

Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Matematica

CORSO DI DOTTORATO DI RICERCA IN: Scienze Matematiche

CURRICOLO: Informatica

CICLO: XXIX

LINEAR MODELS AND DEEP LEARNING:

LEARNING IN SEQUENTIAL DOMAINS

Coordinatore: Ch.mo Prof. Pierpaolo Soravia

Supervisore: Ch.mo Prof. Alessandro Sperduti

Dottorando: Luca Pasa

ii

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor Prof.
Alessandro Sperduti for the continuous support of my Ph.D study, for his
patience, motivation and enthusiasm.

Besides my advisor, I would like to thank the rest of my thesis committee
for their insightful and valuable comments and suggestions.

I would like to thank Dr. Alberto Testolin for all his help and for his
guidance before and during my Ph.D studies. Also, I would like to thank
Prof. Peter Tino for the meaningful discussions and inputs he provided
during my visit to University of Birmingham.

I would like to thank all my friends, colleagues and officemates (Moreno,
Riccardo, Alberto, Daniele, Hossein and Ding Ding) here at the University
of Padua for the stimulating discussions, and for all the fun we have had in
the last three years.

Last but not the least, a huge thank goes to my family, that always
supported me in these years. Words cannot express how grateful I am to
my mother, and father for all of the sacrifices that they have made on my
behalf.

Luca Pasa
Padova, Jan 31, 2017

iii

iv

Abstract

With the diffusion of cheap sensors, sensor-equipped devices (e.g., drones),
and sensor networks (such as Internet of Things), as well as the development
of inexpensive human-machine interaction interfaces, the ability to quickly
and effectively process sequential data is becoming more and more impor-
tant. There are many tasks that may benefit from advancement in this field,
ranging from monitoring and classification of human behavior to prediction
of future events. Most of the above tasks require pattern recognition and
machine learning capabilities.

There are many approaches that have been proposed in the past to learn
in sequential domains, especially extensions in the field of Deep Learning.
Deep Learning is based on highly nonlinear systems, which very often reach
quite good classification/prediction performances, but at the expenses of a
substantial computational burden. Actually, when facing learning in a se-
quential, or more in general structured domain, it is common practice to
readily resort to nonlinear systems. Not always, however, the task really
requires a nonlinear system. So the risk is to run into difficult and com-
putational expensive training procedures to eventually get a solution that
improves of an epsilon (if not at all) the performances that can be reached by
a simple linear dynamical system involving simpler training procedures and
a much lower computational effort. The aim of this thesis is to discuss about
the role that linear dynamical systems may have in learning in sequential
domains. On one hand, we like to point out that a linear dynamical system
(LDS) is able, in many cases, to already provide good performances at a rel-
atively low computational cost. On the other hand, when a linear dynamical
system is not enough to provide a reasonable solution, we show that it can
be used as a building block to construct more complex and powerful mod-
els, or how to resort to it to design quite effective pre-training techniques
for nonlinear dynamical systems, such as Echo State Networks (ESNs) and
simple Recurrent Neural Networks (RNNs).

v

Specifically, in this thesis we consider the task of predicting the next
event into a sequence of events. The datasets used to test various discussed
models involve polyphonic music and contain quite long sequences. We
start by introducing a simple state space LDS. Three different approaches
to train the LDS are then considered. Then we introduce some brand new
models that are inspired by the LDS and that have the aim to increase the
prediction/classification capabilities of the simple linear models.

We then move to study the most common nonlinear models. From
this point of view, we considered the RNN models, which are significantly
more computationally demanding. We experimentally show that, at least
for the addressed prediction task and the considered datasets, the intro-
duction of pre-training approaches involving linear systems leads to quite
large improvements in prediction performances. Specifically, we introduce
pre-training via linear Autoencoder, and an alternative based on Hidden
Markov Models (HMMs).

Experimental results suggest that linear models may play an important
role for learning in sequential domains, both when used directly or indi-
rectly (as basis for pre-training approaches): in fact, when used directly,
linear models may by themselves return state-of-the-art performance, while
requiring a much lower computational effort with respect to their nonlinear
counterpart. Moreover, even when linear models do not perform well, it is
always possible to successfully exploit them within pre-training approaches
for nonlinear systems.

vi

Contents

1 Introduction 1

1.1 Learning in Sequential Domains 1

1.1.1 Learning in Sequential Domains and Temporal Con-
straints . 3

1.2 Contribution . 4

1.2.1 Linear Dynamic System and Learning in Sequential
Domains . 4

1.2.2 Linear models to for simplifying learning in sequential
domains . 6

1.3 Outline of the Thesis . 8

1.4 Publications . 8

2 Deep Learning for sequences 11

2.1 Base models and theoretical tools 11

2.1.1 Linear Dynamic System 12

2.1.2 Probabilistic models: Hidden Markov Models 13

2.1.3 Recurrent Neural Networks 15

2.1.4 Long Short-Term Memory 16

2.1.5 Restricted Boltzmann Machines (RBM) 17

2.1.6 Recurrent Neural Networks with Restricted Boltz-
mann Machines . 19

2.1.7 Echo State Network 21

2.2 The State-of-the-art in learning sequences 22

2.2.1 Temporal RBM . 22

2.2.2 DBN-based Model . 23

2.2.3 Bidirection-RNN . 24

2.2.4 Multiplicative-RNN 25

3 Linear Dynamic System for Sequence Prediction 27

3.1 Prediction Task on Sequential Data 27

vii

3.2 Training Method for LDS . 28
3.2.1 Method L1 . 29
3.2.2 Method L2 . 30
3.2.3 Method L3 . 34

4 LDS-based Models 37
4.1 Linear System Network . 37

4.1.1 LSN Definition . 38
4.1.2 Basic Configuration 40
4.1.3 Configuration variants 40

4.2 Sequential LSN . 42
4.3 Co-learning with LDS . 44

4.3.1 Discussion on Linear Co-learning models 46
4.3.2 Uni-Network . 49

4.4 Encode-Decode LDS . 49

5 Pre-Training Via Linear Models 53
5.1 Pre-Training . 53
5.2 HMM-based Pre-training . 54
5.3 Pre-training via Linear Autoencoder 56

5.3.1 Computing an approximate solution for large datasets 57

6 Experimental Assessment 61
6.1 Experimental Setting . 61

6.1.1 Prediction Task . 62
6.1.2 Datasets . 62
6.1.3 Performance Metric 63

6.2 Polyphonic Music Prediction Task with LDS 64
6.2.1 Results of approaches using unsupervised projections . 65
6.2.2 Results of approaches using supervision and pre-training 66
6.2.3 Discussion . 66

6.3 Polyphonic Music Prediction Task With LDS-based Models . 72
6.3.1 Experimental results obtained by LSN 72
6.3.2 Experimental results obtained by SLSN 83
6.3.3 Experimental results obtained by linear co-learning

models . 89
6.3.4 Encode-Decode LDS 93

6.4 Experiments on Pre-training Methods 95
6.4.1 HMM-based Pre-Training 96
6.4.2 Autoencoder-based Pre-training 108

7 Conclusions 115

viii

Chapter 1

Introduction

The research work presented in this thesis deals with the problem of learning
in sequential domains. Before diving into the content of the thesis and its
contributions, in this chapter we firstly introduce the problem and discuss
why the tasks and challenges in this field are interesting. Additionally, in
what follows we unveil the additional issues related to the treatment of time
and computational burden of the common models used to perform learning
in sequential domains.

1.1 Learning in Sequential Domains

A broad range of real-world applications involve learning over sequential
data, e.g. classifying time series of heart rates (ECG) to decide if data come
from a patient with heart disease, predicting the future value of a company
stock traded on an exchange, interpreting a sequence of utterances in speech
understanding, predicting the secondary or tertiary protein structure from
its DNA sequence, and so on. Performing learning in sequential domains
usually involves long sequences that have different lengths. This makes the
sequence learning a hard task, and for this reason, different approaches, tai-
lored to specific data and task features (e.g., discrete vs. continuous valued
sequences, classification vs. prediction tasks 1, etc.), have been developed.
All these approaches can be grouped into three main categories: i) feature-
based approaches, which transform a sequence into a feature vector and
then apply conventional vectorial-based methods (e.g., [25]); ii) distance-

1The main difference between classification and prediction task regards the output.
Indeed, for what concerns the classification task, the output will be the class of a given
input. Therefore, the output space is typically smaller than the input space. While in
prediction task the output space coincides with the input space.

1

L. Pasa Linear Models in Deep Learning For Sequences

based approaches, which employ a distance function measuring the simi-
larity between sequences, e.g. Euclidean distance (e.g., [91]), edit-distance
(e.g., [64]), dynamic time warping distance (e.g., [94]), or a kernel function
(e.g., [58, 28]); iii) model-based approaches, such as using Hidden Markov
Models (e.g., [74, 95]), or Recurrent Neural Networks (e.g., [32, 34]), to pro-
cess sequences. Methods falling into the first category are successfully only
if apriori knowledge on the application domain can be used to select the
most relevant sequence features for the task at hand. A notable example
of these approaches, in the case of discrete valued sequences, is the use of
short sequence segments of k consecutive symbols (k-grams) as features; a
sequence is represented as a vector of the presence/absence/frequency of
k-grams. The obtained vectors can then be fed into conventional learning
machines, such as Decision Trees [72], Support Vector Machines [29], feed-
forward neural networks [20], for any kind of learning task (classification,
prediction, ranking, etc.). The drawback of these approaches is that the
number of features to consider easily grows exponentially and this will also
lead to increased memory consumption (e.g., the size of k in k-grams). If
apriori knowledge is not available for pruning the feature space, feature se-
lection strategies (see [42]) need to be used. Moreover, ad-hoc strategies,
such as discretization, are needed to deal with continuous valued sequences
(e.g., [96]). Distance-based approaches treat each sequence as a single en-
tity and exploit a sequence similarity function to determine how similar two
sequences are. This information can then be used within an instance-based
approach for learning (e.g., k-Nearest Neighbor [30]), or directly inside a
kernel method if the used similarity function is a proper kernel. These ap-
proaches tend to be expensive from a computational point of view since
computing the sequence similarity function usually involves a relevant com-
putational burden (e.,g. edit-distance [76]). Moreover, these approaches
usually have problems to extrapolate the learned function to sequences that
are longer than the ones used for training.

Finally, model-based approaches assume that the observed sequences,
as well as the function to learn, have been generated by a law (or model).
Because of that, they aim at reconstructing such model, with the goal of
successfully extrapolating the learned function to the whole sequence do-
main. Model-based approaches are typically computationally demanding,
however, if a good approximation of the target model is learned, very good
performances on the whole sequence domain can be obtained. Graphical
models [56], and in particular Hidden Markov Models (HMMs), are often
used as learning models. HMMs assume that each sequence item has been
generated by hidden variables that are not directly observable. The way
each sequence item observed at time t is generated is described by a (para-
metric) probability distribution which depends on the state at time t of the
HMM, i.e. the values taken by the hidden variables at time t; moreover,
another (parametric) probability distribution drives the way the values as-

2

Linear Models in Deep Learning For Sequences L. Pasa

signed to hidden variables change through time. Learning aims at tuning
these probability distributions in order to make the observed sequences more
likely to be generated when sampling from the model. A deterministic alter-
native to HMMs is given by Recurrent Neural Networks (RNNs), which can
be understood as nonlinear dynamical systems where learning is performed
by using gradient-based approaches [20]. From an abstract computational
point of view, given a graphical model for sequences, it is possible to state
that an RNN constitutes a specific deterministic implementation of that
graphical model [35]. Due to their nonlinearity, RNNs are potentially very
expressive and powerful. However, they are also difficult to train, mainly
because temporal dependencies introduce constraints that limit the efficacy
of gradient-based learning algorithms [12] as well as the parallelization of
computation. Despite old [49] and recent developments [62, 13], the compu-
tational burden to train RNNs still remains very high.

It is worth to note that models can also be used to define kernels (e.g.,
[50, 7]). One very general way to exploit a generative model for defining
a kernel is given by the Fisher kernel approach, originally proposed by
[50]. The underpinning idea of Fisher kernel is to use the training data
to create a generative model, e.g. an HMM, and then to define a kernel
on sequences from the Fisher score vectors extracted from the generative
model. Besides being computationally very expensive, Fisher kernel may
suffer from quite bad feature representation due to maximum likelihood
training which leads to develop a large number of very small gradients
(data with high probability under the model) and a few very large ones
(data with low probability under the model) [88]. Because of that, Fisher
kernel may suffer when used for discriminative tasks. A technique that
tries to correct this problem has been proposed in [88]. The basic idea is
to learn the generative model parameters in such a way that the resulting
embedding has a low nearest-neighbor error. This approach improves the
discriminative performance at the expenses of an increased computational
cost, which makes Fisher kernel very computational demanding when
considering long sequences.

1.1.1 Learning in Sequential Domains and Temporal Con-
straints

It is important to notice that the computational burden problem of the
nonlinear methods reported above is one of the biggest problems when ap-
plying one of these methods to real world scenarios. For instance nowadays
with the diffusion of cheap sensors, sensor-equipped devices (e.g., drones),
and sensor networks (such as Internet of Things [8]), as well as the devel-
opment of inexpensive human-machine interaction interfaces, the ability to
quickly and effectively process sequential data is becoming more and more

3

L. Pasa Linear Models in Deep Learning For Sequences

important. Many are the tasks that may benefit from advancement in this
field, ranging from monitoring and classification of human behavior to pre-
diction of future events. Most of the above tasks require pattern recognition
and machine learning capabilities. Many are the approaches that have been
proposed in the past few years to learn in sequential domains (e.g., [83]).
A special mention goes to recent advancements involving Deep Learning
[39, 71, 41]. Deep Learning is based on very nonlinear systems, which reach
quite good classification/prediction performances but very often at the ex-
penses of a very high computational burden.
It is common practice, when facing learning in a sequential, or more in gen-
eral structured, domain to readily resort to nonlinear systems. In this thesis
we wonder if it is always necessary to use this kind of complex models, or if
it is possible to exploit simpler models in order to obtain good results but
trying to limit the computational burden of the used method in order to
make feasible to apply it to some of the real world tasks reported above.
Indeed not always the task really requires a nonlinear system. So the risk is
to run into difficult and computationally expensive training procedures to
eventually get a solution that improves of an epsilon (if not at all) the perfor-
mances that can be reached by a simple linear dynamical system involving
simpler training procedures and a much lower computational effort.

1.2 Contribution

The aim of this thesis is to explore how linear models could be used to
perform learning in sequential domains. We firstly explore how a very simple
model, the Linear Dynamic System (LDS) can be applied in this context.
We introduce three different training methods that can be used in order to
perform learning on large datasets. Then we explore if it is possible to create
a more powerful model by using LDSs as a building block. The idea is to
combine several LDSs to build a more complex nonlinear model. Finally, we
study how a linear model can be used in order to help nonlinear models to
simplify the learning phase.

1.2.1 Linear Dynamic System and Learning in Sequential
Domains

We start by focusing on a particularly simple linear models: the Linear
Dynamic System (LDS). LDS is particularly interesting, because for some
tasks it is able, in many cases, to already provide good performances at
a relatively low computational cost. On the other hand, when a linear
dynamical system is not enough to provide a reasonable solution it could
be used as a starting point to train more complex models. The first part of
this thesis reports our contribution in applying LDS on machine learning
tasks. Specifically, here we consider the task of predicting the next event

4

Linear Models in Deep Learning For Sequences L. Pasa

into a sequence of events. Our first contribution consists in introducing
methods that allow to perform training on LDS models. Three different
approaches to train the LDS are developed. The first one is based on
random projections and it is particularly efficient from a computational
point of view. The second, computationally more demanding approach,
projects the input sequences onto an approximation of their spanned
sub-space obtained via a linear autoencoder [82] naturally associated to
the LDS. For both approaches, the computation of the output weights
involves the computation of a pseudo-inverse. Finally, we consider a
refinement via stochastic gradient descent of the solution obtained by the
autoencoder-based training scheme. Of course, this last approach requires
additional computational resources. The application of simple LDSs on
prediction tasks highlighted the strengths and the weaknesses of this
model. In particular, experimental results on benchmark datasets show the
importance of performing a wise tuning of the parameters of the model.
The comparison among the LDS and the most common nonlinear models on
benchmarks datasets has proven that the use of linear models for learning
sequential data is certainly useful. Specifically, the comparison involves
the Echo State Networks, that can be considered a natural extension of
the first linear approach, since nonlinear random projections are used to
define a coding of input sequences, and the pseudo-inverse is exploited to
estimate the output weights. In addition, these are the less computationally
demanding models in the nonlinear models arena. The second considered
family of nonlinear models is given by simple RNNs, which computationally
are significantly more demanding.
The second step that we made in studying how to apply LDSs in learning
in sequential domains, has been exploring if it is possible to combine more
LDSs in order to increase the capability of the resulting model. Firstly, our
study drove us to wonder whether it is possible to obtain nonlinearity by
combining several LDSs. More precisely, our idea is to wisely compose the
representation computed by several LDSs fed with the same input, in order
to obtain a nonlinear representation of it. The Linear System Network
(LSN) is the model that we have developed in order to implement this
intuition. The LSN model is attractive thanks to a simple and efficient
training procedure. Unfortunately, the obtained experimental results are
not much different than the results obtained by the LDS model, that turns
out to be easier to train and much more efficient.
Another explored idea in the same line was to apply co-Learning techniques,
that consist in exploiting an external model in order to perform training on
the feature space of the LDS. Our study uncovered (and formally proved)
some critical limitations of the application of Co-learning techniques in
the LDS context. The empirical poor results obtained by these models
confirmed the correctness of our theoretical results.

5

L. Pasa Linear Models in Deep Learning For Sequences

1.2.2 Linear models to for simplifying learning in sequential
domains

A serious problem that afflicts the existent approaches for sequential data
is their difficulties in learning over long sequences: feature-based ap-
proaches typically use features associated to the occurrence of short tempo-
ral/positional sub-sequences, i.e., local features, which fail to capture long-
term dependencies. Distance-based approaches typically select a subset of
the training sequences as reference to perform the desired computation2;
because of that, the learned function typically has difficulties to deal with
sequences that are longer than the ones used for training. Model-based
approaches also tend to have problems capturing long-term dependencies,
either because they have discrete finite memory (i.e., the number of differ-
ent states in which an HMM can be), such as in the most commonly used
versions of HMMs, or because learning algorithms fail to find the “right” set-
ting for the parameters, such as in RNNs. Notwithstanding the difficulties in
training RNNs, their computational power is so high (see, for example [19])
that it is worth to study new approaches to improve learning. If we turn
our attention to static data, recent advances in training deep neural net-
works, i.e. networks composed of many layers of nonlinear processing units,
now allow to reach state-of-the-art performance in complex machine learning
tasks, such as image classification [57], speech recognition [5] and natural
language processing [26]. One reason for this progress is due to the possibil-
ity of learning algorithms to enlarge the exploration of the parameter space
thanks to the advent of new, high-performance parallel computing architec-
tures, which exploit powerful graphic processors to significantly speed-up
learning [75]. However, the breakthrough that allowed to effectively train
large-scale “deep” networks has been the introduction of an unsupervised
pre-training phase [45], in which the network is trained to build a generative
model of the data, which can be subsequently refined using a supervised
criterion (fine-tuning phase). Pre-training initializes the weights of the net-
work in a region where optimization is somehow easier, thus helping the
fine-tuning phase to reach better local optima. It might also perform some
form of regularization, by introducing a bias towards good configurations of
the parameter space [33]. The importance to start gradient-based learning
from a good initial point in the parameter space has also been pointed out
in [84].

Going back to sequences, an interesting research question is whether the
benefits of pre-training could also be extended to the temporal domain, and
whether it is possible to perform it by using a simple linear models. Up
to now, the most popular approaches to pre-train sequential models do not

2For example, k-Nearest Neighbor exploits all training sequences or a subset obtained
by editing the training set (e.g., [43]); also Support Vector Machines use a subset of the
training set, i.e. the support sequences.

6

Linear Models in Deep Learning For Sequences L. Pasa

take into account temporal dependencies (e.g., [5, 17]) and only pre-train
input-to-hidden connections by considering each item of the sequence as
independent from the others. This pre-training strategy is clearly unsatis-
factory, because by definition the items belonging to the same sequence are
dependent from each other, and this information should be exploited also
during pre-training.

In this thesis, we propose two alternative pre-training methods. The
first one, instead of using the same dataset for both the pre-training and
the fine-tuning phases, uses a linear model, such as HMM with a limited
number of states, to generate a new dataset, which represents an approx-
imation of the target probability distribution. This simpler, “smoothed”
dataset is then used to pre-train a more powerful nonlinear model, which
is subsequently fine-tuned using the original sequences. Importantly, this
method does not require to develop any ad-hoc pre-training algorithm:
we can adopt standard gradient descent learning, and apply it first on
the approximate distribution and then on the original dataset. We first
applied the HMM pre-training on a recently proposed recurrent model [17]
that has been shown to obtain state-of-the-art performance on a prediction
task for the considered dataset. We then assessed the robustness and the
generality of the method by applying it also to a classic recurrent neural
network. Our results confirm the value of the proposed pre-training strat-
egy, which allows to learn an accurate model of the data in a significantly
shorter time, sometimes also leading to improvements in prediction accuracy.

The second proposed pre-training method is focused on RNN models.
One of the hardest problems that makes it difficult to train this model is the
vanishing gradient problem [45, 44, 31], that makes it unfeasible to deal
with long-term temporal dependencies. In that context, there is a growing
evidence that effective learning procedures should be based on relevant and
robust internal representations developed in autonomy by the learning sys-
tem. This is usually achieved in vectorial spaces by exploiting nonlinear au-
toencoder networks to learn rich internal representations of input data which
are then used as input to shallow neural classifiers or predictors (see, for ex-
ample, [11]). The relationship between autoencoder networks and Principal
Component Analysis (PCA) [53] is well known since late ‘80s, especially in
the case of linear hidden units [18, 9]. More recently, linear autoencoder
networks for structured data have been studied in [80, 65, 81], where an
exact closed-form solution for the weights is given in the case of a number
of hidden units equal to the rank of the full data matrix. The second pro-
posed pre-training method exploits the conceptual framework presented in
[80, 82] to devise an effective pre-training approach, based on linear autoen-
coder networks for sequences, to get a good starting point into the weight
space of an RNN, which can then be successfully trained even in presence
of long-term dependencies. Specifically, we revise the theoretical approach

7

L. Pasa Linear Models in Deep Learning For Sequences

presented in [80] by: i) giving a simpler and direct solution to the problem
of devising an exact closed-form solution (full rank case) for the weights
of a linear autoencoder network for sequences, highlighting the relationship
between the proposed solution and PCA of the input data; ii) introducing
a new formulation of the autoencoder learning problem able to return an
optimal solution also in the case of a number of hidden units which is less
than the rank of the full data matrix; iii) proposing a procedure for ap-
proximate learning of the autoencoder network weights under the scenario
of very large sequence datasets. More importantly, we show how to use the
linear autoencoder network solution to derive a good initial point into an
RNN weight space. The tests performed on RNNs pre-trained by using this
autoencoder based method returned quite impressive empirical results when
applied to prediction tasks.

1.3 Outline of the Thesis

This thesis is composed of four logical parts. In the first part, that con-
sists in Chapter 2, the most common models used to perform training on
sequential data are presented. The second part regards the original contri-
butions presented in this thesis. In particular, Chapter 3 regards the study
of the application of LDS model to Machine Learning tasks; Chapter 4 in-
troduces some brand new models that are based on LDS. Finally, Chapter
5 discusses about how a linear model can be used in order to preform a
pre-training phase of more complex nonlinear models, and how it can help
during the training phase. The third part of the thesis (Chapter 6) reports
all the experimental results obtained by testing the models presented in the
second part. Specifically, the performed tests concern the application of the
various models on prediction tasks involving complex musical sequences.
Finally Chapter 7 contains conclusion and final remarks.

1.4 Publications

Part of the research presented in this thesis and developed during my Ph.D.
program produced peer-reviewed workshop, conference and journal publica-
tions. The complete list of published works is listed in the following:

[C1] Luca Pasa, Alberto Testolin, and Alessandro Sperduti: A HMM-based
Pre-training Approach for Sequential Data. In: 22th European Sym-
posium on Artificial Neural Networks, 2014.

[C2] Luca Pasa and Alessandro Sperduti: Pre-training of recurrent neural
networks via linear autoencoders. In: Advances in Neural Information
Processing Systems (NIPS), 2014.

8

Linear Models in Deep Learning For Sequences L. Pasa

[C3] Luca Pasa, Alessandro Sperduti: Learning Sequential Data with the
Help of Linear Systems. In: IAPR Workshop on Artificial Neural
Networks in Pattern Recognition, 2016.

[J1] Luca Pasa, Alberto Testolin, Alessandro Sperduti: Neural Networks
for Sequential Data: a Pretraining Approach based on Hidden Markov
Models. In: Neurocomputing (169), 2015.

9

L. Pasa Linear Models in Deep Learning For Sequences

10

Chapter 2

Deep Learning for sequences

In this chapter we introduce and briefly review the most interesting Deep
Learning models, developed to deal with sequential data. Our literature
review regards the models that reached the best results in different areas
and tasks concerning learning in sequential domains. In the first part of
the chapter the most common Deep Learning models for sequences are in-
troduced and discussed. These models are widely used in many real world
problems, and constitute an essential background to our contribution. In
the second part of this chapter we list and briefly explain the brand new
models introduced in the last few years, that have been developed for facing
some interesting problems in sequential domains. These models are the ones
that achieved the most interesting results on some very specific tasks. Some
of these models will be later compared to models proposed in this thesis in
Chapter 6.

2.1 Base models and theoretical tools

In this section some fundamental models developed to perform learning in
sequential domains are introduced. In particular, we start by explaining the
Linear Dynamic System that is a really simple model that can be used to
model sequential phenomena. Then, we introduce another powerful linear
model: the Hidden Markov Model. Finally, the two of the most common
nonlinear models for sequences, Recurrent Neural Network and Echo
State Network, are discussed.

11

L. Pasa Linear Models in Deep Learning For Sequences

xt ht−1

ht

ot

A B

C

Figure 2.1: Schematic representation of the Linear Dynamic System.

2.1.1 Linear Dynamic System

A Linear Dynamic System (LDS) (Figure 2.1) is a mathematical model
that allows to represent sequential events and phenomena, widely used in
Physics and in Engineering. The discrete time LDS model has an input xt,
an internal state ht, and an output ot, at each time step t. The model uses
three matrices in order to compute the internal state and the output value,
and it is able to describe the time dynamic of a phenomenon, thanks to
recurrent connections on its internal state ht. The simpler linear model is a
discrete-time dynamical system defined as:

ht = A xt +B ht−1, (2.1)

ot = C ht, (2.2)

where ht ∈ Rm is the state of the system at time t and, A ∈ Rm×n,
B ∈ Rm×m, C ∈ Rs×m are the input matrix, the state matrix and the output
matrix, respectively. In addition, we assume h0 = 0, i.e. the null vector.
In order to describe a phenomenon, which is characterized by the input
data and the output data, the LDS has to be “identified”, that consists in
finding the model parameters that maximize the model likelihood given the
data. In this thesis, we focus on discrete time LDS. Identifying an LDS
consists in computing the matrices A, B and C that map the input into
the output. The most common techniques to identify an LDS are know as
sub-space identification methods [59]. Such methods, however, present some
important limitations. Indeed, they try to compute an exact solution, and
diverge in case such solution does not exist. Moreover, these methods are
developed to compute the parameters that allow to model the behavior of
a physical system that is usually described by a single very long sequence.
This limitation makes it difficult to apply them to machine learning tasks.

12

Linear Models in Deep Learning For Sequences L. Pasa

xt ht−1

ht

A B

C

xt ht−1

Figure 2.2: Schematic representation of the Autoencoder.

