, 0,0, \ldots\right)^{T}$ with $\sum_{1 \leq i \leq d+1} z_{i}=0$ and $\mathbf{a}_{i}^{T} \mathbf{z} \geq 0$ for $1 \leq i \leq d$. Choosing an appropriate $t>0$ we have $\mathbf{y}+t \mathbf{z} \in S_{n}$ and $\operatorname{support}(\mathbf{y}+t \mathbf{z}) \subseteq \operatorname{support}(\mathbf{y})-\left\{v_{j}\right\}$ for some $1 \leq j \leq d+1$. This is a contradiction, so \mathbf{y} has the desired property.

3 Maximizing the weight of non-triangular edges in a weighted graph

Lemma 6. Let G_{1} be a graph on n vertices $\left\{v_{1}, \ldots, v_{n}\right\}$ and let G_{2} be a subgraph of G_{1} whose edges are some of the non triangular edges of $G_{1}, E\left(G_{2}\right) \neq \emptyset$. For every $\mathbf{x} \in S_{n}$ there exists a subset $K \subseteq V$ and a vector $\mathbf{y} \in S_{n}$ with support K such that $f\left(G_{1}, \mathbf{x}\right) \leq f\left(G_{1}, \mathbf{y}\right)$ and $f\left(G_{2}, \mathbf{x}\right) \leq$ $f\left(G_{2}, \mathbf{y}\right)$. Furthermore, the graph $H:=G_{1}[K]$ contains exactly one edge e of G_{2} and $H \backslash V(e)$ is a complete graph.

Proof. By Theorem4, we know that there is a $\mathbf{y} \in S_{n}$ such that $f\left(G_{1}, \mathbf{x}\right) \leq f\left(G_{1}, \mathbf{y}\right), f\left(G_{2}, \mathbf{x}\right) \leq$ $f\left(G_{2}, \mathbf{y}\right)$ and $\alpha(H) \leq 2$. Let $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ be such a vector whose support has minimal size. We claim that $K:=\operatorname{support}(\mathbf{y})$ satisfies the required properties. First we show that the structure of $G_{2}[K]$ is rather simple, then we show that by finding an appropriate \mathbf{y}^{\prime} one can further reduce K if $G_{2}[K]$ has two or more edges.

Recall that $\frac{\partial}{\partial z_{k}} f$ stands for the partial derivative of the function $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ with respect to the variable z_{k}. Suppose that v_{k} and $v_{h} \in K$ are nonadjacent vertices such that

$$
\begin{equation*}
\frac{\partial}{\partial y_{k}} f\left(G_{1}, \mathbf{y}\right) \geq \frac{\partial}{\partial y_{h}} f\left(G_{1}, \mathbf{y}\right) \text { and } \frac{\partial}{\partial y_{k}} f\left(G_{2}, \mathbf{y}\right) \geq \frac{\partial}{\partial y_{h}} f\left(G_{2}, \mathbf{y}\right) \tag{3}
\end{equation*}
$$

In other words, $\sum\left\{y_{\ell}: v_{k} v_{\ell} \in E\left(G_{i}[K]\right)\right\} \geq \sum\left\{y_{\ell}: v_{h} v_{\ell} \in E\left(G_{i}[K]\right)\right\}$ for $i=1$, 2 . Define the vector $\mathbf{y}^{\prime} \in S_{n}$ by

$$
y_{\ell}^{\prime}= \begin{cases}y_{k}+y_{h} & \ell=k \\ 0 & \ell=h \\ y_{\ell} & \text { otherwise }\end{cases}
$$

We have $f\left(G_{i}, \mathbf{y}\right) \leq f\left(G_{i}, \mathbf{y}^{\prime}\right)$ for $i \in\{1,2\}$ and $\operatorname{support}\left(\mathbf{y}^{\prime}\right)=K \backslash\left\{v_{h}\right\}$, a contradiction. We conclude that condition (3) does not hold.

Without loss of generality, we may suppose that $v_{1} v_{2}$ is a G_{2}-edge of H. From now on, in this section if we talk about 'edges', 'degrees' etc., then we always mean H-edges, degree in H, etc., except if it is otherwise stated.

