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Moving beyond DTI: non-Gaussian diffusion in the brain and skeletal 

muscle 

ABSTRACT 

Diffusion Magnetic Resonance Imaging (dMRI) is a diagnostic technique able to provide in-

vivo measures that are related to the microstructure of tissues. The key idea behind the 

technique is the acquisition of a series of images that are limited in spatial resolution, within 

the millimeters scale, but are sensitized to the random motion (diffusion) of water molecules. 

The diffusion measurements are performed in the timescale of milliseconds, thus images 

provide an indirect measure of molecular displacement in the range of micrometers. This 

thesis shows the developments and the results I achieved during my PhD studies. Most of the 

research here included has been carried out in a multi-disciplinary environment, that includes 

engineering and medical skills, therefore the first plural person will be used throughout the 

work. Chapter I covers the general principles of molecular diffusion, Magnetic Resonance 

Imaging (MRI) and dMRI that are essential for the development of this thesis, referring the 

interested reader to the appropriate sources to deepen the concepts. Thanks to the sensitivity 

to microstructural tissue changes, Diffusion Weighted Imaging (DWI) and derived metrics, as 

the Apparent Diffusion Coefficient (ADC) (Denis Le Bihan & Breton, 1985), became the 

gold standard for the detection of strokes and ischemia since the early 90‟s. Nevertheless, 

over time many sophisticated dMRI approaches have been developed. In 1994 Basser and 

colleagues introduced Diffusion Tensor Imaging (DTI), the first quantification approach able 

to capture the anisotropy of the diffusion process in in-vivo biological tissues. Chapter II 

introduces the theoretical formulation of this popular method, then shows the results we 

obtained applying DTI to investigate white matter alterations of a population affected by 

Friedreich‟s Ataxia (Vavla et al., 2015).  

After more than 20 years from its introduction, DTI is still widely applied. However, 

concerns about the limitations of the technique have been increasingly risen over-time. A 

limitation regards the lack of specificity of the model in the context of biological tissues, that 

are highly heterogeneous in composition and properties. For this reason, when signals arise 

from tissues with limited directional architecture, as gray matter in the brain, or from tissues 

with multiple architectures, as crossing fibers in white matter, metrics provided by DTI are 

often uninformative. Additionally, the tensor model can be applied only to a range of 

“moderate” diffusion sensitizations, after which the presence of biological membranes 
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becomes non-negligible and gives origin to phenomena of “non-Gaussian diffusion”, that 

violate the assumptions of the model. Chapter III and Chapter IV deal specifically with these 

limitations, addressing the problem with two different approaches and applications. In 

particular, Chapter III deals with the Neurite Orientation Dispersion and Density Imaging 

(NODDI) technique, that has been introduced by Zhang and colleagues in 2012 to provide 

microstructure specific metrics in the brain. In this thesis we present its applications to 

investigate temporal lobe damage in a population affected by Multiple Sclerosis (MS) (M 

Calabrese et al., 2016; Alberto De Luca, Castellaro, Montemezzi, Calabrese, & Bertoldo, 

2015a). Another popular technique to investigate the dMRI signal is Spherical Deconvolution 

(SD), that in Chapter IV is presented in a tissue specific formulation and applied to derive 

diffusivity metrics specific to white matter, gray matter and cerebrospinal fluid, both in 

healthy controls and in a patient affected by MS (Alberto De Luca, Castellaro, Montemezzi, 

Calabrese, & Bertoldo, 2015b).  

Since the early days of dMRI, experiments have been performed not only in the brain but in 

several body districts, including the skeletal muscle. In particular, the acquisition of diffusion 

weighted data and the application of DTI to the skeletal muscles have been shown to be 

feasible since the „90s (Van Donkelaar et al., 1999). However, although many concepts used 

in brain acquisitions can easily be adapted, the great difference in cellular types, structure and 

composition of the tissues yield to technical and theoretical challenges with non-trivial 

solution. Back in 1986 Le Bihan et al. (D Le Bihan et al., 1986) observed that the water 

flowing in the micro vascular network and in the vessels was contributing to the acquisition 

of data at very low diffusion sensitization. Upon these observations, they proposed the “Intra-

Voxel Incoherent Motion” (IVIM) model, that expressed the dMRI signal as sum of tissue 

and blood signals, that can be recognized among the first examples of non mono-exponential 

Gaussian diffusion. The IVIM model was originally described in the brain but has found a 

number of applications to the skeletal muscle. IVIM can be seen either as a model to obtain 

measures of pseudo-diffusion (Nguyen et al., 2016), or as a technique to obtain perfusion free 

ADC measures, thus recognizing it as an artifact (Denis Le Bihan, 2013). Although dMRI 

and DTI were applied to the skeletal muscle since its early days, later evolutions as Diffusion 

Kurtosis Imaging (Jensen, Helpern, Ramani, Lu, & Kaczynski, 2005) have only recently been 

applied to the skeletal muscle (Marschar et al., 2015) to fit dMRI data acquired at strong 

diffusion sensitization. The concepts of IVIM and DKI are developed in Chapter V, where 

the effects of the first on DTI and DKI, as well as the relation between DTI and DKI metrics 
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are investigated through simulations and MRI data of the calf (Alberto De Luca, Bertoldo, & 

Froeling, 2016).  

In line with the current dMRI literature, the first 5 chapters of this thesis depict the diffusion 

signal as a complex measure arising from multiple tissue components, that can be partially 

disentangled through multi-compartmental modeling and acquisition of appropriate data. One 

of the difficulties with multi-compartment models is the optimal choice of the number of 

components, that is clearly tissue but also technologically dependent. Chapter VI investigates 

a multi-compartment pseudo-continuous deconvolution approach (Alberto De Luca, 

Bertoldo, Arrigoni, & Froeling, 2016), a technique that does not require explicit modeling of 

the tissues. The method is applied to estimate different diffusion regimes in the brain 

comparing dMRI data acquired with both a conventional and a non-conventional dMRI 

sequence. Finally, Chapter VII presents an overview of other research topics I have work on  

during the PhD. 
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CHAPTER I: THEORY OF THE DIFFUSION MR SIGNAL 

 

Introduction to NMR 

Magnetic Resonance Imaging (MRI) is one of the most successful and popular diagnostic 

tool, and can be regarded as the gold-standard technique to investigate biological tissues in-

vivo. The physical foundation of MRI is Nuclear Magnetic Resonance (NMR), a phenomena 

observed when atoms with non-null magnetic moment (NMR active nuclei) are placed in a 

strong and static magnetic field. In the context of medical NMR, the hydrogen atom (
1
H) 

represents the most obvious and well-known choice. Being made of a single proton, it has 

spin number ½ and thus has a non-null magnetic moment. Moreover, 
1
H constitutes 2/3 of the 

water molecules and it is therefore abundant in biological tissues. When an atom with non-

null magnetic moment is placed in a strong and static magnetic field (B0), the spin axis aligns 

to form a characteristic angle with the direction of B0 and undergoes a precession motion as 

shown in Figure 1.  

 

 

Figure 1: The precession of a spin around its magnetic dipole (dotted red line), that is aligned with 

the imposed field B0. The precession angle in steady-state is characteristic of the spin species.  

 

1
H can assume two spin states, +½ when the angle between its direction and B0 is acute, -½ 

when it has opposite direction and the angle with B0 is obtuse. The +½ state has lower energy 

than -½, thus in a large sample the positive state is slightly more abundant (the +½ over -½ 
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ratio increases with B0). The precession frequency of the spin is called Larmor frequency (νL) 

and essentially depends on the chemical specie and on the strength of B0: 

 
    

  

  
 [1] 

where γ is the gyromagnetic ratio, that is equal to 2.68x10
8
 rad/s/T for 

1
H, and νL equals to 

127.728MHz at 3T. The resonance phenomena take place when a population of protons 

precessing around B0 is irradiated with radio-frequency (RF) waves (B1
+
) at the frequency νL 

and with direction perpendicular to that of the main field, causing the transition of a number 

of spins from the +½ state to -½ (proportionally to the irradiating energy). Under these 

conditions, the net magnetic moment M of the population, that was substantially aligned with 

B0, rotates of an angle α (see Figure 2).  

 

Figure 2: The net magnetic moment M of the spin population is aligned with B0 in steady state (a). 

The application of a perpendicular field B1
+
 flips M on the x-y plane proportionally to its strength and 

duration. 

If M is decomposed in its longitudinal component along the z-axis (MZ) and its transverse 

component (MXY) in an orthogonal tri-dimensional plane, it is noticeable that B1
+
 

substantially converts the longitudinal component into transverse magnetization (that was 

null during the steady state). When B1
+
 is turned off, the system recovers the original steady 

state oscillating in the x-y plane. Such oscillations in the transverse plane can be converted 

into electronic signals with receiver coils tuned at the appropriate Larmor frequency, giving 

origin to the Free Induction Decay (FID) signal. Such signal is what is measured in an NMR 

experiment. The angle α is called flip-angle, and can be tuned by appropriate choice of the 

applied field B1
+
 (that is in the order of magnitude of μT) and its duration tp: 

      
    [2] 
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The NMR signal can be mathematically described with the Bloch equation (Bloch, Hansen, 

& Packard, 1946a, 1946b), that introduces a relation between the magnetization observed in 

the three dimensional axis M=(MX,MY,MZ) and the time constants T1 and T2: 

    

  
          

  

  
 [3] 

    

  
          

  

  
 [4] 

    

  
          

     

  
 [5] 

M0 is the magnetization at steady-state, T1 is the longitudinal magnetization constant that 

defines the rate of recovery of the MZ component to M0, while T2 is the transverse 

magnetization constant, that describes the rate of MXY nulling. In line of principle, the T2 

could be inferred from the FID signal described above, that was generated imposing a flip-

angle of 90 degrees to completely rotate M0 on the transverse plane. Using the Bloch 

equations, the following solution can be derived for such experiment: 

 
       

 
 

  
 
 [6] 

  

  
  

 

  
 

 

    
 [7] 

where the term     accounts for the local field inhomogeneity that affects any real magnet.  

In 1950 Hahn (Hahn, 1950) introduced the concept of Spin-Echo, an NMR sequence (i.e. a 

series of RF pulses to obtained pre-determined flip-angles) to determine pure T2 signals. The 

Spin-Echo sequence consists of two RF pulses spaced with a time TE/2, the first designed to 

obtain a 90 degrees flip-angle, the second to impose a flip angle equal to 180 degrees. The 

first RF pulse completely rotates the magnetization vector on the transverse plane, exactly as 

in the FID experiment. However, without additional stimulation the local field inhomogeneity 

would result in additional loss of coherence (de-phasing) of the spins, further attenuating the 

signal. Indeed, the second RF pulse flips the X-Y component of the magnetization vector, 

reversing the effect of field inhomogeneity to obtain a completely refocused vector field after 

an additional time TE/2, thus producing a completely refocused echo after a total time TE 

(called Echo Time). The process is exemplified in Figure 3. 
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Figure 3: Effects of the spin-echo sequence on the net magnetization vector M. The first 90 

degrees pulse rotates M on the x-y plane. T2
*
 dephasing induces loss of coherence in the x-y plane. 

The 180 degrees swaps the sign of M, thus identical but opposite T2
*
 effects compensate for the 

initial dephasing and result in fully refocused transverse magnetization. 

The diffusion process 

In 1828 Robert Brown described the motion of pollen grains suspended in water (V.P.L.S., 

1828), observing for the first time what was later called Brownian motion or diffusion 

process. Adolf Fick proposed two laws to describe the Brownian motion (Fick, 1855). The 

first determines the flow in terms of spatial position (x) under stationary conditions, while the 

second expresses the particle density as function of the flow over time: 

 
 ⃗   

 

  
     [8] 

   

  
 

  ⃗

  
   [9] 

where  ⃗ denotes the net molecular flow, D is the diffusion coefficient and   is the particle 

density. Combining the two equations under the assumption of isotropic D, the following 

equation can be derived: 

   

  
  

   

   
 [10] 

 The solution to this second order differential equation was proposed by Albert Einstein 

(Einstein, 1905): 

 
        

 

√    
  

  

    [11] 
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Eq. [11] corresponds to a Gaussian diffusion process with zero mean and standard deviation 

given by: 

   √    [12] 

The aforementioned diffusion process is often referred as self-diffusion, i.e. the Brownian 

motion of molecules in a homogeneous media without concentration gradients, such that D 

does not vary over time due to gradient flow. Eq. [12] shows that σ, the root mean square 

displacement of the spins, essentially depends on D and on t. The diffusion coefficient is 

intimately related to the underlying microstructure, thus it is reasonable to hypothesize D as a 

valuable marker sensitive to microscopic changes. Additionally, Eq. [12] states that different 

aspects of the microstructure can be proved just changing the experimental settings, i.e. 

varying the diffusion time to achieve different values of σ within the limitation of the 

measurement hardware. The Gaussian solution of Eq. [11] is valid only in absence of 

diffusion restrictions within the average displacement achieved in the experimental diffusion 

time. This assumption is often violated in biological tissues due to their high 

compartmentalization, as further discussed in the following chapters. To conclude the 

overview of the diffusion process, it is worth to recall the Stokes-Einstein equation: 

        [13] 

that shows the dependency of D on the mobility of the spins μ (thus on geometry, chemical 

composition), on the Stephan Boltzmann constant kB and on the absolute temperature T. The 

dependence on T is an important parameter to account for, reason why experimental settings 

are extremely important for reproducibility and comparability of the results.  

The Stejskal-Tanner diffusion sequence 

Starting from the observations of Hahn (Hahn, 1950) on the Spin-Echo experiment, Carr and 

Purcell (Carr & Purcell, 1954) presented a modified Spin-Echo sequence with sensitization of 

the NMR signal to the diffusion process. In the same work, they performed the first diffusion 

experiment on pure water and determined its diffusion coefficient with NMR for the first 

time. However, the introduction of the diffusion weighted spin-echo sequence, as still used 

nowadays, is due to Stejskal and Tanner. In the work “Spin Diffusion Measurements: Spin 

Echoes in the Presence of a Time Dependent Field Gradient” (Stejskal & Tanner, 1965), they 

introduced the Pulsed-Gradient Spin-Echo (PGSE) scheme and derived a closed form 

solution to the Bloch-Torrey equation. 
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The schematic gradient layout of the Stejskal-Tanner Diffusion-Weighted (DW) sequence is 

shown in Figure 1. Going through the sequence, the first 90 degrees RF pulse generates an 

echo that it is subject to both transverse dephasing (T2) and additional spin-spin interaction 

(T2
*
) that cause additional signal loss. The second 180 degrees RF pulse, that is applied after 

a time TE/2, refocuses the signal and produces a T2
*
 free signal an additional time TE/2. The 

diffusion weighting is achieved with two identical spatial gradients around the 180 degrees 

pulse (READOUT line in Figure 1). In absence of diffusion, the spins follow a pure random 

walk and thus no net displacement vector can be observed. Conversely, in presence of a 

diffusion process the spin population will be characterized by a net displacement (Δx). The 

de-phasing caused by two diffusion gradients with amplitude G and duration δ in presence of 

net displacement of the spins caused by diffusion is: 

 
   ∫     

 

 

 ∫     

 

 

      [14] 

It is clear that if Δx is not null, the total magnetization is reduced and thus in presence of 

diffusion the measured spin-echo signal is attenuated. 

 

Figure 4 Schematic layout of the Stejskal-Tanner diffusion weighted Spin-Echo sequence. The 

addition of two gradients with amplitude G, duration δ and inter-gradients time Δ sensitizes the signal 

to molecular motion.  

Stejskal and Tanner derived the analytical signal equation for a DW Spin-Echo experiment 

with diffusion gradients of amplitude G, duration δ and inter-gradients time Δ. Their 

derivation started from the Torrey equation (Torrey, 1956), that adds the diffusion term to the 

Bloch equations: 

     ⁄            [15] 
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where B is the static magnetic field, M the magnetization vector, t is the time,   the 

gyromagnetic ratio and D the diffusion coefficient. The solution to Eq. [15] is: 

  

  
                  [16] 

where S and S0 design the signals acquired respectively with and without diffusion gradients 

but identical echo time. Eq. [16] can be rewritten with a more commonly used symbolism: 

 
{

      
   

               
 [17] 

The term b is named b-value, has unit [s/mm
2
], and conveniently summarizes the contribution 

of the three gradient parameters (G,δ,Δ) on the measured diffusion signal. 

Diffusion MRI became an imaging technique in the mid-80s after the pioneering works of Le 

Bihan and collegues (D Le Bihan et al., 1986; Denis Le Bihan & Breton, 1985). In the first 

work, “Imagerie de diffusion in vivo par résonance magnétique nucléaire”, the combination 

of a Stejskal-Tanner diffusion sensitized sequence with imaging gradients was introduced. It 

was only after the collaboration of Le Bihan and Turner that the Stejskal-Tanner Spin-Echo 

sequence was combined with 2D Echo-Planar Imaging (EPI) (Schmitt, Stehling, & Turner, 

1998; Turner, Le Bihan, & Chesnick, 1991), as schematized in Figure 5, greatly reducing 

acquisition time and imaging artifacts, finally opening the road for its widespread application.  

 

Figure 5 Schematic layout of a Stejskal Tanner diffusion weighted acquisition, that consists in the 

repetition of the basic Stejskal-Tanner Spin Echo with EPI readout after a time TR. 

2D EPI essentially allows to acquire a 3D volume as a series of 2D images with pre-defined 

thickness. Specific gradients, called slice selective, are applied simultaneously to the RF 
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pulses along the z-axis to excite only the spins within a volume with specific z coordinate. 

The slice selective gradients alter the Larmor frequency of the spins along the z-axis, thus 

only the spins in the desired volume are in resonance with the RF pulses. To disentangle the 

location of the signals in-plane, additional gradients along the x-axis and the y-axis are 

applied (frequency and phase encoding), then the image reconstruction is performed via 

inverse Fast Fourier Transform. Details about the concepts of Fourier image reconstruction, 

EPI and k-space can be found in a comprehensive book (Brown, Cheng, Haacke, Thompson, 

& Venkatesan, 2014). The result of this acquisition process is a 3D matrix made of elements 

called voxels, each representing the module of the signal acquired at a specific spatial 

location.  

Basic concepts of dMRI 

Generally speaking, a complete diffusion experiment is essentially a series of 3D matrices, 

each acquired with a specific diffusion weighting, that is then fit with a specific model. The 

consensus on how to perform a diffusion experiment greatly varied over time especially in 

terms of number of diffusion weightings, number of directions and models to fit the data. 

Interestingly, long time after the introduction of dMRI, the research field on this topic is still 

very active on the optimization of each of the cited topics. In the early days of diffusion MRI, 

it was common practice to acquire a spin-echo volume without diffusion weighting (S0), and 

three volumes with orthogonal diffusion weighting b (S(b)), implicitly assuming diffusion to 

be a direction independent (isotropic) process. A diffusion coefficient (D) was then computed 

for each voxel following the equations proposed by Stejskal and Tanner. Le Bihan et al.  (D 

Le Bihan et al., 1986) proposed the name “Apparent Diffusion Coefficient” (ADC) for D to 

underline that it does not reflect a real measure but instead is the result of a massive 

averaging operation in the micron scale. Over time, the number of acquired diffusion 

weightings and directions grew with hardware developments to fulfill the requirements of 

newly proposed methods. Nowadays acquisition protocols can include more than 200 DW 

volumes, as will be seen in Chapter IV. 

The last topic of this introduction deals with acquisition artifacts. In the following chapters 

different examples of acquisition schemes and quantification techniques will be shown, 

however, generally speaking, almost all dMRI data is affected by some common artifacts that 

must be recognized and, if possible, corrected. The major sources of dMRI artifacts are 

subject motion, eddy currents and EPI related effects (Denis Le Bihan, Poupon, Amadon, & 
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Lethimonnier, 2006). During the diffusion experiment multiple 3D volumes are acquired over 

several minutes, therefore subject motion is likely to happen and potentially alter the acquired 

geometry, causing misalignments between consecutive volumes, and not rarely loss of the 

volumes acquired during motion events. In brain acquisition motion artifacts result essentially 

in rigid rotations or translations, thanks to the constraining effects of the skull. The problem 

becomes more complex in thorax, abdomen and skeletal muscle acquisitions, where 

movements may result in changes of shape or size. A common and generally effective 

solution to this artifact is the affine registration of all acquired volumes to the first, operation 

that is commonly performed offline (i.e. after acquisition). Affine image registration also 

corrects for eddy currents artifacts, i.e. geometric distortions caused by currents self-inducted 

in the coils from the fast on-off switching of the strong gradients used for diffusion 

sensitization. In addition to post-processing corrections, a number of hardware optimizations 

(i.e. shielded coils, pre-emphasis of the gradients) and ad-hoc sequences (i.e. twice refocused 

spin echo, (Reese, Heid, Weisskoff, & Wedeen, 2003)) can be employed to mitigate Eddy 

currents. As mentioned above, EPI readout is one of the key reasons behind the success of 

dMRI, however, it comes with some drawbacks. The gradients used to perform the readout 

are strongly sensitive to residual magnetization that may come from eddy currents, resulting 

in the “N/2 ghosting” artifact, that is the repetition of the imaged object at regular intervals. 