In fact, Machine learning tasks typically use large datasets, and finding an
exact solution is sometime impossible. Moreover, in machine learning, the
aim is to learn a function that does not overfit the training data, therefore
performing training by using system identification methods turns out not to
be useful.
A particular type of LDS is the Linear Autoencoder (Figure 2.2) for se-
quences. The specific feature of the Autoencoder is that the size of the
output space is the same as the size of the input space. The definition of
Linear Autoencoder is obtained by substituting equation (2.2) with[

xt

ht−1

]
= C ht, (2.3)

therefore, the idea is to learn a hidden representation ht of the input xt. It
is possible to have also a nonlinear Autoencoder where equations (2.1) and
(2.2) are substituted by the following equations:

ht = F(A xt +B ht−1), (2.4)[
xt

ht−1

]
= G(C ht), (2.5)

where F and G are two nonlinear functions (e.g. component-wise sigmoid
functions).

2.1.2 Probabilistic models: Hidden Markov Models

The Hidden Markov Model (HMM) is a probabilistic linear model that
has been developed in order to deal with sequential data. Most real-world
information sources emit, at each time step t, observable events which are

13

L. Pasa Linear Models in Deep Learning For Sequences

..H1

. H2

. H3

. · · ·. HT

.

V1

.

V2

.

V3

..

VT

........

Figure 2.3: The graphical model of a first-order hidden Markov model with
hidden states Ht. The observable variables Vt are driven by the hidden
states Ht.

correlated with the internal state of the generating process. More impor-
tantly, the only available information is the outcome of the stochastic pro-
cess at each time step t, i.e. event v(t), while the state of the system is
unobservable, i.e. hidden. Hidden Markov Models allow modeling general
stochastic processes where the state transition dynamics is disentangled from
the observable information generated by the process. The state-transition
dynamics, which is non-observable, is modeled by a Markov chain of discrete
and finite latent variables, i.e. the hidden states.

The dependency relationships among the different involved variables are
typically represented by a graphical model, as exemplified for the HMM in
Figure 2.3: the hidden states are latent variables Ht, while the sequence
elements Vt are observed. The conditional dependence represented by the
arrow Ht → Vt indicates that the observed element at time t of the sequence
is generated by the corresponding hidden state Ht through the emission
distribution

bh(t)(v(t)) = P (Vt = v(t)|Ht = h(t)).

The joint distribution of the observed sequence v = v(1), . . . ,v(T) and asso-
ciated hidden states h = h(1), . . . ,h(T), can be written as

P (V = v,H = h) = P (h(1))
T∏
t=2

P (h(t)|h(t−1))P (v(t)|h(t)). (2.6)

The actual parametrization of the probabilities in eq. (2.6) depends on
the form of the observation and hidden states variables. A stationary
hidden states chain, with N states, is regulated by the N × N matrix
of state-transitions Aij = P (Ht = i|Ht−1 = j) and by the N -dimensional
vector of initial state probabilities πi = P (Ht = i), where i, j are drawn
from {1, . . . , N}. Moreover, discrete sequence observations vt ∈ {1, . . . ,M}
(which is the case we are interested in here), the emission distribution is an
M ×N emission matrix B with elements

bi(k) = Bki = P (Vt = k|Ht = i). (2.7)

14

Linear Models in Deep Learning For Sequences L. Pasa

The most common tasks performed by using an HMM are: i) to com-
pute the most likely sequence of states given an observed sequence; ii) to
train a model, which consists in finding the parameters (emission probabil-
ities, transition probabilities, and initial state probability) that maximize
the probability of the observed sequences contained in a training set, given
the model. The first task is achieved by using the Viterbi algorithm [74],
while training an HMM is usually performed by the Baum-Welch algorithm
[92].

2.1.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) (Figure 2.4) are a particular type of
neural networks designed to model sequential data. They are composed of
three different layers of units: input layer, hidden layer, and output layer.
At each time step, the corresponding elements of the sequence are given in
input to the network through the input layer. The input layer is connected
to the (first) hidden layer by a set of weighted connections. One or more
hidden layers are used to encode, after training, the latent features of the
data. The (last) hidden layer is then connected to the output layer, which is
used for prediction of the desired output, e.g. in this thesis we are interested
into the prediction, at time t, of the elements at time t+ 1 of the sequence.
Let us consider a network with just one hidden layer. Let x1,x2, ..., xl ∈ Rn

be the sequence of input vectors, h1,h2, ...,hl ∈ Rm the sequence of hidden
states and o1,o2, ...,ol ∈ Rk the sequence of output states. The computation
performed by the RNN at time t is described by the following equations:

ht = F(Axt +Bht−1 + bh),

ot = F(Cht + bo),

where F is a component-wise activation function, bh and bo are the biases of
hidden and output units, and A, B, and C are the input-to-hidden, hidden-
to-hidden and hidden-to-output weights, respectively. The standard way to
perform training of RNNs parameters is via the back-propagation through
time (BPTT) algorithm [93], either in batch mode or online via a stochastic
gradient descent (SGD) approach. Unfortunately, RNNs encounter difficul-
ties in learning when trained by the BPTT algorithm because of long-term
temporal dependencies which lead to a vanishing gradient [12]. Two main
possible remedies to this problem have been proposed: the first one is called
Long Short-Term Memory (LSTM) [49] and it consists in extending the
model by using special linear memory units, while a more recent proposal
relies on an Hessian-Free optimization algorithm (HF) [62].

15

L. Pasa Linear Models in Deep Learning For Sequences

ht

A

B
C

xt

ht−1

A A

C C
B

xt−1 xl

hl

otot−1 ol

Figure 2.4: Schematic representation of the RNN.

2.1.4 Long Short-Term Memory

Long Short-Term Memory (LSTM) [49] is an extension of RNN network
that has the ability of deal with long-term temporal dependencies, without
incurring in the problem of vanishing gradient. The LSTM is designed
in order to provide a mechanism that allows the networks to “remember”
relevant information for a long period of time. This behavior is obtained by
adding gate units to the structure of a simple RNN. The idea is to create
a “cell state” where it is possible to add or remove information by using
gates. Each gate cell consists in a sigmoidal function that regulates the
information flow in the memory cell. In LSTM there are 3 gates. More
formally an LSTM network is defined as follows:

gi = σ(A(gi)xt +B(gi)ht−1, (2.8)

gf = σ(A(gf)xt +B(gf)ht−1, (2.9)

go = σ(A(go)xt +B(go)ht−1, (2.10)

g = F(A(g)xt +B(g)ht−1, (2.11)

ct = gf · ct−1 + gi · g, (2.12)

ht = go · F(ct), (2.13)

where:

• gi, gf and go are the input gate, the forget gate and the output gate,
respectively. The equations that define them are very similar. Indeed,
each of them uses different matrices. During the training, each gate is
specialized to perform a special task. All gates use the same element-
wise function: the sigmoid that narrows the real value, that a gate can
take, in the range from 0 to 1. The values of these gates are multiplied
by the vector that represents the input, the previous state and the
candidate state in equations (2.11), (2.12) and (2.13). Therefore, the
gate matrices regulate the quantity of information that passes through
the memory cell. More precisely, the input gate defines how much
information from the current input will be “saved” in the memory

16

Linear Models in Deep Learning For Sequences L. Pasa

cell. Indeed, in equation (2.12) its output is multiplied by g that is the
candidate hidden state. The forget gate allows to define the quantity
of information of previous state id used to compute the current state.
Its output is multiplied by ct−1 (eq.(2.12)), that represents the state
of the memory cell at the previous time step. Finally, the output gate
go defines how much information stored in the cell is used to compute
the current hidden state of the network (eq. (2.13)).

• g is computed by the same equation that is used by classic RNN to
compute the hidden state. It may be considered as the candidate
hidden state. Indeed, this hidden state is used to compute the LSTM
hidden state, by mitigating it with the information coming from the
memory cell.

• ct is the memory cell that uses the information coming from the pre-
vious step and the information of the “base” hidden state filtered by
the input and the forget gates, respectively.

• ht is the hidden state of LSTM, that is computed by multiplying the
value contained in the memory cell by the forget gate’s value.

A simpler variant of LSTM is the Gated Recurrent Unit (GRU) [22],
that merges the input and the forget gates in a single gate, called update
gate. This gate uses two reset gates to manage how to combine the new
input with the previous memory. The GRU has only two gates meaning
that this model has fewer parameters than LSTM, but GRU does not have
an internal memory cell. In literature, the comparison between these two
models is discussed in [24] and [54], and the results show that the two models
are comparable. Since the GRU has fewer parameters than LSTM, it has
better performance in terms of time required for training. On the other
hand, the greater expressive capability of LSTM allows it to better cope
with complex tasks.

2.1.5 Restricted Boltzmann Machines (RBM)

Restricted Boltzmann Machines [79][46] (Figure 2.5) is a particular type of
Markov Random field [55]. In particular, it consists of a twofold graphical
model that contains two types of units: hidden units and visible units. This
model is bipartite, indeed, there are no connections among visible units and
among hidden units. This feature makes it different from the Boltzmann Ma-
chine (BM), that consists of a fully-connected probabilistic graphical model.
The RBM weighted connections between the units and its biases, define
a probability distribution by using an Energy-Based function. In general,
Energy-Based Models use a scalar value, called Energy, that is associated
with each variable configuration. Performing learning on this type of models

17

L. Pasa Linear Models in Deep Learning For Sequences

consists in “modifying” the energy function by tuning the model parameters.
The Energy function modeled by an RBM is defined as follows:

E(v,h|θ) = −
nv∑
i=1

nh∑
j=1

wijvihj −
nv∑
i=1

bvivi −
nh∑
j=1

bhj
hj , (2.14)

where v and h are respectively the vectors of visible and hidden units that
have size nv and nh respectively. While bv and bh are the bias vectors of the
visible and hidden layer, θ is the set of model parameters (weights and bias).
The probability associated with visible units can be computed as follows:

P (v|θ) =

∑
h

e−E(v,h)∑
u

∑
h

e−E(u,h)
. (2.15)

The denominator of equation (2.15) is called partition function and it is
defined in order to normalize to 1 the summation of the probability over all
visible units. Since there are no connections between the hidden and the
visible units, the conditional probability can be factorized as follows:

P (hj = 1|v, θ) = σ(−bhj
+

nv∑
i=1

Wijvi) (2.16)

P (vi = 1|h, θ) = σ(bvi +

nh∑
j=1

Wijhj). (2.17)

The RBM turns out to be quite complex to train, mainly because during
the training phase the goal is to maximize the model likelihood, and it is
highly computational demanding. Indeed, it involves the computation of the
function derivative. In order to solve this problem it is possible to exploit
the following equation:

∂ logP (v)

∂wij
=< vihj >data − < vihj >model, (2.18)

where < · >d is the expected value over a probability distribution d. By
using a gradient descent we can define the equation that will be used in
order to update the model weights during the training phase:

∆wij = η(< vihj >data − < vihj >model), (2.19)

where η is called learning rate, that is typically set to a value in range from
0 to 1. In equation (2.19) it is easy to compute < vihj >data, since it can
be obtained by considering the probability distribution of the training data.
For what concerns < vihj >model, computation is more complex because it
directly derives from the model, and therefore it requires to execute a Monte

18

Linear Models in Deep Learning For Sequences L. Pasa

v1 v2 vnv

h1 h2 h3 hnh

Figure 2.5: Schematic representation of the RBM.

Carlo Markov Chain [38] until the model converges. That happens because
in this case we do not have any given data, and so research has to start from
random data assigned to visible units, that is used to compute the hidden
variables. The process has to be iterated until the model achieves stability.
A more efficient alternative is called Contrastive Divergence (CDk) [47]. This
technique allows to compute an approximation of < vihj >model. The idea
is to perform the sampling of hidden units values starting from the visible
units values that directly derive from the data contained into the training set.
Therefore, given the visible units values the idea is to use equation (2.17), in
order to sample the hidden units values and then recompute the visible units
values that maximize the probability of them given the computed hidden
values. That technique allows to compute < vihj >reconstruction that may
be used in place of < vihj >model. The Contrastive Divergence is called CDk

because the sequence of operations presented above has to be performed k
times. The interesting aspect is that empirical experiments show that it is
possible to obtain good results with k equal to 1 [11].

2.1.6 Recurrent Neural Networks with Restricted Boltz-
mann Machines

The Recurrent Neural Network - Restricted Boltzmann Machine (RNN-
RBM) [17] is a sequential neural network that combines the best features of
RNNs, which are particularly effective in learning temporal dependencies,
within an RBM, which can model complex and multi-modal distributions.
The RNN-RBM network is similar to the RTRBM [85]. However, instead of
exploiting a simple connection between the RBM hidden units of two con-
tiguous time-steps, it hinges on the hidden units of an RNN to keep track of
the relevant temporal information, thus allowing the encoding of long-term
temporal dependencies.

19

L. Pasa Linear Models in Deep Learning For Sequences

..ĥ(0). ĥ(1).

x(1)

.

h(1)

. ĥ(2).

x(2)

.

h(2)

. · · ·.

· · ·

.

· · ·

. ĥ(T).

x(T)

.

h(T)

.

B′′

.

B′′

.

B′′

.

B′

.

B′

.

B′

.
bĥ.

bĥ.
bĥ.

b
(1)
v

.

b
(2)
v

.

b
(T)
v

.

b
(1)
h

.

b
(2)
h

.

b
(T)
h

.
B3.

B3.

B2

.

A

.

B2

.

A

.

B2

.

A

.
B3

Figure 2.6: Schematic representation of the RNN-RBM (see [17] for details).

RNN-RBMs are nonlinear stochastic models, for which the joint proba-
bility distribution of hidden and input units is defined as:

P (xt,ht) =

T∏
t=1

P (xt,ht|xt−1,xt−2, ...,x1, ĥt−1, ĥt−2, ..., ĥ1)

where ĥt = σ(B2vt+B3ĥt−1+bĥ) and xt, ht and ĥt represent, respectively,
the input units, the RBM-hidden units and the RNN-hidden units, whereas
bĥ represents the RNN-hidden unit biases (see Figure 2.6). This type of net-
works are more complex than RNN and RTRBM networks, so they require
an ad-hoc training algorithm. The idea is to propagate the value of hidden
units ĥt in the RNN-part of the network and then to use the ĥt value to
obtain the value of some of the parameters of the RBM-part. Specifically,
time-variant biases for RBM are derived by the hidden units of the RNN,
according to the following equations:

bht = bĥ +B′ĥt−1,

bvt = bĥ +B′′ĥt−1.

The RBM-part of the network can then be trained by using Gibbs sampling
and Contrastive Divergence [47]. In this way, the log-likelihood gradient of
the RBM-part of the network can be estimated and propagated to all time
steps by using the BPTT algorithm [93] in order to estimate the gradient
with respect to the RNN-part parameters.

To obtain a good model of the data, a pre-training phase has to be per-
formed. In particular, the authors of the RNN-RBM network developed an
approach which consists in a separate pre-training for RBM and RNN over
the training set. Specifically, pre-training of the RBM-part of the model is

20

Linear Models in Deep Learning For Sequences L. Pasa

performed by using the Contrastive Divergence algorithm [45] on informa-
tion associated to single time steps, while the RNN-part of the model can
be performed either by using SGD or Hessian-Free optimization, with the
aim to better capture temporal dependencies.

2.1.7 Echo State Network

The Echo State Network (ESN) [52] is a nonlinear recurrent model that
belongs to Reservoir Computing (RC) [61] framework. The model definition
is similar to the normal RNN model [27] and formalized as:

ht = F(Axt +B ht−1 +D ot−1), (2.20)

ot = C ht. (2.21)

The main difference w.r.t. RNN, regards how the models are trained. The
idea behind the ESN model is to have a supervised and fast learning method,
which exploits the RC principles: the first step is to randomly initialize
input, hidden and feedback weights (matrices A, B, and D). In order to
obtain good results 1, and ensure that the effect of initial conditions should
vanish as time passes, these matrices must be initialized according to the
Echo state Properties (ESP) [97]. ESP impose some rules on the weights
and parameters initialization. In particular, they state that the spectral
radius (ρ) of the matrices has to be ≤ 1. By tuning the value of ρ, it is
possible to vary the memory length of the network reservoir. Moreover, other
parameters need to be set in order to obtain good results with this particular
type of network. For instance the range of values that can appear in the
matrices (the maximum value and minimum value). By tuning these values
the dynamic of the network can be changed and optimized. The second step
in training phase consists in harvest all the reservoir states ht computed
on the input contained in the training set, and use them to compute the
output weights C by performing a Linear Regression that minimizes the
Mean Squared Error (MSE). The most stable technique is ridge regression
also known as regression with Tikhonov regularization [60]. Let H be the
matrix that contains all the ht computed for each input xt, andO the matrix
that collects all the corresponding supervised output. C is computed as:

C = OHT(HHT + βI)−1, (2.22)

where I is the identity matrix and β is a regularization coefficient.Another
common technique used in order to compute the output weights is the pseu-
doinverse:

C = H+O. (2.23)

1The model is usually evaluated on the accuracy performance, whose evaluation is
typically task specific. As an example, in order to perform prediction on polyphonic
music, in this thesis we use the method presented in Section 6.1.3.

21

L. Pasa Linear Models in Deep Learning For Sequences

The direct pseudoinverse calculation typically exhibits high numerical sta-
bility. As a downside, it is expensive memory-wise for large matrices H.
Another important parameter that may be used in order to optimize the
ESN model is the leaky-integrator. The ESN model that uses this parame-
ter is defined by substituting equation (2.20) with:

ht = (1− a)ht−1 + aF(A xt +B ht−1 +D ot−1), (2.24)

where a is the leaky-parameter. This parameter is related with the speed
of reservoir dynamic [36]. A larger value of a allows the model to react in a
faster way when the input changes.

2.2 The State-of-the-art in learning sequences

In this section we give a brief review of the most powerful Deep Learning
models for sequences. These models are all able to deal with complex se-
quential data, and most of them are developed to solve a specific task. In
particular, we consider the tasks related with the cognitive process. This
choice stems from the fact that data and tasks related with this particular
scope appear to be more complex to manage. Therefore, they allow to bet-
ter study and highlight both strengths and weaknesses of various models.
The models that we present in this section derive from the models presented
in Section 2.1. Indeed, models like LDS, RNN, and HMM, achieve good
results in many complex tasks; however, recent results show that defining
architectures that combine two or more of these models, or that extend
them, allows to obtain better results in complex tasks.

2.2.1 Temporal RBM

An interesting model (that is also used as a building block to develop
new architectures) is the Temporal Restricted Boltzmann Machine
(TRBM) [85], an extension of Restricted Boltzmann Machine. The advan-
tage of TRBM, respect to the normal RBM, is that it can deal with sequen-
tial data. The TRBM can be defined as a probabilistic graphical model that
is composed of two types of units: visible units and hidden units. TRBM
network defines a joint probability distribution over these units:

P (v[1,...,T],h[1,...,T]) =

T∏
t=2

P (vt,ht|ht−1)P (v1,h1), (2.25)

where vt and ht are respectively the values of visible units and hidden units
at time t, and v[1,...,T] is the vector that contains all values that v takes from
time step 1 to T . The conditional distribution that derives from (2.25) can

22

Linear Models in Deep Learning For Sequences L. Pasa

be computed as follows:

P (vt,ht|ht − 1) =
exp(vT

t bV + vT
t Wvhht + ht(bH +Whhht−1))

Z(ht−1)
, (2.26)

where bV and bH are respectively the visible and hidden bias, Wvh is the
weights matrix that connects the visible and the hidden units and, Whh is
the weights matrix that connects the hidden units at time step t (ht) and
the hidden units of the previous time step (Ht−1). Z is called partition
function and it is defined as in normal RBM [85]. In other words, the
TRBM is a direct graphical model that has an undirected graphical model
(RBM) at each time step. The training phase of this model consists in an
inference problem that could be solved with Contrastive Divergence [87].
An extension of TRBM is the Recursive TRBM (RTRBM) [85] that
allows to perform the inference in a more efficient way. Indeed, the RTRBM
computes the values of ht by sampling from the marginal distribution of
Boltzmann Machine [6], which is involved in the exact ratio of two RBM
partition functions. In order to solve this complexity issue the RTRBM uses
an heuristic inference procedure which is based on a value h′

t, which is not the
exact result of sampling from the probability distribution P (Ht|v,t ,ht−1),
but a real value, so this is a “mean-field” update. Hence, the main difference
between the TRBM and RTRBM is in the second step of inference, which
makes the inference easier. Indeed, in RTRBM, there is only one unique
hidden value that has a nonzero posterior probability, given the visible unit
values. The main weakness of this model, however, is that it is not able to
deal with long-term temporal dependencies in a satisfactory way.

2.2.2 DBN-based Model

Deep Belief Network (DBN) [48] is a generative graphical model com-
posed of visible end hidden units. The DBN is a deep model composed of
many hidden layers. This model is defined as a stack of RBM [11]. The
most interesting feature of this model is its capability of extract different
representations of the input at each layer. The higher is the deepness of the
layer the higher the level of abstraction of the computed representation. The
most common issue with this model is the complexity of the training phase
performed by using the Back-propagation algorithm [20]. This problem is
due to the deepness of the model. Indeed, if the DBN has many hidden
layers, the back propagation turns out to be ineffective. The breakthrough
that allows to train DBN in a reasonable time and with good results is the
introduction of greedy layer-wise pre-training phase. The idea is to train
each couple of DBN layers as if they were an RBM. For the first couple of
layers (starting from the lowest one) the layer-wise pre-training technique
considers them as an RBM and uses the training set as input in order to
train the weights between the layers. For the subsequent couples of layers,

23

L. Pasa Linear Models in Deep Learning For Sequences

the output of previous RBM is used as input.
The DBN can represent the following probability distribution:

P (v,h1,h2, . . . ,hl) = P (hl−1,hl) ·
l−2∏
k=0

P (hk|hk+1), (2.27)

where v is the input layer, hi is the i-th hidden layers of the model. Moreover
in the second part of the equation h0 = v.
A possible solution that exploits DBN to perform learning in sequential
domains is to use a static network, and divide the input sequence into parts,
i.e., performing the so-called “windowing”. The idea is to split the input
into two contiguous parts, in a way that they are overlapped for a small
region, and use the obtained parts as input of a DBN. A more powerful
technique is the combination of DBN models with a sequential model such
as the Conditional Random field (CRF) [98]. An interesting model, derived
by the application of the DBNmodel to sequential domains, is the new model
called Temporal Sigmoid Belief Network (TSBL) [37]. This particular model
consists in a DBN where the activation function is a sigmoid function, and
where recurrent connections are inserted on the hidden layer:

P (V,H) = P (h1)P (v1|h1) ·
T∏
t=2

P (ht|ht−1,vt−1) · P (vt|ht,vt−1). (2.28)

This model has been applied to many different prediction tasks, e.g., pre-
diction on motion capture dataset (that contains several measures of joint
angles for different motion types), prediction on polyphonic music dataset,
prediction on bouncing ball dataset [37].

2.2.3 Bidirection-RNN

An interesting RNN based model is the Bidirectional RNN (BRNN)
[78]. This model has been developed for a particular task: off-line text
recognition. In this particular case, all sequences are visible during each time
step. BRNN exploits also the future context in order to compute the output,
by processing the data in both directions with two separate hidden layers
that are connected to the same output layer. The two following equations
define the forward and the backward hidden layers:

hF
t = FF (A

Fxt +BFhF
t−1 + bF

h), (2.29)

hB
t = FB(A

Bxt +BBhB
t+1 + bB

h), (2.30)

where AF and AB are the weights that connect the input layer respectively
to Forward and Backward hidden layers, while BF and BB are the recurrent

24

Linear Models in Deep Learning For Sequences L. Pasa

weights for the two hidden layers. bF
h and bB

h are the bias.
The output is computed by using the results of both hidden layers:

ot = Fo(C
FhF

t +CBhB
t + bo), (2.31)

where CF and CB are the output weights that respectively connect the for-
ward hidden layer and the backward hidden layer to the output layer, and bo

is the output layer bias. In these equations FF , FB and FO are the activa-
tion function of the various layers, and they usually use logistic function or
the hyperbolic tangent function. BRNN share the problem of vanishing gra-
dient with the standard RNN. In order to solve this problem in [40] Graves
et al. developed a Bidirectional version of the Long Short-Term Memory
network that allows to deal with long sequences without the risk of van-
ishing/exploding gradient. Unfortunately, the bi-directionality of this type
of network introduces issues in the training phase: even when the network
processes the first inputs of the sequence, the backward layer has potentially
to manage long-term dependencies. Therefore, solving these problem turns
out to be crucial in order to apply BRNN in real world scenario.
BRNN networks are developed to deal with complex data like text or audio,
therefore, it is important to ensure that the model is enough powerful to
extract the relevant information from these types of data. For this reason in
[39] a version that exploits a deep RNN is developed. In this case, the model
will have several hidden layers. Equations (2.29) and (2.30) are substituted
by:

h
F (i)
t = FF (A

F (i)h
F (i)
t +BF (i)h

F (i)
t−1 + b

F (i)
h), (2.32)

h
B(i)
t = BF (AF (i)h

B(i)
t +BB(i)h

B(i)
t+1 + b

B(i)
h), (2.33)

where i is the considered layer and h
F (0)
t = h

B(0)
t = xt. The BRNN network

is trained by using the BPTT algorithm.

2.2.4 Multiplicative-RNN

Another model that directly derives from RNN is theMultiplicative-RNN
(MRNN) [86]. This model has been developed in order to deal with tasks
where the input has a great influence on the hidden state values. For in-
stance, in text recognition/prediction, where the input is a single character,
a single input could change a lot the hidden representation. For instance,
consider a RNN that already had as input the three characters: “f”,“i”, and
“x”. Now, the output of the network that has to predict the next char,
has to model a probability distribution where “fix” is considered a root of
a verb (e.g. fixing, fixed, etc.) or a world itself. It is easy to understand
that the next input character will greatly vary the probability distribution
of the network output. Indeed, if the next char is “i”, the probability that

25

L. Pasa Linear Models in Deep Learning For Sequences

the next output will be “n” have to dramatically increase. Otherwise, if the
next character is “e”, the probability of “d” will increase a lot. Therefore,
it is obvious that a single char has the capability to deeply modify the prob-
ability distribution of the output.
The output of the network is based on the hidden representation, which in
turn depends on the input and on the previous hidden state. The main
problem is that, as can be noticed in equation (2.8) the input is projected in
the state space by using the matrix A and the result is added to the previous
hidden state transformed by the matrix B. MRNN aim is to create a mul-
tiplicative interaction between the input and the hidden state. In order to
implement this idea, a matrix B(xt) is introduced. The weights represented
by the matrix B(xt) are influenced by the input xt. In order to compute
B(xt) in an efficient way 3 matrices are introduced: Bx, Bh, and Bf . Now
we can define B(xt):

B(xt) = Bh · diag(Bx · xt) ·Bf , (2.34)

Where diag(·) is the function that compute a square diagonal matrix with
the elements of a vector. In equation (2.8) B is substituted by B(xt):

ht = σ(Axt +B(xt)ht−1 + bh). (2.35)

The equation shows that MRNN has two steps of nonlinear processing in its
hidden states for every input. The main drawback of this type of network
is that the multiplicative contribution of the input xt in computing the ht

makes gradient descent learning complicated. This problem is well handled
by the Hessian-Free optimization. This model obtained impressive results
on text prediction, and achieves also very good results as a generative model
on text generation tasks [86].

26

Chapter 3

Linear Dynamic System for Se-
quence Prediction

In the last few years several different models able to face the problem of
performing prediction on sequential data were introduced. The largest part
of these models is based on RNN or other Deep Learning models. The con-
sidered sequential data are usually very complex. In particular, performing
prediction tasks on cognitive data (e.g. speech, text, video, etc.), has been
proven to be a tough challenge. Thanks to the capability of Deep Learn-
ing models of dealing with complex data, performing prediction on complex
data has become possible and many models obtain very good results. Un-
fortunately, the use of models inspired by Deep Learning have also some
drawbacks. In particular, training and application of these models require a
great computational and time effort. For this reason, we decided to explore
how to solve these problems by using simpler models. Our exploration starts
by considering the most simple model for dealing with sequences: the Linear
Dynamic System (defined in Section 2.1.1). In this chapter, we firstly define
the problem of sequence prediction and then we explain how it is possible to
use a LDS in order to deal with complex data, by introducing three different
training techniques.