If $f\left(G_{1}, \mathbf{y}\right) \leq 1 / 4$ then define $\mathbf{y}^{\prime}=(1 / 2,1 / 2,0, \ldots, 0)$. We obtain $f\left(G_{2}, \mathbf{y}\right) \leq f\left(G_{1}, \mathbf{y}\right) \leq$ $1 / 4=f\left(G_{1}, \mathbf{y}^{\prime}\right)=f\left(G_{2}, \mathbf{y}^{\prime}\right)$. This implies $K=\{1,2\}$ and we are done. So from now on, we suppose that $f\left(G_{1}, \mathbf{y}\right)>1 / 4$. Then the Motzkin-Straus theorem implies that the graph H is not triangle-free.

Claim 1. There are no two adjacent edges of $G_{2}[K]$.

Proof of Claim 1. Assume, to the contrary, that $v_{1} v_{2}$ and $v_{1} v_{3} \in E(H)$ are G_{2} edges. We claim that
v_{2} and v_{3} are non-adjacent, $\operatorname{deg}\left(v_{1}\right)=2$, and

$$
\begin{equation*}
H \backslash\left\{v_{1}, v_{2}, v_{3}\right\} \text { is a complete graph. } \tag{4}
\end{equation*}
$$

Indeed, v_{2} and v_{3} are non-adjacent, otherwise the triangle $v_{1} v_{2} v_{3}$ contains G_{2} edges. Suppose, to the contrary, that $\left|N\left(v_{1}\right)\right|>2$, i.e., there exists a vertex $v_{4} \neq v_{2}, v_{3}$, such that $v_{1} v_{4} \in E(H)$. Since $\alpha(H) \leq 2$ and $v_{2} v_{3} \notin E(H)$, without loss of generality, $v_{3} v_{4} \in E(H)$. Then the triangle $v_{1} v_{3} v_{4}$ contains a G_{2} edge (namely $v_{1} v_{3}$), a contradiction, so we must have $N\left(v_{1}\right)=\left\{v_{2}, v_{3}\right\}$. Finally, the condition $\alpha(H) \leq 2$ implies that $K \backslash\left(N\left(v_{1}\right) \cup\left\{v_{1}\right\}\right)$ induces a complete graph (cf., Figure 24.

The statement (4) already implies that the structure of G_{2} edges is rather simple in H. Using Condition (3) and other techniques, we reach a contradiction, considering three possible cases.

Case 1a. Assume that there is no G_{2} edge connecting $\left\{v_{1}, v_{2}, v_{3}\right\}$ to $K \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$.
Then $\frac{\partial}{\partial y_{2}} f\left(G_{2}, \mathbf{y}\right)=\frac{\partial}{\partial y_{3}} f\left(G_{2}, \mathbf{y}\right)$ (namely, both are $\left.y_{1}\right)$. Since v_{2} and v_{3} are non-adjacent the conditions of (3) hold, a contradiction.

Figure 2: The structure of H in Cases $1 a$ and $1 b$. The G_{2} edges are bold.
Case 1b. Assume that there is a G_{2} edge, say $v_{3} v_{4}$, connecting $\left\{v_{1}, v_{2}, v_{3}\right\}$ to $K \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ such that $v_{2} v_{4} \notin E(H)$.

According to (4) the set $A:=\left\{v_{1}, \ldots, v_{4}\right\}$ spans only these three G_{2} edges, v_{1} and v_{3} are degree 2 vertices, and $(K \backslash A) \cup\left\{v_{i}\right\}$ are complete graphs for $i \in\{2,4\}$. Since H must contain triangles we have $|K \backslash A| \geq 2$ and H does not contain further G_{2} edge (see Figure 2). Suppose that $y_{1} \geq y_{3}$. We obtain that

$$
\frac{\partial}{\partial y_{2}} f\left(G_{2}, \mathbf{y}\right)=y_{1} \geq \frac{\partial}{\partial y_{4}} f\left(G_{2}, \mathbf{y}\right)=y_{3}
$$

and

$$
\frac{\partial}{\partial y_{2}} f\left(G_{1}, \mathbf{y}\right)=y_{1}+\sum_{\ell>4} y_{\ell} \geq \frac{\partial}{\partial y_{4}} f\left(G_{1}, \mathbf{y}\right)=y_{3}+\sum_{\ell>4} y_{\ell}
$$

Since v_{2} and v_{4} are non-adjacent, this contradicts Condition (3).