The pixel bandwidth (i.e. the difference in MR frequencies between adjacent pixels) is very 

high in the frequency encoding direction (kHZ) but low in the phase-encoding (PE) direction 

(some Hz). Under these conditions, chemical shift artifacts arise: the signals of chemical 

compounds as fat undergo a pixel shift in the PE direction and contaminate voxels at the 

wrong spatial location. In dMRI only the signal originating from water molecules is generally 

of interest, therefore fat suppression approaches can greatly reduce this issue. The most 

common methods to perform fat suppression are the Spectral Pre-saturation with Inversion 

Recovery (SPIR) and the Spectral Attenuated Inversion Recovery (SPAIR) techniques, both 

based on RF pulses to suppress signals with a frequency shift of 220Hz from water (that is 

the main fat peak at 3T).  However, these methods are not perfect and rely on very accurate 

B1
+
 transmit fields, thus residual fat artifacts can persist in the acquired data, especially when 

multiple fat species (with multiple frequency shifts from water) populate the acquired tissues. 

To note, this is often the case outside the brain. Finally, EPI is sensitive to B0 field 

inhomogeneity. Tissue interfaces with air (as in the sinuses) or with bones result in magnetic 

susceptibility and thus geometric distortions. A number of approaches have been proposed to 

overcome this very common artifact, as B0 field unwarping (Jezzard & Balaban, 1995) or 
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double acquisition with reversed phase-encoding, often called blip-up blip-down (Andersson, 

Skare, & Ashburner, 2003). 
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CHAPTER II: A DTI STUDY OF FRIEDREICH‟S ATAXIA 

 

Introduction 

Diffusion MRI has found great application in the structural investigation of the brain and in 

particular of the white matter (WM). Diffusion Tensor Imaging (DTI) has been the gold 

standard quantification method of dMRI data for long time, and still is in the clinical routine 

context. This chapter introduces the core concepts of DTI and presents the results of a DTI 

based study we performed on a population affected by Friedreich‟s Ataxia (FRDA), a 

degenerative disease of the central nervous system. The results here reported have been 

presented as conference proceedings (Vavla et al., 2015) at the International Conference on 

Friedrich‟s Ataxia, and are now being submitted as journal paper. FRDA is the most common 

subtype of inherited ataxia, and is caused by an abnormal expansion of the GAA tri-

nucleotide repeat in the intron 1 of the gene FXN (previously named X25) on chromosome 9 

(Campuzano et al., 1996). The expansion of the GAA triplet hampers the proper unfolding of 

the DNA and thus the encoding of the frataxin (Campuzano et al., 1997), a protein which 

absence has been linked to the accumulation of iron in mitochondria and the production of 

free radicals, that result in cellular stress and death. The progression of the disease appears to 

be a dying back process from the largest and longest myelinated fibers to the brain, with the 

dorsal root ganglia and the cortico-spinal tracts being among the most known sites of damage 

(Delatycki, Williamson, & Forrest, 2000). The onset of the disease is generally before the age 

of 20, with progressive deficits in the motor functions, muscle weakness, sensory loss and 

other symptoms. The main objective of the study here presented was to obtain objective and 

quantitative biomarkers of FRDA from the analysis of the cerebral and cerebellar alteration 

patterns of patients compared to healthy controls (HC). Such analysis was performed with 

statistical tests of DTI metrics across groups and analysis of the correlation between MRI 

measures and clinical covariates in FRDA. The identification of a specific pattern of damage 

distinguishing FRDA from HC is expected to help the design of longitudinal studies, with 

particular focus on disease progression monitoring and response to treatments.  

Theory 

Since the first applications of dMRI, it appeared clear that diffusion weighted images (DWI) 

were dependent on the direction of the diffusion gradients (Moseley et al., 1990), implying 

that the assumption of isotropic Gaussian diffusion was not sufficient to explain the signal in 
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a large part of the investigated tissues. In the early 90‟s, Basser and collegues (Basser, 

Mattiello, & LeBihan, 1994; Pierpaoli & Basser, 1996) introduced the DTI technique, a three 

dimensional generalization of ADC that accounts for three Gaussian diffusion processes 

along the perpendicular spatial axis. The breakthrough of this method was the ability to 

describe the anisotropy and the directionality of the diffusion process with a relatively simple 

mathematical framework. If the diffusion gradient is applied along the direction g=[gX gY gZ], 

equation [17] can be generalized: 

      
     ̅  [18] 

In equation [18] the term D has been replaced with  ̅, a 3x3 symmetric matrix called 

diffusion tensor that takes the form: 

 

 ̅  [
         

         

         

] [19] 

Six unknowns need at least six DWI measures to determine  ̅. If exactly 6 DWIs are 

collected,  ̅ can be computed by solution of a linear system. However, in practice, the most 

common way to address the problem is to collect a much larger number of DWIs and to solve 

the problem via Linear Least-Squares (LLS), Weighted Linear Least-Squares (WLLS) or 

Non-linear Least-Squares (NNLS). Solution via Least-Squares also allows to consider S0 as 

an additional unknown, as suggested by a previous work (Koay, Chang, Carew, Pierpaoli, & 

Basser, 2006). To solve the problem with Linear Least-Squares, either weighted or non-

weighted, the logarithms of both sides of Eq. [18] are considered: 

                    ̅  [20] 

After further development of the right side of the equation, some useful substitutions can be 

introduced: 

 
  [

                   
   
                   

    
         

 
         

    
                           

   
                           

] 

  [                                        ]
  

  [
        

 
        

] 

[21] 
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where n is the number of acquired DWIs.  

Eq. [20] can now be expressed with a simple matrix formulation that ease its numerical 

implementation: 

      [22] 

Consequently, p can be determined by 

              

                   

[23] 

for LLS and WLLS respectively. Σ is a diagonal square matrix that weights each DWI into 

the fit. Different choices of the weights have been exploited by some works (Casaseca-de-la-

Higuera et al., 2012). Even if the pre-processing step is carefully performed, dataset acquired 

from children or patients affected by involuntary motion can still be biased by recurrent 

motion artifacts. A technique to minimize their effect on the final fit is RESTORE (Chang, 

Jones, & Pierpaoli, 2005), that has been employed in this work along with NLLS. RESTORE 

is the acronym for "Robust Estimation of Tensors by Outlier Rejection, and consists in an 

iterative method to identify and exclude corrupted data points from the final tensor fit voxel-

wise. The first step in the RESTORE pipeline is the weighted NNLS fit, using a diagonal 

weighting matrix initialized with the reciprocal of the data variance. The goodness of fit is 

then computed by means of Chi-Square (  ): 

    ∑          

 

 

   
 

  
 

[24] 

If the goodness of fit criteria is not satisfied, i.e.    is greater than a certain threshold, an 

iterative estimate – reweight procedure is performed until the criteria is satisfied. In 

particular, the weights are updated using the Geman-McClure M-estimator in conjunction 

with the median absolute deviation of the residuals. When convergence is met, all data points 

corresponding to residuals outside 3 standard deviations of the data noise are rejected, then a 

final NNLS fit with constant weights as in Eq. [24] is performed. 

The 25 years long success of DTI has been certainly supported by its affordable mathematical 

formulation and the relatively low acquisition demand (7+ DWIs, less than 4 minutes with 
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modern scanners). However, the introduction of rotation invariant metrics (Basser & 

Pierpaoli, 1996) computed from the eigenvectors/eigenvalues decomposition of the diffusion 

tensor has certainly been its workhorse. The most common metrics are “Mean Diffusivity” 

(MD), “Axial Diffusivity” (AD), Radial Diffusivity (RD) and “Fractional Anisotropy” (FA). 

MD, AD and RD share the unit measure of the three eigenvalues, that is mm
2
/s. Differently, 

FA is unit less and quantifies the concept of anisotropy, assuming values between 0, for 

perfect isotropy, and 1, for full anisotropy. Named 1, 2, 3 the three eigenvalues in 

descending order, and L1, L2, L3 the corresponding eigenvectors, the aforementioned metrics 

are defined as follows: 

               ⁄  [25] 

        [26] 

            ⁄  [27] 

 

   √
                             

    
    

    
  

 [28] 

Pajevic and Pierpaoli (Pajevic & Pierpaoli, 1999) introduced a practical and successful 

representation of L1 as Direction Encoded Colors (DEC), that consists in assigning the x, y 

and z components weighted by FA to the red, green and blue channel respectively. As L1 

represents the dominant fiber direction in the DTI framework, its visual inspections is of 

great interest. This convenient representation, shown in Figure 6 next to FA and MD, has 

been useful in a number of applications to show abnormal fiber directions in pathology.  

 

Figure 6 Examples of a FA, MD and DEC map obtained on a HC included in this study. FA and 

DEC are shown in the 0-1 intensity range, MD between 0 and 3.0µm
2
/ms .The DEC map represents 

the main fiber direction weighted by FA using the color convention that assigns left-right to red, 

antero-posterior to green and bottom-top to blue. 
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Data & Methods 

Eighteen healthy controls (HC) and twenty-one patients affected by Friedrich‟s Ataxia 

underwent an MRI session at IRCCS E. Medea (Bosisio Parini, Italy) with a 3T Achieva 

dStream Scanner (Philips Medical Systems) equipped with a 32 channels head coil. FRDA 

was genetically determined on all patients included in this study with molecular diagnosis. 

The HC group included 11 females and 7 males, and had age 27±9 years (mean ± standard 

deviation). The FRDA group included 16 females and 5 males with age 27±10 years. The 

acquisition protocol featured the following sequences: 

 a 3D T1-weighted (T1W) high resolution scan based on Fast Field Echo (FFE), 

TE=3.5ms, TR=8ms, flip-angle 8°, voxel-size 1x1x1mm
3
, SENSE factor 2, matrix 

size 256x256x160; 

 a multi-shell dMRI acquisition featuring 15 gradient directions at b=300s/mm
2
, 53 

gradient directions at b=1100s/mm
2
 and 8 volumes at b=0s/mm

2
. Sequence settings 

were voxel size 2.2x2.2x2.2mm
3
, TE=100ms, TR=8.8s, SPIR fat suppression, SENSE 

factor 2, matrix size 112x112x80; 

 a T2-weighted (T2W) Turbo Spin Echo (TSE) fat suppressed (SPIR) scan, TE=100ms, 

TR=4.7s, voxel size 1.5x1.5x1.5mm
3
, SENSE factor 2, matrix size 160x146x110.  

Neurologic evaluation of the patients was performed by a trained neurologist with the “Scale 

for the Assessment and Rating of Ataxia” (SARA, (Subramony, 2007)), that essentially 

evaluates upright posture, speech and limb kinetic function (score range 0-40). dMRI data 

was pre-processed with Tortoise (Pierpaoli et al., 2010) to remove motion artifacts and 

attenuate geometric distortions due to the EPI readout and Eddy currents. Tortoise essentially 

achieves motion correction through a 12 degrees of freedom (DOF) registration of each DW 

volume to the first non-weighted volume. Additionally, the pipeline implemented in the tool 

takes advantage of the T2W volume to effectively reduce geometric distortions through a 

quadratic model in the frequency encoding direction (Posterior-Anterior in this study). A 

warp field to move the first non-weighted volume to the T2W is estimated, then it is combined 

with the affine transformation needed to motion correct each DW volume to perform a single 

final interpolation. The corrected volumes were visually inspected to ensure no artifacts were 

still affecting the data. Volumes with residual corruption were individually removed. The 

diffusion tensor was computed for each subject with the NLLS estimator implemented in 

Tortoise, however, the RESTORE options was used for some selected subjects that appeared 
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more prone to motion. Two study specific templates were built with DTI-TK (H. Zhang et al., 

2007; H. Zhang, Yushkevich, Alexander, & Gee, 2006), one for HC and one for FRDA. DTI-

TK takes advantage of all six tensor elements to perform the registrations, delivering more 

accurate spatial alignments than tools based on a single feature, especially in regions with 

complex fiber architecture as the brainstem. The template of the patients was non-linearly 

registered to the template of controls, then the transformations were concatenated to move the 

tensors of Ataxia affected subjects to the template space of healthy controls with a single 

interpolation. Finally, FA, MD, AD and RD maps were computed for each subject in the final 

template space. A custom atlas defining major white matter structures was built merging parts 

of two existing atlases, respectively the JHU DTI-based white matter atlas (Mori, Wakana, 

van Zijl, & Nagae-Poetscher, 2005) and the JHU probabilistic tracts atlas (Hua et al., 2008), 

resulting in 43 complimentary Regions of Interest (ROIs) (Table 1). Group comparisons 

between HC and FRDA were performed at voxel and ROI level with two General Linear 

Models (GLM). GLM analysis at ROI level was performed with in-house software written in 

MATLAB (The Mathworks, Natick, USA), using a 5% critical threshold with Bonferroni 

correction for multiple comparisons. 

Voxel-wise GLMs were instead performed with the “Randomise” tool included in FSL 

(Winkler, Ridgway, Webster, Smith, & Nichols, 2014), setting the multiple comparison 

option to permutation based correction with “Threshold Free Cluster Enhancement” (TFCE) 

(S. M. Smith & Nichols, 2009). The first GLM expressed the dependent variable (DTI 

metrics) as function of diagnosis, age and sex: 

 

                                 [29] 

 

An additional GLM analysis was performed only on FRDA subjects to elucidate effects of 

disease duration (DD) and summarized SARA score (tSARA) on MRI metrics. Given the 

correlation between age and DD ( =0.89), the first was excluded from the final GLM: 

 

                            [30] 
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Table 1 – List of the ROIs used for the statistical tests of DTI metrics 

Anterior thalamic radiation L Inferior cerebellar peduncle R 
Anterior thalamic radiation R Inferior cerebellar peduncle L 
Corticospinal tract L Superior cerebellar peduncle R 
Corticospinal tract R Superior cerebellar peduncle L 
Cingulum (cingulate gyrus) L Anterior limb of internal capsule R 
Cingulum (cingulate gyrus) R Anterior limb of internal capsule L 
Cingulum (hippocampus) L Posterior limb of internal capsule R 
Cingulum (hippocampus) R Posterior limb of internal capsule L 
Forceps major Anterior corona radiata R 
Forceps minor Anterior corona radiata L 
Inferior fronto-occipital fasciculus L Superior corona radiata R 
Inferior fronto-occipital fasciculus R Superior corona radiata L 
Inferior longitudinal fasciculus L Posterior corona radiata R 
Inferior longitudinal fasciculus R Posterior corona radiata L 
Superior longitudinal fasciculus L External capsule R 
Superior longitudinal fasciculus R External capsule L 
Uncinate fasciculus L Fornix (column, body, cres with stria terminalis) 
Uncinate fasciculus R Post. thalamic radiation and part of internal capsule R 
Sup. Long. fasciculus (temporal part) L Post. thalamic radiation and part of internal capsule L 
Sup. Long. fasciculus (temporal part) R 
Genu of corpus callosum 
Body of corpus callosum 
Splenium of corpus callosum 

 

 

Results 

Figure 7 highlights the benefits of the Tortoise pre-processing on a subject included in this 

study. The figure shows a comparison between non-corrected data (first row), motion 

corrected data (second row) and fully processed data with combined motion and T2W based 

EPI correction (last row). The weighted residuals sum of squares (WRSS) refers to an NNLS 

fit of the data, and proves that motion correction consistently enhances the tensor fit and 

results in lower residuals. The first column reports the non-weighted image estimated from 

the tensor fit with the undistorted contour of the brain overlaid in blue (derived from the T2W 

image). EPI correction is clearly effective both in the frontal and occipital lobes, and 

improvements can be observed also in the center of the brain, for example at the cortico-

spinal tracts on the fiber encoded T1W (FET1, DEC map overlaid on the T1W).  
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Figure 7 – Example of 3 pre-processing methods on the DTI fit of a HC data (included in this study). 
The first column shows the estimated non-weighted image with the non-distorted brain boundary in 

solid blue (derived from the T2W), the second and third columns show respectively the   value and the 

weighted sum of the residuals (WRSS), while the last column shows a fusion of the T1W image and of 
the DEC map. The first row refers to no pre-processing, the middle to motion correction only, the last 

to combined motion and EPI distortions correction with Tortoise. The complete correction recovers 

the correct brain boundaries, shows a    with less anatomical details than the other two, and results in 

the lowest WRSS values. Additionally, a higher correspondence to the T1W image can be seen in the 
last column.  

 

Results of the voxel-wise analysis performed with GLM in Eq. [29] are reported in Figure 8 

for some representative axial slices. Voxels where FRDA had statistically significant lower 

FA or higher MD/AD/RD values compared to HC are highlighted in red. Visual inspection of 

the main affected areas revealed a major involvement of the inferior and superior cerebellar 

peduncles, cerebral white matter, bilateral cortico-spinal tracts, bilateral optic radiations, 

corpus callosum and subcortical matter of pre-central and post-central gyri.  
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Figure 8 FA, MD, AD and RD voxel-wise differences between HC and FRDA are shown in red over 

an average FA map of HC. Most of the differences in FA are explained by increments of RD rather 
than AD, and are mainly located in the cerebellar white matter, cortico-spinal tracts and corpus 

callosum.  

 

Reductions of FA are often (but now always) linked to increments of MD, due to the relations 

between the eigenvalues, however inspection of AD and RD maps revealed that the latter was 

the prominent cause of MD increments. The ROI analysis resulted in similar observations, 

with major involvement of the cerebellar white matter, cortico-spinal tracts and corpus 

callosum, as reported in Table 2. Only the diagnosis resulted to be a significant predictor of 

difference between the two groups, therefore the comparison could be essentially performed 

with a corrected two-sided t-test. Investigation of the covariates in the FRDA group using 

GLM in Eq. [30] resulted in no covariate being significant at voxel level, eventually due to an 

insufficient number of subjects, especially in consideration of the severe multiple comparison 

correction for the whole brain.  
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Table 2 Results of the GLM analysis of FA, AD, MD and RD between HC and FRDA, considering 

age and sex as covariates. Bold p-values are considered significant (less than 0.05). 

Structure 

Mean  

(HC) 

Std 

(HC) 

Mean 

(FRDA) 

Std 

(FRDA) 

Age 

(p-val) 

Sex 

(p-val) 

Group 

(p-val) 

Age 

(β) 

Sex 

(β) 

Group 

(β) Variation % 

GLM Eq. [29] of FA  

Corticospinal tract L 0,516 0,024 0,478 0,032 0,745 0,916 <0,001 0,000 -0,001 -0,038 -7,38 

Corticospinal tract R 0,510 0,026 0,467 0,030 0,605 0,870 <0,001 0,000 -0,002 -0,043 -8,46 

Forceps major 0,506 0,030 0,447 0,032 0,302 0,149 <0,001 -0,001 0,017 -0,063 -11,83 

Body of CC 0,627 0,042 0,574 0,046 0,937 0,907 0,001 0,000 0,002 -0,054 -8,56 

Splenium of CC 0,654 0,030 0,614 0,031 0,406 0,510 <0,001 0,000 0,008 -0,041 -6,06 

Inferior cereb. peduncle R 0,501 0,035 0,390 0,031 0,881 0,148 <0,001 0,000 -0,018 -0,109 -22,24 

Inferior cereb. peduncle L 0,497 0,044 0,395 0,034 0,556 0,053 <0,001 0,000 -0,027 -0,098 -20,46 

Superior cereb. peduncle R 0,550 0,040 0,369 0,042 0,105 0,838 <0,001 0,001 -0,003 -0,180 -32,95 

Superior cereb. peduncle L 0,537 0,039 0,349 0,037 0,106 0,956 <0,001 0,001 -0,001 -0,187 -34,95 

MCP and pontine cross. 

tract 0,490 0,027 0,453 0,031 0,732 0,520 0,001 0,000 -0,007 -0,035 -7,47 

Post. thalamic r. and PLIC 

R  0,561 0,029 0,517 0,033 0,346 0,959 <0,001 -0,001 0,001 -0,044 -7,835 

Post. thalamic r. and PLIC 

L  0,560 0,032 0,515 0,034 0,411 0,774 <0,001 0,000 0,004 -0,046 -8,044 

GLM of MD (mm
2
/s x 10

3
) 

Corticospinal tract R 2,187 0,125 2,356 0,169 0,175 0,539 0,001 0,004 -0,034 0,175 7,71 

Forceps major 2,496 0,203 2,786 0,238 0,682 0,028 <0,001 0,002 -0,179 0,317 11,59 

Splenium of CC 2,453 0,175 2,703 0,197 0,929 0,382 <0,001 0,000 -0,062 0,260 10,22 

Inferior cereb. peduncle R 2,164 0,203 2,607 0,226 0,186 0,199 <0,001 -0,005 0,102 0,426 20,48 

Inferior cereb. peduncle L 2,190 0,180 2,605 0,210 0,088 0,147 <0,001 -0,006 0,104 0,398 18,97 

Superior cereb. peduncle R 2,984 0,286 4,099 0,409 0,207 0,512 <0,001 -0,008 0,087 1,099 37,36 

Superior cereb. peduncle L 3,065 0,342 4,400 0,313 0,350 0,877 <0,001 -0,005 -0,019 1,336 43,55 

Middle cereb. peduncle and  

pontine cross. tract 2,066 0,130 2,289 0,178 0,394 0,550 <0,001 -0,002 0,035 0,217 10,81 

Post. thalamic r. and PLIC 

R 2,165 0,153 2,363 0,183 0,672 0,359 0,001 0,001 -0,059 0,207 9,14 

Post. thalamic r. and PLIC 

L 2,209 0,135 2,407 0,206 0,964 0,262 0,001 0,000 -0,074 0,209 8,96 

GLM of AD (mm
2
/s x 10

3
) 

Superior cereb. peduncle R 1,646 0,093 1,865 0,117 0,380 0,435 <0,001 -0,002 0,031 0,214 13,32 

Superior cereb. peduncle L 1,667 0,131 1,958 0,088 0,735 0,841 <0,001 -0,001 -0,008 0,291 17,42 

Middle cereb. peduncle and  

pontine cross. tract 1,087 0,049 1,157 0,058 0,224 0,424 0,001 -0,001 0,016 0,068 6,49 

GLM of RD (mm
2
/s x 10

3
) 

Corticospinal tract L 0,496 0,036 0,551 0,056 0,193 0,330 0,001 0,001 -0,017 0,058 11,16 

Corticospinal tract R 0,509 0,040 0,575 0,056 0,087 0,597 <0,001 0,002 -0,009 0,068 13,04 

Forceps major 0,570 0,069 0,682 0,082 0,490 0,033 <0,001 0,001 -0,060 0,121 19,56 

Body of CC 0,447 0,066 0,552 0,092 0,789 0,816 <0,001 0,000 -0,007 0,106 23,63 

Splenium of CC 0,465 0,057 0,553 0,063 0,655 0,361 <0,001 0,000 -0,021 0,091 18,86 

Inferior cereb. peduncle R 0,505 0,064 0,682 0,074 0,336 0,183 <0,001 -0,001 0,035 0,171 35,05 

Inferior cereb. peduncle L 0,514 0,063 0,679 0,070 0,269 0,091 <0,001 -0,001 0,042 0,158 32,15 

Superior cereb. peduncle R 0,669 0,100 1,117 0,150 0,167 0,560 <0,001 -0,003 0,028 0,443 66,92 

Superior cereb. peduncle L 0,699 0,111 1,221 0,119 0,245 0,902 <0,001 -0,002 -0,005 0,522 74,73 

Middle cereb. peduncle and  

pontine cross. tract 0,490 0,042 0,566 0,060 0,516 0,628 <0,001 -0,001 0,010 0,075 15,60 

Post. thalamic r. and PLIC 

R 0,469 0,048 0,543 0,059 0,479 0,409 <0,001 0,001 -0,017 0,077 15,84 

Post. thalamic r. and PLIC 

L 0,480 0,045 0,557 0,066 0,668 0,313 <0,001 0,000 -0,022 0,081 16,08 
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At ROI level, sex and tSARA were significant predictors of FA, MD and RD in the left 

internal capsule, and could significantly predict MD and RD in the posterior thalamic 

radiation. Details on the estimated effects can be found in Table 3.  