3.1 Prediction Task on Sequential Data

Prediction tasks for sequences usually consist in predicting, at time t, the
input at time step t + i, i ≥ 1 given all previous time step inputs of a
sequence. More formally, we would like to learn a function F(·) from mul-
tivariate bounded length input sequences to desired output values. Specifi-
cally, given a training set T = {(sq,dq) | q = 1, . . . , N, sq ≡ (xq

1,x
q
2, . . . ,x

q
lq
),

27

L. Pasa Linear Models in Deep Learning For Sequences

dq ≡ (dq
1,d

q
2, . . . ,d

q
lq
), xq

t ∈ Rn, dq
t ∈ Rs}, we wish to learn a function F(·)

such that ∀q, t F(sq[1, t]) = dq
t , where s

q[1, t] ≡ (xq
1,x

q
2, . . . ,x

q
t). Notice that

the prediction task we are interested in is a special case in which dq
k = xq

k+1.

3.2 Training Method for LDS

Since we want to deal with complex, and usually high dimensional data, we
firstly explore how to tune a LDS in order to make it capable to perform the
prediction task. As we already said in Section 2.1.1 this particular model is
already used to perform a task similar to prediction, and the Identification
System Method [59] could be applied in order to tune the parameters of
the system in order to make it capable to output the desired results given
an input. But these methods are developed in order to compute the param-
eters that allow to model the behavior of a physical system (that is usually
described by a single very long sequence), and compute an exact solution.
So they are not able to deal with a complete dataset, and moreover the
Identification System methods do not have the capability to generalize, that
is a fundamental part of a learning task. For these reasons we propose here
three alternative approaches, to train the LDS model. All these methods al-
low to train the model over a dataset of sequences. Two of these approaches
are inspired by pre-existing training methods for common models like ESN
or RNN, the other is a method that allows to compute a closed form, ap-
proximated solution for a particular instance of LDS. In each case, the aim
is to minimize the error function ET

ET =
1

NL

N∑
q=1

lq∑
j=1

(dq
j − oqj)

2, (3.1)

where L =
∑N

q=1 lq. In the following these methods, that we named L1, L2
and L3 are briefly summarized:

L1: Adopt the Echo State Network-like training procedure that randomly
initializes matrices A and B according to some property that en-
sure the effectiveness of the initialization, and only trains the output
weights using pseudo-inverse of the hidden representations.

L2: Perform the training by considering the LDS as an Autoencoder, ini-
tializing matrices A and B according to the procedure that allows to
compute a closed form solution for the linear auto-encoder, andC with
DH̃+, where H̃+ is the pseudo-inverse of matrix H̃ and H̃ is obtained
by first running equation (4.1) with initialized matrices A and B.

L3: Perform SGD with respect to the regularized error function ẼT (eq.
3.2), with standard random initialization for matrices A, B, and C.

28

Linear Models in Deep Learning For Sequences L. Pasa

This corresponds to a standard RNN training procedure. the regular-
ized error function ẼT is defined as follows:

ẼT =
1

NL

N∑
q=1

lq∑
j=1

(dq
j − oqj)

2 +R1 +R2, (3.2)

where L =
∑N

q=1 lq, and

R1 =
m∑
i

n∑
j

|Aij |+
m∑
i

m∑
j

|Bij |+
s∑
i

m∑
j

|Cij |,

R2 =

m∑
i

n∑
j

A2
ij +

m∑
i

m∑
j

B2
ij +

s∑
i

m∑
j

C2
ij .

3.2.1 Method L1

This method consists in initializing matrices A and B as in ESN training. A
relevant issue is how to generate matrices A and B. This issue has already
be addressed in ESN. Indeed, in order to avoid problems in computing the
system state and ensure good results, a set of rules to follow for random ma-
trix initialization has been proposed. This set of rules is called Echo State
Property [51], and in particular, they prescribe to ensure that the randomly
initialized matrices have spectral radius ρ less than or equal to 1. Unfortu-
nately computing the spectral radius of large matrices is computationally
demanding, so we use a much faster approach where we require A and B to
have norm ∥·∥ (either L1-norm or L2-norm) less than or equal to 1. Since
for any symmetric matrix M, ρ(M) ≤ ∥M∥, in this way the Echo State
Property is preserved.

Theorem 1. Let’s M be a random symmetric matrix. If ∥M∥ ≤ 1 then
ρ(M) will be ≤ 1.

Proof. let’s consider an eigenvalue λ of M; then exists a not null vector f
s.t. Mf = λf . Let’s consider the matrix F = [f , f , . . . , f]; then MF = λF,
and so

|λ| ∥F∥ = ∥λF∥ = ∥MF∥ ≤ ∥M∥ ∥F∥ . (3.3)

Since F is not null we can obtain |λ| ≤ ∥M∥, and since f is an arbitrary
eigenvector of M, we can conclude that ρ(M) ≤ |λ|≤ ∥M∥.

In practice, experimental results have shown that it is not necessary to use
symmetric matrices.
C, the output matrix, is defined by using the pseudo-inverse. The method
consists in computing all hidden representations hq

t for each input sequence
sq contained in the training set T by using eq. (2.1). The aim is to create the

29

L. Pasa Linear Models in Deep Learning For Sequences

matrix H = [h1
1,h

1
2, . . . ,h

N
lN
] that is the matrix that collects all the hidden

representations obtained by running the system, with random matrices A
and B, over all sequences in the training set. The matrix C is computed as
follows:

C = DH+, (3.4)

where D is the matrix containing all targets occurring in the training set:
D = [d1

1,d
1
2, . . . ,d

N
lN
].

3.2.2 Method L2

This training method exploits the similarity of the structure of a LDS and
a Linear Autoencoder. Indeed, the idea is to compute the optimal weights
of a linear Autoencoder given the training set of sequences. The weights
obtained for the Linear Autoencoder are then used as weights for the input
to hidden, and hidden to hidden connections of a LDS. In the following we
explain how to find a closed form solution for a Linear Autoencoder in a
fast and convenient way.
In [18, 9] it is shown that principal directions of a set of vectors xi ∈ Rn are
related to solutions obtained by training Linear Autoencoder networks

oi = C ·Axi, i = 1, . . . , l, (3.5)

where A ∈ Rm×n, C ∈ Rn×m, m≪ n, and the network is trained so to get
oi = xi, ∀i. When considering a temporal sequence s = x1,x2, . . . ,xt, . . .
of input vectors, where t is a discrete time index, a Linear Autoencoder can
be defined by considering the coupled linear dynamical systems,

ht =Axt +Bht−1, (3.6)[
xt

ht−1

]
=Cht. (3.7)

It should be noticed that eqs. (3.6) and (3.7) extend the linear transfor-
mation defined in eq. (3.5) by introducing a memory term involving matrix
B ∈ Rm×m. In fact, ht−1 is inserted in the right part of equation (3.6) to
keep track of the input history through time: this is done exploiting a state
space representation. Eq. (3.7) represents the decoding part of the Autoen-
coder: when a state ht is multiplied by C, the observed input xt at time t
and state at time t−1, i.e. ht−1, are generated. Decoding can then continue
from ht−1. This formulation has been proposed, for example, in [90] where
an iterative procedure to learn weight matrices A and B, based on Oja’s
rule, is presented. No proof of convergence for the proposed procedure is

30

Linear Models in Deep Learning For Sequences L. Pasa

however given. More recently, an exact closed-form solution for the weights
has been given in the case of a number of hidden units equal to the rank of
the full data matrix (full rank case) [80, 82]. In this section, we revise this
result. In addition, we give an exact solution also for the case in which the
number of hidden units is strictly less than the rank of the full data matrix.

The basic idea of [80, 82] is to look for directions of high variance into
the state space of the dynamical linear system (3.6). Let start by consid-
ering a single sequence s ≡ (x1,x2, . . . ,xt, . . . ,xl) and the state vectors
of the corresponding induced state sequence collected as rows of a matrix
H = [h1,h2,h3, · · · ,hl]

T. By using the initial condition h0 = 0 (the null
vector), and the dynamical linear system (3.6), we can rewrite the H matrix
as

H =


xT
1 0 0 0 · · · 0

xT
2 xT

1 0 0 · · · 0
xT
3 xT

2 xT
1 0 · · · 0

...
...

...
...

...
...

xT
l xT

l−1 xT
l−2 · · · xT

2 xT
1


︸ ︷︷ ︸

Ξ


AT

ATBT

ATB2T

...

ATBl−1T


︸ ︷︷ ︸

Ω

where, given k = nl, Ξ ∈ Rl×k is a data matrix collecting all the (inverted)
input subsequences (including the whole sequence) as rows, and Ω is the
parameter matrix of the dynamical system. Now, we are interested in using
a state space of dimension p ≪ l, i.e. ht ∈ Rp, such that as much informa-
tion as contained in Ξ is preserved. We start by factorizing Ξ using SVD,
obtaining Ξ = VΛUT where V ∈ Rl×l is an unitary matrix, Λ ∈ Rl×k is a
rectangular diagonal matrix with nonnegative real numbers on the diagonal
with λ1,1 ≥ λ2,2 ≥ · · · ≥ λl,l (the singular values), and UT ∈ Rk×k is a
unitary matrix. It is important to notice that columns of UT which corre-
spond to nonzero singular values, apart some mathematical technicalities,
basically correspond to the principal directions of data, i.e. PCA. If the
rank of Ξ is p, then only the first p elements of the diagonal of Λ are not

null, and the above decomposition can be reduced to Ξ = V(p)Λ(p)U(p)T

where V(p) ∈ Rl×p, Λ(p) ∈ Rp×p, and U(p)T ∈ Rp×k. Now we can ob-

serve that U(p)TU(p) = I (where I is the identity matrix of dimension p),
since by definition the columns of U(p) are orthogonal, and by imposing
Ω = U(p), we can derive “optimal” matrices A ∈ Rp×h and B ∈ Rp×p for
our dynamical system, which will have corresponding state space matrix

Y(p) = ΞΩ = ΞU(p) = V(p)Λ(p)U(p)TU(p) = V(p)Λ(p). Thus, if we repre-

sent U(p) as composed of n submatrices U
(p)
i , each of size h×p, the problem

31

L. Pasa Linear Models in Deep Learning For Sequences

reduces to find matrices A and B such that

Ω =


AT

ATBT

ATB2T

...

ATBl−1T

 =


U

(p)
1

U
(p)
2

U
(p)
3

...

U
(p)
l

 = U(p). (3.8)

The reason to impose Ω = U(p) is to get a state space where the coordinates
are uncorrelated so to diagonalise the empirical sample covariance matrix of
the states. Please, note that in this way each state (i.e., row of theHmatrix)
corresponds to a row of the data matrix Ξ, i.e. the unrolled (sub)sequence
read up to a given time t. If the rows of Ξ were vectors, this would corre-
spond to compute PCA, keeping only the fist p principal directions.
In the following, we demonstrate that there exists a solution to the
above equation. We start by observing that Ξ owns a special struc-
ture, i.e. given Ξ = [Ξ1 Ξ2 · · · Ξl], where Ξi ∈ Rl×n, then for

i = 1, . . . , l − 1, Ξi+1 = RlΞi =

[
01×(l−1) 01×1

I(l−1)×(l−1) 0(l−1)×1

]
Ξi , and

RlΞl = 0, i.e. the null matrix of size l × n. Moreover, by singular value

decomposition, we have Ξi = V(p)Λ(p)U
(p)
i

T
, for i = 1, . . . , l. Us-

ing the fact that V(p)TV(p) = I, and combining the above equations,

we get U
(p)
i+t = U

(p)
i Qt, for i = 1, . . . , l − 1, and t = 1, . . . , l − i,

where Q = Λ(p)V(p)TRT
l V

(p)Λ(p)−1
. Moreover, we have that U

(p)
l Q = 0

since U
(p)
l Q = U

(p)
l Λ(p)V(p)TRT

l V
(p)Λ(p)−1

= (RlΞl︸ ︷︷ ︸
=0

)TV(p)Λ(p)−1
. Thus,

eq. (3.8) is satisfied by A = U
(p)
1

T
and B = QT. It is interesting to

note that the original data Ξ can be recovered by computing H(p)U(p)T =

V(p)Λ(p)U(p)T = Ξ, which can be achieved by running the system[
xt

ht−1

]
=

[
AT

BT

]
ht

starting from t = l, i.e.

[
AT

BT

]
is the matrix C defined in eq. (3.7).

Finally, it is important to remark that the above construction works
not only for a single sequence, but also for a set of sequences of different
length. For example, let consider the two sequences S1 = (x1

1,x
1
2,x

1
3) and

S2 = (x2
1,x

2
2). Then, we have

ΞS1 =

 x1
1
T

0 0

x1
2
T

x1
1
T

0

x1
3
T

x1
2
T

x1
1
T

 and ΞS2 =

[
x2
1
T

0

x2
2
T

x2
1
T

]

32

Linear Models in Deep Learning For Sequences L. Pasa

which can be collected together to obtain

Ξ =

[
ΞS1

ΞS2 02×1

]
, and R =

[
R4

R2 02×1

]
.

The following lemma shows the link between matrix Q and the principal
directions corresponding to matrix U(p)

Lemma (Relationship with Principal Directions)

Q = Λ(p)V(p)TRT
l V

(p)Λ(p)−1
= U(p)TRT

k,nU
(p) =

l−1∑
i=1

U
(p)
i

T
U

(p)
i+1

where RT
k,n =

[
0(k−n)×k I(k−n)×(k−n)

0n×n 0n×(k−n)

]
.

Proof:

By definition
∑l

i=1U
(p)
i

T
U

(p)
i =I and

Q=

(
l∑

i=1

U
(p)
i

T
U

(p)
i

)
Q=

l∑
i=1

U
(p)
i

T(
U

(p)
i Q

)
=

n−1∑
i=1

U
(p)
i

T
U

(p)
i+1, (3.9)

where we used U
(p)
i+1 = U

(p)
i Q and U

(p)
l Q = 0. ■

As a final remark, it should be stressed that the above construction only
works if p is equal to the rank of Ξ. In the next section, we treat the case
in which p < rank(Ξ).

Optimal solution for low dimensional autoencoders

When p < rank(Ξ) the solution given above breaks down because

Ξ̃i = V(p)L(p)U
(p)
i

T
̸= Ξi, and consequently Ξ̃i+1 ̸= RnΞ̃i. So the question

is whether the proposed solutions for A and B still hold the best reconstruc-
tion error when p < rank(Ξ). In this thesis, we answer in negative terms
to this question by resorting to a new formulation of our problem where

we introduce slack-like matrices E
(p)
i ∈ Rn×p, i = 1, . . . , l + 1 collecting the

reconstruction errors, which need to be minimized:

min
Q∈Rp×p,E

(p)
i

l+1∑
i=1

∥E(p)
i ∥

2
F

subject to :


U

(p)
1 +E

(p)
1

U
(p)
2 +E

(p)
2

U
(p)
3 +E

(p)
3

...

U
(p)
l +E

(p)
l

Q =


U

(p)
2 +E

(p)
2

U
(p)
3 +E

(p)
3

...

U
(p)
l +E

(p)
l

E
(p)
l+1

 (3.10)

33

L. Pasa Linear Models in Deep Learning For Sequences

Notice that the problem above is convex both in the objective function and
in the constraints; thus it only has global optimal solutions E∗

i and Q∗,

from which we can derive AT = U
(p)
1 + E∗

1 and BT = Q∗. Specifically,
when p = rank(Ξ), RT

k,nU
(p) is in the span of U(p) and the optimal solution

is given by E∗
i = 0n×p ∀i, and Q∗ = U(p)TRT

k,nU
(p), i.e. the solution we

have already described. If p < rank(Ξ), the optimal solution cannot have
∀i, E∗

i = 0n×p. However, it is not difficult to devise an iterative procedure
to reach the minimum. Since in the experimental section we do not exploit
the solution to this problem for reasons that we will explain later, here we
just sketch such procedure. It helps to observe that, given a fixed Q, the

optimal solution for E
(p)
i is given by

[Ẽ
(p)
1 , Ẽ

(p)
2 , . . . , Ẽ

(p)
l+1] = [U

(p)
1 Q−U(p)

2 ,U
(p)
1 Q2−U(p)

3 ,U
(p)
1 Q3−U(p)

4 , . . .]M+
Q

where M+
Q is the pseudo inverse of MQ =


−Q −Q2 −Q3 · · ·
I 0 0 · · ·
0 I 0 · · ·
0 0 I · · ·
...

...
...

...

 .

In general, Ẽ(p) =
[
Ẽ

(p)T

1 , Ẽ
(p)T

2 , Ẽ
(p)T

3 , · · · , Ẽ(p)T

n

]T
can be decomposed into

a component in the span of U(p) and a component E(p)⊥ orthogonal to it.

Notice that E(p)⊥ cannot be reduced, while (part of) the other component

can be absorbed into Q by defining Ũ(p) = U(p) +E(p)⊥ and taking

Q̃ = (Ũ(p))+
[
Ũ

(p)T

2 , Ũ
(p)T

3 , · · · , Ũ(p)T

l ,E
(p)T

l+1

]T
.

Given Q̃, the new optimal values for E
(p)
i are obtained and the process

iterated till convergence.

3.2.3 Method L3

This method uses the Backpropagation Through Time (BPTT)
[93]. BPTT exploits the Stochastic Gradient Descent (SGD) [16]
and propagates the gradient signal backward through all steps of se-
quences. As we have said at the beginning of this chapter, the most com-
mon methods used to “solve” Linear Dynamic Systems is related to the
Identification System methods [59]. The two main problems in applying
these techniques to machine learning tasks are: i) the methods do not allow
to compute a solution for a dataset, indeed they are used to compute the
parameters that allow to model the behavior of a physical system; ii) they
do not allow to “generalize” during training. For this reason, we decided
to use Backpropagation Through Time [93]. An advantage of applying this

34

Linear Models in Deep Learning For Sequences L. Pasa

method on a dynamical linear system is that the BPTT exploits the Stochas-
tic Gradient descent, and the gradient of a linear function (as the one used
by LDS) is a constant. Therefore, computing the SGD step is easier and
faster than in nonlinear models. An important issue is that the linear units,
used in LDS, do not have any “bounds” that limit the increasing (or the
decreasing) of their values. Therefore, it is crucial to set the learning rate
in a wise way. Indeed, the risk by using high learning rate values is that
the model tends to diverge. Moreover, it is important to initialize weights
matrices in an appropriate way. For this reason, we used the same technique
used in method L1, even for matrix C.
The SGD is applied in order to minimize the error function ẼT (eq. 3.2)
with respect to the parameters of the models.

35

L. Pasa Linear Models in Deep Learning For Sequences

36

Chapter 4

LDS-based Models

In this chapter, various models that exploit the power of LDS (Section 2.1.1)
are presented. The idea is to explore the potential of this model and to study
the limit of LDS in learning sequential data. Moreover, the computational
complexity and the advantage/disadvantage in terms of time in comparison
with common nonlinear models (like RNN) is studied. The first proposed
model is called Linear System Network. The idea is to arrange several linear
systems in order to obtain a nonlinear representation of the input without
using nonlinear units.

4.1 Linear System Network

The LDS is not enough expressive to model the complexity of complex se-
quential data [68]. Therefore the idea is to obtain a nonlinear model by
arranging several LDSs. A Linear System Network (Figure 4.1) is composed
of three layers. The first layer is composed of several LDSs that receive the
same input and project it into the state space. The second layer of the LSN
model selects and merges in a single vector the states of the LDSs in the
first layer. In this way, the system creates a nonlinear representation of the
input. For each LDS two limits are set based on the lengths of the sequences
contained in the dataset. These two values are used by the second layer in
order to select which LDS’s states to insert in the second layer vector. The
third layer is the output layer.
In the following section, we formally define the Linear System Network.

37

L. Pasa Linear Models in Deep Learning For Sequences

xt xt
xth1

t−1

h1
t

h2
t−1

h2
t

hM
t−1

hM
t

zt

ot

A1 B1 A2 B2 AM BM

C

Figure 4.1: Schematic representation of the Linear System Network.

4.1.1 LSN Definition

The first layer of LSN is composed of M LDSs. Each LDS Si is defined by
the tuple Si = (Ai,Bi,Ci) where Ai,Bi and Ci are the input matrix, the
state matrix, and the output matrix, respectively. The state of the i-th LDS
at time step t given an input sequence s ≡ (x1,x2, . . . ,xl) is computed as
follows:

hi
t = Ai xt +Bi h

i
t−1,∀i ∈ {1, . . . ,M}, (4.1)

oit = Ci h
i
t, (4.2)

where hi
t ∈ Rmi is the state of the i-th system at time t. In addition, we

assume hi
0 = 0 ∈ Rmi for each system i, i.e. the null vector. For each system

Si we can compute the error that it makes at each time step. In order to
compute it, firstly, we have to calculate the matrix Ci, that is computed by
considering the entire dataset T :

Ci = D ·H+
i , (4.3)

where D = [d1
1,d

1
2, . . . ,d

N
lN
] ∈ Rs×L, and Hi ∈ Rmi×L (we recall that L =∑N

q=1 lq) that contains all the states computed by the i-th system for all
inputs xt of all sequences contained in T . Given specific matrices for the
LSD and a desired output sequence d ≡ (d1,d2, . . . ,dl) for a sequence s,
the error made by the i-th system at time step t is defined as

eit = ||oit − dt||2, (4.4)

where || · || is the Euclidean norm. Each Linear Dynamical System in the
first layer is associated to a tuple of values: (Si,mini,maxi), where mini

and maxi are two values used by the second layer to decide if the state hi
t

should be put forward in the computation or not. Specifically, the second

38

Linear Models in Deep Learning For Sequences L. Pasa

layer computes the zt vector defined as:

zt =


Jmin1 < t ≤ max1Kh1

t ,Jmin2 < t ≤ max2Kh2
t ,

...JminM < t ≤ maxM KhM
t

 ∈ R
M∑
i=1

mi

, (4.5)

where J·K is equal to 1 if and only if the condition defined into the brackets
is satisfied, otherwise it is 0. Finally, the output of the LSN model is given
by:

outt = Wzt, (4.6)

where outt ∈ Rs is the output of the LSN model, and W ∈ R
s×

M∑
i=1

mi

is the
output matrix of the whole model. Values for mini and maxi are defined
on the basis of two limits which depend on the lengths of the sequences
belonging to the training set T :

∆s =
max(l1, . . . , lN)−min(l1, . . . , lN)

M
, (4.7)

l1min = min(l1, . . . , lN), (4.8)

limax = limin +∆s, ∀i ∈ {1, . . . ,M − 1}, (4.9)

limin = li−1
max, ∀i ∈ {2, . . . ,M}, (4.10)

lMmax = +∞. (4.11)

Training of the LSN model is inspired by the Reservoir Computing frame-
work [61]. Indeed, it consists of two separated phases. The first phase con-
sists in training the LDSs, while the second one computes W. The LDSs
composing the first layer of the LSN can be trained by using one of the
techniques defined in Chapter 3. In particular, we tested the Linear Au-
toencoder method (L2). The selection of this technique is due to the fact
that it ensures a faster training phase compared to SGD. Since our aim is
to develop a fast and simple model capable to deal with sequential data,
ensuring a fast training phase is crucial.
For what concerns the matrix W that connects the layer z to the output
layer, it is computed as follows:

W = DZ+, (4.12)

where D = [d1
1,d

1
2, . . . ,d

N
lN
] and Z = [z11, z

1
2, . . . , z

N
lN
] (the upper index of

each z refers to the input sequence index).
In the following we introduce the basic configuration for a LSN, while vari-
ants will be introduced in the subsequent section.

39

L. Pasa Linear Models in Deep Learning For Sequences

4.1.2 Basic Configuration

In the base version of the LSN, each system Si is trained by using a subset of
examples of T that contains all sequences with a length ≥ limin. Therefore,
for each system Si an ad-hoc training set T i is defined. Each set T i is
defined as:

T i = {(sq,dq)|(sq,dq) ∈ T , ∀q ∈ {1, . . . , N}, s.t. lq ≥ limin}. (4.13)

In this version, the parameters mini and maxi are defined as follows:

mini = 0, ∀i, (4.14)

maxi = limax, ∀i. (4.15)

In this way, the contribution of the state of system Si to zt is ̸= 0 if and
only if t ≤ maxi. Another parameter of the model is p ∈ Z+ that defines
the number of dimensions of the state space of the LDSs. In the simplest
version of the model all LDSs have the same state dimensions:

mi = p ∀i. (4.16)

4.1.3 Configuration variants

We developed different versions of the LDS model, in order to explore the
behaviors of the model under different variants. In the following these
variants, that we dubbed Var, Over, Select, and Error, are presented
and discussed. Please note that each variant reported below may be used or
not regardless of whether the others are used or not. Indeed, each variant
modifies a specific feature of the basic version of the model.

Var: The size of the state space of each system is tuned based on the
rank of data matrix ΞT i . To make the notation easier to understand, as a
subscript of Ξ we use T i, that means the data matrix Ξ is constructed by
considering all inputs of the dataset T i.
The size of state space mi of the i-th system is set as:

mi = p

√
rank(ΞT i)

rank(ΞT 1)
. (4.17)

Over: The training dataset associated with the system Si contains all
sequences that have length ≤ limax:

T i = {(sq,dq)|(sq,dq) ∈ T , ∀q ∈ {1, . . . , N}, s.t. lq ≤ limax}. (4.18)

40

Linear Models in Deep Learning For Sequences L. Pasa

Select: The parameters mini and maxi for each system Si are set as
follows:

mini = limin ∀i, (4.19)

maxi = limax ∀i. (4.20)

In this way, the state computed by system Si is inserted in zt if and only if
limin ≤ t ≤ limax. Therefore each system is used to represent the state of a
specific part of the input sequence.

Error: The idea is to multiply the state of each system by a weight
based on the normalized error made by it. At the beginning of this chapter,
we defined eit as the error made by the i-th LDS at time step t, given in
input a sequence s ≡ (x1,x2, . . . ,xl). Let’s now define ei(t) as the error
made by the system Si till time step t, given a sequence s as input. The
idea is to compute a weight wi(t) that gives more relevance to LDSs that
make a lower overall error:

ei(t) =

t∑
k=1

eik. (4.21)

Actually, we use the normalized error ni(t), that is normalized over the
errors made by all LDSs till the current time step t:

ni(t) =
ei(t)

M∑
j=1

ej(t)

. (4.22)

At each time step the state of each LDS is multiplied by the weight wi
t that

is defined in such a way that the higher is the global error made by a system,
the lower will be the weight assigned to it:

wi(t) = 1− ni(t). (4.23)

Therefore, if the Error variant is turned on the zt vector of the LSN model
is computed as follows:

zt =


Jmin1 < t ≤ max1Kw1(t)h1

tJmin2 < t ≤ max2Kw2(t)h2
t

...JminM < t ≤ maxM KwM (t)hM
t

 . (4.24)

41

L. Pasa Linear Models in Deep Learning For Sequences

An interesting advantage of defining wi
t in this way is that it may be com-

puted based on the result obtained during the previous time step. Indeed,

ni(t) =
ei(t)

M∑
j=1

ej(t)

=

t∑
k=1

eik

M∑
j=1

(
t∑

k=1

ejk)

=

t−1∑
k=1

eik + eit

M∑
j=1

(
t−1∑
k=1

ejk) +
M∑
j=1

ejt

. (4.25)

Let’s define Nt−1 =
M∑
j=1

(
t−1∑
k=1

ejk), hence ni(t) can be compute based only on

the error computed till time step t − 1 and the “local” error made by the
LDSs:

ni(t) =
ei(t− 1) + eit

Nt−1 +
M∑
j=1

ejt

. (4.26)

This allows to compute the weight wi
t in a convenient way. In fact, at each

time step t we can compute the overall error made by system Si just by
using information that come from the previous time step. Notice that

Nt = Nt−1 +
M∑
j=1

ejt , (4.27)

ei(t) = ei(t− 1) + eit. (4.28)

Therefore all information that are necessary to compute the ni(t) are already
computed during the previous time step. This solution allows to optimize
the computation in terms of time and memory demands.