Case 1c. Assume that there is a G_{2} edge, say $v_{3} v_{4}$, connecting $\left\{v_{1}, v_{2}, v_{3}\right\}$ to $K \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ such that $v_{2} v_{4} \in E(H)$.

According to (4) the set $A:=\left\{v_{1}, \ldots, v_{4}\right\}$ spans only these four edges, v_{1} and v_{3} have degree 2 , and $K \backslash\left\{v_{1}, v_{3}\right\}$ is a complete graph of size at least 3 (see Figure 3). H does not contain other

Figure 3: The structure of H in Case $1 c$,

and the change of the weights.
G_{2} edges. We have

$$
f\left(G_{1}, \mathbf{y}\right)=\left(y_{1}+y_{4}\right)\left(y_{2}+y_{3}\right)+\left(y_{2}+y_{4}\right)\left(\sum_{\ell>4} y_{\ell}\right)+\sum_{i>j>4} \sum_{i} y_{i} y_{j}
$$

and

$$
f\left(G_{2}, \mathbf{y}\right)=y_{1} y_{2}+y_{1} y_{3}+y_{3} y_{4} .
$$

Substitute $\mathbf{y}^{\prime}:=\mathbf{y}^{\prime}(t)=\mathbf{y}+t\left(\mathbf{e}_{1}+\mathbf{e}_{2}-\mathbf{e}_{3}-\mathbf{e}_{4}\right)$ into the above equations (Figure 3). Note that $\mathbf{y}^{\prime} \in S_{n}$ if $t \in I:=\left[\max \left\{-y_{1},-y_{2}\right\}, \min \left\{y_{3}, y_{4}\right\}\right]$. We get $f\left(G_{1}, \mathbf{y}^{\prime}\right)=f\left(G_{1}, \mathbf{y}\right)$ and

$$
f\left(G_{2}, \mathbf{y}^{\prime}\right)-f\left(G_{2}, \mathbf{y}\right)=t^{2}+t\left(y_{2}-y_{4}\right) .
$$

The right hand side is a convex polynomial of t and it takes its maximum on I in one of the endpoints. Taking this optimal t we obtain that $\max _{t \in I} f\left(G_{2}, \mathbf{y}^{\prime}\right)>f\left(G_{2}, \mathbf{y}\right)$ and $\left|\operatorname{support}\left(\mathbf{y}^{\prime}\right)\right|<$ $|\operatorname{support}(\mathbf{y})|$, a contradiction. This completes the proof of Claim 1 that H has no adjacent G_{2} edges.

Claim 2. There are no two parallel edges of $G_{2}[K]$.
Proof of Claim 国. According to Claim 1, $G_{2}[K]$ is a matching, $\left\{v_{1} v_{2}, v_{3} v_{4}, \ldots, v_{2 k-1} v_{2 k}\right\}$. We will show $k=1$. Assume, to the contrary, that $v_{1} v_{2}$ and $v_{3} v_{4}$ are two disjoint G_{2} edges of H.

Define $A:=\left\{v_{1}, \ldots, v_{4}\right\}$. Since $v_{1} v_{2}$ and $v_{3} v_{4}$ are two non-triangular edges, the set A can contain at most two more edges of H, and those should be disjoint to each other. So without losing generality, we may assume that $v_{1} v_{4}$ and $v_{2} v_{3} \notin E\left(G_{1}\right)$, (cf., Figure 4).

Let $B_{i}:=\left\{v \in K \backslash A: v v_{i} \in E(H)\right\}$ for $1 \leq i \leq 4$. We claim that $B_{1}=B_{3}$. Indeed, if $v_{5} \in B_{1}$ then $v_{2} v_{5} \notin E\left(G_{1}\right)$, otherwise $\left\{v_{1}, v_{2}, v_{5}\right\}$ forms a triangle. Then $v_{5} v_{3} \in E(H)$ otherwise $\left\{v_{2}, v_{3}, v_{5}\right\}$ forms an independent set. Hence $v_{5} \in B_{3}$, implying $B_{1} \subseteq B_{3}$. By symmetry $B_{3} \subseteq B_{1}$, we obtain $B_{1}=B_{3}$ and similarly $B_{2}=B_{4}$.