Table 3 – Results of the GLM analysis in the FRDA group including DD, tSARA and sex. Bold p-

values are considered significant (less than 0.05). 

Structure Mean Std 

Sex 

(p-val) 

DD  

(p-val) 

tSARA 

(p-val) 

Sex  

(β) 

DD 

(β) 

tSARA 

(β) 

GLM Eq. [30] of FA  

Anterior limb of internal capsule L 0,447 0,032 0,047 0,739 0,004 0,026 0,000 -0,001 

GLM of MD (mm
2
/s x 10

3
) 

Anterior limb of internal capsule L 2,786 0,238 0,026 0,701 0,035 -0,249 -0,002 0,007 

Post. thalamic r. and PLIC L 2,703 0,197 0,167 0,689 0,048 -0,133 -0,002 0,006 

GLM of RD (mm
2
/s x 10

3
) 

Anterior limb of internal capsule L 0,682 0,082 0,019 0,835 0,016 -0,085 0,000 0,003 

Post. thalamic r. and PLIC L 0,553 0,063 0,111 0,767 0,025 -0,047 -0,001 0,002 

PLIC is the “Posterior Limbo of Internal Capsule”. Post. Thalamic r. is the Posterior Thalamic Radiation. 

 

DD was not significant in any of the evidenced regions, while gender was a useful predictor 

and showed significantly lower values for females (gender was a binary variable with Sex=1 

for females). Interestingly, the functional score tSARA correlated positively with MD and 

RD, but negatively with FA. Being tSARA an inverse scale, where 0 corresponds to perfect 

functionality and 40 to complete impairment, this is in line with previous findings of lower 

FA and higher MD values in disease progressions.   

Conclusions 

We performed an explorative DTI study to investigate white matter alterations in a 

population affected by FRDA. Accurate pipelines available for DTI analysis were employed 

throughout the processing steps to achieve the highest statistical power given the limited 

sample size included in this study. We found major white matter alterations in the 

cerebellum, in the cortico-spinal tract and in the corpus callosum, areas that comply with the 

motor impairment and the symptoms that characterize the disease. The general trend that 

could be observed on the voxel-wise differences maps was a reduction of FA, linked to an 

increment of RD in the patients group. Previous studies with DTI have linked increased RD 

but almost constant AD values to myelin related impairments more than axonal inflammation 

(Aung, Mar, & Benzinger, 2013), situation that may be compatible with the etiology of 

FRDA. In addition to group comparisons, the correlation between DTI metrics and clinical 

covariates were evaluated. The GLM analysis showed that the functional scale tSARA 
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correlated with DTI metrics in the left interior capsule and thus part of the left cortico-spinal 

tract. These findings corroborate the idea of MRI and in particular of dMRI as tools to 

monitor microstructural damage over multiple stages of the disease.     
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CHAPTER III: CHARACTERIZATION OF THE TEMPORAL LOBE IN 

MULTIPLE SCLEROSIS PATIENTS WITH NODDI. 

 

Introduction 

During the last decade several studies have proposed novel ways to fit the dMRI signal and 

extract measures related to the biophysical substrate. Established techniques as ADC or DTI 

can be regarded as statistical models to describe the diffusion process, reason why they can 

be ideally applied to any biological tissue. In contrast, biophysical models describe the 

diffusion signal by accurate modeling of the tissue microstructure, combining observations 

from different fields, as microbiology and histology. They can be applied only to the specific 

tissue they have been designed for, but ideally provide biologically relevant and interpretable 

measures. A number of different models has been proposed to fit the diffusion signal in the 

brain, as for example ActiveAx (Alexander et al., 2010), AxCaliber (Assaf, Blumenfeld-

Katzir, Yovel, & Basser, 2008), CHARMED (Assaf & Basser, 2005) and the “Neurite 

Orientation Dispersion and Density Imaging” (NODDI) (H. G. Zhang, Schneider, Wheeler-

Kingshott, & Alexander, 2012). Among all these models, NODDI recently gained popularity 

not only in technical research but also in clinical studies, being the first to provide an intuitive 

biophysical description within clinically acceptable acquisition requirements. This chapter 

introduces the main concepts behind the NODDI model and presents an application of 

NODDI to monitor temporal lobe damage in Multiple Sclerosis (MS) we performed in 

collaboration with the MS Centre of Verona University Hospital (M Calabrese et al., 2016).  

Multiple sclerosis is a degenerative disorder of the brain and of the spinal cord, characterized 

by progressive demyelination of the axons as result of inflammation processes (Compston & 

Coles, 2008). The disease is categorized “relapsing-remitting” (RRMS), when damage occurs 

during acute episodes followed by incomplete recovery and thus impairment accumulation 

over time, or progressive, with continuous tissue damage over time. Additional classifications 

of MS subtypes can be made between primary and secondary MS, as exemplified in Figure 

9.   
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Figure 9 Four subtypes of multiple-sclerosis characterized by different progression over time.  

 

The origin of MS remains unknown, however, it has been hypothesized to be an autoimmune 

disease triggered by environmental factors in individuals with genetic risk profiles. The 

immune system appears to have a key role, with abnormal migration of lymphocytes across 

the blood brain barrier, accumulation of macrophages and inflammatory cytokines in the sites 

of activation. MRI is a fundamental tool in MS diagnosis (Polman et al., 2005). Lesions 

appear with hyper-intense signal in T2W images in their early stages, due to the longer T2 time 

of fluids compared to tissues. Additional specificity in the differentiation of lesions may be 

achieved by inspection of the “black-holes” in T1W images (Sahraian, Radue, Haller, & 

Kappos, 2010). In the past MS was considered a white matter disease, however, recent 

studies have proved that inflammation and damage occur also in gray matter (GM) and that 

GM lesions are a prominent cause of disability (Massimiliano Calabrese, Rinaldi, et al., 2010, 

2010; Massimiliano Calabrese, Rocca, et al., 2010; Massimiliano Calabrese, Filippi, & Gallo, 

2010; Rinaldi et al., 2010). In the current context of MS studies, it has been observed that 

epilepsy prevalence in MS patients is 3 times higher than in the normal population. However, 

the link between GM damage and epilepsy is not well known, despite previous studies on the 

topic (Massimiliano Calabrese et al., 2008; Truyen et al., 1996). The purpose of this study is 
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to further investigate this phenomenon with a comprehensive MRI protocol that includes a 

multi-shell dMRI acquisition. 

Theory 

DTI has been largely applied to study WM in MS studies. However, in this study we chose to 

employ the NODDI model in place of DTI following two main observations. Firstly, DTI can 

well describe the dMRI signal in WM with single fiber population, however, it lacks of 

specificity when applied to GM. The cortex is mainly populated by cell bodies and randomly 

oriented dendrites, that result in low apparent FA values with consequent low specificity of 

MD, AD and RD. Moreover, only data acquired in a specific and tissue dependent range of 

diffusion weightings can be appropriately fit with DTI. At strong diffusion weightings (i.e. 

above b=1500s/mm
2
 in the brain) the contribution of membrane restrictions or water pools 

characterized by very slow diffusivity to the diffusion signal becomes prominent, and the 

signal deviates from the expected Gaussian decay (hence the name non-Gaussian diffusion). 

The NODDI framework explicitly models some of the main components of the brain tissue, 

as cell bodies, neurites and free water, and should thus provide more specific measurements. 

Additionally, NODDI can deal (and requires) data acquired both at low (in this study 

b=700s/mm
2
) and strong (in this study b=2000s/mm

2
) diffusion weighting. The need for more 

data than DTI results in prolonged acquisition time, but potentially delivers more information 

about the diffusion process. Three independent compartments without exchange are used to 

model the brain tissue in the NODDI framework: an isotropic diffusion compartment (iso), 

that mainly accounts for the Cerebro-Spinal Fluid (CSF) or interstitial water outside cells, an 

intra-neurite compartment (ic) to represent highly anisotropic structures as axons and 

dendrites, and an extra-neurite compartment (ec) to account for hindered / tortuous diffusion 

of cell bodies (glia, macrophages, etc.). The general equation that summarizes the relation 

between the three compartments and the measured signals is: 

     (                            ) [31] 

subject to the constraint        . The normalized signals of the three compartments are 

defined as follows: 

 

                
 [32] 
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    ∫                  [33] 

           ∫             [34] 

The formulation of the isotropic compartment follows a simple isotropic Gaussian decay with 

diffusion constant equal to that of water at 37 degrees. One of the innovations of the NODDI 

framework is the introduction of a spatial distribution function f(n) to modulate Gaussian 

tensor-based decays. The simplest choice for f(n) is the Watson distribution: 

 
      (

 

 
 
 

 
  )          [35] 

where M references a confluent hyper-geometric function, and   quantifies the orientation 

dispersion around the mean direction (μ) for each gradient direction (n). A final note regards 

the diffusion tensors used in     and    : the first has only an axial (parallel) diffusion 

coefficient    and no perpendicular diffusivity, describing a zero-radius cylinder as done in a 

previous study (Behrens et al., 2003), while the latter constrains the perpendicular diffusivity 

to depend on the parallel through a tortuosity model (Szafer, Zhong, Anderson, & Gore, 

1995). More details on the implementation of     and     can be found in to the original 

NODDI paper of Zhang et al. (H. G. Zhang et al., 2012). The basic NODDI framework has 4 

degrees of freedom, given by the free parameters νic, νiso,  , μ, while    and diso are fixed to 

1.7x10
-3

mm
2
/s and 3.0x10

-3
mm

2
/s respectively. Optionally, the framework allows to fit also 

the non-weighted signal S0.   is lower bounded to 0 but upper unbounded, therefore it is often 

replaced by the Orientation Dispersion (OD) parameter: 

 
   

 

 
       

 

 
  [36] 

Differently from other frameworks as DTI, the NODDI fit does not rely on NLLS but instead 

on the minimization of a Rician Maximum Likelihood function (RML) that includes the 

measurement noise in the formulation (Sijbers & den Dekker, 2004): 

 
             

     

   
          (

   

  
) [37] 

where S comes from the equation [31], E is the measured signal, σ is the noise standard 

deviation and I0 the modified zero-order Bessel function. 



Chapter III: Characterization of the temporal lobe in multiple sclerosis patients with 

NODDI.      

 

32 

 

Data & Methods 

Twenty-three RRMS patients with epileptic seizures (RRMS/E) and twenty-three RRMS 

control patients without any story of seizures underwent MRI with a 3T Philips Achieva 

(Philips Medical Systems) at the MS Centre of Verona University Hospital. Only patients 

with seizures that could be explained by MS only were included in the RRMS/E group. 

Patients of both groups were diagnosed by an experienced neurologist according to the 2010 

McDonald‟s criteria (Sadaka et al., 2012) and the Expanded Disability Status Scale 

(EDSS,(Kurtzke, 1983)). Seizures of the RRMS/E group were scored according to the 

International League against Epilepsy guidelines (Polman et al., 2011). A two shells dMRI 

sequence (TE=109ms, TR=12.5s, flip angle 90 degrees, SENSE factor 2, resolution 

2x2x2mm
3
, SPIR fat suppression) was acquired with 8 non-weighted volumes, 32 gradient 

directions at b=700s/mm
2
 and 64 gradient directions at b=2000s/mm

2
. Directions of both 

shells were evenly distributed on a half-sphere. In addition, other structural sequences were 

acquired for diagnosis, lesion identification and to support the dMRI pre-processing: 

 3D Fluid Attenuated Inversion Recovery (FLAIR) TE/TR 292/5500ms, Inversion Time 

(TI) 1650ms, resolution 1x1x1mm
3
; 

 3D Double Inversion Recovery (DIR) TE/TR 292/5500ms, TI1 525ms, TI2 2530ms, 

resolution 1x1x1mm
3
; 

 3D T1W Fast Field Echo TE/TR 3.7/8.4ms, resolution 1x1x1mm
3
; 

 3D T2W Turbo Spin Echo (TSE) TE/TR 268/2600ms, resolution 1.7x1.7x1.7mm
3
. 

dMRI data was pre-processed with Tortoise to reduce motion, eddy currents and EPI artifacts 

using the T2W sequence as non-distorted reference. The NODDI model was fitted on the 

complete 2 shells dMRI acquisitions using the MATLAB Toolbox available at 

http://mig.cs.ucl.ac.uk. ROIs delineating the hippocampus, the parahippocampus, superior – 

medial – inferior temporal gyrus, temporal pole, fusiform gyrus, cingulate gyrus and insular 

cortex were derived from T1W data using the automated, volume based Advanced 

Normalization Tools (ANTs) pipeline (Das, Avants, Grossman, & Gee, 2009) and the Multi-

Atlas Label Fusion (MALF) technique (H. Wang et al., 2013). The MALF approach requires 

a training set of labeled brains to perform the segmentation of each subject.  For this purpose, 

we employed the dataset publicly available from the 2012 MICCAI Multi-Atlas Labeling 

Challenge, that consists of 30 labeled brains, that were non-linearly registered with ANTs to 

each patient‟s space. The first non-weighted image of the dMRI data was non-linearly 

http://mig.cs.ucl.ac.uk/
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registered to the T1W space of each subject using the T2W as intermediate step to improve the 

registration quality. For this step, the non-linear deformation field was constrained to the 

phase encoding direction (Posterior-Anterior).  

DIR and FLAIR images were assessed by consensus of experienced observers to compute the 

number of gray matter lesions (GMLs) and white matter lesions (WMLs) respectively. Group 

comparisons were performed to assess difference in the distributions of the covariates and 

clinical variables in the two groups. Differences of WMLs were tested through analysis of 

variance (ANOVA), while GMLs and EDSS, that were non-normally distributed, were tested 

through the Mann-Whitney U-Test. Difference of female/male ratio and age were tested with 

Pearson‟s chi-square. The association between the presence of seizures (binarized) and MRI 

derived parameters (GMLs, NODDI indices) was evaluated for each ROI using a GLM with 

logistic regression.  

Results 

Clinical variables, MRI derived covariates and the p-value of the hypothesis tests of RRMS 

and RRMS/E patients are reported in Table 4. 

Table 4 Demographic and clinical variables of the RRMS and RRMS/E groups. Only EDSS and 

GMLs were differently distributed in the two groups. 

 
RRMS (N=23) RRMS/E (N=23) p-value 

Female:male 16:7 15:8 0.100 

Age (years) 42.4 ± 10.3 45.7 ± 7.8 0.290 
Disease duration (years) 5.2 ± 2.4 5.5 ± 2.6 0.415 

EDSS, median 1.5 3.5 <0.001 
Epilepsy duration (years) NA 4.3 ± 2.4 

 WMLs 9.6 ± 4.1 10.3 ± 5.1 0.154 
WML volume (cm3) 4.1 ± 4.3 4.9 ± 4.4 0.102 

GMLs  2.0 5.0 <0.001 
Patients with CLs (%) 60.8% 91.3% 0.034 

MRI: magnetic resonance imaging; RRMS: relapsing remitting MS; RRMS/E: RRMS with 
epilepsy; EDSS: Expanded Disability Status Scale; WML: T2 white matter lesions; GML: grey 
matter lesion. CL: Cortical Load 

 

Age, gender and disease duration did not differ significantly among the two groups, while the 

EDSS score was higher for RRMS/E than RRMS. WMLs and the WML volume were also 

not significantly different, however, GMLs were significantly higher in the RRMS/E group. 

The different distribution of GMLs could be directly observed on DIR images, as shown in 



Chapter III: Characterization of the temporal lobe in multiple sclerosis patients with 

NODDI.      

 

34 

 

Figure 10. 208 GMLs were observed in 21 out of 23 RRMS/E, while only 93 GMLs were 

observed in 14 out of 23 RRMS.  

 

Figure 10 3D DIR of three RRMS/E (a,b,c) and three RRMS (d,e,f) patients without history of 

seizures. RRMS/E show severe hyppocampal demyelination (arrows, a) and several gray matter 

lesions (arrows,b) including insular cortex (arrows,c). RRMS patients do not show any GML 
withstanding the severe WML (arrows, d,e,f).   

Significant statistical differences of the NODDI metrics among the two groups were found in 

many of the analyzed ROIs. In particular, νiso was significantly higher for the RRMS/E group 

in all the considered regions. νic was observed to be increased (between 11.2% and 18.3%) in 

all ROIs of RRMS/E compared to RRMS, however p-values below 0.05 were found only in 

the inferior temporal gyrus and in the insular cortex. Finally, RRMS/E had higher OD values 

in the hippocampus, parahippocampus and insular cortex. Relative and absolute differences 

of the metrics in the two groups and p-values of the tests can be found in Table 5, while 

examples of NODDI maps with overlaid the cortical MALF parcellation can be seen in 

Figure 11. 
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Table 5 – ROIs for which statistically different NODDI indices were found among the two groups. νiso 

was significantly different among all temporal lobe ROIs, suggesting atrophy in the RRMS/E group. 

Structure OD p-value νiso p-value νic p-value 

Hippocampus 0.025 (4.9%) 0.021 
0.092 

(17.3%) 0.023 
0.060 

(10.3%) - 

Parahippocampus 0.022 (4.5%) 0.023 
0.072 

(14.9%) - 
0.067 

(10.6%) - 
Superior temporal 
gyrus 0.005 (1.0%) - 

0.142 
(31.2%) 0.001 

0.075 
(18.0%) - 

Middle temporal 
gyrus 0.004 (0.8%) - 

0.125 
(28.9%) 0.007 

0.077 
(19.0%) - 

Inferior temporal 
gyrus 0.007 (1.5%) - 

0.124 
(31.4%) 0.003 

0.090 
(20.6%) 0.019 

Temporal pole 0.015 (3.0%) - 
0.097 

(19.6%) 0.006 
0.075 

(16.4%) - 

Fusiform gyrus 0.013 (2.5%) - 
0.115 

(30.7%) 0.017 
0.080 

(17.7%) - 

Cingulate gyrus 0.006 (1.3%) - 
0.114 

(23.7%) 0.015 
0.081 

(18.6%) - 

Insular cortex 0.021 (4.2%) 0.028 
0.129 

(34.9%) 0.002 
0.090 

(19.1%) 0.041 
Superior frontal 
gyrus 0.005 (1.0%) - 

0.120 
(02.9%) 0.011 

0.091 
(15.5%) 0.058 

Whole temporal 
lobe 0.012 (2.4%) 0.025 

0.124 
(28.6%) 0.011 

0.090 
(15.3%) 0.042 

RRMS: relapsing remitting MS; RRMS/E: RRMS with epileptic seizures; ODI: orientation 
dispersion index; νiso volume fraction of the isotropic compartment; νic intra-neurite volume 
fraction 
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Figure 11 Example of the temporal lobe parcellation obtained with the MALF technique over-
imposed on the NODDI maps Intra-Cellular Volume Fraction (νic, first column), Isotropic Volume 

Fraction (νiso, middle column) and Orientation Dispersion (OD, last column).  

 

Conclusions 

In this study we employed the NODDI model to investigate microstructural alterations of the 

temporal lobe cortex in MS patients with and without epileptic seizures. Our findings suggest 

that patients in the RRMS/E group had a significantly higher number of gray matter lesions, 

as observed on DIR images. In this context, the NODDI model showed increased atrophy in 

the whole temporal lobe of the RRMS/E than RRMS. Indeed, the increment of νiso in the 

RRMS/E group can be explained by an increment of free water, due to inflammation 
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processes, or increased partial volume effects due to atrophy. In this latter case, the 

consequent reduction of the cellular component, including both neurites and cell bodies, 

justifies the increment of the free water component. We observed higher νic values of 

RRMS/E compared to RRMS, values that were statistically different between the two groups 

in some cortical areas, implying an impaired ratio of axons over cell bodies, probably due to a 

reduction of the latter due to atrophy. The final observation that OD was increased in the 

hippocampal area supports the idea of less coherent or more demyelinated fibers in that area, 

consistently with observations on DIR images. Biophysical models as NODDI open a new 

perspective on the applicability of dMRI to the investigation of GM in clinical studies. 