4.2 Sequential LSN

An evolution of LSN is the Sequential LSN (SLSN) (Figure 4.2). The idea
is to connect several LDSs and specialize each one in computing the output
for a small interval of time steps. We say that the LDSs are “connected”
because, as shown in Figure 4.2, the first state vector hi

0 of each system Si

is defined as the last state h
(i−1)
maxi computed by the previous system Si−1.

Another important difference is that each system Si has its own output ot.
Indeed, in LSN the model uses the vector zt in order to “collect” the state
of all LDSs at time t, but in the case of SLSN each system Si computes its
state ht (eq. 4.1), and uses it in order to compute its own output ot (eq.
4.2).
The values mini,maxi associated which each system Si are used to identify
the time interval of each sequence that system Si manages. The size of this

42

Linear Models in Deep Learning For Sequences L. Pasa

interval is the same for each system. Therefore the higher is the number of
systems, the smaller will be the interval where a specific system is used to
contribute to the state of the overall system.
In order to compute the output, each system Si uses a different output
matrix. These matrices are trained by considering the projection computed
via eq. (4.1) by using as input a specific interval of time steps instead of
using the entire sequence.
In order to compute the state, each system needs to “receive” the value of hi

0

from the previous system Si−1. The main issue that arises when the system
Si−1 has to pass the state to the next LDS is that it’s possible that the
sizes of the states of the two systems are not equal. We have developed two
different techniques to solve this problem. The first one consists in cutting,
or padding with 0, the previous state in order to create a new hidden state
that has the same sizes of the hidden state of the current system. The second
method exploits the random projection technique using a random matrix R
to map the previous state in the vectorial space where the hidden state of
the current LDS belongs to. Formally:

• using random projection:

hi
mini−1

= hi−1
maxi−1

R,

where R is a random matrix normalized with respect to norm 2. As
we prove for LDS, this property is sufficient to ensure that all the
eigenvalues of R are ≤ 1; thus, it ensures that the hidden state will
not be asymptotically influenced by any initial condition caused by
the values in R.

• By cutting/padding with zeros hi−1
maxi−1

:

if mi < mi−1, h
i
mini−1

= hi−1
maxi−1 [1...mi]

where hi−1
maxi−1 [1...mi]

is the

vector composed of the first mi elements of hi−1
maxi−1

(Cutting);

if mi > mi−1, hi
mini−1

= [hi−1
maxi−1

,0], where 0 ∈ Rmi−mi−1

(Padding).

Since each system Si works only on a portion of sequence in input, the
output of the model is defined as follows:

ot =
M∑
i=1

oitJmini < t ≤ maxiK, (4.29)

where oit is the output of an LDS computed as in eq. (4.2).

Until now we have discussed about the definition of the model, another
important aspect is how the model is trained. Similar to LSN, each LDS

43

L. Pasa Linear Models in Deep Learning For Sequences

xt xt
xth1

t−1

h1
t

h2
t−1

h2
t

hM
t−1

hM
t

A1 B1 A2 B2 AM BM

o1
t o2

t oM
t

C1 C2 CM

h1
max1

h2
max2

hM−1
maxM−1

Figure 4.2: Schematic representation of the Sequential LSN.

is trained independently. We tested two methods to train the LDS, that
compose this model. The first is the random method L1, the second is
the the one based on Linear Autoencoder (L2). For what concerns the
application of the second method, our aim is to train the model in order to
specialize it on dealing with a specific part of the sequences. For this reason,
the training set T i used to train the Si system is defined as follows:

T i = {(sqSi
,dq

Si
)|(sq,dq) ∈ T , sqSi

= sq[mini...maxi]
, (4.30)

dq
Si

= dq
[mini...maxi]

, q = 1, . . . , N}.

The limits mini and maxi are define as follows:

mini = limin∀i, (4.31)

maxi = limax∀i. (4.32)

4.3 Co-learning with LDS1

In this section, we are going to introduce several models that exploit co-
learning techniques in order to improve the results obtained with the LSN
and SLSN. All the models that are presented in this section maintain a struc-
ture that is similar to the LDS model, but they try to use the co-learning
techniques in order to bypass some of the limits of this simple model. There-
fore the idea is to use along with the linear model a more complex model
that is trained on the hidden states of the LDS. This idea is inspired by
model for classification tasks proposed by Chen et al. in [21].
The main issue of LDS is that the B matrix tends to have a spectral radius
lower or equal to 1, and this makes the system contractive, that means that
the system tends to achieve a fixpoint solution in a few steps. Therefore
dealing with long term temporal dependencies becomes unfeasible. Having

1In collaboration with Professor Peter Tino (department of Computer Science, Univer-
sity of Birmingham).

44

Linear Models in Deep Learning For Sequences L. Pasa

the spectral radius lower or equal to 1 is necessary when we randomly ini-
tialize the weights, otherwise, the output of the system tends to become
higher and higher at every time step. This behavior makes it likely that the
system diverges. Therefore our aim is to develop a model that, by setting
the random output weights (C), tries to learn a function that computes the
best input and recursive weights (A and B, respectively), for each input.
Hence the first step is to randomly initialize the matrix C ∈ Rs×m. Then,
by maintaining the C matrix fixed, we want to compute the ht values by
minimizing the MSE error, for each target dq

i in the training set T . Once
C is defined as a random matrix, the hidden states can be computed as:

hq
i = C+dq

i , ∀i ∈ {1, . . . , lq} ∧ ∀q ∈ {1, . . . , N}. (4.33)

Let’s consider a sequence sq and then define the vector iqt ∈ Rn+m that
contains the input at time step t, and the state hq

t−1 of the previous step:

iqt =

[
xq
t

hq
t−1

]
, (4.34)

given iqt for each time step t, it is possible to compute the matrix Vq
t s.t.

hq
t = Vb

t i
q
t , (4.35)

since we have already computed the values hq
t and iqt we can compute Vq

t

as:
Vb

t = hq
t (i

q
t)

+
. (4.36)

The goal is to collect Vb
t for each input xq

t in the training set, and create the
set S = {(iqt ,Vb

t)|∀q ∈ {1, . . . ,M}, t ∈ {1, . . . , lq}}. This set will be used as
a training dataset for an external model F , that is trained in order to learn
the function that maps iqt in Vb

t . The result is a model that, given an input
xt computes the output ot as follows:

ht = F(it)it, (4.37)

ot = Cht. (4.38)

For what concerns the model F , it is possible to use many different models
(e.g. Deep Neural Networks, Support Vector Machines [29], etc.).

A simplified version of this model uses the model F to learn the function
that maps it to ht. In this case, instead of computing (and collecting) Vb

t ,
we just collect hq

t (computed by eq. (4.33)). The dataset used to train the
model F is the following:

S = {(iqt ,hb
t)|∀q ∈ {1, . . . ,M}, t ∈ {1, . . . , lq}}. (4.39)

Finally, the hidden state of the model during the execution of a task is
computed as:

ht = F(it). (4.40)

The output ot is still computed by eq. (4.38).

45

L. Pasa Linear Models in Deep Learning For Sequences

xt ht−1

ht

ot

C

it

F(it)

xt ht−1

ht

ot

C

it

F(it)

Figure 4.3: Schematic representation of the two Co-learning models.

4.3.1 Discussion on Linear Co-learning models

The two models presented above exploit co-learning techniques; moreover,
both are trained by firstly initializing the matrix C with a random matrix
that is used to compute the optimal state representations given the target dq

t .
These hidden representations are used to train an external (no-recurrent)
model in order to learn the function that maps the input (and the state
computed during the previous time step) to the current computed state.
Moreover, the models use the state space in order to store information that
comes from previous time steps, and the model uses them to compute the
output.
In particular, we consider the prediction task where dq

t = xq
t+1. Hence,

given the current input xq
t and the previous state hq

t−1, the system tries to
compute the next time step xq

t+1 of the input sequence. Both items of the
sequence, xq

t and xq
t+1 belong to Rn. Let’s define D the matrix that contains

all targets: D = [d1
1, . . . ,d

N
lN
], and r = rank(D) i.e. the number of basis

vectors needed to generate the column space of D. Recall that hq
t ∈ Rm,

dq
t ∈ Rn. In the models discussed above we compute the state representation

hq
t as:

hq
t = C+dq

t , (4.41)

where matrix C ∈ Rm×r. Notice that we consider C as a full rank matrix
since it is a random matrix2. Now we prove that in case we fix C and use it
to compute hq

t , the obtained LDS is stateless.

2In practice C is computed by using a pseudo-random generator of some programming
language, that can not ensure that the obtained matrix is really random. Anyway, it’s
very likely that it is a full rank matrix. Therefore after creating it, it is important to check
if C is really full-rank, otherwise, we can just re-compute C until we obtain a full rank
matrix.

46

Linear Models in Deep Learning For Sequences L. Pasa

Theorem 2. Given an LDS with a fixed full rank matrix C, where C is
used to compute hq

t , and where dq
t = xq

t+1, then the considered LDS is state-
less. A stateless LDS does not exploit the hq

t−1 to compute oqt , therefore
oqt = F(x

q
t ,C).

Proof. Let’s start by considering three possible cases:

1: r = m, hence C is a squared, invertible matrix;

2: r < m;

3: r > m.

In case of r = m, C−1 exists. From equations (4.1) and (4.2) it is possible
to derive that:

oqt = C(Axq
t +Bhq

t−1) = (4.42)

= CAxq
t +CBhq

t−1.

We consider a prediction task. If A and B exist such that oqt = xq
t+1, we

can state hq
t−1 = C−1xq

t ; then xq
t+1 can be defined as:

xq
t+1 = CAxq

t +CB(C−1xq
t). (4.43)

Notice that, the state hq
t does not appear in equation (4.43) therefore, we

can conclude that the LDS does not need the state hq
t in order to compute

xq
t+1.

In addition, if we consider a model similar to the one presented in Section 4.3,
in general, we have that the state of the system is computed by a function F
that receives in input xq

t and the state computed during the previous step,
so hq

t is:

hq
t = F(x

q
t ,h

q
t−1). (4.44)

Even in this case, if C−1 exists, we can compute the output of the model as:

xq
t+1 = CF(xq

t ,C
−1xq

t), (4.45)

therefore the model does not use the state values hq
t−1 to compute the

output.

In case of r < m:
Let’s define H as the set that contains all vectors in Rm spanned by the
base BH = {bH

1 ,bH
2 , . . . ,bH

m} of the matrix H, and analogously let’s de-
fine D as the set that contains all vectors in Rn spanned by the base
BD = {bD

1 ,b
D
2 , . . . ,b

D
r } of the matrix D.

Let’s define H1 and H2 as follows:

H = H1 ∪H2,H1 ⊥ H2, |BH1 | = r,H2 = Ker(C), (4.46)

47

L. Pasa Linear Models in Deep Learning For Sequences

where Ker(C) is the kernel of the matrix C, BH1 = {bH
1 ,bH

2 , . . . ,bH
r }

is the set that contains the vectors that compose a base of H1 and
BH2 = {bH

r+1, . . . ,b
H
m } the set of vectors that compose a base for H2. Given

a non-null vector h ∈ H1, we can define a vector d ∈ D as:

d = Ch ̸= 0, (4.47)

where 0 ∈ Rr is the vector with all values set to 0. But we can obtain the
same vector d as follows:

d = C(h+ v) = Ch+Cv ∀v ∈ H2. (4.48)

This equation holds ∀h ∈ H1,h ̸= 0. Therefore, we can conclude that
there exist at least two elements belonging to H that have the same
projection in D. h and v belong to H, so they can be written as a linear
combination of some vectors contained in BH; therefore, even h+ v can be
written as a linear combination of the vectors contained in BH. Moreover,
∥h+ v∥ ≥ ∥h∥.
All elements hq

t ∈ H are computed using equation (4.41), which exploits
the pseudo-inverse. The pseudo-inverse selects the vector that minimizes
the MSE and that minimizes its norm. Hence, we can consider only
the elements that respect these two conditions, i.e. the vectors in H1.
Therefore, this case can be reduced to the case where r = m. For these
reasons, also in this case the linear system is stateless.

In case of r > m:
similarly to the previous case we have some vectors in D that have the
same projection in H. Hence the intuition is that at least two targets will
be represented in the same way in the state space, and this makes them
indistinguishable. Therefore, we can consider only the targets that can be
uniquely represented in H. This brings back this case to the case where
r = m.
More formally, we can divide D in two subsets D1 and D2 where:

D = D1 ∪ D2,D1 ⊥ D2, |BD1 | = m,D2 = Ker(C+). (4.49)

Where BD1 = {bD
1 ,b

D
2 , . . . ,b

D
m} is the set of vectors that define a base for

D1, and BD2 = {bD
m+1, . . . ,b

D
r } is the set of vectors that define a base for

D2. Given a vector d ∈ D, its projection vector h ∈ H is computed as
follows:

h = C+d. (4.50)

Moreover h can be also computed as:

h = C+(d+ v) = C+d+C+v ∀d ∈ D2 (4.51)

48

Linear Models in Deep Learning For Sequences L. Pasa

As a consequence, there are two vectors in D that have the same projection
in H. Since d,v ∈ D then they can be written as a liner combination
of some vectors contained in BD, and therefore even b + v belongs to D.
Additionally, the number of distinct vectors that can be represented in H,
that are projections of a vector belonging to D, is equal to m. Hence, even
in this case, we have the same situation studied in the case where m = r.

4.3.2 Uni-Network

One of the most interesting results obtained by testing the LDS is the ca-
pability of this system to learn one single sequence. Indeed, by training a
LDS by a single sequence and then using it to perform prediction on the
same sequence, the system has achieved an accuracy higher than 90%, as
reported in Section 6.3.3, Table 6.5. These results are all obtained by using
the random training method (L1), presented in Section 3. In order to exploit
this feature of the LDS model, we have developed a brand new co-learning
method. The method consists in creating one LDS for each sequence sq

contained in the training set T . Each system shares the same matrix A and
B, that are randomly computed. Differently, from previous cases each LDS
Si has its own Ci computed as follows:

Ci = Hi+Di, (4.52)

where Hi = [Axi
1,Axi

2+Bhi
1, . . . ,Axli +Bhli−1

] and Di = [di
1,d

i
2, . . . ,d

i
lq
],

∀i ∈ {1, . . . , N}. Then all Ci and si are collected together in a set
TM = {(s1,C1), (s

2,C2), . . . , (s
N ,CN)} that is used as a training set to train

a nonlinear model M. The idea is to use M in order to compute the best
matrix C for the sequence si given in input to the system. The prediction,
given xi

j as input, is computed as follows:

hi
j = Axi

j +Bhi
j−1, (4.53)

oij =M(xi
j ,h

i
j−1)h

i
j . (4.54)

This method has the advantage that just the output weights have to be
considered when trainingM, but the main disadvantage is the huge size of
the data contained in TM that makes it difficult to trainM.

4.4 Encode-Decode LDS

This model (Figure 4.4) is based on the Linear Autoencoder and in par-
ticular on the training method presented in Section 3.2.2. The idea is to
use two different Autoencoders: one to encode the input and one to encode
the target. The idea to use an Autoencoder for the targets is to get new
“hidden targets” that encode contextual information, thus disambiguating

49

L. Pasa Linear Models in Deep Learning For Sequences

the same target value occurring in different positions of the sequence. Since
the training method presented in Section 3.2.2 is unsupervised, it is possible
to train the two Autoencoders independently. The idea is to compute the
encoding of the input and map it to the corresponding encoding of its target.
We refer to the LDS that encodes the input as “Encoder”, and to the LDS
that encodes the output as “Decoder”.

Encoder and Decoder are trained respectively with the following
datasets:

TEncoder = {xq
t |x

q
t ∈ sq ∀t ∈ {1, . . . , lq}, ∀(sq,dq) ∈ T }, (4.55)

TDecoder = {dq
t |d

q
t ∈ dq ∀t ∈ {1, . . . , lq}, ∀(sq,dq) ∈ T }. (4.56)

TEncoder and TDecoder allow to train the two LDSs in order to respectively
learn how to encode the input xt and encode the output (target) dt. Both
systems compute the encoding function by using eq. (4.1), but in order to
clarify the various elements that compose the models we rewrite the equation
that computes the projection of the input (calculated by the Encoder) as:

h
(Encoder)
t = A(Encoder) xt +B(Encoder) h

(Encoder)
t−1 , (4.57)

and the equation that computes the projection of the target (calculated by
the Decoder) as:

h
(Decoder)
t = A(Decoder) ot +B(Decoder) h

(Decoder)
t−1 . (4.58)

The idea is to connect the two projections h
(Encoder)
t and h

(Decoder)
t , by using

a matrix E, that has to be trained in order to have:

h
(Decoder)
t = Eh

(Encoder)
t . (4.59)

Then, exploiting the matrix A(Decoder) the model has to map h
(Encoder)
t to

the output:

ot = A(Decoder)T h
(Decoder)
t . (4.60)

It’s important to notice that B(Decoder) is not used to compute ot.

Given an input xt the model computes h
(Encoder)
t by applying eq. (4.57).

Then, the model projects h
(Encoder)
t in to Decoder’s state space by eq. (4.59).

Finally, the output ot is computed by using (eq. 4.60). For what concerns
the training phase, we have already explained how to compute matrices
A(Encoder), B(Encoder) and A(Decoder), while matrix E is computed via SGD

or pseudo-inverse. In order to do that, firstly we have to compute h
(Encoder)
t

and h
(Decoder)
t for each input xt and for each target dt by using eqs. (4.57)

and (4.58). Then, the computed values are collected in a dataset TE :

TE = {(h(Encoder)
t ,h

(Decoder)
t)}, (4.61)

50

Linear Models in Deep Learning For Sequences L. Pasa

xt h
(Encoder)
t−1

h
(Encoder)
t

ot

h
(Decoder)
t

h
(Decoder)
t−1

A(Encoder) B(Encoder)

E

A(Decoder)T B(Decoder)T

Figure 4.4: Schematic representation of the Encode-Decode LDS.

and used to train matrix E. In the case that matrix E is computed by using

the pseudoinverse, the values h
(Encoder)
t and h

(Decoder)
t are arranged in two

matrices H(Encoder) and H(Decoder), and matrix E is computed as:

E = H(Decoder) H(Encoder)+. (4.62)

51

L. Pasa Linear Models in Deep Learning For Sequences

52

Chapter 5

Pre-Training Via Linear Models

The task of learning in sequential domains has been widely studied in the
last few years. In particular, many deep learning models have been proposed
to perform classification and prediction of sequential data. Typically Deep
Learning models for vectorial data use a pre-training phase in order to obtain
better results in less time. Unfortunately, the use of a pre-training phase is
not so common in a sequential domain. In this chapter, we briefly introduce
the concept of pre-training, and then we show two powerful methods to pre-
training sequential Deep Models. The most interesting aspect is that these
two methods are based on linear models. In both cases the idea is to use
a simple model to extract knowledge from the training set in a short time,
and to exploit such knowledge to initialize the weights of a more complex
nonlinear model, such as RNN.

5.1 Pre-Training

The pre-training phase was firstly introduced in 2006 [45], and has been
the real breakthrough in Deep Learning. Indeed, the introduction of Pre-
Training made possible to train deep models in an effective and efficient
way. It has been introduced as an algorithm to pre-train deep belief net-
works (DBN) [44] and stacked Autoencoders [89, 14]. The idea that these
pre-training methods exploit is to perform an unsupervised training phase
on each layer of DNN separately (layer-wise). After the pre-training phase
the model has to be fine tuned, via supervised training by gradient-based
optimization. The aim of the pre-training phase is to drive the parameters
of the model in a region from where reaching a better local (or global) opti-
mal solution is somehow easier [14]. in [33] it is argued that the pre-training
phase acts as an unusual form of regularization. Indeed, the pre-training

53

L. Pasa Linear Models in Deep Learning For Sequences

renders the parameters space more “complex” to be traveled away from
the basin where a local (or global) optimum is located. For instance, in
models that exploit sigmoid nonlinearity, after pre-training, the cost func-
tion becomes more “complex” (the function will present more topological
features e.g. plateau, peak, etc.) with the increasing of the distance from
the basin. Therefore the pre-training restricts the area where the solution
will be searched. This behavior corresponds to “learn” the structure of the
probability distribution of the input. This idea is the one we followed when
developing the HMM-based pre-training method published in [70, 69]. In-
deed, this method uses a simple dynamical model (e.g HMM) in order to
learn an approximation of the probability distribution of the inputs. After
that, the pre-training method has to pass these information to the network
that has to be pre-trained.
The most common application of pre-training is the DBN layer-wise pre-
training via RBM. This pre-training technique drives each layer to represent
the dominant factors of variation occurring in the input data [33]. The sec-
ond method that will be presented in this chapter is based on a similar idea.
the method is called pre-training via linear autoencoders [67]. It exploits
Principal Components Analysis (PCA) [53]. In the following following these
two methods are presented in detail.

5.2 HMM-based Pre-training

The first pre-training method we propose relies on an approximation of the
actual data distribution in order to drive the network weights in a better
region of the parameter space. The general idea is to exploit a linear simple
model in order to “learn” an approximation of the distribution of the input
data, and then transfer this knowledge from the linear model to the more
complex neural network for sequences that has to be pre-trained. We do not
want to limit the application of this method only to specific models (as in
the case of RBM-based pre-training for DBN). On the contrary, our aim is
to develop a technique that allows to use any simple linear model in order
to pre-train any neural network for sequential data. For this reason, the
method used to transfer the knowledge from the linear model to sequen-
tial Neural Networks has to be completely detached from the architecture.
For this reason, the knowledge transfer between the two models will be per-
formed by using a linear model to create a pre-training dataset. An instance
of this method is the one that uses HMM (Section 2.1.2) as a linear simple
model. As explained above, a linear HMM is firstly trained on the real se-
quences (“original data”). We have chosen this type of probabilistic model
because it is very efficient in training, and it has shown to be effective on
many sequence learning problems [74], including music modeling [17]. After
training, the model is used to generate a fixed number of sequences that will

54

Linear Models in Deep Learning For Sequences L. Pasa

populate a new dataset for the pre-training phase (“smooth data”). The
intuition is that the sequences generated by the linear model will constitute
a smoothed, approximated version of the original sequences contained in the
initial dataset, but will nevertheless retain the main structure of the data.
In order to generate a set of sequences from the HMM, we first select the
starting hidden state according to the learned initial state probability dis-
tribution. The first element of the sequence is then sampled according to
the emission distribution associated with that hidden state, and the same
process is iteratively repeated by selecting the next target state according
to the learned state transition probabilities. A straightforward, nave imple-
mentation of the random sampling process can be obtained by first com-
puting the cumulative probability distribution from the target distribution
and then selecting the element corresponding to a random number drawn
from the interval [0,1]. Notably, our pre-training procedure does not need
any form of bootstrapping from the original sequences, because the smooth
dataset is generated by sampling the HMM in a completely unconstrained
fashion. The simplified, HMM-generated dataset is then used to pre-train
the more powerful nonlinear model, with the aim of transferring the knowl-
edge acquired by the HMM to the recurrent neural network. The recurrent
network pre-training phase uses the same algorithm that is used for the nor-
mal training phase. Therefore, this pre-training method can be applied to
any recurrent non-linear network. Moreover, this technique does not require
to develop any ad-hoc algorithm to perform a pre-training of the network.
This advantage also ensures complete independence from the architecture
of the pre-trained model.
After completing the pre-training phase on the smooth dataset, the neural
network is then fine-tuned using the original sequences, in order to allow the
nonlinear model to extract a more complex structure from the data distri-
bution. The pseudocode for the proposed HMM-based pre-training method
is given in Algorithm 1, and a flow chart of the procedure is illustrated in
Figure 5.1.

Notably, the introduction of the pre-training phase before fine-tuning
does not significantly affect the computational cost of the whole learning
procedure, because both learning and sampling in HMMs can be performed
in an efficient way. In particular, our method performs three main steps
during pre-training: train the HMM, generate the smooth dataset and pre-
train the nonlinear network. The training phase for the HMM (step 3)
is performed using the Baum-Welch algorithm, which has a complexity of
order O(N2T) for each iteration and observation, where T is the length of
the observation used to train the model, and N is the number of states in the
HMM [77]. The smooth sequences generation (step 4) is performed using
the Viterbi algorithm. For each generated sequence, this algorithm has a
computational complexity of order O((NF)2T), where F is the size of the
input at a single time step, T is the length of the generated sequence and N

55

L. Pasa Linear Models in Deep Learning For Sequences

Algorithm 1 Pseudocode for the proposed HMM-based pre-training. At
the beginning, several parameters need to be initialized: n and l represent,
respectively, the number and length of the sequences generated by the HMM,
θhmm represents the training hyperparameters for the HMM (e.g., number
of hidden states) and θrnn represents the training hyperparameters for the
recurrent neural network (e.g., the number of hidden units and the learning
rate).

1: set n, l, θhmm, θrnn;
2: hmm ← train hmm(originalData, θhmm);
3: smoothData ← sample(hmm,n, l);
4: rnn ← random initialization;
5: rnn ← train rnn(smoothData, θrnn, rnn);
6: rnn ← train rnn(originalData, θrnn, rnn);
7: return(rnn);

is the number of states in the HMM. Finally, step 6 consists in pre-training
the recurrent neural network. In order to perform the pre-training phase we
exploit the standard training algorithm, therefore the complexity of this step
depends on the type of network that we aim to use. Moreover, it should be
noted that the improved initialization of the network weights could allow to
speed up convergence during the fine-tuning phase. The number and length
of the sequences generated by the HMM are important parameters for which
it is difficult to make an operational choice. A rule of thumb is to choose
them in accord with the training set statistics.

5.3 Pre-training via Linear Autoencoder

The second technique that we propose in order to pre-train an RNN model
is called Pre-Training via Linear Autoencoder. Differently than the
HMM-base approach, this method is developed specifically for pre-train
RNN networks. The idea is to exploit the hidden state representation ob-
tained by an autoencoder (defined by eqs. (2.3)) as initial hidden state rep-
resentation for the RNN described by eqs. (2.8). This is implemented by
initializing the weight matrices A and B of eqs. (2.8) by using the matrices
that jointly solve eqs. (2.1) and eqs. (2.3), i.e. A and B (since C is function
of A and B). Specifically, we initialize the input weights of the RNN with
A, and its hidden weights with B. Moreover, the use of symmetrical sig-
moidal functions, which do give a very good approximation of the identity
function around the origin, allows a good transferring of the linear dynam-
ics inside RNN. For what concerns the output weights, we initialize it by
using the best possible solution, i.e. the pseudoinverse of H (which is the
matrix that is composed of all hidden representation of the items contained

56

Linear Models in Deep Learning For Sequences L. Pasa

train

HMM

pre-train

RNN

fine-tune

RNN

original data

smooth data

Figure 5.1: Flow chart of the proposed HMM-based pre-training method for
RNN. The flow chart is the same if an RNN-RTRBM model is used in place
of an RNN: it is sufficient to replace the label RNN with the label RNN-
RBM in the picture (in fact, any model for sequences could in principle be
used as an alternative to the RNN).

in the training set) times the target matrix D (the matrix composed of all
targets dq ∈ T), which does minimize the output squared error. Learning
is then used to introduce nonlinear components that allow to improve the
performance of the model.
More formally, let consider a prediction task where for each sequence
sq ≡ (xq

1,x
q
2, . . . ,x

q
lq
) of length lq in the training set, a sequence dq of

target vectors is defined, i.e. a training sequence is given by ⟨sq,dq⟩ ≡
⟨(xq

1,d
q
1), (x

q
2,d

q
2), . . . , (x

q
lq
,dq

lq
)⟩, where dq

i ∈ Rs. Given a training set with

N sequences, let define the target matrix D ∈ Rs×L, where L =
N∑
q=1

lq,

as D =
[
d1
1,d

1
2, . . . ,d

1
l1
,d2

1, . . . ,d
N
lN

]T
. The input matrix Ξ will have size

L × nL. Let p∗ be the desired number of hidden units for the recurrent
neural network (RNN). Then the pre-training procedure can be defined as
follows: i) compute the linear autoencoder for Ξ using p∗ principal direc-
tions, obtaining the optimal matrices A∗ ∈ Rp∗×n and B∗ ∈ Rp∗×p∗ ; i) set
input weights equal to A∗ and the hidden weights equal to B∗; iii) run the
RNN over the training sequences, collecting the hidden activities vectors
(computed using symmetrical sigmoidal functions) over time as rows of ma-
trix H ∈ RL×p∗ ; iv) set the output weights as H+D, where H+ is the (left)
pseudoinverse of H.