Since $v_{1} v_{2}$ is a G_{2} edge we have $B_{1} \cap B_{2}=\emptyset$ (actually, $\left\{A, B_{1}, B_{2}\right\}$ is a partition of K). We distinguish two cases.

Figure 4: \quad The structure of H in Case 2,

and the change of the weights in Case $2 b$.

Case $2 a$. Assume first that $v_{1} v_{3} \notin E(H)$.
Suppose that $y_{2} \geq y_{4}$. Since no G_{2}-edge joins A to $K \backslash A$ and $B_{1}=B_{3}$ we obtain that

$$
\frac{\partial}{\partial y_{1}} f\left(G_{2}, \mathbf{y}\right)=y_{2} \geq \frac{\partial}{\partial y_{3}} f\left(G_{2}, \mathbf{y}\right)=y_{4}
$$

and

$$
\frac{\partial}{\partial y_{1}} f\left(G_{1}, \mathbf{y}\right)=y_{2}+\sum_{y_{\ell} \in B_{1}} y_{\ell} \geq \frac{\partial}{\partial y_{3}} f\left(G_{1}, \mathbf{y}\right)=y_{4}+\sum_{y_{\ell} \in B_{1}} y_{\ell}
$$

Since v_{1} and v_{3} are non-adjacent, this contradicts (3).
So we may assume that A contains the edge $v_{1} v_{3}$. By symmetry, we may assume that A contains the edge $v_{2} v_{4}$, too.

Case 2b. Finally, A contains the edges $v_{1} v_{3}$ and $v_{2} v_{4}$ (see Figure (4).
We have

$$
\begin{aligned}
f\left(G_{1}, \mathbf{y}\right)= & \left(y_{1}+y_{4}\right)\left(y_{2}+y_{3}\right) \\
& +\left(y_{1}+y_{3}\right)\left(\sum_{y_{\ell} \in B_{1}} y_{\ell}\right)+\left(y_{2}+y_{4}\right)\left(\sum_{y_{\ell} \in B_{2}} y_{\ell}\right)+\sum_{v_{i}, v_{j} \notin A, v_{i} v_{j} \in E(H)} y_{i} y_{j},
\end{aligned}
$$

and

$$
f\left(G_{2}, \mathbf{y}\right)=y_{1} y_{2}+y_{3} y_{4}+\cdots+y_{2 k-1} y_{2 k} .
$$

Substitute $\mathbf{y}^{\prime}:=\mathbf{y}^{\prime}(t)=\mathbf{y}+t\left(\mathbf{e}_{1}+\mathbf{e}_{2}-\mathbf{e}_{3}-\mathbf{e}_{4}\right)$ into the above equations. Note that $\mathbf{y}^{\prime} \in S_{n}$ if $t \in I:=\left[\max \left\{-y_{1},-y_{2}\right\}, \min \left\{y_{3}, y_{4}\right\}\right]$. We get $f\left(G_{1}, \mathbf{y}^{\prime}\right)=f\left(G_{1}, \mathbf{y}\right)$ and

$$
f\left(G_{2}, \mathbf{y}^{\prime}\right)-f\left(G_{2}, \mathbf{y}\right)=2 t^{2}+t\left(y_{1}+y_{2}-y_{3}-y_{4}\right) .
$$

The right hand side is convex, it takes its maximum on I in one of the endpoints. Taking this optimal t we obtain that $\max _{t \in I} f\left(G_{2}, \mathbf{y}^{\prime}\right)>f\left(G_{2}, \mathbf{y}\right)$ and $\left|\operatorname{support}\left(\mathbf{y}^{\prime}\right)\right|<|\operatorname{support}(\mathbf{y})|$, a contradiction. This completes the proof of Claim 2.

The end of the proof of Lemma 6. Claims 1 and 2 imply that H has a unique G_{2} edge. We claim that the vertices in H which are not adjacent to any G_{2} edge of H induce a clique. To see this, consider two such vertices v_{i} and v_{j}. We have $\frac{\partial}{\partial y_{i}} f\left(G_{2}, \mathbf{y}\right)=0=\frac{\partial}{\partial y_{j}} f\left(G_{2}, \mathbf{y}\right)$ so the inequalities of (3) hold. Therefore v_{i} and v_{j} must be adjacent to avoid a contradiction.