Although these techniques require the acquisition of more data and have a more complex 

mathematical formulation than DTI, they potentially provide metrics that are more specific, 

pushing the field toward the definition of microstructure specific indices. 
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CHAPTER IV: TISSUE SPECIFIC MODELING WITH SPHERICAL 

DECONVOLUTION 

 

Introduction 

In Chapter III it was observed that DTI is well suited to describe dMRI signals of a single 

fiber population (i.e. a single dominant anisotropic structure) and within diffusion weightings 

where the Gaussian assumption holds. However, recent evidence showed that a large part of 

white matter contains two or even three major fiber orientations (Jeurissen, Leemans, 

Tournier, Jones, & Sijbers, 2013), that are characterized by a number of geometrical 

configurations, as branches, kisses, intersections (Figure 12).  

 

Figure 12 Example of fibers configurations that cannot be properly modeled with the DTI framework. 

Kissing fibers are shown on the left, crossing fibers in the middle, diverging/converging fibers on the 
right.   

Additionally, the acquisition and interpretation of data at strong diffusion weighting may 

benefit the investigation of complex multi domain tissues as gray matter, but also the 

detection of multiple fiber orientations in white matter (Dell‟acqua et al., 2005). This chapter 

deals with a method, presented as conference proceedings at ISMRM 2015, to segment brain 

tissues based on their specific diffusivity properties, then shows its application to healthy 

controls and a patient affected by MS (Alberto De Luca et al., 2015b). The idea behind this 

method was inspired partly from the NODDI formulation and partly from a model-free 

technique, the Multi-Shell Multi-Tissue approach (MSMT,(Jeurissen, Tournier, Dhollander, 

Connelly, & Sijbers, 2014)). The model-free approach offers a number of advantages over 

classic multi-compartment models, as it relies on very few assumptions about the underlying 

tissues. However, with such approaches it is generally difficult to derive biophysically 

meaningful parameters. The model that we developed describes the brain tissue with three 
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compartments, each devoted to one of the main tissue types found in the brain, but uses ideas 

from the MSMT approach to reduce the number of estimated parameters and their 

uncertainty. 

Theory 

Spherical Deconvolution (SD) is an approach alternative to multi-compartment models to 

describe the diffusion signal. Instead of providing an explicit model that is fit with Least-

Squares or similar approaches, SD requires the construction of a dictionary matrix of size 

nxp, where n is the number of acquired DWIs and p the number of entries in the dictionary. 

The technique essentially consists in finding the linear combination of the columns of the 

dictionary that best explains the measured signal. Denoting with S the measured signal, with 

U the dictionary matrix and p the amplitude of the columns of U (deconvolution vector), the 

general formulation of SD is: 

      [38] 

        [39] 

The major difference with model fit approaches is that no assumptions are made about the 

number of signal components and no parameters are estimated, but only the relative 

amplitudes of the columns of U. For this reason, SD is often regarded as a model-free 

approach. However, this nomenclature should be interpreted with caution, as the columns of 

U may be generated with parametric or geometric models that still require the tuning of some 

parameters. The first application of SD in the human brain in conjunction with the diffusion 

tensor was proposed by Dell‟Acqua and colleagues (Dell‟acqua et al., 2005), where the 

authors used the DTI model to generate the columns of U. Tournier and colleagues (J-Donald 

Tournier, Calamante, Gadian, & Connelly, 2004) proposed the usage of Spherical Harmonics 

(SH) basis in place of the diffusion tensor to achieve better angular resolution. Independently 

from the choice of the basis function used to generate the dictionary, SD suffers of issues and 

limitations that are well known in any field dealing with deconvolution. Firstly, the problem 

is ill-posed, i.e. Eq. [38] may have multiple solutions to the problem. Additionally, the 

problem is generally ill-conditioned, meaning that the number of rows of U is generally much 

smaller than the number of the columns, thus the inversion problem in Eq. [39] is extremely 

prone to numerical errors and to noise. As a result, small changes in S lead to great changes in 

the reconstructed vector p. Some methods have been proposed to mitigate these issues, as the 
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Constrained Spherical Deconvolution (CSD) (J-Donald Tournier et al., 2008), or the modified 

Dumped “Richardson-Lucy” (mDRL) algorithm (Dell‟acqua et al., 2010). Another viable 

way, that has not been well explored in the dMRI context is the regularized Non-Negative 

Least Squares (NNLS) approach. CSD coupled with SH basis is probably the most popular 

SD technique in the current literature about dMRI deconvolution. However, this chapter is 

developed around mDRL, while more details about the NNLS approach will be discussed in 

Chapter VI in a different application. Before introducing the signal model used in this work, 

it is useful to present the Multi-Shell Multi-Tissue (MSMT) technique. The CSD approach to 

Eq. [39] is to solve a constrained least-squares problem: 

 
{  

      
 ̂

 

 
‖  ̂   ‖ 

 

    
 [40] 

where A is a matrix relating the deconvolution coefficients to the signal amplitudes while 

imposing positivity, x is the deconvolution vector, C is the dictionary built with SH basis and 

d the data acquired with different diffusion gradient directions but a specific diffusion 

weighting. In most applications of CSD the vector C is estimated directly from the data 

(response function), i.e. picking voxels with single fiber population and deriving the SH 

decomposition of the average signal. Eq. [40] can be extended to support data acquired at 

multiple diffusion weighting: 
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Where di is the vector of data acquired with different diffusion gradient directions and the i-th 

diffusion weighting, m is the number of diffusion weightings and Ci the corresponding SH 

basis dictionary. The extension of Eq. [41] to include n tissue types (n response functions) is 

the foundation of the MSMT framework: 
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For the analysis of brain dMRI data the authors proposed to use 3 tissue classes, i.e. WM, 

GM and CSF. GM and CSF were described with direction independent signals (isotropic 

diffusion, zero-order SH). The simplified formulation of the problem takes the following 

form: 

                              [43] 

where fx are the fractional amplitudes of each tissue type and C their response functions, that 

are estimated from chosen representative voxels. The choice of picking a response function 

for each subject arises concerns about the comparability of fractions estimated from different 

subjects or from the same subject over multiple time-points. Moreover, it implicitly assumes 

the diffusion properties of each tissue type to be constant throughout the brain, assumption 

that may hold for CSF but is probably less trivial for different gray matter areas. Finally, no 

measures of diffusion are quantified for any of the analyzed tissue classes. We proposed a 

different formulation to address these observations: 

     (           
        

               (     
                                )) 

[44] 

With “FREEWATER” we denote a compartment characterized by isotropic diffusion and 

diffusion coefficient 3x10
-3

mm
2
/s (diffusion constant of water at 37 °C). “ISO” was attributed 

to an isotropic diffusion compartment with diffusion coefficient 0≤DISO<3x10
-3

mm
2
/s. 

Finally, SDANISOTROPIC refers to an anisotropic compartment that is modeled with SD, choice 

that avoids the introduction of additional parameters while preserving the ability to follow 

complex fiber architectures. In its final formulation, that is schematized in Figure 13, the 

model resembles an extended “Ball and stick” model (Behrens et al., 2003), with an arbitrary 

number of sticks and with the addition of free water. 

The columns of the deconvolution matrix U used to derive SDANISOTROPIC were generated with 

the DTI model for the same diffusion directions and weighting used in the acquisition scheme 

and imposing the following eigenvalues for the diffusion tensor: λ1=1.6x10
-3

mm
2
/s, λ2= 

λ3=0.3x10
-3

mm
2
/s. 
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Figure 13 Schematic representation of the three compartments included in our proposed framework. 

Two of the three compartments are isotropic Gaussian decaying compartments, one with fixed 
diffusivity (free water), one estimated but bounded. The anisotropic compartment is derived with 

spherical deconvolution, therefore only its fraction is estimated. 

 

The deconvolution operation was performed with the mDRL algorithm cycling 400 iterations. 

Recalling the notation used in Eq. [39], the procedure can be written as an iterative algorithm:  

 
[      ]  [    ](  [    ] (

           

       
)) [45] 

where u is a vector damping each element of p, and k is the current iteration. The output of 

the mDRL algorithm was thresholded above its mean value, to decimate small lobes and 

penalize non-sharp deconvolution results, then normalized and multiplied by U to obtain 

SDANISOTROPIC. In Eq. [44] it is noticeable that SDANISOTROPIC is multiplied by the parameter K, 

with the purpose of scaling the signal to better fit voxels characterized by different response 

functions (i.e. diffusivity values different from those imposed to generate U). The fit of Eq. 

[44] was performed with non-linear least squares using the Trust Region Reflective algorithm 

and imposing the following physiologically feasible constraints on the parameters: 

 fFREEWATER and fISO between 0 and 1; 

 DISO between 0 and 1.3x10
-3

 mm
2
/s; 

 K between 0.7 and 2. 
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Among the advantages of this approach we underline that it provides fractional coefficients 

that are bounded between 0 and 1, as well as voxel-wise estimation of a diffusion coefficient 

specific to gray matter.  

Data & Methods 

dMRI and T1W data of 3 healthy subjects were downloaded from the Human Connectome 

Project (HCP, (McNab et al., 2013; Van Essen et al., 2013)) 3T database. The T1W scan was 

performed with the following acquisition parameters: Magnetization Prepared Rapid 

Acquisition Gradient Echo (MPRAGE), TE=2.14 ms, TI=1s, TR=2.4s, resolution 1x1x1mm
3
. 

dMRI data was acquired following a blip-up blip-down phase-encoding paradigm to perform 

accurate EPI correction and least-squares signal reconstruction (Andersson et al., 2003). The 

dMRI acquisition was performed with the following parameters: TE=89.5ms, TR=5.52s, 

resolution 1x1x1mm
3
. dMRI data included 18 non-weighted images and 90 gradient 

directions evenly distributed on half sphere at b=1000,2000,3000s/mm
2
, for a total of 288 

volumes. Data of the HCP was employed for development and validation of this model as it 

is of public domain, thus improving studies repeatability, and it is characterized by high 

acquisition quality, guaranteed by customized hardware and dedicated gradient amplifiers 

capable of generating RF pulses up to G=300mT/m. An explorative application of this 

method was also performed on the data of a patient affected by MS (male, 42 years old). The 

subject underwent an MRI session with a Philips Achieva 3T scanner at the MS Centre of 

Verona University Hospital. The acquisition included a 3D T2W TSE scan (TE/TR 

268/2600ms, resolution 1.7x1.7x1.7mm
3
), a 3D FLAIR volume (TE/TR 292/5500ms, 

Inversion Time (TI) 1650ms, resolution 1x1x1mm
3
) and a dMRI acquisition (TE=109ms, 

TR=12.5s, flip angle 90 degrees, SENSE factor 2, resolution 2x2x2mm
3
, SPIR fat 

suppression) with 32 directions at b=700s/mm
2
, 64 directions at b=2000s/mm

2
 and 7 non-

weighted volumes. dMRI data from the HCP project was pre-processed with the “Topup” and 

“Eddy” tools of FSL (Andersson & Sotiropoulos, 2016). The first estimates a warp field from 

the data acquired with opposite phase-encodings to correct for geometric distortions caused 

by B0 inhomogeneity and eddy currents, the second performs motion correction in 

concatenation with the pre-computed warp field, then performs data reconstruction using both 

acquisitions and a least squares approach. dMRI data of the MS subject was acquired only 

with PA phase-encoding and was pre-processed with Tortoise using the T2W image as 

reference. T1W data was processed with the N4 tools of ANTs (Tustison et al., 2010) to 

reduce intensity field biases, then the standardized FSL anatomical pipeline “fsl_anat” was 
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performed. This pipeline serially applies common FSL tools as the “Brain Extraction Tool” 

(BET, (S. M. Smith, 2002)), that performs brain extraction (also called skull removal), and 

FAST ((Y Zhang, Brady, & Smith, 2001)) to perform the actual tissue segmentation into gray 

matter, white matter and cerebrospinal fluid. FAST, that is one of the most common tool for 

brain tissue segmentation, outputs the Partial Volume Estimation (PVE) maps for each tissue 

class. dMRI data was fitted with Eq. [44] to derive voxel-wise maps of fISO, fFREEWATER and 

DISO. Assessment of the goodness of fit was performed to ensure the voxel-wise residuals had 

zero mean (one sample t-test), and were normally distributed after variance normalization 

(chi-square test). Additionally, voxel-wise R
2
 values and estimates precision were evaluated, 

with the latter expressed as percentage coefficient of variation, CV%. R
2
 is not a good metric 

to compare non-linear regressions (Spiess & Neumeyer, 2010), however, it still is an 

informative metric about the explained variance. Statistics of CV% were evaluated where 

each parameter was meaningful, i.e. statistics for fISO and DISO were computed in GM, 

statistics of fFREEWATER in CSF (masked using the PVE map). T1W data of each subject was 

rigidly aligned to the first non-weighted dMRI volume with ANTS using the Normalized 

Mutual Information metric (Avants et al., 2011). The rigid transformation was sufficient to 

obtain proper alignment of the data thanks to the full correction of EPI geometric distortions. 

Spatial correspondence between the segmentation obtained with T1W derived GM – WM – 

CSF PVE and the corresponding maps fISO, 1-fISO, fFREEWATER was evaluated with a custom 

metric. In particular, the fractional maps provided by the algorithm (A) were compared with 

the PVE segmentation (B) obtained with FSL FAST on the T1W scan using the following 

agreement metric: 

    = 1 − |  − 𝐵|/(  ∪ 𝐵). [46] 

The agreement between the fractional maps and the PVE segmentation was further exploited 

with a linear regression: for each tissue class both segmentations were thresholded at 

different values, from 0 to 1 with step 0.05, then the number of voxels above the thresholds 

was counted. On the resulting vectors of each tissue class X, respectively         for PVE 

and       for the corresponding map estimated from our model, we performed the linear 

regression 

                       [47] 

and computed its adjusted R
2
 value. 



Chapter IV: Tissue specific modeling with spherical deconvolution      

 

45 

 

Results 

Data downloaded from the HCP database was fit with Eq. [44] as mentioned above, then 

goodness of fit was assessed with statistical analysis of the voxel-wise residuals. The 

residuals were overall zero-averaged, and only a small percentage of voxels, between 0.09% 

(HCP subject 1) and 0.23% (HCP subject 3), deviated from the null hypothesis. None of the 

chi-square tests performed on the weighted residuals rejected the null-hypothesis of the data 

coming from a standard normal distribution. Average voxel-wise R
2
 values were between 

0.98±0.03 (HCP subject 3) and 0.99±0.02 (HCP subject 1), and although R
2
 is not a good 

metric for non-linear least squares regressions, it suggests an overall appropriate fit of the 

data. Visual inspection of the residuals weighted by the a-posteriori variance further 

confirmed the randomness of the fit. Figure 14 shows the mean ± standard deviation of the 

average weighted residuals computed in GM and WM (segmented with the T1W derived PVE 

maps) of HCP S1.  

 

Figure 14 Mean (solid lines) and mean ± standard deviation (dotted lines) of the average weighted 

residuals computed in the GM (red) and WM (green) of HCP S1. WM and GM were segmented using 
the PVE maps computed on T1W data. Residuals were randomly distributed with zero mean in both 

cases. 

A middle axial slice for each of the estimated parametric maps of the three HCP subjects is 

reported in Figure 15. It is appreciable that fISO assumed high values in the cortical area, 

while 1- fISO was conversely high in white matter. Finally, fFREEWATER assumed high values in 

regions known to be dominated by CSF, but it was non-zero also in tissue voxels. The 
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estimated DISO values, that appeared to be very specific of the cortical area, were around 

0.7x10
-3

mm
2
/s. Color maps representative of the DW tissue segmentation were created by 

assigning fFREEWATER to the blue channel, fISO to the green channel and 1- fISO to the red 

channel. Same procedure was followed for the T1W PVE segmentation computed by FSL 

FAST. The RGB maps, both shown in Figure 15 for each subject, had high spatial 

agreement, although the cortical layer appears to be thinner in the DW segmentation. 

Eventually, this may be due to the dominant influence of CSF on the dMRI signal, given its 

long T2. Moreover, the compartments modeling CSF and GM were both characterized by 

isotropic Gaussian decay, thus their identifiability might be low in situations of small partial 

volume effects. 

 

 

Figure 15 A middle axial slice of the T1W images of the three HCP subjects (first column), and the 

corresponding parametric maps derived with our model (columns 2 to 5). The high spatial 

correspondence between the parametric maps and the biological tissue they should describe is 
appreciable. Last two columns show the segmentation RGB maps from DW and T1W respectively, 

obtained assigning gray matter to green, white matter to red and cerebrospinal fluid to blue. 

Quantitative agreement between each fx map and the corresponding T1W derived PVE map 

were computed for each subject thresholding the maps at different values between 0 and 1, 

then the agreements were averaged to obtain Figure 16. 
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Figure 16 Spatial agreements between the fractional maps estimated from our model and the PVE 
maps provided by FSL FAST. Agreements were obtained with variable thresholds for both maps. 

From left to right CSF, GM and WM. All three classes show good linear agreement and high 

correspondence.  

The agreements appeared to be consistent across subjects and high for a wide range of 

thresholds. Table 6 reports the adjusted R
2
 values of the linear regression between the two 

corresponding segmentation maps, that were very high and proved a good linear correlation, 

especially between the PVE of WM and fANISOTROPIC. 

Table 6 Adjusted R
2
 of the linear regression for each tissue class between the cumulative agreement 

masks between maps provided by our model and the segmentation provided by FSL FAST.  

Adjusted R2 of the         vs       regression  

Subject WM GM CSF 

HCP S1 0,97 0,80 0,83 

HCP S2 0,97 0,77 0,82 

HCP S3 0,97 0,76 0,82 

 

The median values of CV% on HCP S1-S2-S3 data were 20-16-17% for fFREEWATER, 24-27-

28% for fISO, and 16-17-17% for DISO.  

We applied our method to a patient affected by MS as proof of concept, obtaining the maps 

shown in Figure 17. Some lesions could be observed on the T1W image, however, the FLAIR 

acquisition offers a better contrast, highlighting four periventricular lesions and a number of 

smaller alterations in WM and close to the cortex. Interestingly, fFREEWATER showed higher 

values in some but not all the lesions, that were conversely highlighted by very high diffusion 

values in the DISO map. In agreement with results on the HCP data, fISO maps had high values 
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mainly in the brain cortex, but in addition showed high values in the lesions observed on the 

FLAIR image, as well as in other non-previously observed spots.   

 

Figure 17 Middle axial slice of T1W, diffusion derived maps and FLAIR of an MS patient. Lesions 
observable on the FLAIR image are visible as very high DISO values, increased fISO and increased 

fFREEWATER.  

 

Conclusions 

With this work we introduced a novel quantification scheme for dMRI data that combines 

spherical deconvolution with multi-compartment modeling to perform tissue type 

segmentation and provide a diffusivity metric specific to GM (DISO). This approach can be 

used to compute tissue segmentation when no structural data is available. Nonetheless, the 

segmentation here provided is based on the diffusion properties of the tissues, therefore it is 

not expected to perfectly match that obtainable from T1W data, that is known to have a slower 

response to underlying microstructural changes. Indeed, the comparison between the two 

segmentations may highlight early tissue alterations with stronger contrast. The initial 

experience with data of an MS subject, sampled with a clinically compatible protocol, 

supported the sensitivity of this technique. Further work will be needed to derive quantitative 

diffusivity indices related to the anisotropic compartment. It is important to point out some 

limitations of this work, that leave open space to further improvements. The deconvolution 

operation based on mDRL algorithm produces less sharp peaks than the CSD approach based 

on spherical harmonics, and requires the initialization of the deconvolution dictionary with 

arbitrary parameters. Interestingly, this also comes with the benefit of a more standardized 

analysis, differently from classic CSD techniques where a response function is picked for 

each subject and eventually for each tissue (MSMT). However, the minimum perpendicular 

diffusivity assumed for the anisotropic compartment is 0.3x10
-3

mm
2
/s, but to emulate a 

perfect ball and stick model a minimum value of zero should be allowed. Another limitation 

tackles the simplified formulation of the model, that does not take into account links between 
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different compartments as suggested by other models, as for example the tortuosity in 

NODDI. Eventually, the inclusion of similar links between the isotropic and anisotropic 

compartments might further enhance the performances of this approach. Finally, the fit of Eq. 

[44] is performed through non-linear Least-Squares with the Trust-Region Reflective 

Algorithm, that although robust may provide local non-optimal solutions, and is much slower 

than the algorithm employed in the MSMT approach, that solves a constrained linear system. 

Approaches as parallel computing could help reducing the computation time, while local 

minima could be avoided by smart initialization strategies as grid search. 
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CHAPTER V: INTRA-VOXEL INCOHERENT MOTION AND NON-

GAUSSIAN DIFFUSION OF THE SKELETAL MUSCLE 

 

Introduction 

Most of the developments and applications of dMRI have involved the brain, however, the 

technique was originally applied to the body, and the skeletal muscle was one of the first 

imaged tissues (Tanner, 1979). The Gaussian diffusion model has been applied to the skeletal 

muscle both in its isotropic (ADC) and anisotropic (DTI) formulations to investigate its 

healthy architecture (Froeling et al., 2012; Galbán, Maderwald, Uffmann, de Greiff, & Ladd, 

2004; Zijta et al., 2011), changes in disease (Bonati, Hafner, et al., 2015; Hooijmans et al., 

2015; Ponrartana et al., 2014) and the effects of training (Filli, Boss, et al., 2015; Froeling et 

al., 2015). In Chapter III it was observed that the Gaussian diffusion model can be applied 

only in a specific range of diffusion weightings, and that signals acquired above 

b=1500s/mm
2
 in the brain are affected by non-Gaussian diffusion. This is the case also for 

the skeletal muscle. However, the acquisition of muscle data at strong diffusion weighting is 

technically challenging, reason why this phenomenon has not been extensively investigated. 