5.3.1 Computing an approximate solution for large datasets

In real world scenarios, the application of our approach may turn difficult be-
cause of the size of the data matrix. In fact, stable computation of principal

57

L. Pasa Linear Models in Deep Learning For Sequences

directions is usually obtained by SVD decomposition of the data matrix Ξ,
that in typical application domains involves a number of rows and columns
which are easily of the order of hundreds of thousands. Unfortunately, the
computational complexity of SVD decomposition is basically cubic in the
smallest of the matrix dimensions. Memory consumption is also an im-
portant issue. Algorithms for approximate computation of SVD have been
suggested (e.g., [63]), however, since for our purposes we just need matrices
V and Λ with a predefined number of columns (i.e. p), here we present
an ad-hoc algorithm for approximate computation of these matrices. Our
solution is based on the following four main steps: i) divide Ξ in slices of k
(i.e., size of input at time t) columns, so to exploit SVD decomposition at
each slice separately; ii) compute approximate V and Λ matrices, with p
columns, incrementally via truncated SVD of temporary matrices obtained
by concatenating the current approximation of VΛ with a new slice; iii)
compute the SVD decomposition of a temporary matrix via either its kernel
or covariance matrix, depending on the smallest between the number of rows
and the number of columns of the temporary matrix; iv) exploit QR decom-
position to compute SVD decomposition. Algorithm 2 shows in pseudo-code
the main steps of our procedure. It maintains a temporary matrix D which
is used to collect incrementally an approximation of the principal subspace
of dimension p of Ξ. Initially (line 4) D is set equal to the last slices of
Ξ, in a number sufficient to get a number of columns larger than p (line
2). Matrices V and Λ from the p-truncated SVD decomposition of D are
computed (line 5) via the KeCo procedure, described in Algorithm 3, and
used to define a new D matrix by concatenation with the last unused slice
of Ξ. When all slices are processed, the current V and Λ matrices are
returned. The KeCo procedure, described in Algorithm 3 , reduces the
computational burden by computing the p-truncated SVD decomposition of
the input matrix M via its kernel matrix (lines 3-4) if the number of rows of
M is no larger than the number of columns, otherwise the covariance ma-
trix is used (lines 6-8). In both cases, the p-truncated SVD decomposition
is implemented via QR decomposition by the indirectSVD procedure de-
scribed in Algorithm 4. This allows to reduce computation time when large
matrices must be processed [73]. Finally, matrices V and Λ

1
2 (both kernel

and covariance matrices have squared singular values of M) are returned.

We use the strategy to process slices of Ξ in reverse order since, moving
versus columns with larger indices, the rank, as well as the norm of slices,
become smaller and smaller, thus giving less and less contribution to the
principal subspace of dimension p. This should reduce the approximation
error cumulated by dropping the components from p + 1 to p + n during
computation [99]. As a final remark, we stress that since we compute an
approximate solution for the principal directions of Ξ, it makes no much
sense to solve the problem given in eq. (3.10): learning will quickly compen-

58

Linear Models in Deep Learning For Sequences L. Pasa

Algorithm 2 Approximated V and Λ with p components

1: function SVForBigData(Ξ, n, p)
2: nStart = ⌈p/n⌉ ▷ Number of starting slices
3: nSlice = (Ξ.columns/n)− nStart ▷ Number of remaining slices
4: D = Ξ[:, n ∗ nSlice : Ξ.columns]
5: V,Λ =KeCo(D, p) ▷ Computation of V and Λ for starting slices
6: for i in reversed(range(nSlice)) do ▷ Computation of V and Λ

for remaining slices
7: D = [Ξ[:, i ∗ n:(i+ 1) ∗ n],VΛ]
8: V,Λ =KeCo(D, p)
9: end for

10: return V,Λ
11: end function

Algorithm 3 Kernel vs covariance computation

1: function KeCo(M, p)
2: if M.rows <= Ξ.columns then
3: K = MMT

4: V,Λsqr,U
T =indirectSVD(K, p)

5: else
6: C = MTM
7: V,Λsqr,U

T =indirectSVD(C, p)

8: V = MUTΛ
− 1

2
sqr

9: end if

10: return V,Λ
1
2
sqr

11: end function

Algorithm 4 Truncated SVD by QR

1: function indirectSVD(M, p)
2: Q,R =QR(M)
3: Vr,Λ,UT =SVD(R)
4: V = QVr

5: S = Λ[1 : p, 1 : p]
6: V = V[1 : p, :]
7: UT = UT[:, 1 : p]
8: return V,Λ,UT

9: end function

59

L. Pasa Linear Models in Deep Learning For Sequences

sate for the approximations and/or sub-optimality of A and B obtained by
matrices V and Λ returned by Algorithm 2.

60

Chapter 6

Experimental Assessment

In this chapter, we report and discuss all the results obtained by testing the
various methods and models presented in Chapter 3. The results are ob-
tained by testing the models on the prediction task, over four benchmarking
datasets containing polyphonic music sequences in midi format. The nature
of these data makes the prediction task particularly interesting: the music
sequences are complex, and follow a complex multi-modal distribution that
makes it difficult to perform training on them. Moreover, prediction of these
sequences requires a good capability by the network in managing long-term
temporal dependencies, since the structure of a song could be very complex.
This task has been already used for testing purposes in some pre-existing
works ([17, 37]).

This chapter starts with a description of the experimental setting we
have used for our tests in Section 6.1. We then present some experimental
results obtained with simple LDS trained with the various techniques pre-
sented in Chapter 3. Moreover, we compare these results with the results of
other similar nonlinear models, i.e., ESN and RNN (Section 6.2). Then, we
present the results obtained by testing the LDS-based models, focusing in
particular on LSN, which has shown to be the most interesting and promis-
ing model (Section 6.3). Finally, we present the results obtained by applying
the proposed pre-training methods. We perform a comparison of them and
discuss how to tune the various parameters of the models (Section 6.4).

6.1 Experimental Setting

In this section, we briefly present the prediction task we have used to carry
out our evaluation (Section 6.1.1). We then describe the four benchmarking

61

L. Pasa Linear Models in Deep Learning For Sequences

datasets we have used (Section 6.1.2), and our reference performance metrics
(Section 6.1.3).

All the experiments were run using the Theano software [3], on an Intel c⃝

Xeon c⃝ CPU E5-2670 @2.60GHz with 128 GB of RAM, equipped with an
NVidia c⃝ K20 GPU.

6.1.1 Prediction Task

In this thesis, we focus on a prediction task over sequences that can be
formalized as follows. We would like to learn a function F(·) from multi-
variate bounded length input sequences to desired output values. Specifi-
cally, given a training set T = {(sq,dq) | q = 1, . . . , N, sq ≡ (xq

1,x
q
2, . . . ,x

q
lq
),

dq ≡ (dq
1,d

q
2, . . . ,d

q
lq
), xq

t ∈ Rn, dq
t ∈ Rs}, we want to learn a function F(·)

such that ∀q, t F(sq[1, t]) = dq
t , where s

q[1, t] ≡ (xq
1,x

q
2, . . . ,x

q
t). Our experi-

mental assessment has been performed in the special case where dq
k = xq

k+1.
This prediction task allows us to test different linear and non-linear systems.
Different learning approaches have been considered for both linear and non-
linear dynamical systems, as described in the following. for each learning
technique has performed several tests, in order to evaluate strengths and
weaknesses of different approaches.

6.1.2 Datasets

In order to assess the prediction abilities of the various models, we adopted
the prediction task presented in Section 6.1.1, over polyphonic music se-
quences. Each music sequence consists of a sequence of binary arrays of 88
dimensions representing the 88 notes spanning the whole piano range (from
A0 to C8). In particular, each binary value is set to 1 if the note is played at
the current time step, and 0 otherwise. The number of notes played simul-
taneously varied from 0 to 15. The output prediction is represented using
the same format of the input. The polyphonic music datasets considered in
our study contain different musical genres, which involve varying degrees of
complexity in the temporal dependencies that are relevant for the prediction
task. The Nottingham dataset contains folk songs, characterized by a small
number of different chords and a redundant structure; the Piano-midi.de
dataset is an archive of classic piano music, containing more complex songs
with many different chords; the Muse Data and JSB Chorales datasets con-
tain, respectively, piano and orchestral classical music; moreover, the JSB
chorales are redundant and all composed by a single author, so the style of
the songs is largely shared by different patterns. In Table 6.1 we report the
main datasets statistics, including the size of the training and test sets, and
the maximum, minimum, and average length of the contained sequences.
We decided to perform prediction task on these datasets because this al-
lows us to obtain benchmarking results. Indeed, several other works, that

62

Linear Models in Deep Learning For Sequences L. Pasa

Set # Samples Max length Min length Avg Length
Training 694 641 54 200.8

Nottingham Test 170 1495 54 219
Validation 173 1229 81 220.3
Training 87 4405 78 812.3

Piano-midi.de Test 25 2305 134 694.1
Validation 12 1740 312 882.4
Training 524 2434 9 474.2

MuseData Test 25 3402 70 554.5
Validation 135 2523 94 583
Training 229 259 50 120.8

JSB Chorales Test 77 320 64 123
Validation 76 289 64 121.4

Table 6.1: Datasets statistics, including the number of sequences contained
in each dataset.

introduce the most powerful models that deal with sequential data, use the
same datasets on this task to perform the evaluation of the model [17] [37].
Thanks to this we can compare the obtained results with several other mod-
els. In particular, we use as a baseline the results obtained by RNN-RBM
model in [17], that achieved the state-of-the-art on the polyphonic music
prediction task. Due to computational time constraints, for some experi-
ments, we have just used the Nottingham and Piano datasets because these
two datasets contain a very different type of data. Moreover, the results
obtained on these two sets turn out to be a very good guidance in order to
evaluate how good a model performs.

6.1.3 Performance Metric

To measure the performance of each model on the prediction task, we
adopted the same accuracy metric used in [13], and described in [10]. The
idea is to compute an accuracy metric based on three values:

• TP - True Positive: is the number of correctly predicted outputs.

• FP - False Positive: is the number of note-off examples predicted as
note-on.

• FN - False Negative: is the number of note-on examples predicted as
note-off

Given a sequence, these three values are computed by summing the obtained
values at each time step. For each sequence the accuracy is defined as follows:

Accuracy =
TP

FP + FN + TP
. (6.1)

The results obtained over a dataset is computed by calculating the average
accuracy over all the sequences it contains.

63

L. Pasa Linear Models in Deep Learning For Sequences

6.2 Polyphonic Music Prediction Task with LDS

In this section, we are going to compare the capability of the LDS model
against similar models trained with different training techniques. In addition
to LDS, in order to make a meaningful comparison of the results, we tested
also nonlinear models that have the same topology of LDS, and that have
been trained by using the following techniques:

N1: Adopt the Echo State Network training procedure that randomly ini-
tializes matrices A and B according to the Echo State Property and
only trains the output weights using pseudo-inverse of the hidden rep-
resentations, i.e. compute C = DH+, where D = [d1

1,d
1
2, . . . ,d

N
lN
]

and, H = [h1
1,h

1
2, . . . ,h

N
lN
] is the matrix that collects all the hidden

representations obtained by running the system, with random matrices
A and B, over all sequences in the training set.

N2: Perform SGD with respect to the regularized error function ẼT , that
is defined as:

ẼT =
1

NL

N∑
q=1

lq∑
j=1

(dq
j − oqj)

2 +R1 +R2,

where L =
∑N

q=1 lq, and

R1 =
m∑
i

n∑
j

|Aij |+
m∑
i

m∑
j

|Bij |+
s∑
i

m∑
j

|Cij |,

R2 =

m∑
i

n∑
j

A2
ij +

m∑
i

m∑
j

B2
ij +

s∑
i

m∑
j

C2
ij ,

with standard random initialization for matrices A, B, and C. This
corresponds to a standard RNN training procedure.

N3: Perform SGD with respect to the regularized error function ẼT . The
matrices A and B are initialized according to the procedure proposed
in Section 3.2.2 for the linear auto-encoder, and C with DH+, where
H is obtained by first running eq. (4.1) with initialized matrices A
and B. This approach corresponds to the pre-training one proposed
in Section 5.3. More details about the results obtained by this pre-
training approach are reported in Section 6.4.2

N4: Perform SGD with respect to the regularized error function ẼT , start-
ing from matrices A, B, and C obtained by the following pre-training
approach: i) train a linear HMM over the training set T ; ii) using
the obtained HMM, generate Npt sequences that will constitute the

64

Linear Models in Deep Learning For Sequences L. Pasa

pre-training dataset Tpr; iii) perform SGD with respect to the regular-
ized error function ẼTpr using Tpr and standard random initialization
for matrices A, B, and C. This approach corresponds to the pre-
training one proposed in Section 5.2. More information about the
results obtained with this method, and the techniques used to tune
the parameters is reported in Section 6.4.1.

These linear and nonlinear methods could be divided into two main sets
based on the fact that there is or not the supervised learning of the hidden
state mapping. Indeed, some of this methods use the supervision only for the
hidden to output mapping via pseudo-inverse. It is important to make this
distinction because we have to take into account that for these last methods
the unsupervised linear or non-linear projections are used to define the cur-
rent (hidden) state. The approaches that use the supervision only for the
hidden to output mapping are: LDS-L1, LDS-L2, and RNN-N1. Because of
the unsupervised projections, a larger state space is supposedly needed for
these approaches to get good performances. Subsequently, we present exper-
imental results obtained for SGD-based approaches, i.e. LDS-L3, RNN-N2,
RNN-L3, and RNN-N4, where a smaller state space is sufficient.

6.2.1 Results of approaches using unsupervised projections

As discussed before, approaches that use random or unsupervised projec-
tions, in principle, require larger state spaces in order to get good perfor-
mances. A profitable size for the state space also depends on the complexity
of the dataset. We have explored this issue by performing experimental
tests using 500, 1000, 1500 hidden units for the Nottingham dataset, and
500, 1000, 2000 hidden units for the Piano-midi.de dataset. The use of 2000
units takes into account the higher complexity of the Piano-midi.de dataset.
The considered approaches are LDS-L1, LDS-L2, and RNN-N1.
Experimental results for the Nottingham dataset are shown in Figure 6.1,
while the results for the Piano-midi.de dataset are shown in Figure 6.2.
In general, it seems that random projection-based approaches (i.e. LDS-
L1 and RNN-N1) are insensitive to the size of the state space, while this
seems not to be the case for LDS-L2. In fact, the autoencoder-based train-
ing approach seems to be sensitive to the state space size. This fact can
be explained by considering the nature of the training technique. Indeed,
the autoencoder-based method exploits the SVD decomposition in order to
extract the most relevant information from input and previous states. What
happens by increasing the state space size is that those features that have
lower variance will be added to the state representation. This allows to col-
lect more relevant information in the state. In other words, by using this
approach with increasing size of state space, is very likely that some new
relevant features enter the state representation. Therefore, since the size of
the state space is ≪ rank(Ξ), the approach will improve its performance

65

L. Pasa Linear Models in Deep Learning For Sequences

(at least on the training set).
For both datasets it seems that a further increase of the state space size
would keep improving performances. Finally, it can be noticed that on the
Piano-midi.de dataset the RNN-N1 approach seems to show some overfitting
with the increase of state space size.

6.2.2 Results of approaches using supervision and pre-
training

Here we present the results obtained for approaches exploiting supervision
and pre-training, i.e. LDS-L3, RNN-L2, RNN-N3, and RNN-N4. Actually,
all approaches use a form of pre-training except for RNN-L2, which uses
random initialization for the weights. Since full supervision is used for all
approaches, much smaller state spaces are used. Figure 6.3 and Figure 6.4
reports results (on training and test set, respectively), for both datasets,
obtained for approaches LDS-L3, RNN-L2, and RNN-N3 using the same
settings and model selection procedure described in [67].
From Figure 6.4 it is clear that the use of pre-training exploiting the lin-
ear autoencoder allows to achieve better results in less epochs. Indeed, in
both datasets the pre-trained versions of the RNN obtain a higher accu-
racy regardless the number of hidden units. Moreover, a very good level
of accuracy can be reached in a lower number of epochs. The LDS-L3 ap-
proach (i.e., LDS pre-trained via linear autoencoder initialization and then
fine-tuned via SGD) on Nottingham dataset achieved results similar to a
non-linear RNN model. However, the same approach has a totally differ-
ent behavior on Piano-midi.de. In that case, after a few training epochs,
the accuracy quickly decreases under the accuracy achieved by randomly-
initialized systems. This behavior is due to the high complexity of sequences
in Piano-midi.de.

6.2.3 Discussion

In this section, we try to summarize the experimental results obtained for
the different approaches. In Figure 6.5 we report the performances, after
model selection via the validation sets, of all the studied approaches on the
two considered datasets. The reported performances for RNN-N2 is taken
from [17], since those values are better than the ones we were able to achieve.
The results obtained on the Nottingham dataset seem to show that better
performances can be obtained thanks to pre-training. In fact, both linear
and non-linear approaches with pre-training return good results, while all
the remaining approaches get more or less the same lower performance, re-
gardless of the linearity or non-linearity of the considered model. Among
approaches that exploit pre-training, non-linear models get a slighter better
performance. It must, however, be noticed that the computationally less

66

Linear Models in Deep Learning For Sequences L. Pasa

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

Train Test Valid

A
cc

ur
ac

y

Size of system state

LDS-L1 Nottingham Dataset

0.621 0.621 0.621 0.625 0.625 0.624 0.618 0.619 0.617

500 1000 1500

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

Train Test Valid

A
cc

ur
ac

y

Size of system state

LDS-L2 Nottingham Dataset

0.600
0.623

0.636

0.597

0.623
0.639

0.597
0.620

0.634

500 1000 1500

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

Train Test Valid

A
cc

ur
ac

y

Size of system state

RNN-N1 Nottingham Dataset

0.624 0.626 0.626 0.632 0.624 0.625 0.618 0.621 0.622

500 1000 1500

Figure 6.1: Results achieved for the Nottingham dataset. Each chart shows
the accuracy achieved by training LDS-L1, LDS-L2, and RNN-N1 with dif-
ferent state space sizes. For methods LDS-L1 and LDS-L2, that use random
matrices, the standard deviation is reported by using the black lines on the
top of the bars. 67

L. Pasa Linear Models in Deep Learning For Sequences

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Train Test Valid

A
cc

ur
ac

y

Size of system state

LDS-L1 Piano-midi.de Dataset

0.394 0.397

0.423 0.424 0.423
0.397

0.430 0.427 0.428

500 1000 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Train Test Valid

A
cc

ur
ac

y

Size of system state

LDS-L2 Piano-midi.de Dataset

0.157

0.309

0.364

0.132

0.310

0.355

0.171

0.348

0.379

500 1000 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Train Test Valid

A
cc

ur
ac

y

Size of system state

RNN-N1 Piano-midi.de Dataset

0.381
0.397

0.366

0.417

0.395 0.394

0.421
0.402 0.405

500 1000 2000

Figure 6.2: Results achieved by LDS Piano-midi.de dataset. Each chart
shows the accuracy achieved by training LDS-L1, LDS-L2, and RNN-N1

with different state space sizes. For methods LDS-L1 and LDS-L2, that use
random matrices, the standard deviation is reported by using the black lines
on the top of the bars. 68

Linear Models in Deep Learning For Sequences L. Pasa

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

ur
ac

y

Epoch

Nottingham Training Set

LDS-L3 (250u)
RNN-N2 (250u)

RNN-N3 (250u)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

ur
ac

y

Epoch

Piano-Midi.de Training Set

LDS-L3 (250u)
RNN-N2 (250u)

RNN-N3 (250u)

Figure 6.3: Train curves on the two datasets by models LDS-L3, RNN-N2

and RNN-N3. Curves are sampled at each epoch till epoch 100, and at
steps of 100 epochs afterwards. For methods LDS-L3 and RNN-N2, that
use random matrices, the standard deviation is reported as well.

69

L. Pasa Linear Models in Deep Learning For Sequences

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

ur
ac

y

Epoch

Nottingham Test Set

LDS-L3 (250u)
RNN-N2 (250u)

RNN-N3 (250u)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

ur
ac

y

Epoch

Piano-Midi.de Test Set

LDS-L3 (250u)
RNN-N2 (250u)

RNN-N3 (250u)

Figure 6.4: Test curves on the two datasets by models LDS-L3, RNN-N2

and RNN-N3. Curves are sampled at each epoch till epoch 100, and at
steps of 100 epochs afterwards. For methods LDS-L3 and RNN-N2, that
use random matrices, the standard deviation is reported as well.

70

Linear Models in Deep Learning For Sequences L. Pasa

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

LD
S

-L
1(

10
00

u)

LD
S

-L
2(

15
00

u)

LD
S

-L
3(

25
0u

)

R
N

N
-N

1(
15

00
)

R
N

N
-N

2

R
N

N
-N

3(
25

0u
)

R
N

N
-N

4(
20

0u
)

A
cc

ur
ac

y

Models Comparison Nottingham Test set

0.625 0.639
0.732

0.625 0.630

0.752 0.770

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

LD
S

-L
1(

20
00

u)

LD
S

-L
2(

20
00

u)

LD
S

-L
3(

25
0u

)

R
N

N
-N

1(
50

0u
)

R
N

N
-N

2

R
N

N
-N

3(
20

0u
)

R
N

N
-N

4(
20

0u
)

A
cc

ur
ac

y

Models Comparison Piano-midi.de Test set

0.424

0.355

0.169

0.417

0.193

0.377
0.320

Figure 6.5: Comparison of the performances obtained by the studied ap-
proaches. For each model the charts report the accuracy achieved on the
test set. The number reported in brackets is the number of hidden units se-
lected by model selection using the validation set. The results for RNN-N2

are taken from [17].

71

L. Pasa Linear Models in Deep Learning For Sequences

demanding linear model with pre-training already returns a quite good per-
formance.
For the Piano-midi.de, the situation seems to be quite different, since the
best performers are based on random projections, independently from the
linearity or non-linearity of the model. Pre-training based approaches seem,
for this dataset, to be less effective. This may be due to the fact that the
Piano-midi.de owns a higher complexity, and it is likely that far larger state
spaces are needed to reach better performances. In fact, it can be noted
that approaches based on random projections, either linear or non-linear,
exploit a state space that is tenfold larger than the ones used by SGD-based
approaches.
Overall, it is clear that the adoption of a pre-training approach allows to
systematically improve over the standard RNN approach, i.e. RNN-N2.
From a computational point of view, linear approaches are far more efficient
than non-linear ones, with the only exception of RNN-N1, that does not
require training of the hidden state mapping.

6.3 Polyphonic Music Prediction Task With LDS-
based Models

In this section, we present and discuss the results obtained by testing the
models presented in Chapter 4 on the same polyphonic music prediction
task presented above. We firstly discuss about the preliminary application
of the LSN model by using single configurations. Then, the configurations
that have obtained the best results are tested more in deep. Moreover, we
evaluate and discuss the time required to perform the training of the model
by using different sets of parameters.
After that, we present the results obtained by testing the linear co-learning
architectures (proposed in Section 4.3). The goal is to empirically verify
the theoretical results of our study on this type of model (Section 4.3.1).
Finally, we present the results obtained by UniNet.

6.3.1 Experimental results obtained by LSN

In order to test the LSN, we used two datasets: Nottingham and Piano-
midi.de. The software implementing the LSN model is realized in Python.
The training of each LDS is performed independently and in parallel. The
number of LDSs trained in parallel depends on the amount of memory avail-
able on the machine used for performing the tests.

Comparison among different configurations

In this section, we compare the various proposed configurations for LSN.
We proposed four configurations: Var, Over, Select, and Error. In order

72

Linear Models in Deep Learning For Sequences L. Pasa

to perform a fair comparison among them, we decided to use the same
parameters by varying just the configuration. We firstly decide to apply to
the model a single configuration at a time, in order to evaluate the impact
of each configuration on the performance of the model. Moreover, testing all
possible combinations of variants turns out to be unfeasible due to the high
number of possible combinations (we recall that each variant can be used
regardless that the others are used or not). We have tested both datasets by
using M LDSs with state space of 200 dimensions. For Nottingham dataset
we have set M = 30, whilst for Piano-midi.de we have set M = 10. We have
decided to use these two parameters settings because in our preliminary
tests they showed the best results in both datasets (Table 6.2). In the next
section, we will give a more formal and complete discussion about the tuning
of model parameters. For what concerns the Var configuration, the state
size is set as described in equation (4.17). The comparison among the various
configurations is performed by taking care of the obtained accuracy, and the
time required to perform the training phase. Indeed, some configurations
like Error and Var, may slow down the training process. In particular,
it is interesting to notice that the amount of memory used by the Error
configuration is very similar to the memory occupation used by the others
configurations, mainly thanks to the reformulation of the error function
given in equation (4.26).
Figures 6.6, 6.7 and 6.8 show the results obtained by the LSN by using the
basic configuration (Section 4.1) in conjunction with one of the four different
configuration variants. The results show that the Var configuration turns
out to be the most effective. Indeed, the obtained results suggest that the
model that uses this option significantly improves the prediction accuracy.
For what concerns the other three options, the benefits that the model gains
by using one of them are not meaningful, and sometimes the results show
a lower accuracy compared with the basic configuration. Therefore, we
decided not to apply them to the polyphonic music prediction task.

For what concerns the computational time demand of the various configura-
tions, Figure 6.9 shows that the Var configuration slows down significantly
the training process. The reason why the training phase becomes slower is
the fact that each system has a different size of the state, and accordingly
to equation (4.17), the state size increases as the number of LDSs. Training
of an LDS that has larger state space requires more time. Moreover, also
the size of vector zt will increase, and this leads to a more complex training
phase, even for the second layer of the model. This is due to the fact that
training the weights matrix D involves the computation of the pseudoinverse
of a matrix that has a number of rows that increases as the size of the LDS
state space.
The time required to perform training by using one of the other three vari-
ants is still higher than the basic configuration. In particular, the increasing

73

L. Pasa Linear Models in Deep Learning For Sequences

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

B
as

e
C

on
f

V
ar

S
el

ec
t

O
ve

r

E
rr

or

R
N

N
-N

4(
20

0u
)

A
cc

ur
ac

y
Configurations Comparison Nottingham Test Set (Accuracy)

0.646 0.654
0.602

0.632 0.646

0.770

 0

 0.1

 0.2

 0.3

 0.4

 0.5

B
as

e
C

on
f

V
ar

S
el

ec
t

O
ve

r

E
rr

or

LD
S

-L
1(

20
00

u)

A
cc

ur
ac

y

Configurations Comparison Piano-midi.de Test Set (Accuracy)

0.298

0.355

0.114

0.197

0.297

0.424

Figure 6.6: Accuracy obtained by LSN on Nottingham test set (top) and
on Piano-midi.de test set (bottom) by using different configurations. Each
configuration has been tested by using the base configuration in conjunc-
tion with a single configuration (Var, Select, Over and Error). For the
Nottingham dataset the model is trained by using paramaters p = 200 and
M = 30. While for the Piano-midi.de dataset the used values are p = 200
and M = 10.