4 A continuous lower bound for the number of triangular edges

In this section, by using Lemma 6, we will prove the main result of this paper, i.e., Theorem 2 , Recall that $g(n, e):=\min \{e-b c: G \in \mathcal{G}(a, b, c)$ with $e(G) \geq e, a+b+c=n\}$ (see (2)). We define $t(n, e)$ to be a real valued version of $g(n, e)$ as follows,

$$
\begin{equation*}
t(n, e):=\min \left\{e-b c: a+b+c=n, a, b, c \in \mathbb{R}_{+}, \frac{1}{2} a^{2}+a b+b c \geq e\right\} \tag{5}
\end{equation*}
$$

Obviously, $t(n, e) \leq g(n, e)$ for $n^{2} / 4 \leq e \leq\binom{ n}{2}$. Furthermore,

$$
\begin{equation*}
g(n, e)-(3 / 2) n \leq t(n, e) . \tag{6}
\end{equation*}
$$

Indeed, suppose that $(a, b, c) \in \mathbb{R}_{+}^{3}$ yields the optimal value, $t(n, e)=e-b c$. It is a straightforward calculation to show that the choice of $\left(a^{\prime}, b^{\prime}, c^{\prime}\right):=\left(\lceil a+1\rceil,\lceil b\rceil, n-a^{\prime}-b^{\prime}\right)$ satisfies (2) and the difference between $\left(e-b^{\prime} c^{\prime}\right)$ and $(e-b c)$ is at most $(3 / 2) n$.

We cannot prove Conjecture 1 that $g(n, e) \leq \operatorname{Tr}(n, e)$ (i.e., that they are equal), but as an application of Lemma 6 we will show that $t(n, e)$ is a lower bound for $\operatorname{Tr}(n, e)$.
Theorem 7. For $e>n^{2} / 4$ we have $t(n, e) \leq \operatorname{Tr}(n, e)$.
Proof. Suppose that G_{1} is a graph with n vertices, e edges and minimum number of edges in triangles, i.e., G_{1} has $\operatorname{Tr}(n, e)$ triangle edges. Let G_{2} be the subgraph of G_{1} consisting of the edges not in any triangle of G_{1}. Consider the vector $(1 / n) \mathbf{j}=(1 / n, 1 / n, \ldots, 1 / n) \in \mathbb{R}^{n}$. By Lemma 6 there exists a $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in S_{n}$ with support K such that $G_{2}[K]$ consists of a single edge, say $v_{1} v_{2}$. Moreover

$$
\begin{equation*}
\frac{e}{n^{2}}=f\left(G_{1},(1 / n) \mathbf{j}\right) \leq f\left(G_{1}, \mathbf{y}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{e-\operatorname{Tr}(n, e)}{n^{2}}=f\left(G_{2},(1 / n) \mathbf{j}\right) \leq f\left(G_{2}, \mathbf{y}\right)=y_{1} y_{2} \tag{8}
\end{equation*}
$$

Assume that $y_{1} \geq y_{2}$ and define $a:=\left(\sum_{k \neq 1,2} y_{k}\right) n, b:=y_{1} n, c:=y_{2} n$. Then (8) yields that $\operatorname{Tr}(n, e) \geq e-b c$. We claim that the reals a, b, and c satisfy the constraints in (5), hence $e-b c \geq t(n, e)$, completing the proof.

Indeed, since $v_{1} v_{2}$ is not in any triangle, $N\left(v_{1}\right) \cap N\left(v_{2}\right)=\emptyset$, we get from (7) that

$$
\begin{aligned}
\frac{e}{n^{2}} & \leq f\left(G_{1}, \mathbf{y}\right) \\
& =y_{1} y_{2}+y_{1}\left(\sum_{y_{k} \in N\left(v_{1}\right), k \neq 2} y_{k}\right)+y_{2}\left(\sum_{y_{k} \in N\left(v_{2}\right), k \neq 1} y_{k}\right)+\sum_{i<j, i, j \neq 1,2} \sum_{i} y_{j} \\
& \leq \frac{b c}{n^{2}}+\frac{b}{n} \times \frac{a}{n}+\frac{1}{2}\left(\frac{a}{n}\right)^{2} .
\end{aligned}
$$

5 Further problems, minimizing $C_{2 k+1}$ edges

In addition to the question of minimizing the number of triangular edges, Erdős, Faudree and Rousseau [3] also considered a conjecture of Erdős [2] regarding pentagonal edges asserting that a graph on n vertices and at least $\left\lfloor n^{2} / 4\right\rfloor+1$ edges has at most $n^{2} / 36+O(n)$ non-pentagonal edges. This value can be obtained by considering a graph having two components, a complete graph on $[2 n / 3]+1$ vertices and a complete bipartite graph on the rest. This conjecture was mentioned in the papers of Erdős [2] and also in the problem book of Fan Chung and Graham [1].