Jensen et al. (Jensen et al., 2005) proposed the “Diffusion Kurtosis Imaging” (DKI) model as 

an extension of DTI to quantify non-Gaussian diffusion through the concept of kurtosis. 

Being an extension of DTI, DKI is a model of the diffusion process and does not make any 

assumption on the analyzed tissues, and actually is one of the few choices to quantify the 

non-Gaussian behavior of the dMRI signal in the skeletal muscle (Marschar et al., 2015). 

Previous studies on the brain (Guglielmetti et al., 2016; Pang et al., 2015) and on animals 

(Cheung et al., 2009) showed that kurtosis might achieve higher sensitivity to microstructural 

changes than DTI, therefore its clinical applicability to the skeletal muscle may be of great 

interest. dMRI acquisition protocols employed for the brain can be adapted to acquire data of 

the skeletal muscle, however, the much shorter T2 of the muscles leads to significantly 

reduced SNR at identical echo time. Additionally, fat is more abundant than in the brain and 

has a more complex composition, worsening the efficiency of fat suppression. A recent 

review by Oudeman et al. (Oudeman et al., 2015) summarizes these issues and also points out 

the effects of other covariates on the acquired signals. An additional source of variability in 

the dMRI signal is blood perfusion. Since the early days of dMRI, it was observed that the 

ADC model was not able to describe in-vivo data at low diffusion weighting (D Le Bihan et 
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al., 1986), where the water flowing in the micro-vascular network significantly contributed to 

the measured diffusion weighted signal. Such effect, named pseudo-diffusion, was described 

in the “Intra-Voxel Incoherent Motion” (IVIM) framework. Some recent works have 

recognized blood perfusion as a confounding factor for ADC estimations (Iima & Le Bihan, 

2016; Denis Le Bihan, 2013; Luciani et al., 2008), however few is known about its effect on 

DTI or DKI estimations. In this chapter we aim to address the applicability and the 

underpinnings of DTI, IVIM and DKI in the context of the skeletal muscle, showing the 

results of a study we recently published (Alberto De Luca, Bertoldo, & Froeling, 2016). 

Using both simulations and real data, we investigated the effects of perfusion on DTI and 

DKI estimates and the repeatability of the estimates. Finally, the cross-correlations between 

the computer parameters, including DTI and DKI parameters, were evaluated.  

Theory 

In dMRI the Gaussian diffusion is generally assumed, but at least three different diffusion 

regimes have been previously reported in literature: DTI, bi-exponential pseudo-diffusion 

regime at low b-values (IVIM) and non-Gaussian diffusion (DKI) at high b-values. The IVIM 

model was introduced by Le Bihan and colleagues (D Le Bihan et al., 1986), and essentially 

expresses the acquired signal S as the sum of two non-exchanging compartments: 

     (                   
) [48] 

where S0 is the non-weighted signal. Figure 18 shows a pictorial representation of the dMRI 

signal as sum of the tissue and perfusion signals. The parameter f in Eq. [48] quantifies the 

signal offset and thus the bias of the data at high b-values (the difference between the black 

solid line and circles in Figure 18). Differently, D* determines the perfusion signal decay at 

low b-values (solid red lines in Figure 18) but does not influence the signal bias for high b-

values. It should be noted that Eq. [48] implicitly assumes no water exchange takes place 

between the vascular and extra-vascular pool within the diffusion experiment time 

(Hazlewood, Chang, Nichols, & Woessner, 1974). When these assumptions are not met, 

models accounting for water exchanges should be considered, as the “Random Permeable 

Barrier Model” (Eric E. Sigmund et al., 2014). As observed in Chapter II and Chapter IV, the 

magnitude of ADC is generally between 0 and 3x10
-3

mm
2
/s, while D* can be 100 times 

higher.  
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Figure 18: An example of normalized dMRI signal (left column) and its logarithm (right column), 

generated with MD=1.5µm
2
/ms, perfusion signal fraction 10% and two D* values (first row 

D*=100mm
2
/s, second row D*=10mm

2
/s). Black circles are the tissue signal fraction that does not 

decay from 1 due to the perfusion signal fraction. The black solid line represents the DTI fit obtained 

acquiring only b=0 and b=400s/mm
2
, which over-estimated MD (1.8µm

2
/ms). The bias in DTI fit is 

determined purely by the perfusion fraction regardless of D*. 

Several strategies have been proposed to fit the IVIM model (Cho et al., 2015; Filli, Boss, et 

al., 2015) and to overcome fitting instability and issues due to the high variability of the 

signal generated from the micro-vascular network at low diffusion weighting, and to the 

multi-exponential formulation of the model. The DTI model can be extended to also take in 

account the signal loss due to perfusion, although extra data at low b-values is needed. 

Incorporating the IVIM equation [48] in the full tensor model (Chapter I, Eq. [18]), the bi-

exponential signal equation becomes:  

                
    

            ̅   [49] 

Perfusion free MD values (MDLIN) can alternatively be obtained using data acquired at 

multiple high b-values, where the contribution of fast de-phasing spins from the vascular and 

micro-vascular compartments is negligible and low enough such that the assumption of 

Gaussian diffusion is approximately valid. With this simpler approach, the effect of perfusion 

on MD can be minimized while still estimating f, however, values of D* cannot be computed. 
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Given S0 acquired at b=0s/mm
2
, MDLIN and the intercept S0

*
 can be computed with linear fit 

of the high b-values data, then f can be estimated as follows: 

 
  

     
 

  
 [50] 

 

Jensen et al. (Jensen & Helpern, 2010; Jensen et al., 2005) proposed the DKI framework as a 

convenient extension of the DTI model to account for non-Gaussian signals. DKI essentially 

descends from the Taylor expansion of log(S) (Chapter I, Eq. [20]) in successive powers of 

the term b: 

 
                  

 

 
                [51] 

where K is named apparent kurtosis coefficient, and under the short pulse condition (δ→0) 

quantifies the excess of kurtosis. Given the probability distribution function P(s,t) of a water 

molecule to undergo a displacement s in a time t, it is possible to define the average function 

operator: 

 
〈    〉  ∫               [52] 

Considered the gradient direction g, the excess of kurtosis in the time domain is defined as:  

 
     

〈      〉

〈      〉 
   [53] 

Eq. [51] can be written for each acquired gradient direction, therefore the result can be 

generalized to define the kurtosis tensor  ̅ and spatially describe the non-Gaussian diffusion 

process: 

 
                ∑ ∑      ̅  
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[54] 

 ̅ is a fourth order tensor with dimension 9x9 and thus 81 elements, but, thanks to symmetry 

constraints, only 15 elements have to be determined. Nonetheless, the simultaneous 

estimation of  ̅ and  ̅ results in a problem with 21 unknowns. The definition of low and high 

b-values in which each regime is valid is tissue dependent. The low b-value threshold 
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essentially depends on the micro-vascular architecture, while the high b-value threshold is 

determined by the membranes and the internal structure of the cells. For the skeletal muscle, 

we considered low b-values b≤200s/mm
2 

(Cho et al., 2015), where the contribution of fast de-

phasing spins from the vascular and micro-vascular compartments is non-negligible. The 

assumption of Gaussian diffusion is approximately valid for b-values between 200 (Cho et 

al., 2015; E. E. Sigmund et al., 2012) and 700s/mm
2
, given that the effect of kurtosis on the 

signal at b=700s/mm
2
 is around 5% for values typical of the skeletal muscle (i.e. MD=1.4x10

-

3
mm

2
/s, K=0.3). In this work we employed a simplified formulation of the DKI model with a 

single K parameter (isotropic kurtosis) in place of the  ̅ tensor: 

       
     ̅  

 
 
         

 [55] 

where D is the mean diffusivity computed from  , and K is the dimensionless isotropic 

kurtosis. Eq. [55] can be extended with the IVIM model similarly to Eq. [49], to compute 

kurtosis while correcting for perfusion with IVIM: 

                
    

            ̅  
 
 
           [56] 

A previous work from Lu et al. (Lu et al., 2012) proposed the extension of the isotropic IVIM 

model with isotropic kurtosis, however their model had 4 degrees of freedom (Eq. [56] has 10 

free parameters as it accounts for the full diffusion tensor) and could not be used to infer the 

effect of perfusion on DTI/DKI parameters.  

Data & Methods 

Two similar experiments including simulated and real data were designed to elucidate the 

effects of IVIM on DTI and DKI. Experiment I evaluated the effects of perfusion on DTI 

metrics and the efficacy of IVIM correction, while Experiment II investigated the same 

effects on DKI metrics. In addition, the correlation between DTI and DKI parameters and the 

correlation between longitudinal variations of the same parameters were evaluated. 

Simulations for Experiment I were performed using Eq. [49] and two f values, f=5%, that is 

the average value we observed in-vivo, and f=15%, that is the highest value we observed in-

vivo in muscle, consistently with previous studies (Filli, Boss, et al., 2015; Filli, Wurnig, et 

al., 2015; Hiepe et al., 2014; Nguyen et al., 2016; Qi, Olsen, Price, Winston, & Park, 2008). 

Simulations for Experiment II were generated with Eq. [56] and four combinations of 

biologically feasible f and K values: (f=5%, K=3), (f=15%, K=3), (f=5%, K=3.5), (f=15%, 



Chapter V: Intra-Voxel Incoherent Motion and Non-Gaussian diffusion of the skeletal 

muscle      

 

55 

 

K=3.5). Both simulations were performed aligning the diffusion tensor with the coordinates 

axis, using the x-axis for the major eigenvector and imposing MD=1.3x10
-3

mm
2
/s, FA=0.34, 

that are values commonly observed in muscles. The simulated diffusion gradients scheme 

featured 12 non-weighted images (b=0s/mm
2
), 6 gradient directions at 

b=2,5,10,20,50,100,200s/mm
2
, 10 gradient directions at b=400s/mm

2
, 15 gradient directions 

at b=700s/mm
2
, 25 gradient directions at b=1000s/mm

2
 and 30 gradient directions at 

b=1300s/mm
2
. A graphical representation of the acquisition protocol and of the models 

associated to each gradient weighting is reported in Figure 19. 

 

 

Figure 19 Visual representation of the acquired dMRI protocol on the half sphere. Directions were 

optimized by electro-static repulsion in each shell. The protocol included 14 non-weighted volumes, 
42 volumes for IVIM, 10 volumes for DTI and 60 volumes for DKI. 

Each simulation was repeated 5000 times with addition of Rician noise to achieve SNR levels 

10, 30 and 500 (respect to the b=0s/mm
2
 volumes). Statistical analysis of the simulations was 

performed computing the 25, 50 and 75 percentile of MD, FA, K (Experiment II) and f (IVIM 

extended models only). The relative bias of the estimates median value from the imposed 

settings was determined for each simulation and SNR level. MRI data of five healthy 

volunteers (3 males, 2 females, ages 28±5 years) was acquired twice, in 7 days interleaved 

MRI sessions, with a 3T Philips Achieva scanner (Philips Medical System, Best, The 

Netherlands). Dixon and dMRI of the right calf were acquired with a receive/transmit 16 

channels kneel coil and the following specifications: 

 3D Fast Field Echo (FFE) Dixon with isotropic 1x1x1mm
3
 resolution, field of view 

240x240x150mm
3
, 3 echoes, first echo time TE1=3.57ms, echo spacing δTE=1.08ms, 

repetition time TR=5.53ms, flip angle 15°, sensitivity encoding SENSE factor 2; 
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 2D EPI Spin-Echo dMRI with Stejskal-Tanner gradients, TE=55ms, TR=6.5s, 

SENSE=2.5, 1 signal average, voxel size 2.5x2.5x5mm
3
, same field of view of Dixon, 

maximum gradient strength 62mT/m, EPI echo train length 39, same gradients 

scheme used in simulations, triple fat suppression with SPectrally selective Adiabatic 

Inversion Recovery (SPAIR), Slice-Selective Gradient Reversal (SSGR) (Nagy & 

Weiskopf, 2008; Park, Kim, & Cho, 1987) and olefeinic chain suppression (Williams 

et al., 2013); 

 A noise measurement was performed at the end of each dMRI acquisition and was 

used for SNR quantification. 

Volume agreement masks were computed for the corresponding time-points of each subject 

to consider the same anatomy through all statistical analysis. Muscle masks were generated 

with FSL BET on the first non-weighted volume of the first time-points, projected on the 

corresponding volume of the second acquisition, and finally back-projected to obtain 

common masks. These steps were performed with the non-rigid b-spline registration 

implemented in Elastix (Klein, Staring, Murphy, Viergever, & Pluim, 2010). Regions of 

interest (ROIs) were delineated on the Dixon water signal images, that feature high resolution 

and combine good contrast of muscle tissue with fat suppression. Muscles Tibialis Anterior, 

Tibialis Posterior, Fibularis Longus, Soleus (SOL), Gastrocnemius Medialis (GM) and 

Gastrocnemius Lateralis (GL) were manually drawn for each time-point. Dixon water signal 

images were registered to the first non-weighted image of the corresponding dMRI data using 

a non-rigid b-spline transformation to account for EPI distortions. dMRI data was pre-

processed with a second order equation to correct for the b=0s/mm
2
 signal drift (Vos et al., 

2016), then combined eddy currents and motion artifacts correction was performed with 

affine registration of each diffusion weighted volume on the first with Elastix. Rotation of the 

b-matrix was performed accordingly (Leemans & Jones, 2009). Visual inspection of the data 

was performed after the pre-processing step to evaluate chemical shift artifacts and signal 

dropouts due to muscle contraction (Steidle & Schick, 2015). Six different model fits, 3 for 

each experiment, were implemented in MATLAB R2014b.  

In particular, for Experiment I: 

 Data acquired with b=0,400s/mm
2
, that is a commonly used single-shell DTI protocol, 

was fitted with Eq. [18] using Linear Least-Squares (LLS) (results referred as [DTI-
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LIN]) and with Eq. [18] using a custom Non-Linear Least-Squares (NLLS) estimator 

([DTI-NONLIN]); 

 Data corresponding to 0≤b≤400s/mm
2
 was fitted with Eq. [49] using a custom NLLS 

algorithm ([DTI-IVIM]). 

For Experiment II a similar procedure was followed: 

 Data corresponding to b=0,400,700,1000,1300s/mm
2
 was fitted with Eq. [55] using 

LLS ([DKI-LIN]) and with Eq. [55] using NLLS ([DKI-NONLIN]); 

 The complete data was fitted with Eq. [56] using NLLS ([DKI-IVIM]). 

All NNLS algorithms used in this work were based on the constrained “Trust-Region 

Reflective” algorithm implemented in MATLAB R2014b (routine lsqnonlin). A multi-scale 

fitting approach was implemented to reduce the sensitivity to noise and optimize the guess of 

initial values. The voxel-wise fit was performed by averaging the neighbor signals within a 

2D square, with progressive decrement of the square‟s size up to a single voxel fit. The multi-

scale fit of each voxel V can be schematized with the following steps: 

1. LLS fit of V‟s signal with the DTI model to initialize the diffusion tensor; 

2. Average the signals in a 5x5 neighborhood of V and perform the NNLS fit of the 

chosen model; 

3. Repeat step 2 with 3x3 and 1x1 neighborhoods using the previous fit results as 

starting points. 

The following constraints were used for the optimization procedure: 

 diagonal elements of the diffusion tensor between 0 and 3x10
-3

 mm
2
/s; 

 transverse elements of the diffusion tensor between -3x10
-3

 and 3x10
-3

 mm
2
/s; 

 f between 0 and 1; 

 D
*
 between 1x10

-2
 and 1 mm

2
/s; 

 K between 2 and 10; 

 S0 greater than 0. 

The fitting of [DTI-IVIM] and [DKI-IVIM] was performed simultaneously including all 

parameters, providing good results while avoiding the need of subdividing data with arbitrary 

thresholds. Goodness of the voxel-wise fit was assessed with the Shapiro-Wilk test and one-

sample t-test to ensure they were normally distributed and with zero mean. The average SD 
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of the residuals was computed as percentage of the average b=0s/mm
2
 for each time-point 

and model, then minimum and maximum values were compared to the average measured SD. 

Additionally, the coefficients of variation (CV) of each parameter and the cross-correlations 

were computed to quantify the precision of the estimates and eventual model induced 

correlations between the parameters. For linear models [DTI-LIN] and [DKI-LIN] the 

covariance matrix associated to each voxel was computed as:  

               [57] 

where X is the design matrix of the linearized DTI/DKI models and    is the variance of the 

fit residuals. For non-linear models, the covariance matrix associated to each voxel can be 

computed from the Jacobian (J, matrix of the partial derivatives) provided by the non-linear 

optimizer: 

               [58] 

The covariance matrices of all subjects were averaged, then the Pearson correlation between 

each parameter was computed as: 

 
          

        

√        √        
 [59] 

where X and Y are two different parameters of the models. 

Statistical analysis of MRI data of Experiment I was performed computing the 25, 50 and 75 

percentile of FA, MD, f and D* for each of the six muscle ROIs, as previously did for 

simulations. MDLIN values were computed using the data at b=200s/mm
2
 and b=700s/mm

2
 

and considered to be free of perfusion and kurtosis effects. The Pearson correlations between 

the median values of MDLIN in each of the six ROIs and the corresponding median values of 

MD estimated with the three DTI models were evaluated. Pearson correlations between 

median f values estimated with [DTI-IVIM] and the corresponding median values of FA, 

MD, AD and RD were computed for each ROI. Reproducibility of the computed IVIM and 

DTI parameters across two time-points was investigated with Bland-Altman plots (Bland & 

Altman, 1986), including the evaluation of repeatability coefficients and repeatability index 

(RI) (Froeling et al., 2010). Statistical analysis of Experiment II was similarly performed, 

including 25, 50 and 75 percentile plots of FA, MD, AD, RD and K; Pearson correlations 

between MD and MDLIN; correlations of the DTI and DKI parameters with f estimated with 
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[DKI-IVIM] and repeatability analysis. Finally, Experiment II included a Pearson correlation 

analysis of kurtosis and diffusivity metrics (MD, AD and RD), as well as the correlations 

analysis of their inter-scan variations (δK, δMD, δAD and δRD).  

 

Results 

Figure 20 reports the outcome of simulations for Experiment I (Figure 20A) and Experiment 

II (Figure 20B). Experiment I shows that both [DTI-LIN] and [DTI-NONLIN] did not 

recover the imposed MD values in the f=5% simulation, with an estimation bias of almost 

10% at SNR=30. FA estimated with the two models was less affected by the perfusion bias 

than MD, with errors at SNR=30 of -1.2% and -5% respectively. The biases became more 

prominent at higher perfusion level (f=15%), as estimation errors of MD reached +30%, 

while errors on FA were between -14.7% ([DTI-NONLIN]) and -19% ([DTI-LIN]). 

 

Figure 20 Results of simulations for Experiment I ((A) f=5% and f=15%) and Experiment II ((B) 4 

simulations with f=5%, 15% and K=3, 3.5) for SNR levels 10, 30 and 500. The points represent the 
median values and the error bars the 25 and 75 percentile. Dashed black lines are the imposed values 

for the simulated setting. If sufficient SNR is provided, IVIM corrected models can correctly recover 

the imposed values in both experiments. Non corrected models lead to biased estimations even at very 

high SNR. If IVIM is not included, blood perfusion influences estimations of FA, MD (DTI and DKI 
models) and K.  
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Differently from non-corrected DTI models, [DTI-IVIM] estimated FA and MD values close 

to imposed values, with biases at SNR=30 between 0.6% and 3.3% for FA and between 3.0% 

and 5.9% for MD. At very low SNR all models resulted in unreliable estimates, however 

values of MD using [DTI-IVIM] were closer to the imposed value. Simulations of 

Experiment II, shown in Figure 2B, prove that in analogy with Experiment I, f=5% led to 

biases in the estimation of FA (max -24.6%) and MD (max 33.3%) with [DKI-LIN] and 

[DKI-NONLIN]. Additionally, K was also overestimated up to +17.6%. Errors at SNR=30 

were strongly reduced by the IVIM corrected model [DKI-IVIM], which resulted in 

maximum estimation errors of -7.1% for FA, +5.7% for MD and +5.8% for K. Moreover, the 

model asymptotically approaches true values, thus higher SNR results in less bias. For 

completeness, the relative errors at SNR=30 of the computed parameters for all simulations 

of both experiments are reported in Table 7 

 

 
Table 7 – Relative errors of models in Experiment I and Experiment II for different simulated settings 

at SNR=30. The lowest errors for each simulation are highlighted in bold. 

