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Abstract

Let n, d be integers with 1 ≤ d ≤
⌊
n−1
2

⌋
, and set h(n, d) :=

(
n−d
2

)
+ d2 and e(n, d) :=

max{h(n, d), h(n,
⌊
n−1
2

⌋
)}. Because h(n, d) is quadratic in d, there exists a d0(n) = (n/6)+O(1)

such that

e(n, 1) > e(n, 2) > · · · > e(n, d0) = e(n, d0 + 1) = · · · = e(n,

⌊
n− 1

2

⌋
).

A theorem by Erdős states that for d ≤
⌊
n−1
2

⌋
, any n-vertex nonhamiltonian graph G with

minimum degree δ(G) ≥ d has at most e(n, d) edges, and for d ≥ d0(n) the unique sharpness

example is simply the graph Kn − E(Kd(n+1)/2e). Erdős also presented a sharpness example

Hn,d for each 1 ≤ d ≤ d0(n).

We show that if d < d0(n) and a 2-connected, nonhamiltonian n-vertex graph G with δ(G) ≥
d has more than e(n, d+1) edges, then G is a subgraph of Hn,d. Note that e(n, d)−e(n, d+1) =

n− 3d− 2 ≥ n/2 whenever d < d0(n)− 1.
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1 Introduction

We use standard notation. In particular, V (G) denotes the vertex set of a graph G, E(G) denotes

the edge set of G, and e(G) = |E(G)|. Also, if v ∈ V (G), then N(v) denotes the neighborhood of

v and d(v) = |N(v)|. Ore [4] proved the following Turán-type result:

Theorem 1 (Ore [4]). If G is a nonhamiltonian graph on n vertices, then e(G) ≤
(
n−1
2

)
+ 1.

This bound is achieved only for the n-vertex graph obtained from the complete graph Kn−1 by

adding a vertex of degree 1. Erdős [2] refined the bound in terms of the minimum degree of the

graph:
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Theorem 2 (Erdős [2]). Let n, d be integers with 1 ≤ d ≤
⌊
n−1
2

⌋
, and set h(n, d) :=

(
n−d
2

)
+ d2. If

G is a nonhamiltonian graph on n vertices with minimum degree δ(G) ≥ d, then

e(G) ≤ max

{
h(n, d), h(n,

⌊
n− 1

2

⌋
)

}
=: e(n, d).

This bound is sharp for all 1 ≤ d ≤
⌊
n−1
2

⌋
.

To show the sharpness of the bound, for n, d ∈ N with d ≤
⌊
n−1
2

⌋
, consider the graph Hn,d obtained

from a copy of Kn−d, say with vertex set A, by adding d vertices of degree d each of which is

adjacent to the same d vertices in A. An example of H11,3 is below.

Figure 1: H11,3

By construction, Hn,d has minimum degree d, is nonhamiltonian, and e(Hn,d) =
(
n−d
2

)
+ d2 =

h(n, d). Elementary calculation shows that h(n, d) > h(n,
⌊
n−1
2

⌋
) in the range 1 ≤ d ≤

⌊
n−1
2

⌋
if

and only if d < (n + 1)/6 and n is odd or d < (n + 4)/6 and n is even. Hence there exists a

d0 := d0(n) such that

e(n, 1) > e(n, 2) > · · · > e(n, d0) = e(n, d0 + 1) = · · · = e(n,

⌊
n− 1

2

⌋
),

where d0(n) :=
⌈
n+1
6

⌉
if n is odd, and d0(n) :=

⌈
n+4
6

⌉
if n is even. Let H ′n,d denote the graph that

is an edge-disjoint union of two complete graphs Kn−d and Kd+1 sharing one vertex.

The result of this note is the following refinement of Theorem 2.

Theorem 3. Let n ≥ 3 and d ≤
⌊
n−1
2

⌋
. Suppose that G is an n-vertex nonhamiltonian graph with

minimum degree δ(G) ≥ d such that

e(G) > e(n, d+ 1) = max

{
h(n, d+ 1), h(n,

⌊
n− 1

2

⌋
)

}
. (1)

(So we have d < d0(n).) Then G is a subgraph of either Hn,d or H ′n,d.

This is a stability result in the sense that for d < n/6, each 2-connected, nonhamilitonian n-vertex

graph with minimum degree at least d and “close” to h(n, d) edges is a subgraph of the extremal

graph Hn,d. Note that h(n, d)− h(n, d+ 1) = n− 3d− 2 is at least n/2 for d < d0 − 1. Note also

that e(H ′n,d) > e(n, d+ 1) only when d = O(
√
n).

We will use the following well-known theorems of Pósa.

Theorem 4 (Pósa [5]). Let n ≥ 3. If G is a nonhamiltonian n-vertex graph, then there exists

1 ≤ k ≤
⌊
n−1
2

⌋
such that G has a set of k vertices with degree at most k.

2



Theorem 5 (Pósa [6]). Let n ≥ 3, 1 ≤ ` < n and let G be an n-vertex graph such that

d(u) + d(v) ≥ n + ` for every non-edge uv in G. Then for every linear forest F with ` edges

contained in G, the graph G has a hamiltonian cycle containing all edges of F .