Erdős, Faudree, and Rousseau [3] proved that if G is a graph with n vertices and at least $\left\lfloor n^{2} / 4\right\rfloor+1$ edges then for any fixed $k \geq 2$ at least $\frac{11}{144} n^{2}-O(n)$ edges of G are in cycles of length $2 k+1$. So there is a jump of $\Omega\left(n^{2}\right)$ in the number of C_{5}-edges, while the construction of $\mathcal{G}(n, e)$ shows that for K_{3}-edges the change is smoother, $\operatorname{Tr}\left(n, n^{2} / 4+x\right)=O(n \sqrt{x})$.

In a forthcoming paper [5] we give an example of graphs with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges and $n^{2} / 8(2+$ $\sqrt{2})+O(n)=n^{2} / 27.31 \ldots$ non-pentagonal edges, disproving Erdős' conjecture. Using the weighted symmetrization method we show that this coefficient is asymptotically the best possible for $e>$ $\left(n^{2} / 4\right)+o\left(n^{2}\right)$. On the other hand, we asymptotically establish the conjecture of Erdős that for every $k \geq 3$, the maximum number of non- $C_{2 k+1}$ edges in a graph of size exceeding $\left(n^{2} / 4\right)+o\left(n^{2}\right)$ is at most $n^{2} / 36+o\left(n^{2}\right)$, as in the graph of two-components described above.

More generally, given a graph F, one can define $h(n, e, F)$ as the minimum number of F-edges among all graphs of n vertices and e edges. In a forthcoming paper [5] we asymptotically determine $h\left(n, \lambda n^{2}, F\right)$ for any fixed λ, when $1 / 4<\lambda<1 / 2$ and F is 3 -chromatic. Many problems, e.g., an F with a higher chromatic number, or natural generalizations for hypergraphs remain open.

A remark on very dense graphs. One can verify Conjecture 1 for $n \leq 8$ and in general for $e \geq\binom{ n}{2}-(3 n-13)$. This and (11) yield the exact value of $\operatorname{Tr}(n, e)$ for all pairs with $n \leq 10$ except $\operatorname{Tr}(10,27)$. More details can be found in the arXiv version [4].

A remark on keeping equalities. Taking a $:=\mathbf{e}_{\ell}^{T} \in \mathbb{R}^{d+1}$ for some $1 \leq \ell \leq d$ instead of $\mathbf{a}:=(1, \ldots, 1,0)^{T} \in \mathbb{R}^{d+1}$ in the proof of Lemma 5 one can obtain a sharper version of it. Namely, there exists a non-zero vector $\mathbf{z} \in \mathbb{R}^{d+1}$ such that $\sum_{1 \leq i \leq d+1} z_{i}=0$ and $\mathbf{a}_{\ell}^{T} \mathbf{z} \geq 0$, but $\mathbf{a}_{i}^{T} \mathbf{z}=0$ for every $1 \leq i \leq d, i \neq \ell$.

This sharper version of Lemma 5 yields a sharper version of Theorem 4. Namely, there exists an appropriate vector $\mathbf{y} \in S_{n}$ such that $f\left(G_{\ell}, \mathbf{x}\right) \leq f\left(G_{\ell}, \mathbf{y}\right)$ and $f\left(G_{i}, \mathbf{x}\right)=f\left(G_{i}, \mathbf{y}\right)$ for every $1 \leq i \leq d, i \neq \ell$.

Then the proof of Lemma 6 can be adjusted so that given $\ell \in\{1,2\}$ one can find an appropriate vector $\mathbf{y} \in S_{n}$ such that $f\left(G_{\ell}, \mathbf{x}\right)=f\left(G_{\ell}, \mathbf{y}\right)$ and $f\left(G_{3-\ell}, \mathbf{x}\right) \leq f\left(G_{3-\ell}, \mathbf{y}\right)$.