SNR=30 

Simulations - Experiment I: DTI 

  
f=5% f=15% 

  

[DTI-LIN] 
FA -5,0% -18,9% 

  
MD 9,6% 30,2% 

  

[DTI-NONLIN] 
FA 3,2% -14,8% 

  
MD 9,5% 30,2% 

  

[DTI-IVIM] 

FA 3,3% 0,6% 
  

MD 3,0% 5,9% 
  

f -29,7% -18,0% 
  

Simulations - Experiment II: DKI 

  
f=5%,K=3 f=15%,K=3 f=5%,K=3.5 f=15%,K=3.5 

[DKI-LIN] 

K 5,9% 13,5% 2,9% 6,1% 

FA -7,1% -19,8% -7,1% -19,7% 

MD 8,5% 26,9% 8,4% 26,7% 

[DKI-NONLIN] 

K 8,7% 17,6% 4,3% 8,1% 

FA -9,8% -24,6% -9,2% -23,7% 

MD 10,6% 33,3% 10,1% 32,3% 

[DKI-IVIM] 

K 3,6% 5,8% 1,6% 2,5% 

FA -4,5% -7,1% -2,8% -4,8% 

MD 3,4% 5,7% 2,5% 4,3% 

f -34,0% -18,2% -23,8% -12,9% 
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Figure 21 shows an example of the dMRI data of one subject after pre-processing, as well as 

the ROIs used to segment the muscles. The overall data quality was adequate, and the images 

at b=1300s/mm
2
 still show consistent anatomical contrast. The average SNR of each shell 

was computed using the noise measurement as reference, and was 46±4 at b=0s/mm
2
, 45±4 at 

b=2s/mm
2
, 44±4 at b=5s/mm

2
, 44±4 at b=10s/mm

2
, 43±4 at b=20s/mm

2
, 40±3 at b=50s/mm

2
, 

37±3 at b=100s/mm
2
, 31±3 at b=200s/mm

2
, 23±2 at b=400s/mm

2
, 15±1 at b=700s/mm

2
, 

10±1 at b=1000s/mm
2
, 7±1 at b=1300s/mm

2
. The presence of residual artifacts was visually 

assessed and no chemical shift artifacts were observable, however 1 to 3 signal dropouts on 

136 volumes were noticed. After pre-processing, MRI data was fitted as reported in the 

Methods section to obtain parametric maps, as reported in Figure 22. 

 

 

Figure 21 Example of acquired data showing a middle slice for each acquired b-value, including the 

non-weighted image. All the slices are shown with the same MRI signal range (in arbitrary units), as 

represented by the gray scale bar. Last image shows the color based representation of the ROIs over 

imposed to the b=0s/mm
2
 image. The bottom right corner shows a 3D rendering of the acquired FOV 

and the ROIs inside the calf volume. 

 

All estimated b=0s/mm
2
 matched the corresponding average measure, and FA, MD, K and f 

maps were homogeneous inside the muscle volume (green solid line in Figure 22). D* maps 

were more prone to noise than those of the other parameters, especially in correspondence of 

f values approaching 0, where the estimation of D* becomes ill-conditioned. Blood vessels 

can be identified as bright spots on MD maps of non-IVIM corrected, but not on MD maps of 

[DTI-IVIM] and [DKI-IVIM]. Compared to the first, the latter were flatter and lower valued, 

in line with simulations. Blood vessels can instead be retrieved on the f maps of IVIM 

models, consistently with the formulation of the models. Kurtosis maps were consistent 
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across DKI models, but those estimated with [DKI-LIN] had voxels with K<3 (negative 

kurtosis when defined as excess kurtosis) in lower SNR regions. 

 

Figure 22 The first row is the average b=0s/mm
2
 of all measurements. Solid green lines contour the 

muscle area of the calf. The other rows show an example of the parameter estimations obtained on the 

same slice with the three DTI (Experiment I) and the three DKI (Experiment II) based methods. MD 

maps of [DTI-IVIM] and [DKI-IVIM] are characterized by lower and more heterogeneous values 
(row 4 and 7, column 3). Similar observations are valid for K maps of [DKI-IVIM] (row 7 column 4). 

The agreement between the estimated b=0s/mm
2
 and the measured map is noticeable for all the 

models, as is the global quality of the parameter maps. All the parametric maps show spurious values 

in correspondence of the subcutaneous fat due to its inherently low SNR. Some residual olefinic fat 
can be noticed in the K map in the Gastrocnemius area. D* maps show higher values in 

correspondence of blood vessels and some bright spots when f values approach zero.  
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The K map from [DKI-IVIM] showed lower values in the vessel regions while the high 

kurtosis values over muscles GM and GL were preserved. The analysis of the fit residuals 

showed that they were normally distributed in 96.3% of the total voxels (Shapiro-Wilk test) 

with zero mean in 99.8% of the total voxels (one sample t-test). Some outliers corresponding 

to spontaneous signal dropouts were revealed by inspection of the residuals, however being 

maximum 3 on 136 volumes they did not influence the fit results. The average SD measured 

was between 2.1% and 4.7% of the average b=0s/mm
2
, while the average SD computed a 

posteriori from the residuals of all models was between 3.7% and 13.3% of the average 

b=0s/mm
2
 data. The CVs of the parameters were generally less than 20% with the exceptions 

of cross-elements of the diffusion tensor DXY, DXZ, DYZ and D*.  

 

Figure 23 Pearson correlation matrices of the three DTI models in Experiment I and the three DKI 

models in Experiment II. Correlations were computed from the average covariance matrix associated 
to the ROIs of the subjects. Dependence of axial diffusivity elements on the non-weighted image was 

revealed for [DTI-LIN], [DTI-NONLIN], [DKI-LIN] and [DKI-NONLIN]. Additionally, K 

estimations from [DKI-LIN] depended on S0. Inclusion of IVIM in [DTI-IVIM] and [DKI-IVIM] 
removed the effect of S0 on DXX-DYY-DZZ and on K ([DKI-IVIM]). 
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The mean CV of DXY varied from 94% ([DKI-NONLIN]) to 250% ([DTI-NONLIN]); the 

mean CV of DXZ was between 51% ([DKI-NONLIN]) and 125% ([DTI-NONLIN]); the mean 

CV of DYZ was between 48% ([DKI-NONLIN]) and 122% ([DTI-NONLIN]). The average 

CVs of D* were 106% for [DTI-IVIM] and 79% for [DKI-IVIM].  

The Pearson correlations between the parameters were computed from the covariance 

matrices, and are shown in Figure 23. Estimates of the non-weighted signal S0 were strongly 

correlated with the estimates of the diagonal diffusivity elements DXX-DYY-DZZ for all models 

except [DTI-IVIM] and [DKI-IVIM]. Given that the signal of blood is generally hyper-

intense compared to that of tissues due to its longer T2, these cross-correlations explicitly link 

increments of S0 to increments of diffusivity. Interestingly, [DTI-IVIM] and [DKI-IVIM] 

showed no cross-correlation between S0 and elements of the diffusion tensor or K (that was 

instead strongly correlated with S0 for [DTI-LIN]). For these models f correlated positively 

with S0 (supporting the observation on the T2 of blood) and negatively with the diffusion 

tensor elements. Despite the relatively high number of free parameters of [DKI-IVIM], most 

of them were not correlated, and in particular K was not correlated with any of the others. 

The only exception to this observation was represented by the axial diffusivity elements, 

although this could be ascribed to the apparent low anisotropy of muscle cells, where 

increments of diffusivity in one direction are probably linked to increments in the other two 

spatial directions. All these findings represent an important theoretical basis for the 

correlation analysis we later performed, as no model effects appear to artificially boost the 

estimates. The 25, 50 and 75 percentile of FA, MD, f (only for [DTI-IVIM], [DKI-IVIM]) 

and K (Experiment II only) were computed for each ROI and time-point, resulting in the 

colored areas shown in Figure 24. Only voxels within the agreement masks, that included 24 

to 28 (out of 30) common slices, were included in the statistical analysis. Results of the three 

DTI models employed in Experiment I (Figure 24A) were in agreement with simulations, 

and [DTI-IVIM] estimated lower, less variable MD values and higher FA values compared to 

non-corrected DTI models. Similarly, in Experiment II (Figure 24B) [DKI-IVIM] estimated 

lower MD and K values, and higher FA compared to [DKI-LIN] and [DKI-NONLIN], in line 

with simulations. The perfusion signal fraction was mostly between 0.02 and 0.18 in the 

muscle ROIs, while D* values were between 0.01 (lower bound of the constraints) and 

0.2mm
2
/s (data not shown in this text). From both experiments it was noticed that high values 

of f estimated by the IVIM-corrected models matched high MD values of the non-corrected 

models.  
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Figure 24 Shaded areas delimit values between the 25 and the 75 percentile interval of FA, MD, f and 
K (B only) for the six considered ROIs. Solid lines are the corresponding median values. Percentiles 

were computed for each time point of the five acquired subjects, resulting in 10 values for each ROI. 

A and B show the results respectively for the three different DTI (Experiment I) and DKI (Experiment 

II) models. Perfusion signal fraction estimations from models [DTI-IVIM] and [DKI-IVIM] were 
similar with values mostly between 5% and 10%. Compared to non-IVIM models (black and green), 

MD estimations from the IVIM models (red) were lower and more constant across time-points and 

subjects (second row), while FA values were higher (top row). For Experiment II, K estimated from 
IVIM-corrected models was lower, as was expected from simulations results.  

 

MDLIN was computed by linear regression of the data at b=200s/mm
2
 and b=700s/mm

2
, then 

its correlation with MD of the six models were computed, as reported in Figure 25. All 

correlations were significant for both DTI and DKI models. However, the highest correlations 

were observed for [DTI-IVIM] and [DKI-IVIM]. The slopes of the linear regressions of 

[DTI-LIN] and [DTI-NONLIN] (Experiment I, Figure 25A) were 1.20 and 1.18 respectively, 

and a positive offset on the y-axis was noticeable. In contrast, the regression line of [DTI-

IVIM] had an almost unitary slope (1.05) and had the smaller vertical offset compared to 

[DTI-LIN] and [DTI-NONLIN]. Correlations with models of Experiment II (Figure 25B) 

showed similar results, with all the models estimating greater values of MD than DTI models 

due to the presence of K in the formulation. Both [DKI-LIN] and [DKI-IVIM] had an almost 
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unitary slope, however, MD values of the first had a greater vertical offset than those of the 

latter. 

 

Figure 25 Points represent median MD values of each muscle ROI of all subjects computed with the 

three models in Experiment I (A) and the three models in Experiment II (B). On the x-axis, the 
corresponding median MD values computed from b=200s/mm

2
 and b=700s/mm

2
 is reported. Solid 

lines represent the linear regression of the estimates; the dashed black line is the ideal line. (A) [DTI-

LIN] and [DTI-NONLIN] have a regression slope 20% greater than the ideal line and a positive 

offset. [DTI-IVIM] results in the higher Pearson correlation, regression slope more close to 1, and the 
smallest offset. (B) [DKI-IVIM] shows the highest correlation, slope close to 1, and the smallest 

vertical offset among DKI models.  

 

The results of the correlation analysis between f estimated with [DTI-IVIM] and the DTI 

parameters FA, MD, AD and RD of Experiment I are shown in Figure 26A. All parameters 

estimated with [DTI-LIN] and [DTI-NONLIN] except for FA positively correlated with f, 

meaning that they linearly increased with the signal fraction of blood. Conversely, none of 

the parameters from [DTI-IVIM] showed significant correlations. Inter-scan reproducibility 

of FA, MD, AD, RD and f was evaluated with Bland-Altman plots, as reported in Figure 

26B. The mean differences between two measures were close to zero and none of the 

distributions showed any trend. Repeatability indices of all models were very similar, and can 

be found in Table 8. 
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Figure 26 A) the correlation  of f with FA, MD, AD and RD for Experiment I. Points are the median 

value for each ROI of the six muscle ROIs from both measurements of all five subjects (60 points in 
total). IVIM correction removed the correlation between f and MD-AD-RD, that was significant and 

high for both non IVIM models (i.e. [DTI-LIN] and [DTI-NONLIN]). The linear regression slope for 

model [DTI-IVIM] was less than 4 times those of the non-corrected models (0.001 versus 0.003 and 
0.004). FA was not correlated with f for all the considered models. B) Bland-Altman plot of MD-AD-

RD and f. The points represent the pair of values for each of the six muscle ROIs and for each of the 5 

subjects (30 points in total). Solid lines show the mean of the difference for each model, dashed lines 
delimit the 95% confidence interval. No trends appear visible for any of the considered models, and 

the average time-point variation of MD, AD and RD is close to zero. 
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Table 8 – Reproducibility analysis of MD, AD, RD) for Experiment I. 

Bland Altman analysis 

Experiment I: DTI 

  
Mean CR(1.96xStd) RI 

[DTI-LIN] 

MD(x 103) 0,002 0,172 9,9% 

AD(x 103) 0,003 0,175 8,3% 

RD(x 103) 0,005 0,183 11,7% 

[DTI-NONLIN] 

MD(x 103) 0,001 0,167 9,6% 

AD(x 103) -0,012 0,254 11,2% 

RD(x 103) 0,014 0,191 12,8% 

[DTI-IVIM] 

MD(x 103) -0,001 0,167 10,5% 

AD(x 103) -0,010 0,198 9,3% 

RD(x 103) 0,012 0,254 19,2% 

 

 

The same analysis was repeated for Experiment II, as reported in Figure 27A, that shows the 

correlations between f estimated by [DKI-IVIM] and K, FA, MD, AD and RD. In addition to 

significant correlations between f and MD, AD and RD, the [DKI-LIN] and [DKI-NONLIN] 

showed a significant correlation between estimations of f and K. In line with Experiment I, 

the correlations were lost when IVIM correction was performed. Indeed, none of the metrics 

provided by [DKI-IVIM] was correlated to the perfusion signal fraction. Inspection of Bland-

Altman plots (Figure 27B) revealed that the mean differences between two measures were 

close to zero for all estimated values, and no trends were visible. A small offset in the inter-

scan difference (y axis) was observed for K. The confidence interval of [DKI-IVIM] was 

comparable to that of [DKI-NONLIN] for diffusivity parameters but greater for K. 

Repeatability indices of the Bland-Altman analysis of Experiment II are reported in Table 9. 
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Figure 27 A) Correlations of f with K-MD-AD and RD for the models in Experiment II. Points are the 

median value of the estimates for each ROI. IVIM correction eliminated the correlation between f and 

diffusivities, as well as the correlation between f and K. Correlations were instead significant and 
considerable for all non-corrected models. B) Bland-Altman plot of K, MD,AD,RD and f. The points 

represent the values of the six muscle ROIs for each of the 5 subjects (30 points in total). Solid lines 

show the mean of the difference for each model, dashed lines delimit the 95% confidence interval. No 
trends appeared visible for any of the considered models, and the average time-point variation of MD, 

AD and RD was close to zero. A small offset was revealed for K, independently from the considered 

model. 
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Table 9 – Reproducibility analysis of MD, AD, RD and K for Experiment II. 

Bland Altman analysis 

Experiment II: DKI 

[DKI-LIN] 

MD(x 103) 0,018 0,123 7,0% 

AD(x 103) 0,007 0,178 8,4% 

RD(x 103) 0,025 0,123 7,7% 

K 0,027 0,103 3,1% 

[DKI-NONLIN] 

MD(x 103) 0,011 0,153 8,5% 

AD(x 103) -0,007 0,194 8,7% 

RD(x 103) 0,024 0,157 10,0% 

K 0,021 0,100 3,0% 

[DKI-IVIM] 

MD(x 103) 0,004 0,154 9,5% 

AD(x 103) -0,010 0,186 9,0% 

RD(x 103) 0,017 0,166 11,9% 

K 0,018 0,133 4,1% 

 

Figure 28A shows the correlation between K and MD, AD and RD for the [DKI-IVIM] 

model. MD and AD estimations showed significant correlations with K only for [DKI-

NONLIN] and for [DKI-IVIM] respectively. Conversely, RD estimations were consistently 

correlated to K with all three models. Although some of the correlations were significant 

(p<0.05), the correlation coefficients were low, with values between 0.3 and 0.42 and the 

dispersions around the regression line were considerable. Moreover, perfusion did not appear 

to consistently affect the relationship between tensor derived quantities and kurtosis, as 

correlations were similar for all considered models. Relative inter-scan variations δMD, δAD, 

δRD and δK were computed for each pair of time-points with [DKI-IVIM], after which the 

correlation between δK and each diffusion parameter variation was evaluated (see Figure 

28B). Although the range of δK was modest, between -4% and 4%, significant and strong 

positive correlations of δK with δMD, δAD and δRD were consistent independent from the 

used fitting algorithm (except for δAD-δK with [DKI-LIN]). The correlation was the 

strongest when IVIM correction was included.  
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Figure 28 A) Correlations between K and MD, AD, RD, for [DKI-IVIM]. Points are the median value 

of estimates for each of the six muscle ROIs. The black dashed line is the linear-regression line. MD 
did not show consistent correlations with K. In contrast, RD was positively correlated with K while 

AD negatively. B) Correlations between δK and δMD, δAD, δRD for [DKI-IVIM]. Points are the 

relative inter-scan difference between corresponding median values of the estimates for each of the 
six muscle ROIs. A strong correlation between δMD, δAD, δRD and δK was revealed. 

 

Conclusions 

In this study we show that the contribution of the micro vascular network to the diffusion 

signal is non-negligible and that it should be considered as a potential bias source for DTI and 

DKI estimates. To perform an appropriate analysis, we employed an extensive acquisition 

protocol, that may be shortened to obtain bias free tensor fit, quantify f and D* in clinically 

acceptable times. These parameters do not just describe a potential artifact source but also a 

biological process that can be of interest when investigating the dynamics of perfusion after 

exercises (Froeling et al., 2015; Hiepe et al., 2014; Nguyen et al., 2016) or in presence of 

disease (Bane et al., 2016; Concia et al., 2014; Schneider et al., 2016). Considering that DTI 

is often used to perform group comparisons, the nuisance effect of f could further increase the 

variance of diffusion metrics within groups and reduce statistical power. Additionally, in 

presence of diseases characterized by permanent alterations of f, the usage of non-perfusion 
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corrected models would result in over/under estimation of the diffusion metrics with 

consequent misinterpretation of the underlying micro-structural process. Numerical 

simulations showed that not-accounting for perfusion leads to systemic over-estimation of 

MD and under-estimation of FA proportionally to the perfusion signal fraction. The biases 

observed for [DTI-LIN] and [DTI-NONLIN], that are commonly used DTI schemes, are in 

the order of magnitude of FA and MD alteration revealed by DTI in a population affected by 

Duchenne dystrophy (Hooijmans et al., 2015). The simulations also showed that data at 

adequate SNR is mandatory to obtain meaningful estimates, therefore an SNR equal or 

greater than 30 is strongly recommended. Higher SNR values are still beneficial for the 

accuracy of f and K in model [DKI-IVIM], especially if the fit is performed with standard 

NNLS. Results obtained on MRI data were in line with results of simulations. The estimated 

perfusion signal fraction was between 0 and 20%, well matching the simulated f=5% and 

f=15% values used in simulations. MD values estimated with [DTI-IVIM] and [DKI-IVIM] 

were lower and more constant across subjects and ROIs than estimations of non IVIM-

corrected models. Furthermore, MD values from IVIM-corrected models were similar to 

MDLIN and with the smallest offsets if compared to MD from the others. Interestingly, 

previous studies reported higher MD values from DKI models compared to DTI (Cheung et 

al., 2009; Veraart et al., 2011; Wu & Cheung, 2010), thus justifying the residual vertical 

offset of [DKI-IVIM]. 

Experiment II proved that perfusion affects DKI estimates similarly to DTI and has an effect 

on the estimation of kurtosis. To conclude, some limitations of this work should be 

mentioned. The limited number of subjects does not allow a comprehensive description of the 

healthy population, although the effects of age and gender on DTI estimates have already 

been investigated. In this work only isotropic IVIM and isotropic kurtosis were considered in 

order to reduce model complexity, however, a recent work (Karampinos, King, Sutton, & 

Georgiadis, 2010) highlighted the potential anisotropy of IVIM, and kurtosis is known to be 

direction dependent. The anisotropy of IVIM might affect the anisotropic part of the diffusion 

tensor, but should not bias the quantification of MD. Even if these approximations should be 

sufficient to extensively characterize the effects of perfusion on DTI and DKI estimates, 

further investigations on direction dependent effects may be of interest. 
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CHAPTER VI: NON-EXPLICIT MODELING OF BRAIN DIFFUSION REGIMES 

FOLLOWING A BLIND DECONVOLUTION APPROACH. 

 

Introduction 

In the previous chapters, multi-compartment modeling of the dMRI signal was presented as 

an effective way to overcome the limitations of the DTI model and to derive additional 

parameters, potentially delivering higher specificity to the different components of the 

tissues. One of the problems often faced when designing multi-compartment models is the 

choice of the optimal number of components, that is intrinsically voxel dependent due to the 

heterogeneity of the biological environment. A possible strategy is to follow some established 

model design criteria as the Akaike Information Criteria or the Bayesian Information Criteria, 

although these techniques do not necessarily converge to the “most physiological” model. 

Fitting each voxel with a different model is not a viable way as it potentially leads to 

incomparable metrics, therefore a globally optimal model is often chosen and used for the 

whole data. Recently, some approaches as the “Semi-Continuous Multi-Compartmental IVIM 

model” (Keil, Madler, Schild, & Hadizadeh, 2015; Madler & Coenen, 2013; Madler, 

Hadizadeh, & Gieseke, 2013) have been proposed to infer the optimal number of components 

directly from the data. The purpose of the study included in this chapter, which preliminary 

results have been presented at the “ISMRM Diffusion Workshop 2016” (Alberto De Luca, 

Bertoldo, Arrigoni, et al., 2016), is to generalize a similar approach to investigate the 

diffusion compartments in the brain using dMRI data acquired with two different sequences. 

In particular, data acquired with classic PGSE and with Flow-Compensated Asymmetric 

Bipolar gradients is fit with a dictionary based blind deconvolution approach, to corroborate 

the applicability of this technique to different sequences and to characterize their intrinsic 

signal differences. 