2 Proof of Theorem 3

Call a graph G saturated if G is nonhamiltonian but for each uv /∈ E(G), G+uv has a hamiltonian

cycle. Ore’s proof [4] of Dirac’s Theorem [1] yields that

for every n-vertex saturated graph G and for each uv /∈ E(G), d(u) + d(v) ≤ n− 1. (2)

First we show two facts on saturated graphs with many edges.

Lemma 6. Let G be a saturated n-vertex graph with e(G) > h(n,
⌊
n−1
2

⌋
). Then for some 1 ≤ k ≤⌊

n−1
2

⌋
, V (G) contains a subset D of k vertices of degree at most k such that G−D is a complete

graph.

Proof. Since G is nonhamiltonian, by Theorem 4, there exists some 1 ≤ k ≤
⌊
n−1
2

⌋
such that G has

k vertices with degree at most k. Pick the maximum such k, and let D be the set of the vertices

with degree at most k. Since e(G) > h(n,
⌊
n−1
2

⌋
), k <

⌊
n−1
2

⌋
. So, by the maximality of k, |D| = k.

Suppose there exist x, y ∈ V (G) − D such that xy /∈ E(G). Among all such pairs, choose x

and y with the maximum d(x). Since y /∈ D, d(y) > k. Let D′ := V (G) − N(x) − {x} and

k′ := |D′| = n− 1− d(x). By (2),

d(z) ≤ n− 1− d(x) = k′ for all z ∈ D′. (3)

So D′ is a set of k′ vertices of degree at most k′. Since y ∈ D′, k′ ≥ d(y) > k. Thus by

the maximality of k, we get k′ = n − 1 − d(x) >
⌊
n−1
2

⌋
. Equivalently, d(x) < dn−12 e. For all

z ∈ D′+{x}, either z ∈ D where d(z) ≤ k ≤
⌊
n−1
2

⌋
, or z ∈ V (G)−D, and so d(z) ≤ d(x) ≤

⌊
n−1
2

⌋
.

It follows that e(G) ≤ h(n,
⌊
n−1
2

⌋
), a contradiction. 2

Lemma 7. Under the conditions of Lemma 6, if k = δ(G), then G = Hn,δ(G) or G = H ′n,δ(G).

Proof. Set d := δ(G), and let D be a set of d vertices with degree at most d. Let u ∈ D. Since

δ(G) ≥ |D| = d, u has a neighbor w ∈ V (G) −D. Consider any v ∈ D − {u}. By Lemma 6, w is

adjacent to all of V (G) −D − {w}. It also is adjacent to u, therefore its degree is at least n − d.

We obtain

d(w) + d(v) ≥ (n− d) + d = n.

Then by (2), w is adjacent to v, and hence w is adjacent to all vertices of D.

Let W be the set of vertices in V (G)−D having a neighbor in D. We have obtained that W 6= ∅
and

N(u) ∩ (V (G)−D) = W for all u ∈ D. (4)

3



Let G′ = G[D ∪W ]. If |W | = 1, then G = H ′n,d. If |V (G′)| = 2d, then by (4), each vertex u ∈ D
has the same d neighbors in V (G)−D. Because d(u) = d, D is an independent set. Thus G = Hn,d.

Otherwise, d+ 2 ≤ |V (G′)| ≤ 2d− 1, |D| ≥ 2.

Fix a pair of vertices w1, w2 ∈W . For any x, y ∈ V (G′),

d(x) + d(y) ≥ d+ d ≥ |V (G′)|+ 1.

Therefore by Theorem 5, G′ has a hamiltonian cycle C that uses the edge w1w2. Since G′′ :=

G − (V (G′) − {w1, w2}) is a complete graph, it contains a hamiltonian w1, w2-path P . Then

P ∪ (C − w1w2) is a hamiltonian cycle of G, a contradiction. 2

Proof of Theorem 3. Suppose that an n-vertex, nonhamiltonian graph G satisfies the constraints

of Theorem 3 for some 1 ≤ d ≤
⌊
n−1
2

⌋
. We may assume G is saturated, since if a graph containing

G is a subgraph of Hn,d or H ′n,d, then G is as well.

By Lemma 6, G has a set D of k ≤
⌊
n−1
2

⌋
vertices with degree at most k such that G − D is a

complete graph. Therefore e(G) ≤
(
n−k
2

)
+ k2 = h(n, k). If k > d, then e(G) ≤ max{h(n, d +

1), h(n,
⌊
n−1
2

⌋
)} = e(n, d+ 1), a contradiction. Thus k ≤ d. Furthermore, k ≥ δ(G) ≥ d, and hence

k = d. Also, since e(G) > h(n,
⌊
n−1
2

⌋
)), we have d + 1 ≤ d0(n) ≤ (n + 8)/6. Applying Lemma 7

completes the proof. 2
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Acknowledgment added on April 5, 2017. We have learned that Theorem 3 has already been

proved by Li and Ning as a lemma in [3] with a somewhat different proof.
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(1962), 225–226.
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