
Efficient Implementation of Pedersen
Commitments Using Twisted Edwards Curves

Christian Franck and Johann Großschädl

University of Luxembourg,
Computer Science and Communications Research Unit,

6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg
{christian.franck,johann.groszschaedl}@uni.lu

Abstract. Cryptographic commitment schemes are used in many con-
texts, whereby the size of the secret data and the security requirements
depend on the target application. Using a software library that has been
designed for other purposes (e.g., key-exchange or digital signatures) to
compute commitments can be complicated or inefficient. We present in
this paper a flexible implementation of Pedersen commitments based on
elliptic curves in twisted Edwards form. The implementation supports
a set of five curves of varying cryptographic strength, which are defined
over 127, 159, 191, 223, and 255-bit pseudo-Mersenne prime fields. One
can dynamically (i.e., at runtime) choose one of the curves according to
the required level of security, and it is also possible to adapt to the size
of the data to be committed by varying the number of base points. The
point arithmetic is performed with optimized formulas using extended
coordinates and dynamically pre-computed tables are utilized to speed
up the scalar multiplication. Our implementation is written in ANSI C
(with optional x86 assembler optimizations for the field arithmetic) and
was compiled and tested successfully with Visual C on Windows, gcc on
Linux, and clang on macOS. We present detailed benchmarking results
for the field and point arithmetic on all five curves. When using an Intel
Core i7 processor clocked at 2.7 GHz as test platform, we can compute
more than 38,000 commitments per second on a twisted Edwards curve
over a 127-bit field.

1 Introduction

Traditional coin-flipping, where Alice calls either ‘heads’ or ‘tails’ and then Bob
flips a coin, is not secure when it is done online. The problem is that Alice does
not see the coin toss and Bob could simply cheat and pretend the outcome was
‘tails’ if Alice has called ‘heads’. To prevent Bob from such cheating, Alice can
compute a cryptographic commitment for either ‘heads’ or ‘tails’ and send it to
Bob, instead of sending her choice directly. This commitment is binding Alice to
her choice, but does not actually reveal it to Bob [9]. Alice will then only open
the commitment and let Bob learn her choice once he has flipped the coin and
announced the result. Opening the commitment discloses her choice and proves
to Bob that it is authentic.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/141495215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 C. Franck, J. Großschädl

What differentiates cryptographic commitment schemes from other crypto-
graphic primitives like digital signatures is that commitments often have to be
secure only for a relatively short period of time. Taking the coin-flipping from
above as example, the commitment needs to be secure for just the few seconds
until Bob has flipped the coin. Therefore, the orders of common multiplicative
groups and elliptic curves used by classical signature schemes (e.g., 256 bits in
ECDSA [21]) are unnecessarily large for short-time commitments, which makes
the computation of such commitments unnecessarily costly. Various short-lived
applications could profit from more “lightweight” alternatives.

A well-known commitment scheme based on the complexity of the Discrete
Logarithm Problem (DLP) was introduced by Pedersen in 1991 [22]. Pedersen
commitments are especially interesting since they are computationally binding
and unconditionally hiding. The latter means for the above example that even
when Bob had unlimited computational power, he would not be able to obtain
Alice’s choice from the commitment [9]. On the other hand, the computational
binding property implies that it is not possible for Alice to change her mind and
open the commitment to a different choice, unless she has the ability to solve
the DLP. Interestingly, it has also been shown that one can prolong the lifetime
of a Pedersen commitment, which means that it is possible to securely replace
a Pedersen commitment with a weak security parameter by a Pedersen commit-
ment with a stronger security parameter if the need arises [10]. Hence, one can
start with lightweight commitments and switch to stronger ones later on.

In this paper, we introduce a software library that was specifically designed
for the computation of Pedersen commitments [22, 5] so that they can easily be
adapted to meet different requirements. The library features:

– Adjustable security level (commitment size). The library can be configured
to use elliptic curves of different strength (i.e., different cardinality) in steps
of 32 bits, ranging from 127 to 255 bits. In this way, the library is capable
to generate commitments of different length and can be adapted for various
security requirements.

– Adaptable to the size of the secret data. In order to generate commitments
for secret data of “large” size, the library supports extended Pedersen com-
mitments [5] on elliptic curves, which require a multi-scalar multiplication
C = s1P1 + s2P2 + · · · + rQ with an arbitrary number of base points. This
allows to maintain the homomorphic properties of Pedersen commitments
even if the size of the secret data is large.

– State-of-the-art elliptic curves. A collection of five elliptic curves in twisted
Edwards form [3], defined over 127, 159, 191, 223, and 255-bit pseudo-Mer-
senne prime fields, comes with the library. These curves satisfy all common
security and efficiency requirements. In particular, the parameter a of these
curves is −1, which facilitates the use Hisil et al’s optimized point addition
formulas for extended coordinates introduced in [16].