Theory 

The PGSE sequence has been introduced in Chapter I as an extension of the Spin-Echo with 

sensitization to molecular displacement. Computation of the first and second order 

derivatives of the gradients shows that the sequence is sensitive not only to displacement but 

also to velocity (1
st
 derivative) and accelerations (2

nd
 derivative), thus phenomena as vascular 
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motion, brain pulsatility, breath, patient motion, etc. Named G(t) the employed gradient 

waveform as function of time, the moments of order 0, 1 and 2 are respectively: 

 
   ∫        

  

 

 [60] 

 
   ∫         

  

 

 [61] 

 
   ∫          

  

 

 [62] 

The left column of Figure 29 shows a schematic representation of three gradients design used 

for diffusion sensitization, respectively Stejskal-Tanner (used in this study), 1
st
 order 

compensated bipolar gradients and 2
nd

 order flow compensated asymmetric bipolar gradients 

(used in this study). 

 

Figure 29 Left column is a schematic representation of diffusion gradient design for the Stejskal-

Tanner Pulsed-Gradient Spin Echo (PGSE) (first row), the bipolar gradients (middle row) and the 
asymmetric-bipolar gradients (last row). Right column shows the phase accumulation (signal 

attenuation) of a static spin due to derivatives of order 0 (m0, displacement), 1 (m1, velocity) and 2 

(m2, acceleration). The PGSE signal suffers extra attenuation from phenomena as bulk motion. The 

bipolar gradient design suppresses contributions from the first order, while appropriate design of the 
asymmetric-bipolar profiles allows to achieve full suppression of derivatives up to the second order. 

The right column of Figure 29 shows the cumulative dephasing of the signal due to motion, 

velocity and acceleration. Bipolar gradients can effectively suppress the contribution of 
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velocity but not acceleration, that is achieved only by the complete asymmetric-bipolar 

design. Previous works investigated the applicability of this gradient scheme in the context of 

IVIM (Wetscherek, Stieltjes, & Laun, 2015) and cardiac dMRI (Stoeck, von Deuster, Genet, 

Atkinson, & Kozerke, 2016). The fit of the dMRI signals (S) and the simultaneous 

compartmental decomposition were performed with a technique based on the Pseudo-

Continuos Multi-Compartment deconvolution (Madler & Coenen, 2013). For this purpose, a 

dictionary of diffusion signals (U) with 300 entries was built. Each column of U represented 

an isotropic Gaussian decaying signal with diffusion coefficient in the log-spaced range [0.1-

1000]x10
-3

mm
2
/s. A constant column representing zero diffusion was added to the dictionary 

to account for plateauing of the signals at strong diffusion weightings (similarly to Kurtosis). 

The diffusion spectrum ( ) was computed with L2 regularized non-negative least squares 

(NNLS): 

 
{
  ‖  ̂   ‖ 

   ‖ ̂‖ 
 

 ̂
   

  ̂   
 [63] 

where γ is a regularization constant. The decomposition operation can be performed voxel-

wise to obtain a diffusion spectrum for each voxel, then peaks can be either visually inspected 

or, if prior knowledge is available, integrated in specific diffusion ranges to isolate the 

contribution of different modes more conveniently. Named DINF and DSUP the lower and 

upper bounds of the diffusion interval of interest, its signal contribution (AD) can be 

computed as: 

 

   
∫       

    

    

∫       
      

 

 [64] 

 

Data & Methods 

Five healthy controls were acquired with a 3T MRI scanner (Philips Medical Systems) 

equipped with an 8ch head coil. The acquisition protocol included two multi-shell dMRI 

acquisitions, the first with Stejskal-Tanner (ST) gradients, the second with flow-compensated 

Asymmetric-Bipolar (AB) gradients. Echo Time (TE) and Repetition Time (TR) of both 

sequences were very similar, respectively TE=133/135ms and TR=9.4/9.5s while all the 

remaining parameters were identical, including SENSE=2.5 and resolution 2.5x2.5x2.5mm
3
. 

The acquired gradient directions, identical for both acquisitions, included 3 orthogonal 
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directions at b=0,5,10,15,20,30,40,50,75,100,150,200,300,400,500,750s/mm
2
 and 30 gradient 

directions at b=1000s/mm
2
. Pre-processing of both sequences included affine registration of 

each volume to the first non-weighted to minimize motion and eddy currents artifacts with 

Elastix (Klein et al., 2010), then the b-matrix was rotated accordingly (Leemans & Jones, 

2009). Additionally, the BET tool of FSL was employed to create a brain-only mask used in 

subsequent statistical analysis. The deconvolution step was performed in MATLAB R2013b 

using NNLS and imposing a regularization value γ=0.001, first averaging the signal of the 

whole brain to achieve very high SNR, then voxel-wise. The distribution of the voxel-wise 

deconvolution spectra was computed as mean + 2 standard deviation of the voxel-wise 

profiles. Voxel-wise fractional maps were created integrating the diffusion spectra in specific 

diffusion ranges, that were established by prior knowledge and observation of the whole brain 

diffusion spectra. In particular, the following diffusion intervals were integrated: [0.1,2]x10
-

3
mm

2
/s corresponding to the tissue signal fraction, [2,6]x10

-3
mm

2
/s corresponding to the free 

water signal fraction, [6,1000]x10
-3

mm
2
/s corresponding to the vascular and micro vascular 

signal fraction.  

Results 

Figure 30 shows the whole brain deconvolution spectra and the voxel-wise distributions of 

each subject for both the ST and AB acquisition. Sharp but different peaks were observed in 

the whole brain spectra (Figure 30, columns 1 and 3) of ST and AB. For 4 out of 5 subjects 

four distinct peaks were consistently observed in ST, and their corresponding diffusion values 

were attributable to known biophysical sources. A first peak was located next to 0.6x10
-3 

mm
2
/s, diffusion value close to that of the brain tissue. A second peak was close to 3.0x10

-3 

mm
2
/s, diffusivity of free water at 37 degrees, while the last two peaks had values around 10 

and 200mm
2
/s, respectively diffusion values observed in the micro-vascular and vascular 

networks. The only remarkable difference was represented by the ST sequence of subject S1, 

for which only 3 peaks were observed. However, the first appears to be the average of the 

two observed for the other subjects. Only two peaks were observed for the AB gradients of 

all subjects, none above 10x10
-3

mm
2
/s, consistently with the intrinsic insensitivity of the 

sequence to bulk motion. However, even if the two observed peaks were similar across the 

five subjects, they were different from those observed with ST data. The averaging operations 

performed collapsing all voxels to a single enhances the SNR but might eventually introduce 

additional variability due to the spatial heterogeneity of the brain. 
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Figure 30 First and third columns show the diffusion spectra of the whole brain of 5 healthy subjects 

with ST and AB gradients respectively. Second and fourth columns are the mean + 2 standard 

deviation of the voxel-wise diffusion spectra. Four peaks were observed in average ST data (except 

for S1), two in the pseudo-diffusion range (IVIM), one close to the diffusivity of free water at 37°, 
and one assigned to the average diffusivity of tissues in the brain. Diffusion spectra of the average AB 

data showed no diffusion in the IVIM range, however, the two revealed peaks were different from ST. 

Voxel-wise spectra distribution were more similar across ST and AB data but not as sharp as the 
peaks of the averaged signal. Conversely, a continuum of compartments was observed. 

For this reason, voxel-wise distributions, shown in columns 2 and 4 of Figure 30, might help 

providing a better characterization of the two sequences. Voxel-wise distributions appeared 

very similar across subjects and more consistent between ST and AB data. The peaks at 

0.6x10
-3

mm
2
/s and 2.8x10

-3
mm

2
/s could still be distinguished with an additional peak around 

1.3x10
-3

mm
2
/s, however, diffusion compartments could not be segregated but conversely 

appeared as a continuum. Nonetheless, the tail of the AB distribution was remarkably lower 

than ST, although not completely null. Voxel-wise fraction maps were created integrating the 

diffusion spectra of each voxel in the diffusion intervals mentioned above, obtaining the maps 

reported in Figure 31. The maps were consistent across subjects and further highlighted the 

differences between ST and AB especially in the IVIM range, as the IVIM contribution was 

more visible for ST than AB. Overall all maps, including FW, had good agreement with the 

expected anatomy, although some noise artifacts were observable. Finally, tissue and FW 

maps were very similar between AB and ST. 
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Figure 31 Fractional maps of IVIM, Tissue and FW obtained by integration of the ST-AB 

deconvolution profiles of each subject. Integration intervals were respectively [6x10
-3

, 1]mm
2
/s, 

[1x10
-4

, 2x10
-3

]mm
2
/s, [2x10

-3
,6x10

-3
]mm

2
/s. The IVIM signal component of ST is consistently higher 

than AB, while FW is comparable. 

 

Conclusions 

In this work we proved the applicability of a regularized deconvolution approach to non-

explicitly fit the dMRI signal with multiple compartments. The technique, that takes 

approximately one second per voxel, can be applied to both Stejskal-Tanner and flow-

compensated gradients. Results are consistent with the specific properties of the sequences, in 

particular with the reduced sensitivity of AB to flow. The signal decomposition obtained at 

whole brain level was biophysically meaningful, especially on ST data, where all observed 

compartments could be ascribed to known physiological components of the brain tissue. This 

technique is potentially applicable to any district of the body as no hypothesis on the structure 

of the tissues are made, however, some limitations apply and should be further exploited in 
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future works. Firstly, in this work we did not deal with the optimization of the L2 

regularization parameter, however, it is expected to affect the results. Additionally, many 

works have shown that the L1 penalty term is more parsimonious in the number of recovered 

components, although slower, as in contrast to L2 regularization it does not have a closed 

form solution. Other solution techniques, as Monte Carlo Markov Chain or Genetic 

Algorithms could also be taken in consideration in place of NNLS to solve the matrix 

inversion. Finally, more should be investigated on the repeatability and consistency of the 

results, testing the consistency of the results across differently sampled data of the same 

subjects. In conclusion, this algorithm can be employed to quickly investigate diffusion 

regimes in the brain and eventually as a pre-processing tool to perform IVIM correction on 

the data before proceeding further processing with other techniques.   
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CHAPTER VII: OTHER RESEARCH ACTIVITIES 

 

A connectivity study of Williams Syndrome 

Williams syndrome (WS) is a neurodevelopmental disease caused by a genetic mutation that 

leads to the deletion of 20+ genes on the long arm of chromosome 7 (Francke, 1999; 

Jackowski et al., 2009; Martens, Wilson, & Reutens, 2008). Affected children are 

characterized by well-defined facial traits, mental impairment, low IQ but high verbal skills, 

and are very prone to sociality. Previous MRI studies of this disease mainly focused on 

volumetric analysis and Voxel Based Morphometry (VBM, (Ashburner & Friston, 2000)). 

Results point toward an overall reduction of gray matter volume in the frontal lobe, parietal 

lobe, temporal lobe, occipital lobe. Additionally, reduced volumes of the corpus callosum, 

cerebellum and brainstem have been reported. These findings arise the doubt of a lack of 

specificity of volumetric techniques in the characterization of the disease. Moreover, 

controversial reports of increased cerebellar and corpus callosum volumes have also been 

reported, further entangling the findings. Diffusion MRI application has also been partially 

explored in WS. Hoeft et al. (Hoeft et al., 2007) reported abnormal FA values in the right 

superior longitudinal fasciculus. Marenco et al. (Marenco et al., 2007) analyzed some major 

white matter bundles, including the inferior fronto-occipital fasciculus and the inferior and 

superior longitudinal fasciculus. They found increased anterior-posterior and reduced left-

right fiber directionality compared to controls. Based on this evidence, that suggests dMRI as 

a promising explorative tool in WS, we performed a structural connectivity study of WS 

patients and healthy controls as attempt to provide a comprehensive description of brain 

structure alteration in this syndrome. 

MRI acquisition was performed at 3T with a Philips Achieva scanner (Philips Medical 

System, The Best, Netherlands) on ten healthy controls (HC), 7 of which females, with mean 

age 23±5 years, and 9 patients affected by WS, 3 of which females, mean age 22±5 years). 

Acquired sequences included a high resolution T1W FFE sequence, (voxel resolution 

1x1x1mm
3
, matrix size 256x256x160, TE/TR 3.86/8.40ms, SENSE 2), a T2W TSE sequence 

(voxel resolution 1.5x1.5x1.5mm
3
, matrix size 160x146x110, TE/TR 100/4700ms, SENSE 2, 

SPIR fat suppression) and a two-shell dMRI acquisition (voxel resolution 2.2x2.2x2.2mm
3
, 

matrix size 112x112x80, TE/TR 100/8800ms, SENSE 2). The dMRI sequence featured 78 

volumes acquired with Posterior-Anterior (PA) phase encoding (9 b=0s/mm
2
, 16 directions at 
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b=300s/mm
2
, 53 directions at b=1100s/mm

2
) and 13 volumes (7 b=0s/mm

2
, 6 directions at 

b=1100s/mm
2
) acquired with the Anterior-Posterior (AP) phase encoding. T1W data was 

processed with the N4 tool of ANTS (Tustison et al., 2010) to mitigate the intensity 

inhomogeneity bias, then skull removal and tissue type segmentation were performed with 

the FSL (Y Zhang et al., 2001) tools to obtain GM, WM and CSF partial volume maps. Both 

AP and PA dMRI data were pre-processed with the DIFFPREP module of TORTOISE 

(Pierpaoli et al., 2010) to remove motion and eddy current artifacts. Additionally, complete 

correction of EPI distortions was performed with DR-BUDDI (Irfanoglu et al., 2015) taking 

advantage of the AP and PA dMRI and of the T2W acquisition. DR-BUDDI is a software 

package developed to work with TORTOISE that estimates the distortion field induced by B0 

field inhomogeneity (Andersson et al., 2003). The distortion field, constrained to act on the 

phase encoding axis, is computed by minimizing a two terms energy function. The first term 

minimizes the voxel-wise distance between tensors computed on the AP and PA data, while 

the second term forces AP and PA geometry to collapse on the distortion free T2W. If the 

whole dMRI protocol is acquired with AP and PA encoding, both acquisitions are moved 

according to compensate the deformation field and their least-squares reconstruction is 

computed, thus enhancing data SNR. However, such acquisition scheme doubles the 

acquisition time, thus the choice of acquiring only a small amount of data in the AP encoding 

in our study. In this case, DR-BUDDI uses the deformation field to correct the geometric 

distortions of the PA data but no SNR boost is achieved.  

After pre-processing, dMRI data acquired at b=0s/mm
2
 and b=1100s/mm

2
 was processed for 

the connectivity analysis. The first part of the connectivity pipeline consists in the creation of 

the individual tractogram, step that we performed with MRtrix (http://www.mrtrix.org, 

version 313) using the Constrained Spherical Deconvolution (CSD) approach (J-Donald 

Tournier et al., 2008). Even though CSD is generally performed with diffusion data acquired 

at b-values higher than 1100s/mm
2
, this approach is still viable and is more robust to the 

crossing fibers problem compared to the DTI based fiber-tracking. The response function was 

computed for each subject using an FA threshold equal to 0.7 and a spherical harmonics 

decomposition of order 4, then CSD was performed on the data of each subject to reconstruct 

the corresponding Fiber Orientation Distribution (FOD). Fiber-tracking was performed using 

the iFOD2 (Jacques-Donald Tournier, Calamante, & Connelly, 2010) method and the 

default/optimized tracking parameters shipped with the package.  20 million streamlines were 

generated for each subject using the GM/WM interface (derived by MRtrix from the 
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GM/WM T1W segmentation) as seed and the Anatomically Constrained Tractography 

(ACT,(R. E. Smith, Tournier, Calamante, & Connelly, 2012)) technique. The GM/WM 

seeding has been shown to reduce the influence of fiber bundles size on the final track density 

(Girard, Whittingstall, Deriche, & Descoteaux, 2014), while ACT ensures only anatomically 

feasible tracks are retained, i.e. tracks that connect two GM areas through WM. Spurious 

tracks terminating into CSF, into WM or never leaving GM are therefore not included in the 

tractogram. After the fiber-tracking step, the tractogram was filtered with the SIFT technique 

(R. E. Smith, Tournier, Calamante, & Connelly, 2013), pruning 10M of the 20M streamlines, 

obtaining the final 10M streamlines tractogram. The SIFT filtering ensures proportionality 

between the voxel-wise FOD and the streamlines count through each voxel. The AAL atlas 

(Tzourio-Mazoyer et al., 2002) was non-linearly registered to the diffusion space of each 

subject with ANTs using the T1W and the T2W image as intermediate targets, then 

connectivity matrices (connectoms) of each subject were built assigning the tracks to each 

node with a local search algorithm (maximum search radius 2mm). For the statistical analysis 

of the resulting group-wise connectivity matrices the Network Based Statistics package 

(NBS, (Zalesky, Fornito, & Bullmore, 2010)) was employed to perform two-sample one-

sided t-tests. In particular, the tested metric was the normalized connection probability and 

the tests were corrected for multiple comparisons with FDR using a critical threshold equal to 

0.05 and 50000 permutations. Figure 32 shows an axial and a sagittal view of the 

connections that resulted statistically more probable in WS than HC. Most of the altered 

connections pointed out a posterior – anterior and intra-hemispheric pattern, while few 

different trans-hemispheric connections were observed, in line with previous works (Hoeft et 

al., 2007; Marenco et al., 2007). Most of the different connections originated from the 

bilateral superior occipital lobe, that appeared to be the prominent hub of these networks. Our 

results proved also an involvement of the right parahippocampal and calcarine areas, as well 

as of part of the cerebellum.  

These results are now being collected in a manuscript that will be submitted to a peer 

reviewed international journal in the field of neurology. 
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Figure 32 Results of the statistical analysis of WS connectome versus HC connectome. Small green 

spheres are edges without any significantly different connection between the two groups. Yellow 
spheres are edges which probability where significantly greater in WS than HC. Most of the altered 

connections were intra-hemispheric and in AP direction. The figure was created with ExploreDTI 

(http://www.exploredti.com).  

 

Multi-parametric assessment of thigh muscles in patients with rare 

congenital myopathies: preliminary results. 

Muscular dystrophies are a family of diseases that affect muscle cells leading to either muscle 

specific and system effects. Dystrophy subtypes have very different etiology, progress and 

severity on specific districts. Limb Girdle Muscular Dystrophies (LGMD) are characterized 

by progressive weakness that begins from the proximal limb muscles (Nigro, Aurino, & 

Piluso, 2011). One of the most common LGMD types is LGMD2A, due to high heterozygote 

frequency. It is caused by mutations of Calpain 3, a protein that has an important role in the 

M-lines functionality during sarcomere extension (Ojima et al., 2010). Mutations of the 

Dysferlin protein is the prominent cause of LGMD2B, the second most common type of 

LGMD. The protein is naturally involved in calcium-mediate sarcolemma resealing (Bansal 

et al., 2003), and mutations result in a number of effects that include higher inflammatory 

status than LGMD2A (Fischer et al., 2005). Beside hematic and genetic tests, MRI is the 

most used imaging tool to support the diagnosis of dystrophies (Díaz-Manera, Llauger, 

Gallardo, & Illa, 2015). Some studies characterized the degeneration pattern and the 

evolution of the diseases with T1W or Short Tau Inversion Recovery (STIR) imaging, a 

sequence that enhances fat suppression and has good inflammation contrast (Mercuri et al., 

2005; Pichiecchio et al., 2016; Polavarapu et al., 2016; Sarkozy et al., 2012; Stramare et al., 

2010). Other studies characterized muscle tissue changes through Dixon imaging (Bonati, 
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Schmid, et al., 2015; Fischer et al., 2016; Fischmann et al., 2013; Leung, Carrino, Wagner, & 

Jacobs, 2015; Løkken, Hedermann, Thomsen, & Vissing, 2016; Willis et al., 2014) and T2 

quantification (Fischer et al., 2016; Janssen, Voet, Geurts, van Engelen, & Heerschap, 2016; 

R. J. Willcocks et al., 2014; Rebecca J Willcocks et al., 2016), while dMRI is less explored 

(Hooijmans et al., 2015; Ponrartana et al., 2015). This brief overview of the current literature 

well shows the usefulness of multiple MRI techniques in the investigation of muscular 

diseases.  

On this basis, we performed a study of patients affected by LGMD2A and LGMD2B 

investigating the integration and complimentary of Dixon imaging, T2 quantification and 

dMRI. Eleven healthy controls, 5 males and 6 females with age 45±10 years, 7 patients 

affected by LGMD2A, 2 males and 5 females with age 39±7 years, 7 patients affected by 

LGMD2B, 3 males and 4 females with age 48±7 years, were acquired with a 3T Philips 

Achieva scanner at IRCCS E. Medea (Bosisio Parini, LC, Italy). The acquisitions, performed 

with the 16 channels bed coil and the 16 channels torso coil, included a 12 echoes gradient-

echo sequence Dixon (resolution 1x1x5mm
3
, TE/δTE/TR=2.7/1.2/16ms) for fat fraction (FF) 

quantification, a 15 echoes spin-echo sequence for T2 quantification (resolution 

1.7x1.7x5mm
3
, TE/δTE/TR=9.3/12.5/14300ms), and a multi-shell dMRI sequence 

(TE/TR=42/7000ms, resolution 1.5x1.5x6mm
3
, 5 volumes at b=0s/mm

2
, 16 directions at 

b=250,400s/mm
2
). Clinical evaluations of muscular strength of quadriceps and adductors, 

according to the “Medical Research Council for muscular strength” (MRC), were available 

for each patient. T2 quantification was performed voxel-wise with a mono-exponential model 

using in-house software written in MATLAB. dMRI data was pre-processed registering each 

volume to the first b=0s/mm
2
 with Elastix to attenuate motion and eddy currents artifacts. 