74

Linear Models in Deep Learning For Sequences L. Pasa

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9
B

as
e

C
on

f

V
ar

S
el

ec
t

O
ve

r

E
rr

or

R
N

N
-N

4(
20

0u
)

A
cc

ur
ac

y

Configurations Comparison Nottingham Training Set (Accuracy)

0.656
0.684

0.610
0.641 0.656

0.771

 0

 0.1

 0.2

 0.3

 0.4

 0.5

B
as

e
C

on
f

V
ar

S
el

ec
t

O
ve

r

E
rr

or

LD
S

-L
1(

20
00

u)

A
cc

ur
ac

y

Configurations Comparison Piano-midi.de Training Set (Accuracy)

0.320

0.385

0.174

0.239

0.319

0.394

Figure 6.7: Accuracy obtained by LSN on Nottingham training set (top)
and on Piano-midi.de training set (bottom) by using different configura-
tions. Each configuration has been tested by using the base configuration
in conjunction with a single configuration (Var, Select, Over and Er-
ror). For the Nottingham dataset the model is trained by using paramaters
p = 200 and M = 30. While for the Piano-midi.de dataset the used values
are p = 200 and M = 10.

75

L. Pasa Linear Models in Deep Learning For Sequences

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

B
as

e
C

on
f

V
ar

S
el

ec
t

O
ve

r

E
rr

or

R
N

N
-N

4(
20

0u
)

A
cc

ur
ac

y
Configurations Comparison Nottingham Valid Set (Accuracy)

0.643 0.649
0.609 0.624 0.643

0.780

 0

 0.1

 0.2

 0.3

 0.4

 0.5

B
as

e
C

on
f

V
ar

S
el

ec
t

O
ve

r

E
rr

or

LD
S

-L
1(

20
00

u)

A
cc

ur
ac

y

Configurations Comparison Piano-midi.de Valid Set (Accuracy)

0.323
0.364

0.122

0.218

0.319

0.430

Figure 6.8: Accuracy obtained by LSN on Nottingham validation set (top)
and on Piano-midi.de validation set (bottom) by using different configura-
tions. Each configuration has been tested by using the base configuration
in conjunction with a single configuration (Var, Select, Over and Er-
ror). For the Nottingham dataset the model is trained by using paramaters
p = 200 and M = 30. While for the Piano-midi.de dataset the used values
are p = 200 and M = 10.

76

Linear Models in Deep Learning For Sequences L. Pasa

in time required to perform the operation used in the Error configuration
turns out to be correlated with the lengths of the sequences contained in the
dataset. Indeed, the difference between the time required to train the LSN
with the basic configuration and the time needed to perform training of an
LNS exploiting the Error configuration, dramatically increases in Piano-
midi.de. This behavior is related to the fact that the error is computed
incrementally during each time step, and Piano-midi.de contains longer se-
quences. The other two variants show a similar behavior on both datasets,
and the time required for training phase is similar to the time required by
the basic configuration.
We have also assessed the behavior of the LSN model when more than

one variants are activated at the same time. Considering the large num-
ber of possible combinations and the high computational burden of each
single execution, we decided to test only the combinations of two variants
where one is Var. This choice is justified by the fact that Var is the most
promising one. Figures 6.10, 6.11 and 6.12 compares the results obtained by
the following configurations: Var+Over, Var+Select, Var+Error. The
obtained results show that mixing together more than one option does not
turn out to be very effective. Indeed, the obtained accuracies are very close
(and sometimes lower than) to the accuracy obtained by just using the Var
option. Anyway, by using the Var+Error configuration allows to achieve
bit higher results on both datasets.

Tuning Parameters

The LSN model has two parameters that have to be tuned in order to op-
timize the performance of the model. The first parameter is the number
of systems (M) that compose the first layer of the architecture. As ex-
plained in Section 4.1, given the number of desired LDSs, each system will
be trained with an ad-hoc sub-dataset, that is a subset of the original train-
ing set. The input sequences that populate each sub-dataset are chosen
based on the configuration that is in use at given time step. Both in the
basic configuration, and in the Over configuration, the sequences are chosen
by considering their lengths and the bounds limin and limax of the considered
LDS. In some particular cases, some of these sub-datasets may be empty.
When this happens the corresponding LDS will not be inserted in the first
layer. Therefore, the number of LDSs in the first layer of the LSN will be
always ≤ M . Finding the best value for parameter M require also to take
care about two important aspects: i)The number of LDSs determines also
the size of the second layer zt; indeed, it collects the state of all LDSs, so
the number of LDSs (and the size of their state space) will determine the
size of zt. The size of the second layer significantly affects the time and the
memory required to train the whole model. Choosing a large value for M
may turn the training phase to be very slow and highly memory demand-

77

L. Pasa Linear Models in Deep Learning For Sequences

 0

 5000

 10000

 15000

 20000

 25000

 30000

B
as

e
C

on
f

V
ar

S
el

ec
t

O
ve

r

E
rr

or

T
im

e(
se

c.
)

Configurations Comparison Nottingham Test Set (Training time)

6360

26598
29426

7361 7621

 0

 5000

 10000

 15000

 20000

 25000

B
as

e
C

on
f

V
ar

S
el

ec
t

O
ve

r

E
rr

or

T
im

e(
se

c.
)

Configurations Comparison Piano-midi.de Test Set (Training time)

7145

23962
26256

7144

14955

Figure 6.9: Time required to train the LSN model on Nottingham dataset
(top) and on Piano-midi.de dataset (bottom) by using different configura-
tions. Each configuration has been tested by using the base configuration
in conjunction with a single configuration (Var, Select, Over and Er-
ror). For the Nottingham dataset the model is trained by using paramaters
p = 200 and M = 30. While for the Piano-midi.de dataset the used values
are p = 200 and M = 10.

78

Linear Models in Deep Learning For Sequences L. Pasa

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9
V

ar

V
ar

+
S

el
ec

t

V
ar

+
O

ve
r

V
ar

+
E

rr
or

R
N

N
-N

4(
20

0u
)

A
cc

ur
ac

y

Two Variants Configurations Comparison Nottingham Test Set

0.654

0.521
0.543

0.655

0.770

 0

 0.1

 0.2

 0.3

 0.4

 0.5

V
ar

V
ar

+
S

el
ec

t

V
ar

+
O

ve
r

V
ar

+
E

rr
or

LD
S

-L
1(

20
00

u)

A
cc

ur
ac

y

Two Variants Configurations Comparison Piano-midi.de Test Set

0.355

0.194
0.229

0.355

0.424

Figure 6.10: Accuracy obtained by LSN model on Nottingham test set (top)
and on Piano-midi.de test set (bottom) by using different configurations that
combine two variants. Each configuration has been tested by using the Var
configuration in conjunction with a single configuration variants (Select,
Over or Error). For the Nottingham dataset the model is trained by using
parameters p = 200 and M = 30. While for the Piano-midi.de dataset the
used values are p = 200 and M = 10.

79

L. Pasa Linear Models in Deep Learning For Sequences

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

V
ar

V
ar

+
S

el
ec

t

V
ar

+
O

ve
r

V
ar

+
E

rr
or

R
N

N
-N

4(
20

0u
)

A
cc

ur
ac

y
Two Variants Configurations Comparison Nottingham Training Set

0.661

0.545 0.564

0.663

0.771

 0

 0.1

 0.2

 0.3

 0.4

 0.5

V
ar

V
ar

+
S

el
ec

t

V
ar

+
O

ve
r

V
ar

+
E

rr
or

LD
S

-L
1(

20
00

u)

A
cc

ur
ac

y

Two Variants Configurations Comparison Piano-midi.de Training Set

0.358

0.201
0.232

0.368
0.394

Figure 6.11: Accuracy obtained by LSN model on Nottingham training set
(top) and on Piano-midi.de training set (bottom) by using different con-
figurations that combine two variants. Each configuration has been tested
by using the Var configuration in conjunction with a single configuration
variants (Select, Over or Error). For the Nottingham dataset the model
is trained by using parameters p = 200 and M = 30. While for the Piano-
midi.de dataset the used values are p = 200 and M = 10.

80

Linear Models in Deep Learning For Sequences L. Pasa

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9
V

ar

V
ar

+
S

el
ec

t

V
ar

+
O

ve
r

V
ar

+
E

rr
or

R
N

N
-N

4(
20

0u
)

A
cc

ur
ac

y

Two Variants Configurations Comparison Nottingham Valid Set

0.649

0.523 0.544

0.651

0.780

 0

 0.1

 0.2

 0.3

 0.4

 0.5

V
ar

V
ar

+
S

el
ec

t

V
ar

+
O

ve
r

V
ar

+
E

rr
or

LD
S

-L
1(

20
00

u)

A
cc

ur
ac

y

Two Variants Configurations Comparison Piano-midi.de Valid Set

0.354

0.192

0.264

0.363

0.430

Figure 6.12: Accuracy obtained by LSN model on Nottingham validation set
(top) and on Piano-midi.de validation set (bottom) by using different con-
figurations that combine two variants. Each configuration has been tested
by using the Var configuration in conjunction with a single configuration
variants (Select, Over or Error). For the Nottingham dataset the model
is trained by using parameters p = 200 and M = 30. While for the Piano-
midi.de dataset the used values are p = 200 and M = 10.

81

L. Pasa Linear Models in Deep Learning For Sequences

ing. ii) For what concerns the training of the first layer, we can perform the
training of each LDS in parallel. Therefore, increasing the number of LDSs
does not slow down the computation. The only constraint is the amount of
available memory. Indeed, training LDS by method L2 requires a consid-
erable amount of memory, and training many LDSs at the same time may
turn out unfeasible, in particular for large datasets. In our specific case,
we had to limit the number of parallel LDSs training processes to 5 on the
Piano-midi.de dataset. On the contrary, no bound was needed for the Not-
tingham dataset.
The other parameter that may create some problems during the training
phase, and that has to be tuned, is the size of the state space. As we al-
ready explained this parameter determines the size of vector zt. Moreover,
it may affect the quantity of memory used, and the time required to train a
single LDS. The higher is the size of the LDS state, the higher will be the
amount of memory used during training. It is important to consider that, in
case the Var variant is used, the state size of each LDS varies on the basis
of the rank of the matrix Ξ used in method L2.
For all the reasons explained above, we decided to test different parame-
ters configurations inside reasonable bounds. In particular, we tested the
model with M set to 10, 20 and 30, and the size of LDS state space p equal
to 50, 100, 200. The model is tested by using two different configurations:
the configuration where only the Var variant is turned on, and the config-
uration where both Var and Error variant are used. In all the performed
experiments, the parameters validation is performed by evaluating the vari-
ous models on the validation set. Figure 6.13 reports the accuracy obtained
by the LDS model using the Var configuration on the Nottingham and the
Piano-midi.de datasets. The best result, as selected by the validation set
(Table 6.2), is obtained by using p = 200 and M = 30 for the Nottingham
dataset. For the Piano-midi.de dataset we obtained the best results by using
p = 200 and M = 10. For the Nottingham dataset, it is interesting to notice
that for each value of M there is a gain in terms of accuracy by increasing
the value of p. That means that the vector zt in each case takes advantage
in having more information from the LDSs and moreover, each single LDS
can “retain” more relevant information about the input. Differently, for the
Piano-midi.de dataset, having a larger value for p does not always helps.
Indeed, in case of M = 30, the model obtains better accuracy by using
p = 50 instead using p = 200. It is possible to observe the same behavior
for M = 20. This behavior suggests that for large values of p, the vector zt
has a higher variance, that makes it complex for the matrix D to map the
LSN state on the desired target.
On the other hand, Figure 6.14 shows the time required to train the LSN
model, and it is easy to notice that, given a specific value for M using
p = 200 the training phase requires more or less 3 or 4 times the time re-
quired with p = 50 (on both datasets). We can notice the same behavior

82

Linear Models in Deep Learning For Sequences L. Pasa

also with p = 100, where the training time doubles with respect to p = 50.
Similarly, behavior can be observed by fixing a value for p, and varying the
value for M . This suggests that the critical part of the training phase is
the training of weights matrix D. Figures 6.15 and 6.16 show the results
obtained, this time, on the test set by using an LSN with the Var+Error
configuration. Notice that the trends in terms of time complexity and ac-
curacy are similar to the trends visible in Figures 6.13 and 6.14. The only
relevant difference is that, for the Nottingham dataset, the values for accu-
racy are a bit higher than the ones obtained by the Var configuration. The
best parameters for the Var+Error configuration are the same obtained in
the Var configuration. For the Nottingham dataset, the time efforts of the
two tested configurations are similar. While, for what concerns the Piano-
midi.de dataset, the time effort significantly increases by using Var+Error
configuration. This behavior and the similarity of the obtained results in
terms of accuracy suggest that using two variants together does not lead to
any advantage.
The obtained results showed it is important to balance the state space size
of the LDSs and the time required for the training phase. Indeed, in both
datasets, using p = 200 leads to a gain in terms of accuracy. Whilst, using
a higher number of LDSs turns not out to be crucial for improving the best
results, while it slows down significantly the training of the model. There-
fore, we can conclude that a higher values for parameter p lead to larger
benefits than using a higher number of LDSs.
We decided not to use method L1 to train the LDSs because it requires a
large state space in order to obtain good state-space representations, mak-
ing unfeasible in practice to perform the training on the second layer of the
LSN model. Table 6.2 reports the results obtained on the training set, test
set, and validation set, using the Var configuration on the Nottingham and
the Piano-midi.de dataset. It is interesting to notice that the LSN model
exhibits symptoms which are typical of over-fitting. Indeed, the accuracy
obtained on that training set is higher than the results obtained on valida-
tion and test set, in particular for higher values of p and M .

6.3.2 Experimental results obtained by SLSN

The SLSN model (Section 4.2) directly derives from the LSN. In practical
terms, the main difference is that SLSN does not use the zt layer. Therefore,
instead of having one huge hidden layer, in this case, we have several small
hidden states that depend directly on a single LDS state. Moreover, since
each LDS depends on the last state computed by the precedent LDS for the
SLSN model it is not possible to parallelize the training phase of the various
LDSs. This entails that the computational effort for this model, in general, is
higher than in a normal LDS. On the other hand, the computational burden
is reduced since each LDS is trained only on a specific part of each sequence.

83

L. Pasa Linear Models in Deep Learning For Sequences

Figure 6.13: The accuracy obtained by the LSN model on the Nottingham
dataset (top) and on the Piano-midi.de dataset (bottom) by using different
parameters and the Var configuration. In particular, p ∈ {50, 100, 200} and
M ∈ {10, 20, 30}. The value in red identifies the model selected by the
validation set.

84

Linear Models in Deep Learning For Sequences L. Pasa

 0

 5000

 10000

 15000

 20000

 25000

 30000

p=
50

, M
=

10

p=
10

0,
 M

=
10

p=
20

0,
 M

=
10

p=
50

, M
=

20

p=
10

0,
 M

=
20

p=
20

0,
 M

=
20

p=
50

, M
=

30

p=
10

0,
 M

=
30

p=
20

0,
 M

=
30

T
im

e(
se

c.
)

Training Time LSN-Var Nottingham Test Set

1696
3311

6094 4805

9467

18567

8650

15162

26598

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

p=
50

, M
=

10

p=
10

0,
 M

=
10

p=
20

0,
 M

=
10

p=
50

, M
=

20

p=
10

0,
 M

=
20

p=
20

0,
 M

=
20

p=
50

, M
=

30

p=
10

0,
 M

=
30

p=
20

0,
 M

=
30

A
cc

ur
ac

y

Training Time LSN-Var Piano-midi.de Test Set

6243
12059

23962
15235

23315

40877

20219

40251

77199

Figure 6.14: The required time to train the LSN model on the Nottingham
dataset (top) and the on Piano-midi.de dataset (bottom) by using different
parameters and the Var configuration. In particular, p ∈ {50, 100, 200} and
M ∈ {10, 20, 30}.

85

L. Pasa Linear Models in Deep Learning For Sequences

Figure 6.15: The accuracy obtained by the LSN model on the Notting-
ham dataset (top) and on the Piano-midi.de dataset (bottom) by using
different parameters and the Var+Error configuration. In particular,
p ∈ {50, 100, 200} and M ∈ {10, 20, 30}. The value in red identifies the
model selected by the validation set.

86

Linear Models in Deep Learning For Sequences L. Pasa

 0

 5000

 10000

 15000

 20000

 25000

p=
50

, M
=

10

p=
10

0,
 M

=
10

p=
20

0,
 M

=
10

p=
50

, M
=

20

p=
10

0,
 M

=
20

p=
20

0,
 M

=
20

p=
50

, M
=

30

p=
10

0,
 M

=
30

p=
20

0,
 M

=
30

T
im

e(
se

c.
)

Training Time LSN-Var+Error Nottingham Test Set

1725
3042

6452

3741

6803

20707

4274

10182

21755

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

p=
50

, M
=

10

p=
10

0,
 M

=
10

p=
20

0,
 M

=
10

p=
50

, M
=

20

p=
10

0,
 M

=
20

p=
20

0,
 M

=
20

p=
50

, M
=

30

p=
10

0,
 M

=
30

p=
20

0,
 M

=
30

T
im

e(
se

c.
)

Training time LSN-Var+Error Piano-midi.de Test Set

8905 12167

36957

7927

20269

58496

10083

44565

87034

Figure 6.16: The required time to train the LSN model on the Notting-
ham dataset (top) and on the Piano-midi.de dataset (bottom) by using
different parameters and the Var+Error configuration. In particular,
p ∈ {50, 100, 200} and M ∈ {10, 20, 30}.

87

L. Pasa Linear Models in Deep Learning For Sequences

Parameters Set Accuracy on Nott Accuracy on Piano
Training 0.593 0.182

p = 50, M = 10 Test 0.596 0.160
Validation 0.591 0.190
Training 0.619 0.320

p = 100, M = 10 Test 0.620 0.303
Validation 0.616 0.335
Training 0.640 0.385

p = 200, M = 10 Test 0.638 0.355
Validation 0.634 0.364
Training 0.632 0.320

p = 50, M = 20 Test 0.631 0.299
Validation 0.627 0.328
Training 0.653 0.384

p = 100, M = 20 Test 0.645 0.344
Validation 0.642 0.352
Training 0.674 0.421

p = 200, M = 20 Test 0.654 0.340
Validation 0.649 0.332
Training 0.640 0.363

p = 50, M = 30 Test 0.636 0.332
Validation 0.640 0.346
Training 0.662 0.407

p = 100, M = 30 Test 0.650 0.343
Validation 0.646 0.338
Training 0.684 0.452

p = 200, M = 30 Test 0.654 0.321
Validation 0.650 0.308

Table 6.2: The accuracy obtained by LSN with the Var configuration on
Nottingham and Piano-midi.de datasets, by using the various set of param-
eters. The best parameters set for each dataset is highlighted in yellow.

88

Linear Models in Deep Learning For Sequences L. Pasa

Similarly to what was done for the LNS model, we tested SLSN by using
several values for parameters M and p. Specifically, we run the model with
p ∈ {10, 20} andM ∈ {50, 100, 200}. Figure 6.17 shows the results obtained
by the SLSN model on the test set of the Nottingham and Piano-midi.de
datasets. Similarly to what we have observed for the LSN model, it can be
noted that, larger values for parameter p allow to achieve better results in
terms of accuracy. The value of M seems to be less important in order to
obtain a gain in the accuracy results. Indeed, this can be explained by the
fact that increasing the value of M entails that the sub-training set used to
train a single LDS will have shorter sequences; moreover, the dataset of the
last LDSs will contain fewer sequences. As a consequence, the contribution
of the total error by the last LDSs will be very small.
By considering the best accuracy (selected by validation set) obtained by
the SLSN model (that is 0.580 on Nottingham dataset and 0.076 on Piano-
midi.de) we can observe that, in particular for the Piano-midi.de dataset,
we have obtained very poor results, compared with the results obtained
by other models. This behavior may be due to the fact that each LDS is
trained (and then applied) on a specific interval of the sequences, and it
seems unable to fully exploit the information about the previous time steps
passed to it by the precedent LDS. As a matter of fact, the results obtained
on Piano-midi.de, where dealing with long terms temporal dependencies is
crucial, are very unsatisfactory. In terms of time effort to train the model,
the results reported in Figure 6.18 show that the model is really efficient
and fast. This good computational performance is obtained thanks to the
fact that the size of the sub-dataset used to train each LDS is small, and it
contains short sequences. Unfortunately, despite the good performance in
terms of time and computational effort, the prediction accuracy achieved by
SLSN is very unsatisfactory.

6.3.3 Experimental results obtained by linear co-learning
models

The tests performed on linear co-learning models (described in Section 4.3)
show results that confirm the theoretical results presented in Section 4.3.1.
Indeed, the capability of these models to perform prediction in sequential
domains is undermined by the fact that they do not use information com-
ing from the previous state. The performed tests use, as external model, a
(Deep) Neural Network (DNN). We decided to use DNN because its high ex-
pressiveness ensures the possibility to cope with the complexity of the task.
Two different DNN architectures have been tested. The first architecture in-
volves two hidden layers with 500 hidden units each. The adopted activation
functions are logistic functions. Training is performed by using the Back-
propagation algorithm (500 epochs, learning rate= 0.1, momentum= 0.8).
The second used DNN architecture has just one hidden layer of 1000 units.

89

L. Pasa Linear Models in Deep Learning For Sequences

Figure 6.17: Accuracy obtained by the SLSN model on the Nottingham
dataset (top) and on the Pinao-midi.de dataset (bottom) by using different
parameters. In particular, p ∈ {50, 100, 200} and M ∈ {10, 20}. The value
in red identifies the model selected by the validation set.

90

Linear Models in Deep Learning For Sequences L. Pasa

 0

 500

 1000

 1500

 2000

 2500

 3000

p=
50

, M
=

10

p=
10

0,
 M

=
10

p=
20

0,
 M

=
10

p=
50

, M
=

20

p=
10

0,
 M

=
20

p=
20

0,
 M

=
20

T
im

e(
se

c.
)

Training Time SLSN Nottingham Test Set

597

1147

2855

285

847

1574

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

p=
50

, M
=

10

p=
10

0,
 M

=
10

p=
20

0,
 M

=
10

p=
50

, M
=

20

p=
10

0,
 M

=
20

p=
20

0,
 M

=
20

T
im

e(
se

c.
)

Training Time SLSN Piano-midi.de Test Set

526

1233

3816

351

1025

1856

Figure 6.18: Required time to train the SLSN model on the Nottingham
dataset (top) and on the Piano-midi.de dataset (bottom) by using different
parameters. In particular, p ∈ {50, 100, 200} and M ∈ {10, 20}.

91

L. Pasa Linear Models in Deep Learning For Sequences

Parameters Set Acc on Nott (Std Dev) Acc on Piano (Std Dev)
Training 0.0564 (±0.0014) 0.0021 (±0.0002)

p = 200 Test 0.0558 (±0.0009) 0.019 (±0.0002)
TwoLayerDNN Validation 0.0537 (±0.0010) 0.0019 (±0.0004)

Training 0.0428 (±0.0006) 0.0018 (±0.0003)
p = 200 Test 0.0422 (±0.0010) 0.0014 (±0.0002)

SingleLayerDNN Validation 0.0414 (±0.0007) 0.0013 (±0.0004)

Table 6.3: Averege accuracy obtained by 10 runs of the linear co-learning
method that exploits a DNN to compute the matrix Vt on the Nottingham
and the Piano-midi.de datasets.

Parameters Set Acc on Nott (Std Dev) Acc on Piano (Std Dev)
Training 0.0636 (±0.0015) 0.0024 (±0.0002)

p = 200 Test 0.0607 (±0.0009) 0.0020 (±0.0004)
TwoLayerDNN Validation 0.0615 (±0.0010) 0.0025 (±0.0005)

Training 0.0520 (±0.0014) 0.0021 (±0.0006)
p = 200 Test 0.0509 (±0.0009) 0.0019 (±0.0002)

SingleLayerDNN Validation 0.0514 (±0.0012) 0.0022 (±0.0005)

Table 6.4: Average accuracy obtained by 10 runs of the linear co-learning
method that exploits a DNN to compute the hidden state ht on the Not-
tingham and the Piano-midi.de datasets.

The Keras.io framework [23] has been used to implement the DNN archi-
tectures.
Table 6.3 shows the obtained results on Nottingham and Piano-midi.de
datasets, by using the model that generates matrix Vt. The results ob-
tained by using the external model to compute the hidden state (eq. 4.38)
is reported in Table 6.4. In both cases, we obtained, as expected, very poor
results. The results in Table 6.4 show a small improvement, but the obtained
accuracies are still very low.

The last tested linear co-learning model is the Uninet model (Section 4.3.2).
Training this model requires the creation of N LDSs, where N is the number
of sequences contained in the dataset. Each LDS is trained, by method L1,
on a training set that contains a single sequence. Therefore, training these
LDSs is very fast. Indeed, since each LDS performs learning independently
of the others, it is possible to perform parallel training of them.
However, there is a bottleneck in the training of the external model that
requires all the LDSs output matrices as targets in the training set. Even in
this case, as external model we test two different DNN architectures. The
first one uses only one hidden layer with 500 units, while the second one has
two hidden layers of 500 units each. For what concerns the used LDSs, they
have a state space of size 100.
The training of this model turns out to be very complex because it is trained
by using as input the current input of the model and the previous state, and
as output a complete matrix C, computed in the first phase of the training
by the LDS trained with the current sequence. The task performed by the

92

Linear Models in Deep Learning For Sequences L. Pasa

Parameters Set Acc on Nott (Std Dev) Acc on Piano (Std Dev)
Training 0.0181 (±0.0021) 0.0031 (±0.009)

p = 100 Test 0.1084 (± 0.0107) 0.0722 (±0.0024)
SingleLayerDNN Validation 0.1043 (±0.0152) 0.0520 (±0.0032)

Training 0.016 (±0.0004) 0.0019 (±0.0009)
p = 100 Test 0.0512 (±0.0027) 0.0347 (± 0.0016)

TwoLayerDNN Validation 0.083 (±0.0041) 0.0421 (± 0.0015)

Table 6.5: Accuracy obtained by the Uninet model, that exploits a DNN as
external model. The reported results are about the tests performed on the
Nottingham and the Piano-midi.de datasets.

Parameters Set Avg Acc (Std Dev)
p = 100 Nottingham 0.97 (±0.011)
p = 100 Piano-midi.de 0.93 (±0.018)

Table 6.6: Average accuracy obtained by using an LDS for each sequence in
the training set, and by using each LDS to perform prediction on the same
sequence. The table reports the result obtained on the Nottingham and the
Piano-midi.de datasets.

DNN is very complex. Table 6.5 reports the obtained results. The results
show that Uninet model can not deal with such complex problems. Indeed,
accuracy never rises above 8%. This inability in performing the proposed
task is due to the high complexity of the problem that the external model
has to manage. The accuracy obtained on the training set is always one
order of magnitude lower than the accuracy obtained on validation and test
sets. We argue that this behavior is due to the fact that the training set
contains a significantly higher number of sequences. Since the model gives
in output results that are very far from the required target, computing the
output of a higher number of elements makes it more likely to have many
outputs with an accuracy very close to 0. Finally in Table 6.6 we report
the results obtained by the single LDS trained (method L1) by using as a
training set a single sequence. The reported results are the average of the
accuracies obtained by each LDS in performing the prediction task on the
single sequence used to training it. We perform this test for each sequence in
the training set. The results show an accuracy close to 95% in both datasets.

6.3.4 Encode-Decode LDS

The Encode-Decode LDS has been tested on the Nottingham and Piano-
midi.de datasets by using different sizes for the state space of the of au-
toencoder. In each performed test the coding and decoding autoencoders
have the same state size. Since the two linear autoencoders that compose
the model are trained independently on two different datasets (TEncoder and
TDecoder), the training phases, performed with method L2, are performed in

parallel. Also all states h
(Encoder)
t and h

(Encoder)
t are calculated in parallel.

93

L. Pasa Linear Models in Deep Learning For Sequences

Parameters Set Acc on Nott Acc on Piano
Training 0.5631 0.0056

p = 250, Test 0.5592 0.0090
Validation 0.5626 0.0035
Training 0.6038 0.0080

p = 500, Test 0.6025 0.0172
Validation 0.6027 0.0085
Training 0.6303 0.0214

p = 1000 Test 0.6312 0.0403
Validation 0.6285 0.0235

Table 6.7: Accuracy obtained by the Encode-Decode LDS using different
values for p on the Nottingham and the Piano-midi.de datasets.