Acknowledgment. The authors are very thankful for the referee for helpful comments.

New developments (as of May 2016). Since the first public presentations of our results (e.g., in the Combinatorics seminar of the Department Mathematics and Computer Science at Emory University, December 6, 2013, in the Oberwolfach Combinatorics Workshop, Jan 5-11, 2014) and
posting the present manuscript on arXiv [4] on November 4, 2014, there were (at least) two remarkable achievements.

Gruslys and Letzter [6] using a refined version of the symmetrization method proved that there exists an n_{0} such that $\operatorname{Tr}(n, e)=g(n, e)$ for all $n>n_{0}$. The second part of our Conjecture 1, namely that the extremal graph should be from a $\mathcal{G}(a, b, c)$, is still open.

Grzesik, P. Hu, and Volec [7] using Razborov's flag algebra method showed that every n vertex graph with $\left\lfloor n^{2} / 4\right\rfloor+1$ edges has at least $\left(n^{2} / 4\right)-n^{2} / 8(2+\sqrt{2})-\varepsilon n^{2}$ pentagonal edges for $n>n_{0}(\varepsilon)$ for every $\varepsilon>0$. They also proved that those graphs have at most $n^{2} / 36+\varepsilon n^{2}$ $C_{2 k+1}$-edges for $n>n_{k}(\varepsilon)$ for every $\varepsilon>0$ and $k \geq 3$. In 5 we were able to prove the same results only for graphs with $\left\lfloor n^{2} / 4\right\rfloor+\varepsilon n^{2}$ edges (for $n>n_{0}(k, \varepsilon), k \geq 2$). Let's close with a slightly corrected version of Erdős conjecture.
Conjecture 8. Suppose that G is an n-vertex graph with e edges, such that $e>n^{2} / 4$ and it has the minimum number of $C_{2 k+1}$-edges, $k \geq 3, n>n_{k}$. Then G is connected and has two blocks, one of them is a complete bipartite graph and the other one is almost complete.

References

[1] F. Chung and R. Graham. Erdős on graphs. His legacy of unsolved problems. A. K. Peters, Ltd., Wellesley, MA, 1998.
[2] P. Erdős. Some recent problems and results in graph theory. Discrete Mathematics 164, 81-85, 1997.
[3] P. Erdős, R. J. Faudree, and C. C. Rousseau. Extremal problems involving vertices and edges on odd cycles. Discrete Mathematics 101, 23-31, 1992.
[4] Z. Füredi and Z. Maleki. The minimum number of triangular edges and a symmetrization for multiple graphs. arXiv:1411.0771, 8 pages. Posted on November 4, 2014.
[5] Z. Füredi and Z. Maleki. A proof and a counterexample for a conjecture of Erdős concerning the minimum number of edges in odd cycles. Manuscript.
[6] V. Gruslys and S. Letzter. Minimising the number of triangular edges. arXiv:1605.00528, 43 pages. Posted on May 2, 2016.
[7] A. Grzesik, P. Hu and J. Volec. Minimum number of edges that occur in odd cycles. arXiv:1605.09055, 24 pages. Posted on May 29, 2016.
[8] T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math. 17, 533-540, 1965.
[9] P. Turán. On an extremal problem in graph theory. Matematikai és Fizikai Lapok (in Hungarian) 48, 436-452, 1941.
[10] A. A. Zykov. On some properties of linear complexes. Mat. Sbornik N.S. (in Russian), 24(66), 163-188, 1949.

[^0]: *Alfréd Rényi Institute of Mathematics, 13-15 Reáltanoda Street, 1053 Budapest, Hungary.
 E-mail: z-furedi@illinois.edu.
 Research was supported in part by grant (no. K104343) from the National Research, Development and Innovation Office NKFIH, by the Simons Foundation Collaboration Grant \#317487, and by the European Research Council Advanced Investigators Grant 267195.
 ${ }^{\dagger}$ Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran.
 E-mail: zmaleki@math.iut.ac.ir
 2010 Mathematics Subject Classifications: 05C35, 05C22, 05D99. Furedi'Maleki'Symm 'Method'Revised ${ }^{\circ}$ 2016.61
 Key Words: Turán number, triangles, extremal graphs, symmetrization.
 June 7, 2016