DTI quantification was performed with Camino (Cook et al., 2006) using the RESTORE  

approach on the two-shells to minimize IVIM effects, as discussed in Chapter V. Involuntary 

patient motion and muscle contractions may alter the geometry of the muscles over different 

sequences, therefore affine transformations are generally not sufficient to achieve geometrical 

alignment of the data. However, non-linear transformations of volumes with different 

contrasts is generally difficult. We achieved optimal results using the affine/b-spline 

transformation shipped with Elastix to first compute the transformation from the Dixon to 

dMRI space, registering the Dixon Water Signal image to the first b=0s/mm
2
 dMRI volume. 

Subsequently we used the same transformation to move the 6
th

 echo of the T2 sequence to the 

Dixon Fat Signal image, that was then concatenated with the previous to move both T2 and 
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FF to the dMRI space. Regions of interest (ROIs) of the Posterior Muscles (PM), Anterior 

Muscles (AM), Gracilis muscle (GR) and Sartorius muscle (SR) were manually delineated on 

the Dixon of each subject, then median values of the metrics were computed for each ROI 

and subject, and used in subsequent analysis.  

 

Figure 33 A middle axial slice of the Dixon water signal image of each subject. Images are overlaid 
with the manually delineated ROIs of all the subjects and represented in the dMRI space. Patients of 

both groups showed high fat infiltration and atrophy. ROIs were drawn following the native borders 

of the muscles, that were still visible in the water signal image.  

 

Figure 33 shows an example of the Dixon water signal images of each subject, with the four 

ROIs overlaid. Patients of both groups were characterized by high fat infiltration and atrophy. 

Previous study evidenced that fat biases dMRI metrics in highly infiltrated patients, given its 

intrinsically lower SNR and the incompleteness of fat suppression (Froeling, Nederveen, 

Nicolay, & Strijkers, 2013; Hooijmans et al., 2015). Fat is also expected to affect T2 

quantification, given that its transversal relaxation time is much longer than that of muscles. 

The problem may be solved by discarding voxels with FF above a certain threshold, 

especially when dealing with low to mild fat infiltrated patients. However, within the ROIs of 

patients, the percentages of voxels with FF≤30% were between 2 and 36%. Instead of 

discarding voxels, we attempted to describe the bias induced by fat on the other metrics with 

multi-variate modeling. In particular, for each MRI metric, the following GLM was fit: 

                               

where DIAGNOSIS was a categorical variable. The model was fit considering the median 

values of each ROI and subject altogether, then the metrics were individually corrected for fat 

effect but not for disease effect subtracting only the      term. The results of the process are 

shown in Figure 34. For all the parameters both FF and the diagnosis resulted to be 
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significant predictors. The adjusted R
2
 of the GLM was 0.97 for T2, 0.56 for MD and 0.68 for 

FA.  

 

Figure 34 Regression plots of T2, MD and FA versus FF. Blue points show the median values of each 

subject and ROI before correction, while the dotted red line is the multi-variate regression line. Black 

points represent the median points after correction. The regression model could explain a considerable 
part of the variance of MD and FA, and most of the T2 variance, as exemplified by the adjusted R

2
. 

 

Average boxplots of the corrected metrics were computed for each group, then differences 

among muscles and groups were tested with the Wilcoxon Rank-Sum test and the Ansari-

Bradley test for dispersion. Results are shown in Figure 35. Physiologic differences between 

muscle groups were observed in HC, with GR and SR showing higher T2 and FA values, and 

lower MD than AM and PM. These differences were reduced in patients, eventually due to 

the massive architectural degeneration. Most of the differences between HC and patients 

were supported by FF. However, corrected measures also showed differences between patient 

groups and healthy controls. Finally, the correlations between MRI metrics and MRC of 

adductors and quadriceps were evaluated. Significant correlations were observed in the CAL 

group between FF of AM and MRC adductors ( =-0.89, p=0.01)/quadriceps ( =-76, p=0.05), 

pointing out a reduction of functionality with increasing FF, while FF was not significant in 

the DIS group. Conversely, MD and FA were correlated with MRC only in the DIS group, 

associating lower MD and higher FA values to higher functional scores. In particular, MD of 

the anterior muscles correlated with MRC of the quadriceps ( =-0.76, p=0.05) and MRC of 
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the adductor ( =-0.82, p=0.03), while FA of PM correlated with MRC of adductor ( =0.80, 

p=0.03). In conclusion, T2 and dMRI metrics are strongly biased by fat in highly infiltrated 

patients, and the bias can be reduced by multi-variate modeling of the FF effect. FF explained 

MRC in LGMD2A but not in LGMD2B, where MRC correlated with corrected dMRI 

metrics. 

 

Figure 35 Boxplots of FF and corrected T2, MD and FA grouped by diagnosis (odd rows) and 

muscles (even rows). Asterisks refer to statistical difference of medians (Wilcoxon Runk Sum test), 
while circles refer to statistical difference of dispersion (Ansari Bradley test). */°: p≤0.05; **/°°: 

p≤0.005; ***/°°°: p≤0.0005. 

 

Early results of this study have been presented as conference proceedings at ISMRM 2015 

(Alberto De Luca, D‟Angelo, et al., 2016), and are now being submitted as a journal paper.  
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Automatic localization of cerebral cortical malformations using fractal 

analysis 

Malformations of cortical development (MCDs) encompass a wide spectrum of brain 

abnormalities frequently associated with main neurological symptoms as epilepsy and 

cognitive impairment. The number and the complexity of the cortical gyri can be focally or 

diffusely reduced (pachygyria and lissencephaly), or increased (polymicrogyria), thus 

determining important alterations of the geometric pattern of the cortical layer (Barkovich, 

Guerrini, Kuzniecky, Jackson, & Dobyns, 2012). MRI and in particular T1W images are the 

best non-invasive tool for the evaluation of the in-vivo cerebral cortex geometry. Existing 

quantitative analysis of T1W, as Voxel Based Morphometry (VBM, (Ashburner & Friston, 

2000)) or FreeSurfer (Fischl & Dale, 2000; Han et al., 2006), appear to be poorly suited for 

the analysis of MCDs. Being developed and tested mainly on healthy controls or patients 

with mild structural alterations, they may produce wrong results when applied to patients 

with large architectural deformations. Some previous works successfully employed these 

tools on some subtypes of MCDs (Im et al., 2012; Oliveira, Valente, Shergill, Leite, & 

Amaro, 2010). However, it is worth to notice that group level analyses require some degrees 

of inter-subject homogeneity and a sufficient sample size, but both conditions are not valid 

for MCDs: the variety and the complexity of the malformations are extremely wide and the 

sample size is critical, given the relatively low incidence of MCDs. In this work (A De Luca 

et al., 2016), we first introduce a novel voxel-wise approach based on fractal theory for the 

location of cortical abnormalities, then test its performances on MCDs subjects. In these 

pages only the most important findings will be reported, while fine details of the algorithms 

can be find in the published manuscript. The hypothesis underlying this study is that the brain 

cortex can be described with fractal geometry, as shown by a previous work (Kiselev, Hahn, 

& Auer, 2003) and that it can be fully characterized by its fractal dimension (FD, 

(Mandelbrot, 1982)). In a previous work (Squarcina et al., 2015) we introduced a bi-

dimensional fractal based approach that revealed gray matter abnormalities in a group of 

psychiatric patients. A value of FD was computed for each axial slice with a modified 2D 

box-counting algorithm that included intensity information in the fractal calculus, then group 

level statistics were performed for each slice. Differently, the method here presented is 

designed to work on 3D volumes. 15 HC (9 males, 6 females, age 9.6±2.4 years) and 9 

patients affected by MCDs (3 females, 6 females, age 7.8±2.3 years) underwent MRI at 

IRCCS Eugenio Medea (Bosisio Parini, Italy) with a Philips Achieva 3T scanner. For each 
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subject a 3D T1W FFE sequence was acquired with TE/TR=3.86/8.40ms, voxel resolution 

1x1x1mm
3
. Five patients showed bilateral and diffuse polymicrogyria on 2 or more cerebral 

lobes, one patient showed unilateral polymicrogyria in the opercular and parietal region of the 

right hemisphere, one patient showed both bilateral polymicrogyria and a simplified gyral 

pattern, while two subjects reported pachygyria and subcortical band heterotopia.  

Fractal objects are characterized by self-similarity, that is the repetition of a motif at different 

observation scales. A common algorithm used to compute the FD of fractal objects is the 

box-counting algorithm, introduced by Mandelbrot in 1982 (Mandelbrot, 1982). However, 

this algorithm only provides a global FD value, thus it is unsuitable for the localization of 

abnormalities. We extended the box-counting algorithm to 1) use an arbitrary voxel-wise 

weight in the box-counting and 2) to obtain voxel-wise values of FD using the neighborhood 

of each voxel V. Along with FD, we additionally computed Q, that is the intercept of the 

linear regression of the box-counting algorithm and represents the logarithm of the number of 

occupied voxels. It can thus be considered as a surrogate measure of density in around V.  

T1W volumes were firstly pre-processed to perform intensity bias correction with the N4 tool 

of ANTs (Tustison et al., 2010), then the standard FSL processing pipeline was applied. The 

pipeline included skull-stripping with the Brain Extraction Tool (BET, (S. M. Smith, 2002)), 

linear and non-linear registration to a standard template with the FMRIB‟s Linear/Non-linear 

Registration Tools (FLIRT/FNIRT, (Mark Jenkinson, Bannister, Brady, & Smith, 2002; Mark 

Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; M Jenkinson & Smith, 2001)), 

tissue type segmentation with the FMRIB‟s automated segmentation tool (FAST) (Y Zhang 

et al., 2001) and sub-cortical classification with FIRST (Patenaude, Smith, Kennedy, & 

Jenkinson, 2011). Given our interest only in cortical GM, a gray matter mask was built using 

the GM PVE map and excluding the cerebellum and brain stem using the sub-cortical tissue 

segmentation (Mazziotta et al., 2001). Two different GM templates were built with ANTs 

using the GM PVE maps of two distinct subsets of 5 HC. FD and Q maps were computed in 

the subject space to avoid artefactual shape alterations using the GM PVE as weight, then 

moved to template space for inter-subject comparisons. All the mentioned pre-processing 

steps are visually summarized in Figure 36. 
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Figure 36 A graphical overview of the steps and the tools involved in the processing pipeline.  

 

A global and a local distance maps were defined to perform the lesion segmentation with 

both diffuse and focal features. The FD and Q normalized histograms were computed for 

each subject, obtaining individual probabilities of FD and Q. The histograms of HC were 

averaged to obtain a reference histogram, then the global probability maps were computed by 

assigning to each voxel V of a given subject S the order 1 distance of the FD/Q histogram 

computed in S from the reference histogram. Local distance maps were defined similarly, but 

histograms were computed in the neighborhood of each voxel V. Lesion detection was finally 

performed by thresholding the distance maps with two different thresholds, that were 

optimized to achieve a false positive rate (FPR) less than 5% or to maximize the (weighted) 

accuracy of the algorithm. The maximum achieved accuracy was 84%, corresponding to 85% 

specificity and 83% sensitivity, and resulted in the lesion detection maps shown in Figure 37. 

The area under the ROC curve (Bradley, 1997) of the algorithm was 0.88. The whole 

procedure was repeated on the second anatomical template and resulted in very similar 

performances. To compare our method with previously published approaches, the FreeSurfer 

reconstruction was performed on the same dataset. Three different metrics previously used 

for lesion detection in conjunction with z-scores thresholding were analyzed: cortical 

thickness, sulcal depth and curvature index. Our method outperformed all three metrics, that 

resulted in with (weighted) accuracy between 0.61 and 0.75, with areas under the ROC curve 

between 0.64 and 0.8. 



Chapter VII: Other research activities      

 

91 

 

 

Figure 37 Axial slice of the GM segmentation of MCD subjects. All subjects were aligned to TMP1 

with an affine 12 DOF transform for visual comparison. Contoured areas show the final lesion map 

(solid blue lines). Subject 8 is particularly interesting as affected by focal pathology. Notice that the 
algorithm selected only the abnormal side. 

 

In conclusion, we proved that fractal indices are able to characterize the alterations induced 

by MCDs. The reliance on voxel-based box-counting and on local distance maps allowed the 

correct identification of focal MCDs, even when the size of the lesions was limited. On the 

tested dataset the method was characterized by high accuracy and it was possible to tune its 

parameters to enforce sensitivity or specificity. This method is feasible for clinical 

applications and can easily be applied on large datasets. 

 

Neurogenetics of developmental dyslexia: from genes to behavior through 

brain neuroimaging and cognitive and sensorial mechanisms 

Reading is a cognitive skill unique to humans, however, for about 5 to 12% of the population 

it is extremely difficult (Peterson & Pennington, 2015). These individuals are affected by a 

complex neurodevelopmental disorder called developmental dyslexia (DD), which represents 

the most common learning disability among school-aged children. Genetics are rapidly 

gaining popularity in DD and much has been learned regarding the possible downstream 
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effects of DD risk genes on brain structure, function and circuitry. Following the increasing 

findings provided by molecular genetic, cognitive, and imaging-genetic studies of DD, in a 

work that is now in press (Mascheretti et al., n.d.), we propose an inter-disciplinary, multi-

level, imaging-genetic approach to disentangle the pathways from genes to behavior. Since 

the early 1980s, at least nine DD risk loci have been mapped on 8 different chromosomes and 

named DYX1-DYX9 (Carrion-Castillo, Franke, & Fisher, 2013; Eicher & Gruen, 2013; 

Scerri & Schulte-Körne, 2010; Skeide et al., 2016; Yuping Zhang et al., 2016; Zhao, Chen, 

Zhang, & Zuo, 2016). Several genes spanning these regions have been reported and linked to 

DD etiology. Among all these genes, 9 DD-candidates have been replicated in at least one 

independent sample: DYX1C1, DCDC2, KIAA0319, C2ORF3, MRPL19, ROBO1, GRIN2B, 

FOXP2 and CNTNAP2 (Einarsdottir et al., 2015; Graham & Fisher, 2013; Ludwig et al., 

2010). Recently, a short tandem repeat (BV677278) has been reported in the intron 2 of the 

DCDC2 gene (Meng et al., 2011; Yuping Zhang et al., 2016). It has been observed to be 

rather conserved across species and appears to change the gene expression. Accordingly, the 

name READ1 (Regulatory Element Associated with Dyslexia 1) has been proposed for this 

genetic risk variant (Powers et al., 2013). A naturally occurring deletion encompassing 

READ1 (DCDC2d) has been associated with DD and DD-related phenotypes (Brkanac et al., 

2007). Findings on DCDC2, DYX1C1, ROBO1, KIAA0319, FOXP2 and CNTNAP2 

(Cicchini, Marino, Mascheretti, Perani, & Morrone, 2015; Gori, Seitz, Ronconi, Franceschini, 

& Facoetti, 2015; Lai, Gerrelli, Monaco, Fisher, & Copp, 2003; Strauss et al., 2006; Truong 

et al., 2014; Vernes et al., 2008; Y. Wang et al., 2006) depict DD as a disorder at the mild end 

of the spectrum of a number of pathways producing developmental disturbances in neuronal 

positioning and axonal outgrowth. 

MRI has been extensively used to investigated both morphological, structural and functional 

abnormalities in DD patients. Most of the MRI studies have relied on Voxel Based 

Morphometry (VBM) to quantify gray (Kronbichler et al., 2008; Pernet, Poline, Demonet, & 

Rousselet, 2009; Vinckenbosch, Robichon, & Eliez, 2005) and white matter (Dole, Meunier, 

& Hoen, 2013; Silani et al., 2005) volumes and fMRI during specific tasks (Baillieux et al., 

2009; Paulesu, Danelli, & Berlingeri, 2014; Seki et al., 2001; Shaywitz et al., 2002). Finally, 

dMRI (Carter et al., 2009; Rimrodt, Peterson, Denckla, Kaufmann, & Cutting, 2010; 

Steinbrink et al., 2008) has been used to perform voxel-wise statistics, in conjunction with 

Tract-Based Spatial Statistics (TBSS) (S. M. Smith et al., 2006) or for fiber-tracking 

purposes. A summary of the findings can be seen in Figure 38, while more detailed results, 
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including lists of anatomical areas, will be available in the published paper. Given the 

heterogeneity of imaging modalities and findings, it is difficult to summarize results into a 

unifying perspective. VBM and DTI seem to converge into temporo-parietal and partially 

middle-frontal involvement in DD, while anterior and occipital areas seem to be less 

frequently involved. Regarding fMRI, results may be aggregated observing general 

prevalence of cerebral hypo-activation over hyper-activation during task-based fMRI. 

Circuits involving temporo-basal, parietal and frontal lobes are more frequently impaired, 

without a clear lateralization between left and right hemispheres.  

We believe that the heterogeneity and variability observed in imaging studies results, 

suggests the need of a refined approach. Imaging data may be considered as an intermediate 

phenotype (IP) (Gottesman & Gould, 2003), i.e. a reduced measure of functioning. Genetic 

determination of IPs is likely to be less complex than the determination of the related 

behavioral / clinical phenotype, as the latter incorporates multiple neural systems and is 

influenced by multiple genes and environmental etiologic variables (Pennington, 2006). To 

note, such use of IPs has played a crucial role in improving the knowledge of the gene to 

phenotype gap in other neurodevelopmental disorders (Braff, 2015).  

Performing joint genetic and neuroimaging studies in humans, where the association between 

genotypes and brain phenotypes can be tested, is an emerging strategy to link DD-candidate 

genes to brain structure and function. To date, imaging-genetic studies have focused on at 

least one of the above described DD-candidate genes and on the proposed functional variants 

spanning them (Darki, Peyrard-Janvid, Matsson, Kere, & Klingberg, 2012, 2014; Dennis et 

al., 2011; Eicher & Gruen, 2013; Hoogman et al., 2014; Jamadar et al., 2013; Marino et al., 

2014; Meda et al., 2008; Pergola et al., 2016; Pinel et al., 2012; Scerri et al., 2012; Scott-Van 

Zeeland et al., 2010; Tan, Doke, Ashburner, Wood, & Frackowiak, 2010; von Hohenberg et 

al., 2014; Whalley et al., 2011; Wilcke et al., 2012). These works are taken into consideration 

to support the proposal of an interdisciplinary approach by focusing on selective, functional 

genetic variants and particular, well-defined cognitive/sensorial phenotypes. DCDC2d has 

been associated with altered GM volumes in reading/language-related brain regions 

especially in the left hemisphere (Meda et al., 2008), and with common and unique 

alterations of WM fiber tracts in subjects with DD (Marino et al., 2014).  
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Figure 38 Rows show the findings obtained with structural and functional MRI techniques in DD 

subjects. The size and the color of the spheres reflect the amount of papers reporting differences in the 

specified area. Longitudinal fascicoli and arcuate fasciculus are shown as edges. fMRI findings are 

not divided by task. Task specific findings are available in Supplementary material of the published 
paper. The figure was created with ExploreDTI (http://www.exploredti.com). 
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Clearly, neuroimaging is playing a fundamental part in disentangling the role of genetic 

variants in the etiology of complex cognitive functions as reading. However, the complexity 

of the “reading circuit” is still far from being fully understood, as revealed by the 

heterogeneous and sometimes conflicting results of brain MRI studies. Study design and data 

processing are important factors increasing complexity and heterogeneity in neuroimaging 

research. The inclusion of subjects with unknown genetic profile is likely to enhance inter-

subject variability, as different DD genes may cause different deficits. Even if some imaging-

genetic studies of DD have been proposed, the number of these work is too low to draw 

definitive conclusions about the role of each DD-candidate gene. Moreover, it is interesting 

to note some technical evidence that might limit the integration of these results. Of the 

imaging-genetic studies mentioned in this review, ten have employed 1.5T scanners, eight 

were performed with 3T scanners, one acquired with a 4T scanner. Two of them employed 

similar acquisition protocols and performed VBM to investigate GM, but their results were 

only partially overlapping. These different findings may be due to the different disorders 

included in the studies, and/or to the different analysis pipelines (linear regression versus 

independent component analysis). Genetic data can be integrated with every parametric map 

derived from MRI, whether a simple measure of volume, a microstructure related metric or a 

measure of chemical properties. Three of the mentioned studies integrated genetic data in the 

VBM analysis of WM volume as attempt to reveal genetically-related alterations, limiting the 

analysis of DTI data to the detection of the major fiber bundles included in altered WM areas. 

Nevertheless, DTI analysis can provide metrics that are more specific to WM microstructure 

than VBM. These maps can be analyzed similarly to VBM, but may provide additional 

characterization of the genetic effect at microstructure level. To date, only three studies have 

used DTI-derived maps to detect voxel-based WM modifications related to DD-candidate 

genes. Further studies with cutting the edge diffusion MRI protocols (i.e. high field magnets, 

multiple directions and b-values) and populations with a specific genetic characterization are 

therefore needed. Moreover, recent diffusion-based techniques, as the Neurite Orientation 

Dispersion and Density Imaging have provided metrics that are more specific to WM and 

GM in several applications. The application of such model or other affine techniques might 

be beneficial to the study of DD, providing additional disentanglement of the connections 

between genetic variations and structural alterations.  

In conclusion, this review aimed to highlight the promising imaging-genetic approach as a 

way to unravel insights behind the pathophysiology of reading (dis)ability. As the presence of 
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putative functional genetic variants influencing the expression of some of the DD-candidate 

genes has been provided and as genetic associations with specific, well-defined cognitive / 

sensorial mechanisms have been reported, current knowledge of genetics of DD could help 

target imaging more selectively. Even if there are weaknesses despite strengths in this 

perspective, such hypothesis driven approach in imaging-genetic as a field would lead to the 

optimization of criteria to diagnose DD and to the early identification of „biologically at-risk‟ 

children.  
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