Once the matrices H(Encoder) and H(Decoder) are created, the training phase
uses the pseudoinverse in order to train the weight matrix E. Therefore,
training phase turns out to be very efficient, and thanks to this, it is pos-
sible to use a wide state space. The only limitation about the size of state
space comes from the amount of available memory. For this reason, and
since the model is completely linear, we decided to test it by using different
values for p (size of LDSs state space). We set the parameter p equal to 250,
500 and 1000. In Table 6.7 we reported the obtained results. The second
column of the table shows the results obtained on the Nottingham dataset.
The results are quite close to the results obtained by the LSN and LDS
models. It is interesting to notice that LSN obtains an accuracy of 0.655 by
using LDSs with p = 200, while Encode-Decode LDS requires p = 1000 to
obtain a result that is even lower. The results show the benefits of using a
wider state.
By comparing the obtained results with the results obtained by an LDS
(that exploits the same training method L2, Figure 6.1) we can notice that
Encode-Decode LDS is significantly less effective. Indeed, the LDS with
p = 500 obtains an accuracy of 0.639, while the Encode-Decode LDS obtains
an accuracy of 0.603. This fact is even more visible on the Piano-midi.de
dataset where the model obtains an accuracy lower than 0.05 regardless of
the size state space. This problem, we guess, is due to the difficulty of train-
ing the matrix E used to map (linearly) the projections of the inputs to the
projection of the targets. The obtained results suggest that this task is too
complex to be performed by using a simple linear operator. Indeed, the good
results obtained on Nottingham are related to the low variance between two
consecutive time steps of the sequences contained in this dataset. For this
reason, the projection of the target (that is the next time step) and the
input turn out to be very close and the matrix E can “map” the connection
between them. Otherwise, in Piano-midi.de, the structure of a song is really
complex, and in the same song a wide number of different notes and chords
are played. This entails that the projections of two consecutive time steps
will be very different, and the used liner function is not sufficient to perform

94

Linear Models in Deep Learning For Sequences L. Pasa

the mapping between the input and the target projections.
The obtained results suggest that the Encode-Decode LDS model is not ef-
fective in the polyphonic music prediction task. Indeed, the results show
that using a simple LDS allows to achieve better results in terms of accu-
racy. Furthermore, the Encode-Decode LDS training phase is more complex
and requires more memory than the training methods suggested for the LDS
model.

6.4 Experiments on Pre-training Methods

In this section we report the results obtained by using the two pre-training
techniques presented in Chapter 5 for all the four datasets presented in
Section 6.1.2. Firstly, for each approach, we explain how the experiments
have been performed and then we discuss the results. For what concerns the
HMM-based pre-training approach we tested the method on two different
models: RNN and RNN-RBM. The interesting aspect about RNN-RBM
is that it is the only one nonlinear sequential model that has an ad-hoc
pre-training method that has already been developed and tested. Hence
for this model it is possible to make a comparison versus our pre-training
method. The test for the linear Autoencoder based pre-training approach is
performed only on the RNN model because this second method is developed
specifically for RNN models. The code used for RNN and RNN-RBM could
is available from [3, 1]. Moreover to develop the HMM model we have used
the GHMM library [2]. For what concerns the pre-training method based
on linear dynamic autoencoder, the used code is available here [4]. In the
final part of this section a comparison of the two pre-training techniques is
presented. All the code used to perform the test has been written by using
the Theano framework [15] in order to exploit the computational power of
GPU computing [66].

95

L. Pasa Linear Models in Deep Learning For Sequences

6.4.1 HMM-based Pre-Training

In this section, we report the results obtained by applying the HMM-based
pre-training approach.

Experimental setup

We tested the generality of the HMM-based pre-training approach by val-
idating it on two of the different types of networks for sequential data de-
scribed in Chapter 2, i.e., RNNs and RNN-RBMs. Due to the large number
of hyperparameters involved in the computation (e.g., the number of hidden
variables for both HMMs and recurrent networks, the number, and length
of the sequences generated by the HMM, etc.), a systematic exploration
of the parameters space was unfeasible. We, therefore, adopted a “probe”
approach, where the model-dependent parameters that were already known
to give good results for the used datasets where kept fixed, while the re-
maining parameters were probed for few different values. Specifically, the
fixed parameters for both the sequential networks are the number of pre-
training and training epochs (which are set to 100 and 200, respectively, for
the RNN-RBM and to 2500 and 5000 for the RNN). Moreover, for both the
RNN and the RNN-RBM we used a learning rate of 0.001. Only for the
RNN-RBM, the number of hidden units was fixed to 150 for the RBM-part,
and to 100 for the RNN-part. For the pre-training of both networks, we used
an HMM that was trained for 10, 000 iterations using the Baum-Welch algo-
rithm. This setting might not be ideal since a large portion of the parameter
space is left unexplored. Nevertheless, the few parameter configurations we
have probed were enough to provide evidence that the proposed approach is
robust with respect to the learning parameters, since for all the considered
datasets we obtained significant improvements, either in terms of accuracy
or in terms of computation time.
Following the procedure outlined above, we started our investigation with
the RNN-RBM network. Specifically, we explored the effect of using different
numbers of states for the HMM, while keeping the number of HMM gener-
ated sequences fixed at 500, all of length 200. As mentioned above, since
training of RNN-RBMs is very time consuming, we restricted our experi-
ments to the Nottingham and Piano-midi.de datasets. In order to evaluate
the experimental results, we made a comparison of our method against the
pre-existing pre-training approaches, i.e. SGD and HF, in terms of accuracy
(calculated according to the method proposed in [10]) and computation time.
For RNNs, we investigated the impact of our pre-training approach on the
learning process by varying the number of hidden units and the number (and
length) of the sequences generated by the HMM, while keeping the number
of hidden states of the HMM fixed to 10 (i.e. the number of hidden states

96

Linear Models in Deep Learning For Sequences L. Pasa

that constituted to the best trade-off between speed of training and quality
of the final result in the RNN-RBMs experiments).

Experimental results

Learning the structure of polyphonic music with HMMs was challenging due
to the potentially exponential number of possible configurations of notes that
can be produced at each time step, which would cause the alphabet of the
model to have an intractable size. We fixed this issue by only considering
the configurations that were actually present in each dataset, which reduced
the complexity of the alphabet but at the same time maintained enough
variability to produce realistic samples. We assessed the accuracy of the
models on the prediction task defined in 6.1.1. We also collected the to-
tal training times, which are composed of both the pre-training time and
the fine-tuning time. For the RNN-RBM, we compared our pre-training
method with that used by the authors of the model. Pre-training was per-
formed for 100 epochs, and fine-tuning for 200 epochs. Total training times
and prediction accuracies for the HMM, SGD and HF pre-trainings are re-
ported in Figure 6.19 for the Nottingham dataset, and in Figure 6.20 for
the Piano-midi.de dataset. In both figures, information about pre-training
time is reported in the figure legend, after each curve label. Specifically,
each label is followed by a couple of values in parenthesis that represent,
for our pre-training approach, the time required for training the HMM and
the time required for the pre-training phase, while for the other pre-training
approaches the values represent the time required for pre-training the RBM-
part and the RNN-part of the network by using HF or SGD.

In general, different pre-training methods led to similar accuracies (both
for training and test sets) at the end of the fine-tuning phase. However, in
the more complex Piano-midi.de dataset our pre-training obtained slightly
better results. Regarding convergence speed, the HMM method always sig-
nificantly outperformed the others (e.g., it saved more than 8 hours of com-
puting in the Nottingham dataset). We also assessed the change in perfor-
mance as the number of HMM states varies. As expected, using a smaller
number of hidden states (≤ 25) reduced pre-training times. Interestingly,
this did not affect the quality of the models after the fine-tuning phase,
which still converged to good solutions. Using an HMM with 50 states,
instead, was detrimental due to the slow convergence speed of the HMM
training. Thus, the HMM pre-training seems to perform a better initializa-
tion of the network, which allowed to improve convergence speed also during
the fine-tuning phase. For example, the network pre-trained with the HMM
reached the highest accuracy after only 110/120 epochs, compared to 200
epochs required by the other methods. It is worth noting that the accuracies
measured directly on the HMMs were always fairly low, at best approaching
53% in the Nottingham dataset and 10.1% in the Piano-midi.de dataset.

97

L. Pasa Linear Models in Deep Learning For Sequences

0.55

0.6

0.65

0.7

0.75

0.8

0 200 400 600 800 1000 1200 1400 1600

A
c
c
u

ra
c
y

Time (in min.)

Nottigham Training Set

0.76910.7735

0.7687

0.7677

0.77060.7722

0.7707

HF (270.2,143.2)
HMM-5 (1.1,166.9)

HMM-10 (2.17,154.3)
HMM-15 (10.7,158.4)

HMM-25 (10.5,158.4)
HMM-50 (503.3,179.6)

SGD (271.7,51.9)

Figure 6.19: Accuracy and running times of the tested pre-training methods,
measured on the Nottingham dataset. Each curve is identified by a label
followed by a couple of execution times in parenthesis: the pattern HMM-n

(time1,time2) refers to our approach, where n is the number of hidden
states used for the HMM, time1 is the training time for the HMM, time2 is
the pre-training time; with the label HF (or SGD) we represent the Hessian
Free (or Stochastic Gradient Descent) pre-training performed in time1 time
for the RBM-part, and time2 time for the RNN-part. The final test set
performance for each method is reported at the end of each corresponding
curve.

Concerning the experiments involving RNNs, we recall that a single
HMM with 10 hidden states for each dataset was used to generate all the
pre-training sequences of the corresponding dataset. Three different net-
work architectures were used containing, respectively, 50, 100, and 200 hid-
den units. Pre-training for the network with 50 hidden units was performed
by using both 25 generated sequences of length 25 and 500 generated se-
quences of length 200. For the architecture with 100 hidden units, three
different pre-training configurations were used: 250 generated sequences of
length 200, 500 generated sequences of length 50, 500 generated sequences of
length 50. Finally, for the architecture with 200 hidden units, 500 generated
sequences of length 200 were used.

In Figures 6.21-6.24 we compare, for all the four datasets, the learning
curves obtained for the training and test sets by our pre-training method
versus the learning curves obtained without pre-training. The starting point
of the curves involving pre-training takes into consideration the pre-training

98

Linear Models in Deep Learning For Sequences L. Pasa

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y

Time (in min.)

Piano-midi.de Training Set

0.3453

0.35730.3540 0.3576 0.3528
0.3347 0.3392

HF (121.4,148.6)
HMM-5 (1.8,160.8)

HMM-10 (42.2,164.8)
HMM-15 (7.25,160.1)

HMM-25 (103.6,135)
HMM-50 (219.1,145.1)

SGD (121.5,173.5)

Figure 6.20: Accuracy and running times of the tested pre-training methods,
measured on the Piano-midi.de dataset. Each curve is identified by a label
followed by a couple of execution times in parenthesis: the pattern HMM-n

(time1,time2) refers to our approach, where n is the number of hidden
states used for the HMM, time1 is the training time for the HMM, time2 is
the pre-training time; with the label HF (or SGD) we represent the Hessian
Free (or Stochastic Gradient Descent) pre-training performed in time1 time
for the RBM-part, and time2 time for the RNN-part. The final test set
performance for each method is reported at the end of each corresponding
curve.

time. Since the number of training epochs for the RNNs is fixed to 5000
and it does not depend on the presence of pre-training, in the plots we high-
lighted, via a vertical dotted line, the point in time where the slowest RNN
without pre-training finished training. From the plots, it can be observed
that some runs of RNNs using the same number of hidden units have a
significant difference in execution time. We believe this is mainly due to
the Theano dynamic C code generation feature, which can, under favorable
conditions, speed up computation in a significant way.

From the learning curves, we can notice that the performance on the test
sequences is very similar to the behavior on the training sequences (i.e., the
models did not overfit). Concerning the effectiveness of pre-training, it is
clear that using just 50 hidden units does not lead to any benefit, while pre-
training turns to be quite effective for networks with 100 and 200 hidden
units, allowing the RNN to reach very good generalization performances.
Moreover, using many short generated sequences seems to be the best choice

99

L. Pasa Linear Models in Deep Learning For Sequences

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

Time (in min.)

Nottigham Training Set

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

Time (in min.)

Nottigham Test Set

RNN 50u NoPre
RNN 50u 25seq 20len

RNN 50u 500seq 200len
RNN 100u NoPre

RNN 100u 250seq 200len

RNN 100u 500seq 50len
RNN 100u 500seq 200len

RNN 200u NoPre
RNN 200u 500seq 200len

Figure 6.21: Training (top) and test (bottom) accuracy and running times
for RNNs on the Nottingham dataset. Each curve is identified by the label
RNN followed by three or two identifiers: the three identifiers pattern n1U n2
n3 refers to our approach, where n1 is the number of used hidden units for
RNN, n2 is the number of sequences generated by an HMM with 10 states,
and n3 is the length of such sequences; the two identifiers pattern nU NoPre

refers to a RNN with standard random initialization and n hidden units. A
dotted vertical line is used to mark the end of training of RNNs, with no
pre-training, after 5000 epochs. The same number of epochs is used to train
RNNs with pre-training.

100

Linear Models in Deep Learning For Sequences L. Pasa

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120 140

A
cc

ur
ac

y

Time (in min.)

Piano-midi.de Training Set

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120 140

A
cc

ur
ac

y

Time (in min.)

Piano-midi.de Test Set

RNN 50u NoPre
RNN 50u 25seq 20len

RNN 50u 500seq 200len
RNN 100u NoPre

RNN 100u 250seq 200len

RNN 100u 500seq 50len
RNN 100u 500seq 200len

RNN 200u NoPre
RNN 200u 500seq 200len

Figure 6.22: Training (top) and test (bottom) accuracy and running times
for RNNs on the Piano-midi.de dataset. Each curve is identified by the label
RNN followed by three or two identifiers: the three identifiers pattern n1U n2
n3 refers to our approach, where n1 is the number of used hidden units for
RNN, n2 is the number of sequences generated by an HMM with 10 states,
and n3 is the length of such sequences; the two identifiers pattern nU NoPre

refers to a RNN with standard random initialization and n hidden units. A
dotted vertical line is used to mark the end of training of RNNs, with no
pre-training, after 5000 epochs. The same number of epochs is used to train
RNNs with pre-training.

101

L. Pasa Linear Models in Deep Learning For Sequences

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

Time (in min.)

MuseData Training Set

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

Time (in min.)

MuseData Test Set

RNN 50u NoPre
RNN 50u 25seq 20len

RNN 50U 500seq 200len
RNN 100u NoPre

RNN 100u 250seq 200len

RNN 100u 500seq 50len
RNN 100u 500seq 200len

RNN 200u NoPre
RNN 200u 500seq 200len

Figure 6.23: Training (top) and test (bottom) accuracy and running times
for RNNs on the Muse dataset. Each curve is identified by the label RNN
followed by three or two identifiers: the three identifiers pattern n1U n2 n3
refers to our approach, where n1 is the number of used hidden units for
RNN, n2 is the number of sequences generated by an HMM with 10 states,
and n3 is the length of such sequences; the two identifiers pattern nU NoPre

refers to a RNN with standard random initialization and n hidden units. A
dotted vertical line is used to mark the end of training of RNNs, with no
pre-training, after 5000 epochs. The same number of epochs is used to train
RNNs with pre-training.

102

Linear Models in Deep Learning For Sequences L. Pasa

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Time (in min.)

JSB Chorales Training Set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Time (in min.)

JSB Chorales Test Set

RNN 50u NoPre
RNN 50u 25seq 20len

RNN 50u 500seq 200len
RNN 100u NoPre

RNN 100u 250seq 200len

RNN 100u 500seq 50len
RNN 100u 500seq 200len

RNN 200u NoPre
RNN 200u 500seq 200

Figure 6.24: Training (top) and test (bottom) accuracy and running times
for RNNs on the JSB dataset. Each curve is identified by the label RNN
followed by three or two identifiers: the three identifiers pattern n1U n2 n3
refers to our approach, where n1 is the number of used hidden units for
RNN, n2 is the number of sequences generated by an HMM with 10 states,
and n3 is the length of such sequences; the two identifiers pattern nU NoPre

refers to a RNN with standard random initialization and n hidden units. A
dotted vertical line is used to mark the end of training of RNNs, with no
pre-training, after 5000 epochs. The same number of epochs is used to train
RNNs with pre-training.

103

L. Pasa Linear Models in Deep Learning For Sequences

Dataset Model ACC%
GMM + HMM 59.27

Nottingham RNN (w. HF) 62.93 (66.64)
RNN-RBM 75.40

HMM-PreT-RNN (200U 500 200) 80.47
GMM + HMM 7.91

Piano-midi.de RNN (w. HF) 19.33 (23.34)
RNN-RBM 28.92

HMM-PreT-RNN (200U 500 200) 36.51
GMM + HMM 13.93

MuseData RNN (w. HF) 23.25 (30.49)
RNN-RBM 34.02

HMM-PreT-RNN (200U 500 200) 44.96
GMM + HMM 19.24

JSB Chorales RNN (w. HF) 28.46 (29.41)
RNN-RBM 33.12

HMM-PreT-RNN (200U 500 200) 67.36

Table 6.8: Accuracy results for state-of-the-art models [17] vs our pre-
training approach. The acronym GMM + HMM is used to identify Hidden
Markov Models (HMM) using Gaussian Mixture Models (GMM) indices as
their state. The acronym (w. HF) is used to identify an RNN trained by
Hessian Free optimization.

for all datasets, as clearly demonstrated by the networks using 100 hidden
units and 3 different configurations for the generated sequences. For the
Nottingham and JSB databases, pre-training seems to reach a very good
starting point that is subsequently lost by training with the original dataset.
This is an interesting behavior that needs to be more carefully investigated in
future studies. At the time marked by the vertical line (i.e. when the slowest
RNN without pre-training finished training), all the curves associated to
RNNs adopting pre-training reached a performance that was very close to
the final one. This suggests that our pre-training can reach significantly
better solutions using the same amount of time used by RNNs with no pre-
training.

Finally, it is interesting to compare the test performances reached by the
RNNs with the results obtained in [17]. In Table 6.8 we have reported, for
each dataset, the test performances of their Hidden Markov Models (HMM)
using Gaussian Mixture Models (GMM) indices as their state, their RNN
(also with HF training) and their RNN-RBM networks, jointly with the test
performances reached by our RNNs with pre-training (HMM-PreT-RNN)
as selected by using the associated validation set. For all datasets we ob-
tain significantly better results, especially when considering the HMM-based
approach. The improvement is particularly large for the JSB dataset.

It can be also observed that our pre-training on the RNN-RBM archi-
tecture did not seem to improve on test performances. However, we recall
that we used a much smaller number of hidden units with respect to the
network used in [17], which may explain why no significantly better results

104

Linear Models in Deep Learning For Sequences L. Pasa

are obtained for the Nottingham and Piano-midi.de datasets, although there
was a significant improvement in training times.

Parameters setting

Even if our experimental investigation confirms the appeal of the proposed
pre-training strategy, the optimal choice of the parameters involved in our
method is still partially unexplored. In particular, in our experiments, we
fixed many learning parameters (e.g., learning rates and number of learning
epochs) and only coarsely explored the best values for the other parameters.
In this final section, we briefly make some considerations that could help to
better understand what is the impact of some settings that directly affect
our pre-training method, in particular, the length of the sequences generated
by the HMM.

As shown in Figures 6.21-6.24, the best final performance is clearly
achieved when using more hidden units in the RNN (i.e., 200 units instead
of 100). However, the results do not clearly characterize how the number
and the length of the generated sequences affect the final RNN performance.
Specifically, it seems that by sampling more sequences we usually obtain bet-
ter results (compare, for example, the blue - 250 - and the red - 500 - lines in
all the above-mentioned figures). A possible reason for this phenomenon is
that by sampling more sequences we add more variability to the pre-training
sequences, which results in a better generalization. At the same time, we
face a trade-off because adding more sequences to the smooth dataset also
causes an increase in pre-training times.

The parameter representing the length of the sequences sampled from
the HMM, instead, appears to be more subtle to optimize. In particular, it
seems that we do not need to generate very long sequences from the HMM,
because good performances can already be obtained by using a length of
only 50 (see black, crossed lines in the above-mentioned figures). This result
might be due to the statistics of the considered datasets, because most of the
structure to be learned could be encoded in short sequences. The statistics
reported in Table 6.1 only report maximum, minimum and mean values for
the sequences contained in the four datasets, but such measures do not fully
characterize the distribution of sequences length in the different sets. Indeed,
as shown in Figure 6.25 which reports the datasets cumulative distributions
of sequence length, it appears that in both JSB and Nottingham datasets
most of the sequences are fairly short.

The experimental results seem to suggest that a good choice for the
length of the HMM generated sequences is to choose a value that covers
about the 50% of the cumulative distribution over the lengths in the train-
ing set. However, the trade-off between the length of the sequences and
the required time for pre-training must also be taken into account. In-
deed, with longer sequences, the computational burden of pre-training in

105

L. Pasa Linear Models in Deep Learning For Sequences

terms of time increases significantly. Besides, using long HMM generated
sequences does not guarantee that the accuracy of the pre-trained network is
going to improve. In fact, from the experimental results, it can be observed
that networks pre-trained with 500 sequences of length 50 (black line with
crosses) get a better accuracy with respect to networks pre-trained with 500
sequences of length 200 (brown line with square).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Length

JSB Nott Piano Muse

Figure 6.25: Cumulative probability distribution for the lengths of sequences
contained in the four considered datasets. Please, note that, in order to
have a clear separation among the four curves, only lengths up to 2,000 are
considered in the plot.

A possible explanation for the worse performance obtained when gener-
ating long sequences might be found in the short memory of HMMs, which
would cause longer sequences to “drift away” from the correct structure as
the generation proceeds. We tested this hypothesis by plotting in Figure 6.26
the HMM1 accuracy versus the length of sequences belonging to the Muse
training and test datasets. The Muse datasets were chosen because they
contain sequences with complex structures as well as a sufficient number of
sequences to get reliable statistics. The plot is actually reporting the aver-
age accuracy of bins of size 50 over the length. The standard deviation for
each bin is reported as well in the plot.

The plots do not seem to show the “drift away” effect described above,
although it must be recognized that we do not know the memory size needed
to cover all (or most) of the long-term dependencies which actually occur

1We recall that the HMM is using 10 states.

106

Linear Models in Deep Learning For Sequences L. Pasa

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000 2500 3000 3500

A
cc

ur
ac

y

Length

Muse Training Set

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 500 1000 1500 2000 2500 3000 3500

A
cc

ur
ac

y

Length

Muse test Set

Figure 6.26: Average accuracy of HMM on the sequences contained on Muse
training and test sets, grouped in bins of size 50 over the length. The
standard deviation for each bin is reported as well.

107

L. Pasa Linear Models in Deep Learning For Sequences

into the Muse datasets, so it is difficult to evaluate how many of the long-
term dependencies have been identified by the HMM. However, the fact that
many long sequences have better accuracy values than the average (0.1265
for the training set, and 0.129 for the test set) seems to be a good indication
that there is not a memory issue with HMM.

6.4.2 Autoencoder-based Pre-training

Experimental setup

Our Autoencoder-based pre-training approach (LA-PreT-RNN) has been
assessed by using a different number of hidden units (i.e., p is set in turn
to 50, 100, 150, 200, 250) and 5000 epochs of RNN training in all datasets
except Muse. Indeed, due to early overfitting, for this dataset, we used 1000
epochs. The test has been executed by using a standard vanilla RNN [3]
developed in Theano. The RNN is trained by using SGD on error function
ET (eq. (3.1)). Random initialization (Rnd) has also been used for networks
with the same number of hidden units in order to test the effectiveness of
this pre-training approach. Specifically, for networks with 50 hidden units,
we have evaluated the performance of six different random initialization.
Finally, in order to verify that the nonlinearity introduced by the RNN
is actually useful to solve the prediction task, we have also evaluated the
performance of a network with linear units (250 hidden units) initialized
with our pre-training procedure (LA-PreT-Lin250).

To give an idea of the time performance of pre-training with respect
to the training of a RNN, in the second column of Table 6.9 we have re-
ported the time in seconds needed to compute pre-training matrices (Pre-)
(on Intel c⃝ Xeon c⃝ CPU E5-2670 @2.60GHz with 128 GB) and to perform
training of a RNN with p = 50 for 5000 epochs (on GPU NVidia K20).
Please, note that for larger values of p, the increase in computation time of
pre-training is smaller than the increment in computation time needed for
training an RNN.

Experimental results

Training and test curves for all the models described in the Section 5.3 are
reported in Figures 6.27, 6.28, 6.29, 6.30. In all datasets is evident that
random initialisation does not allow the RNN to improve its performance in
a reasonable amount of epochs. Specifically, for random initialisation with
p = 50 (Rnd 50), we have reported the average and range of variation over
the six different trails: different initial points do not change substantially
the performance of RNN. Increasing the number of hidden units allows the
RNN to slightly increase its performance. Using pre-training, on the other
hand, allows the RNN to start training from a quite favorable point, as
demonstrated by an early sharp improvement of performances. Moreover,

108

Linear Models in Deep Learning For Sequences L. Pasa

Dataset (Pre-)Training Time Model ACC% [17]
seconds RNN (w. HF) 62.93 (66.64)

Nottingham (226) 5837 RNN-RBM 75.40
p = 50 LA-PreT-RNN 75.23 (p = 250)

5000 epochs LA-PreT-Lin250 73.19
seconds RNN (w. HF) 19.33 (23.34)

Piano-midi.de (2971) 4147 RNN-RBM 28.92
p = 50 LA-PreT-RNN 37.74 (p = 250)

5000 epochs LA-PreT-Lin250 16.87
seconds RNN (w. HF) 23.25 (30.49)

MuseData (7338) 4190 RNN-RBM 34.02
p = 50 LA-PreT-RNN 57.57 (p = 200)

5000 epochs LA-PreT-Lin250 3.56
seconds RNN (w. HF) 28.46 (29.41)

JSB Chorales (79) 6411 RNN-RBM 33.12
p = 50 LA-PreT-RNN 65.67 (p = 250)

5000 epochs LA-PreT-Lin250 38.32

Table 6.9: Pre-training statistics including computational times in seconds
to perform pre-training and training for 5000 epochs with p = 50 (column
3), and accuracy results for state-of-the-art models [17] vs our pre-training
approach (columns 3-4). The acronym (w. HF) is used to identify an RNN
trained by Hessian-Free Optimization [62].

the more hidden units are used, the more the improvement in performance is
obtained, till overfitting is observed. In particular, early overfitting occurs
for the Muse dataset. It can be noticed that the linear model (Linear)
reaches performances which are in some cases better than RNN without
pre-training. However, it is important to notice that while it achieves good
results on the training set (e.g. JSB and Piano-midi), the corresponding
performance on the test set is poor, showing a clear evidence of overfitting.
Finally, in column 4 of Table 6.9, we have reported the accuracy obtained
after validation on the number of hidden units and number of epochs for
our approaches (PreT-RNN and PreT-Lin250) versus the results reported in
[17] for RNN (also using Hessian-Free Optimization) and RNN-RBM. In any
case, the use of pre-training largely improves the performances over standard
RNN (with or without Hessian-Free Optimization). Moreover, with the
exception of the Nottingham dataset, the proposed approach outperforms
the state-of-the-art results achieved by RNN-RBM. Large improvements are
observed for the Muse and JSB datasets. Performance for the Nottingham
dataset is basically equivalent to the one obtained by RNN-RBM. For this
dataset, also the linear model with pre-training achieves quite good results,
which seems to suggest that the prediction task for this dataset is much
easier than for the other datasets. The linear model outperforms RNN
without pre-training on Nottingham and JSB datasets, but shows problems
with the Muse dataset.