– Fast fixed-base scalar multiplication with pre-computation. The library uses
the fixed-base windowing method described in [4], which employs pre-com-
puted tables containing multiples of the base point in order to speed up the

Implementation of Pedersen Commitments Using Twisted Edwards Curves 3

scalar multiplication. It is possible to dynamically pre-compute such tables
for any number of base points, and also the number of table entries can be
adapted to allow for trade-offs between speed and RAM footprint.

– Pre-computation of affine or extended affine coordinates. One can choose to
pre-compute either two or three coordinates per point in the table, and the
corresponding optimized formulas will be used for the point addition. The
two-coordinate variant is a bit slower, but reduces the table size by 33%.

– Generic C and optimized x86 assembler code. For maximal compatibility the
library was written in ANSI C99, and performance-critical field-arithmetic
operations were additionally implemented in x86 assembler to minimize the
execution time. The source code was successfully compiled (and tested) on
three different operating systems using three different compilers.

– Resistance against timing attacks. All arithmetic operations (with only one
exception, namely inversion in the prime field) as well as the table look-ups
have constant (i.e. operand-independent) execution time. The field inversion
adopts the extended Euclidean algorithm [15] in combination with a simple
multiplicative masking technique to thwart timing attacks.

The rest of the paper is organized as follows. In Sect. 2, we review the basics
of Pedersen commitments and elliptic curve cryptography. Then, in Sect. 3, we
motivate and describe the details of our implementation. In Sect. 4, we present
benchmarking results for some selected curves, and in Sect. 5, we discuss some
possible applications of our library. We conclude with remarks in Sect. 6.

2 Background

2.1 Commitment Schemes

Cryptographic commitment schemes allow one to commit to some secret value
without having to reveal it (at the time of making the commitment), but it is
possible to reveal the value later and to prove that the revealed value is indeed
the correct value [9]. In general, a commitment protocol is performed between a
committer and a verifier, and consists of the two following steps:

1. Commit: In order to commit to a secret value s, the committer chooses a
random value r and sends the commitment

C = commit(s, r)

to the verifier. The knowledge of C does not provide the verifier with any
information about the secret value s.

2. Open: In order to open the commitment, the committer sends (s, r) to the
verifier. The committer is bound to the value s, which means it is hard to
create another pair of values (s′, r′) such that

C = commit(s′, r′).

4 C. Franck, J. Großschädl

As explained in [9], a commitment scheme can be either computationally bind-
ing and unconditionally hiding, or it can be unconditionally binding and com-
putationally hiding. However, it can never be unconditionally hiding and uncon-
ditionally binding at the same time.

Pedersen Commitments. The Pedersen commitment scheme, in its original
form as described in [22], uses a prime-order subgroup of Z∗p as basic algebraic
structure. However, it is also possible to embed the computation of Pedersen
commitments into an elliptic-curve group E(Fp). Assume E(Fp) contains two
points P and Q = αP , both having prime order q, whereby the scalar α < q is
unknown. In this setting, the commitments are of the form

C = commit(s, r) = sP + rQ.

Similar to “classical” Pedersen commitments operating in Z∗p, the elliptic-curve
variants are unconditionally hiding since every possible value of the secret s is
equally likely to be committed in C. More precisely, for any s′ 6= s, there exists
an r′ 6= r such that commit(s′, r′) = C = commit(s, r); this r′ can be obtained
by computing r′ = (s − s′)/α + r mod q. Therefore, the verifier can not learn
anything about s from C, even if she had unlimited computing power. Further-
more, elliptic-curve Pedersen commitments are computationally binding since
the committer can not open a commitment to s as s′ 6= s, unless she is able to
solve the Elliptic Curve Discrete Logarithm Problem (ECDLP). Namely, if the
committer could find a pair (s′, r′) that commits to the same C as (s, r), then
it would be easy for her to get α = (s − s′)/(r′ − r) mod q, which contradicts
the hardness assumption for the ECDLP.

The idea of Pedersen commitments can also be extended to multiple values
s1, . . . , sn, as shown in [5]. The commitments are then of the form

C = s1P1 + s2P2 + · · ·+ snPn + rQ. (1)

As a consequence, one can use Pedersen commitments to commit to messages
of arbitrary length. We assume the points P1, P2, . . . , Q are chosen at random
and their respective discrete logarithms are unknown.

Pedersen commitments also have homomorphic properties. Given the com-
mitments

C1 = s1P + r1Q and C2 = s2P + r2Q

for the values s1 and s2, one can compute a commitment C12 corresponding to
the secret value s1 + s2 and the random value r1 + r2, with

C12 = (s1 + s2)P + (r1 + r2)Q = (s1P + r1Q) + (s2P + r2Q) = C1 + C2.