109

L. Pasa Linear Models in Deep Learning For Sequences

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000

Ac
cu

ra
cy

Epoch

Muse Dataset Test Set

Rnd 50 (6 trials)
Linear 250

Rnd 100

Rnd 150
Rnd 200
Rnd 250

PreT 50
PreT 150
PreT 100

PreT 200
PreT 250

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

ur
ac

y

Epoch

Nottingham Training Set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

ur
ac

y

Epoch

Nottingham Test Set

Figure 6.27: Training (top) and test (bottom) curves for the assessed ap-
proaches on the Nottingham dataset. Curves are sampled at each epoch till
epoch 100, and at steps of 100 epochs afterwards.

110

Linear Models in Deep Learning For Sequences L. Pasa

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000

Ac
cu

ra
cy

Epoch

Muse Dataset Test Set

Rnd 50 (6 trials)
Linear 250

Rnd 100

Rnd 150
Rnd 200
Rnd 250

PreT 50
PreT 150
PreT 100

PreT 200
PreT 250

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

ur
ac

y

Epoch

Piano-Midi.de Training Set

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

ur
ac

y

Epoch

Piano-Midi.de Test Set

Figure 6.28: Training (top) and test (bottom) curves for the assessed ap-
proaches on the Piano-midi.de dataset. Curves are sampled at each epoch
till epoch 100, and at steps of 100 epochs afterwards.

111

L. Pasa Linear Models in Deep Learning For Sequences

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000

Ac
cu

ra
cy

Epoch

Muse Dataset Test Set

Rnd 50 (6 trials)
Linear 250

Rnd 100

Rnd 150
Rnd 200
Rnd 250

PreT 50
PreT 150
PreT 100

PreT 200
PreT 250

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000

A
cc

ur
ac

y

Epoch

Muse Dataset Training Set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000

A
cc

ur
ac

y

Epoch

Muse Dataset Test Set

Figure 6.29: Training (top) and test (bottom) curves for the assessed ap-
proaches on the Muse dataset. Curves are sampled at each epoch till epoch
100, and at steps of 100 epochs afterwards.

112

Linear Models in Deep Learning For Sequences L. Pasa

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000

Ac
cu

ra
cy

Epoch

Muse Dataset Test Set

Rnd 50 (6 trials)
Linear 250

Rnd 100

Rnd 150
Rnd 200
Rnd 250

PreT 50
PreT 150
PreT 100

PreT 200
PreT 250

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

ur
ac

y

Epoch

JSB Chorales Training Set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

ur
ac

y

Epoch

JSB Chorales Test Set

Figure 6.30: Training (top) and test (botom) curves for the assessed ap-
proaches on the JSB dataset. Curves are sampled at each epoch till epoch
100, and at steps of 100 epochs afterwards.

113

L. Pasa Linear Models in Deep Learning For Sequences

114

Chapter 7

Conclusions

In this thesis, we have addressed an issue that is often disregarded when
considering the application of machine learning in sequential domains: the
usefulness of linear models. We studied whether a linear model can be used
in order to cope with typical complex tasks usually treated by common
nonlinear models, or at least whether it is possible to use them in order
to simplify and speed up the training phase of complex nonlinear models,
e.g. RNN, RNN-RBM. To explore the strengths and the weaknesses of lin-
ear models we firstly considered one of the simplest of them: the Linear
Dynamical System (LDS). We proposed three methods that allow to train
this model on large datasets, which are typical of Machine Learning tasks.
The first is inspired by Echo State Networks. It exploits the random ini-
tialization of the matrices of the LDS, and performs a simple fast phase of
supervised training on the output matrix. The second consists in adapt-
ing the back-propagation algorithm, widely used to train RNN models, to
the linear dynamic system. The last one exploits the capability of a Linear
Dynamic Autoencoder to compute a rich internal feature representation of
the input data. The idea is to use the matrices that represent a solution
for an autoencoder, as input-to-state and recurrent matrices for the LDS,
and performing a fast supervised training phase only for the output matrix.
This method turns out to be very interesting inasmuch we proposed a new
fast and efficient method to obtain a closed form solution for the definition
of the “optimal” weights for linear autoencoder, which however, entails the
computation of the SVD decomposition of the full data matrix. For large
data matrices exact SVD decomposition cannot be achieved, so we proposed
a computationally efficient procedure to get an approximation that turned
out to be effective for our goals.

115

L. Pasa Linear Models in Deep Learning For Sequences

The second step that we have done in order to explore the potential
of applying linear models to sequential domains was studying whether it is
possible to derive a more powerful model by using LDSs as building blocks.
We proposed several different architectures. The first one is called Linear
System Network and it consists in a model that exploits the state repre-
sentation computed by several LDSs fed with the same input, in order to
compute a nonlinear representation of it. The main idea is to merge the
various state representations in a smart way. This model presents many ad-
vantages, in particular for what concerns the training procedure. Indeed, it
is possible to train each LDS that compose the architecture independently,
by using one of the methods proposed in Chapter 4. The LSN uses the ob-
tained nonlinear representation of the input to compute the model output
by exploiting a simple linear function.
Another architecture that we developed is an extension of LSN, that is called
Sequential-LSN. This method exploits several linear systems in order to use
each of them to perform prediction/classification tasks only on a small part
of the input sequence. Moreover, each LDS computes its own state that is
used to compute the output of the considered part of the sequence. We saw
that all proposed methods are limited due to the fact that, in order to obtain
an LDS that does not diverge during the prediction task, the model has to
set the recurrent matrix in a way that the system results contractive. That
means that the LDS will have problems in dealing with long-term temporal
dependencies. For this reason, we developed some models that make use of
co-learning techniques, that involve the use of an external model in order to
compute (directly or indirectly) the projection in state space of the input.
We proved that the idea of using co-learning techniques to substitute the
recurrent part of the model becomes ineffective when the models use a fixed
output matrix. The idea is to compute the “optimal” state representation,
given the target by using pseudoinverse of the output matrix. We need to
compute the state in this way because we have to generate a target to train
the external model. The result of our theoretical studies is that the model
under these conditions becomes stateless. Finally, we studied if it is possible
to use linear models to pre-train common nonlinear models e.g RNN. We
proposed two novel methods to perform the pre-training phase. The first
one is called HMM-based pre-training and consists in generating a smoothed,
approximated dataset using a first-order HMM trained on the original data.
This smoothed data are then used to pre-train a nonlinear model. It should
be stressed that the proposed method does not need any ad-hoc adjustments
of existing learning algorithms because it consists in generating a simplified
dataset that is used to initialize the parameters of the learner. Our pre-
training strategy is therefore very general, and its benefits could be readily
extended to pre-train many other types of models for sequences.
The second proposed pre-training method is called Pre-training via Linear
Autoencoder. This pre-training technique is strictly applicable to RNN. As

116

Linear Models in Deep Learning For Sequences L. Pasa

the name suggests, this pre-training method is based on linear autoencoder
for sequences. The idea is to initialize the RNN weights matrices by using
the ones obtained for a linear autoencoder. To compute the linear autoen-
coder matrices we used the same method proposed to LDS training. After
the matrices initialization, the RNN has to be fine tuned by using a gradient
base approach.

We have tested all these models and methods on a polyphonic music
prediction task, that involves in predicting the notes and the cords that will
be played in the next time step given the notes that were played during the
previous time steps.

For what concerns the LDS we have empirically studied the performances
of three training approaches and we have compared them with the results of
non-linear approaches for sequence learning that have obtained very good
results on the proposed task. Experimental results seem to show that lin-
ear dynamical systems may play an important role. In fact, when used
directly they may by themselves return state-of-the-art performance (see for
example LDS-L3 for the Nottingham dataset) while requiring a much lower
computational effort with respect to their non-linear counterpart.

The experimental results obtained by testing LSN model show interest-
ing results, but lower than the state-of-the-art. Moreover, the computational
cost of training LSN is higher than training a single LDS. The main prob-
lem is that LSN model uses a huge projection of the input that makes the
training phase very complex. The size of the obtained nonlinear projection
is correlated with the number of LDSs used to compute it, and with the size
of the state space of each LDS. The problem is that, in order to maintain the
computational complexity under a reasonable bound, we have to limit the
size of the LDS state space. But, as the results on LDS have shown, using a
large state space is crucial to obtain good results. The tests on Co-learning
models confirm the results of our theoretical study that reveals the limits of
that type of models.

For what concerns the proposed pre-training approaches, our HMM-
based pre-training applied on RNN-RBM model [17] leads to prediction ac-
curacies significantly higher than those obtained by currently available pre-
training strategies but requiring a significantly lower computational time.
We also tested the method on a classic recurrent neural network, and also,
in this case, the effectiveness of our approach was confirmed, obtaining a
large improvement in all datasets. Although we tried to explore the joint
parameters space which includes both the pre-training parameters as well
as the recurrent neural network parameters, further research is needed to
better understand how to reach the optimal setting for the number and
length of sequences generated by the HMM. The empirical evidence we have
collected in our experiments seems to suggest that using too long sequences
is detrimental for the fine-tuning phase. It seems much better to use many
short sequences. This may be understood as a way to avoid overfitting by

117

L. Pasa Linear Models in Deep Learning For Sequences

the pre-training phase: the main mode of the data can be captured by short
sequences, while long-term dependencies are left to the fine-tuning phase.
As a consequence of that, the empirical evidence seems to suggest that it is
not important to use a Hidden Markov Model with many hidden states. In
fact, having many hidden states makes pre-training too slow and prone to
introduce overfitting. The results obtained by using Pre-training via Linear
Autoencoder applied on the same prediction task show the usefulness of the
proposed pre-training approach, since it allows to largely improve the state
of the art results on all the considered datasets by using simple stochastic
gradient descent for learning. Even if the results are very encouraging the
method needs to be assessed on data from other application domains.

Therefore we can conclude that the linear model can obtain good results
in perform learning in sequential domains. Moreover, the results obtained
in this thesis showed that, by using LDSs, it is possible to obtain results
that are comparable, and sometimes better, than the state-of-the-art. In
addition, we prove that linear models allow to achieve very good results by
limiting the computational burden required for training the model. Indeed,
linear models show that it is possible to obtain good results in significantly
less time, and by using fewer resources than the most common nonlinear
methods. Furthermore, when the obtained results are not enough accurate,
the computed configuration with the linear model can be used to help a
more complex nonlinear model to compute better solutions. Therefore, we
propose to use firstly a linear model also to solve a complex task. Indeed, if
it is not enough to provide a reasonable solution, it is possible to resort to it
to design quite effective pre-training techniques for more complex nonlinear
models.

As future work, we plan to develop models that exploit the minimum
degree of nonlinearity needed to obtain reasonable solutions. The idea is
to use several “layers” that have an increasing degree of nonlinearity. This
allows to control, and minimize the computational burden of the training
phase, and to optimize the trade-off between performance and accuracy.
Moreover, we plan to extend the proposed methods and techniques, to other
types of structured data. In particular, we are interested in developing and
studying an extension of our works for graph-structured data.

118

Bibliography

[1] http://deeplearning.net/tutorial/code/rnnrbm.py.

[2] http://ghmm.sourceforge.net/.

[3] https://github.com/gwtaylor/theano-rnn.

[4] http://www.math.unipd.it/ lpasa/.

[5] G E Dahl A. Mohamed and G E Hinton. Acoustic Modeling using
Deep Belief Networks. IEEE Trans. on Audio, Speech, and Language
Processing, 20, pp 14-22, 2012.

[6] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learn-
ing algorithm for boltzmann machines. Cognitive science, 9(1):147–169,
1985.

[7] Fabio Aiolli, Giovanni Da San Martino, Markus Hagenbuchner, and
Alessandro Sperduti. Learning Nonsparse Kernels by Self-Organizing
Maps for Structured Data. {IEEE} Transactions on Neural Networks,
20(12):1938–1949, 2009.

[8] Kevin Ashton. That internet of things’ thing. RFiD Journal, 22(7):97–
114, 2009.

[9] P Baldi and K Hornik. Neural networks and principal component anal-
ysis: Learning from examples without local minima. Neural Networks,
2(1):53–58, 1989.

[10] Mert Bay, A F Ehmann, and J S Downie. Evaluation of Multiple-F0
Estimation and Tracking Systems. ISMIR, pages 315–320, 2009.

[11] Y Bengio. Learning Deep Architectures for AI. Foundations and Trends
in Machine Learning, 2(1):1–127, 2009.

119

L. Pasa Linear Models in Deep Learning For Sequences

[12] Y Bengio, P Simard, and P Frasconi. Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166, January 1994.

[13] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu.
Advances in optimizing recurrent networks. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on,
pages 8624–8628. IEEE, 2013.

[14] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al.
Greedy layer-wise training of deep networks. Advances in neural infor-
mation processing systems, 19:153, 2007.

[15] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. Theano: A cpu and gpu math compiler in
python. In Proc. 9th Python in Science Conf, pages 1–7, 2010.

[16] Léon Bottou. Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

[17] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent.
Modeling temporal dependencies in high-dimensional sequences: Appli-
cation to polyphonic music generation and transcription. In Proceedings
of the 29th International Conference on Machine Learning, ICML 2012,
Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

[18] H Bourlard and Y Kamp. Auto-association by multilayer perceptrons
and singular value decomposition. Biological Cybernetics, 59(4-5):291–
294, 1988.

[19] Jérémie Cabessa and Hava T Siegelmann. The Computational Power
of Interactive Recurrent Neural Networks. Neural Computation,
24(4):996–1019, 2012.

[20] Yves Chauvin and David E Rumelhart, editors. Backpropagation: The-
ory, Architectures, and Applications. L. Erlbaum Associates Inc., Hills-
dale, NJ, USA, 1995.

[21] Huanhuan Chen, Fengzhen Tang, Peter Tino, Anthony G Cohn, and
Xin Yao. Model metric co-learning for time series classification. In
Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, pages 3387–3394. AAAI Press, 2015.

[22] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

120

Linear Models in Deep Learning For Sequences L. Pasa

sentations using rnn encoder-decoder for statistical machine translation.
CoRR, abs/1406.1078, 2014.

[23] François Chollet. Keras: Theano-based deep learning library. Code:
https://github. com/fchollet. Documentation: http://keras. io, 2015.

[24] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on se-
quence modeling. CoRR, abs/1412.3555, 2014.

[25] Nadia A Chuzhanova, Antonia J Jones, and Steve Margetts. Feature
selection for genetic sequence classification. Bioinformatics, 14(2):139–
143, 1998.

[26] Ronan Collobert and Jason Weston. A unified architecture for natural
language processing: Deep neural networks with multitask learning. In
Proceedings of the 25th international conference on Machine learning,
pages 160–167. ACM, 2008.

[27] Jerome T Connor, R Douglas Martin, and Les E Atlas. Recurrent
neural networks and robust time series prediction. IEEE transactions
on neural networks, 5(2):240–254, 1994.

[28] Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational Ker-
nels: Theory and Algorithms. Journal of Machine Learning Research,
5:1035–1062, 2004.

[29] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Ma-
chine Learning, 20(3):273–297, 1995.

[30] T Cover and P Hart. Nearest Neighbor Pattern Classification. IEEE
Trans. Inf. Theor., 13(1):21–27, sep 2006.

[31] P di Lena, K Nagata, and P Baldi. Deep architectures for protein
contact map prediction. Bioinformatics, 28(19):2449–2457, 2012.

[32] Jeffrey L Elman. Finding structure in time. Cognitive Science,
14(2):179–211, 1990.

[33] D Erhan, Y Bengio, and A Courville. Why does unsupervised pre-
training help deep learning? The Journal of Machine Learning Re-
search, 11:625–660, 2010.

[34] Paolo Frasconi, Marco Gori, Andreas Kuechler, and Alessandro Sper-
duti. From Sequences to Data Structures: Theory and Applications. In
J Kolen and S Kremer, editors, A Field Guide to Dynamic Recurrent
Networks, pages 351–374. 2001.

121

L. Pasa Linear Models in Deep Learning For Sequences

[35] Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A general frame-
work for adaptive processing of data structures. IEEE Transactions on
Neural Networks, Vol 9(5):768–785, 1998.

[36] Claudio Gallicchio and Alessio Micheli. Deep reservoir computing: A
critical analysis. In European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, 2016.

[37] Zhe Gan, Chunyuan Li, Ricardo Henao, David E Carlson, and Lawrence
Carin. Deep temporal sigmoid belief networks for sequence modeling. In
Advances in Neural Information Processing Systems, pages 2467–2475,
2015.

[38] Walter R Gilks. Markov chain monte carlo. Wiley Online Library, 2005.

[39] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In 2013 IEEE inter-
national conference on acoustics, speech and signal processing, pages
6645–6649. IEEE, 2013.

[40] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classifi-
cation with bidirectional lstm and other neural network architectures.
Neural Networks, 18(5):602–610, 2005.

[41] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende,
and Daan Wierstra. DRAW: A recurrent neural network for image
generation. In Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages
1462–1471, 2015.

[42] Isabelle Guyon and André Elisseeff. An Introduction to Variable and
Feature Selection. Journal of Machine Learning Research, 3:1157–1182,
2003.

[43] Peter E Hart. The condensed nearest neighbor rule (Corresp.). {IEEE}
Transactions on Information Theory, 14(3):515–516, 1968.

[44] G E Hinton, S Osindero, and Y W Teh. A Fast Learning Algorithm for
Deep Belief Nets. Neural Computation, 18(7):1527–1554, 2006.

[45] G E Hinton and R Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, 2006.

[46] Geoffrey Hinton. A practical guide to training restricted boltzmann
machines. Momentum, 9(1):926, 2010.

[47] Geoffrey E Hinton. Training products of experts by minimizing con-
trastive divergence. Neural Computation, 14(8):1771–1800, 2002.

122

Linear Models in Deep Learning For Sequences L. Pasa

[48] Geoffrey E Hinton. Deep belief networks. Scholarpedia, 4(5):5947, 2009.

[49] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural computation, 9(8):1735–1780, 1997.

[50] T S Jaakkola and D Haussler. Exploiting generative models in discrim-
inative classifiers. Advances in neural information processing systems,
pages 487–493, 1999.

[51] Herbert Jaeger. The echo state approach to analysing and training re-
current neural networks-with an erratum note. Bonn, Germany: Ger-
man National Research Center for Information Technology GMD Tech-
nical Report, 148:34, 2001.

[52] Herbert Jaeger. Echo state network. Scholarpedia, 2(9):2330, 2007.

[53] I T Jolliffe. Principal Component Analysis. Springer-Verlag New York,
Inc., 2002.

[54] Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. An empir-
ical exploration of recurrent network architectures. In Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, pages 2342–2350, 2015.

[55] Ross Kindermann and J. L. Snell. Markov Random Fields and Their
Applications. AMS, 1980.

[56] Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Prin-
ciples and Techniques. {MIT} Press, 2009.

[57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[58] Christina S Leslie and Rui Kuang. Fast String Kernels using Inexact
Matching for Protein Sequences. Journal of Machine Learning Re-
search, 5:1435–1455, 2004.

[59] Lennart Ljung. System identification. In Signal Analysis and Predic-
tion, pages 163–173. Springer, 1998.

[60] Mantas Lukoševičius. A practical guide to applying echo state networks.
In Neural networks: Tricks of the trade, pages 659–686. Springer, 2012.

[61] Mantas LukošEvičIus and Herbert Jaeger. Reservoir computing ap-
proaches to recurrent neural network training. Computer Science Re-
view, 3(3):127–149, 2009.

123

L. Pasa Linear Models in Deep Learning For Sequences

[62] J Martens and I Sutskever. Learning Recurrent Neural Networks with
Hessian-Free Optimization. In International Conference on Machine
Learning, pages 1033–1040. Acm, 2011.

[63] G Martinsson and Others. Randomized methods for computing the
Singular Value Decomposition (SVD) of very large matrices. In Works.
on Alg. for Modern Mass. Data Sets, Palo Alto, 2010.

[64] Andrés Marzal and Enrique Vidal. Computation of Normalized Edit
Distance and Applications. {IEEE} Trans. Pattern Anal. Mach. Intell.,
15(9):926–932, 1993.

[65] A Micheli and A Sperduti. Recursive Principal Component Analysis of
Graphs. In ICANN (2), pages 826–835, 2007.

[66] John D Owens, Mike Houston, David Luebke, Simon Green, John E
Stone, and James C Phillips. Gpu computing. Proceedings of the IEEE,
96(5):879–899, 2008.

[67] Luca Pasa and Alessandro Sperduti. Pre-training of recurrent neural
networks via linear autoencoders. In Advances in Neural Information
Processing Systems, pages 3572–3580, 2014.

[68] Luca Pasa and Alessandro Sperduti. Learning sequential data with the
help of linear systems. In IAPR Workshop on Artificial Neural Networks
in Pattern Recognition, pages 3–17. Springer International Publishing,
2016.

[69] Luca Pasa, Alberto Testolin, and Alessandro Sperduti. An HMM-based
Pre-training Approach for Sequential Data. pages 1–6, 2014.

[70] Luca Pasa, Alberto Testolin, and Alessandro Sperduti. Neural Networks
for Sequential Data: a Pretraining Approach based on Hidden Markov
Models. Neurocomputing, 2015.

[71] Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Ben-
gio. How to construct deep recurrent neural networks. CoRR,
abs/1312.6026, 2013.

[72] J Ross Quinlan. {C4.5:} Programs for Machine Learning. Morgan
Kaufmann, 1993.

[73] Eran Rabani and Sivan Toledo. Out-of-Core SVD and QR Decomposi-
tions. In PPSC, 2001.

[74] L R Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

124

Linear Models in Deep Learning For Sequences L. Pasa

[75] R Raina, A Madhavan, and A Y Ng. Large-scale deep unsupervised
learning using graphics processors. International Conference on Ma-
chine Learning, pages 110–880, 2009.

[76] Eric Sven Ristad and Peter N Yianilos. Learning String-Edit Distance.
{IEEE} Trans. Pattern Anal. Mach. Intell., 20(5):522–532, 1998.

[77] Luis Javier Rodriguez and Inés Torres. Comparative study of the baum-
welch and viterbi training algorithms applied to read and spontaneous
speech recognition. In Pattern Recognition and Image Analysis, pages
847–857. Springer, 2003.

[78] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural
networks. IEEE Transactions on Signal Processing, 45(11):2673–2681,
1997.

[79] Paul Smolensky. Parallel distributed processing: explorations in the
microstructure of cognition, vol. 1. chapter information processing in
dynamical systems: foundations of harmony theory. MIT Press, Cam-
bridge, MA, USA, 15:18, 1986.

[80] A Sperduti. Exact Solutions for Recursive Principal Components Anal-
ysis of Sequences and Trees. In ICANN (1), pages 349–356, 2006.

[81] A Sperduti. Efficient Computation of Recursive Principal Component
Analysis for Structured Input. In ECML, pages 335–346, 2007.

[82] A Sperduti. Linear Autoencoder Networks for Structured Data. In
NeSy’13:Ninth International Workshop onNeural-Symbolic Learning
and Reasoning, 2013.

[83] Ron Sun and C Lee Giles, editors. Sequence Learning - Paradigms,
Algorithms, and Applications. Springer-Verlag, London, UK, UK, 2001.

[84] I Sutskever, J Martens, G E Dahl, and G E Hinton. On the importance
of initialization and momentum in deep learning. In ICML (3), pages
1139–1147, 2013.

[85] Ilya Sutskever, Geoffrey E Hinton, and Graham W Taylor. The recur-
rent temporal restricted boltzmann machine. In Advances in Neural
Information Processing Systems, pages 1601–1608, 2008.

[86] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text
with recurrent neural networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 1017–1024, 2011.

[87] Graham W Taylor and Geoffrey E Hinton. Factored conditional re-
stricted Boltzmann machines for modeling motion style. In Proceedings

125

L. Pasa Linear Models in Deep Learning For Sequences

of the 26th annual international conference on machine learning, pages
1025–1032. ACM, 2009.

[88] Laurens van der Maaten. Learning Discriminative Fisher Kernels. In
Proceedings of the 28th International Conference on Machine Learning,
{ICML} 2011, Bellevue, Washington, USA, June 28 - July 2, 2011,
pages 217–224, 2011.

[89] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research, 11(Dec):3371–3408, 2010.

[90] T Voegtlin. Recursive principal components analysis. Neural Networks,
18(8):1051–1063, 2005.

[91] Li Wei and Eamonn J Keogh. Semi-supervised time series classification.
In Proceedings of the Twelfth {ACM} {SIGKDD} International Con-
ference on Knowledge Discovery and Data Mining, Philadelphia, PA,
USA, August 20-23, 2006, pages 748–753, 2006.

[92] Lloyd RWelch. Hidden Markov models and the Baum-Welch algorithm.
IEEE Information Theory Society Newsletter, 53(4):10–13, 2003.

[93] P J Werbos. Backpropagation through time: what it does and how to
do it. Proceedings of the IEEE, 70(10):1550–1560, 1990.

[94] Xiaopeng Xi, Eamonn J Keogh, Christian R Shelton, Li Wei, and Choti-
rat Ann Ratanamahatana. Fast time series classification using numeros-
ity reduction. In Machine Learning, Proceedings of the Twenty-Third
International Conference {(ICML} 2006), Pittsburgh, Pennsylvania,
USA, June 25-29, 2006, pages 1033–1040, 2006.

[95] Oksana Yakhnenko, Adrian Silvescu, and Vasant Honavar. Discrimina-
tively Trained Markov Model for Sequence Classification. In Proceedings
of the 5th {IEEE} International Conference on Data Mining {(ICDM}
2005), 27-30 November 2005, Houston, Texas, {USA}, pages 498–505,
2005.

[96] Lexiang Ye and Eamonn J Keogh. Time series shapelets: a new prim-
itive for data mining. In Proceedings of the 15th {ACM} {SIGKDD}
International Conference on Knowledge Discovery and Data Mining,
Paris, France, June 28 - July 1, 2009, pages 947–956, 2009.

[97] Izzet B Yildiz, Herbert Jaeger, and Stefan J Kiebel. Re-visiting the
echo state property. Neural networks, 35:1–9, 2012.

126

Linear Models in Deep Learning For Sequences L. Pasa

[98] Dong Yu, Li Deng, and Shizhen Wang. Learning in the deep-structured
conditional random fields. In Proc. NIPS Workshop, pages 1–8, 2009.

[99] Z Zhang and H Zha. Structure and Perturbation Analysis of Truncated
SVDs for Column-Partitioned Matrices. SIAM J. on Mat. Anal. and
Appl., 22(4):1245–1262, 2001.

127

	Introduction
	Learning in Sequential Domains
	Learning in Sequential Domains and Temporal Constraints

	Contribution
	Linear Dynamic System and Learning in Sequential Domains
	Linear models to for simplifying learning in sequential domains

	Outline of the Thesis
	Publications

	Deep Learning for sequences
	Base models and theoretical tools
	Linear Dynamic System
	Probabilistic models: Hidden Markov Models
	Recurrent Neural Networks
	Long Short-Term Memory
	Restricted Boltzmann Machines (RBM)
	Recurrent Neural Networks with Restricted Boltzmann Machines
	Echo State Network

	The State-of-the-art in learning sequences
	Temporal RBM
	DBN-based Model
	Bidirection-RNN
	Multiplicative-RNN

	Linear Dynamic System for Sequence Prediction
	Prediction Task on Sequential Data
	Training Method for LDS
	Method L1
	Method L2
	Method L3

	LDS-based Models
	Linear System Network
	LSN Definition
	Basic Configuration
	Configuration variants

	Sequential LSN
	Co-learning with LDS
	Discussion on Linear Co-learning models
	Uni-Network

	Encode-Decode LDS

	Pre-Training Via Linear Models
	Pre-Training
	HMM-based Pre-training
	Pre-training via Linear Autoencoder
	Computing an approximate solution for large datasets

	Experimental Assessment
	Experimental Setting
	Prediction Task
	Datasets
	Performance Metric

	Polyphonic Music Prediction Task with LDS
	Results of approaches using unsupervised projections
	Results of approaches using supervision and pre-training
	Discussion

	Polyphonic Music Prediction Task With LDS-based Models
	Experimental results obtained by LSN
	Experimental results obtained by SLSN
	Experimental results obtained by linear co-learning models
	Encode-Decode LDS

	Experiments on Pre-training Methods
	HMM-based Pre-Training
	Autoencoder-based Pre-training

	Conclusions