In order to preserve this homomorphic property for longer messages, one can
not just use a hash function H and compute C = H(s1| · · · |sn)P + rQ, but it is
necessary to compute a commitment as in Eq. (1).

Implementation of Pedersen Commitments Using Twisted Edwards Curves 5

2.2 Twisted Edwards Curves

Twisted Edwards (TE) curves were introduced in 2008 by Bernstein et al [3] as
a generalization of Edwards curves [11]. Formally, a TE curve is defined by an
equation of the form

E : ax2 + y2 = 1 + dx2y2 (2)

over a non-binary finite field Fq, where a and d are distinct, non-zero elements
of Fq. Every TE curve is birationally-equivalent over Fq to a Montgomery curve
and, thus, also to an elliptic curve in Weierstraß form. The order of a TE curve
is divisible by 4 (i.e. TE curves have a co-factor of h ≥ 4), and every TE curve
contains a point of order 2, namely (0,−1). Given two points P1 ∈ E(Fq) and
P2 ∈ E(Fq), their sum P3 = P1 + P2 can be computed as

(x3, y3) = (x1, y1) + (x2, y2) =
(x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
.

The point O = (0, 1) serves as neutral element of the addition, and the negative
of a point (x1, y1) is (−x1, y1). Note that the addition formula specified above
is unified, which means it can also be used for point doubling. Furthermore, as
shown in [3], the given addition formula is complete (i.e. yields the correct sum
for any pair of points, including corner cases like P1 = O, P2 = O, P2 = −P1)
when the curve parameter a is a square and d a non-square in Fq. In order to
avoid costly inversions in the point arithmetic, one normally uses a projective
coordinate system. A well-known example are the so-called extended projective
coordinates from [16], which allow for particularly efficient point addition when
a = −1. A point in extended project coordinates is represented by a quadruple
(X : Y : T : Z) where T = XY/Z. The projective curve equation is

(aX2 + Y 2)Z2 = Z4 + dX2Y 2, (3)

which can be simplified to aX2 + Y 2 = Z2 + dT 2. The TE curves we use for the
implementation of Pedersen commitments feature a fast and complete addition
law, meaning that a = −1 is a square in the underlying prime field.

3 Implementation Details

In this section, we give an overview of our software implementation of Pedersen
commitments using TE curves. We aimed to reach three main goals, namely (i)
high performance, (ii) high scalability, and (iii) support for a wide range of x86
platforms. In order to achieve fast execution times, we decided to implement all
performance-critical operations, in particular the multiplication and squaring in
the underlying field, not just in C but also in Assembly language. Our software
is scalable because it supports Pedersen commitments of varying cryptographic
“strength” (using TE curves of different order) without the need to recompile
the source code. Finally, to support many platforms, we developed our software
for the standard x86 architecture and refrained from using 64-bit instructions

6 C. Franck, J. Großschädl

or SIMD extensions such as SSE. In this way, our implementation of Pedersen
commitments can run on a plethora of x86-compatible platforms, ranging from
high-end 64-bit Intel Core processors down to embedded 32-bit variants like the
Intel Quark [18] for systems on chip. As part of our future research, we plan to
extend the software with an optimized 64-bit Assembler implementation of the
field arithmetic so that it can reach peak performance on 64-bit processors.

3.1 Prime-Field Arithmetic

The arithmetic operations in the underlying field, especially multiplication and
squaring, have a massive impact on the overall execution time of elliptic curve
cryptosystems, and our TE-based Pedersen commitments are no exception. It is
common practice to adopt finite fields defined by primes of a “special” form in
order to maximize the efficiency of the modular reduction operation. As will be
explained in Subsect. 3.4, the TE curves we use are defined over fields based on
pseudo-Mersenne primes, which are primes of the form p = 2k − c, where c is
small in relation to 2k [15]. The elements of Fp are integers with a length of up
to k bits, and the product z of two such integers a, b is at most 2k bits long. To
reduce z modulo p, one can exploit 2k ≡ c mod p, which results in a reduction
technique with linear complexity. More concretely, in order to reduce z modulo
p, the product z is first split up into an upper part zH and a lower part zL so
that z = zH2k + zL; then, zH is multiplied by c and zHc is added to zL. These
steps are repeated with the obtained result and, finally, subtractions of p have
to be performed to get a fully reduced result (see e.g. [20] for details).

As will be specified in full detail in Subsect. 3.4, the prime fields we use are
defined by pseudo-Mersenne primes of the form p = 2k − c where k is a multiple
of 32 minus 1 (e.g. k = 255) and c is at most 29 bits long (i.e. c fits in a single
x86 register). We represent the field elements by arrays of 32-bit words of type
uint32 t, which means in the case of k = 255 that an array has eight words. In
the beginning of this section we mentioned already that our software contains
two implementations of the field arithmetic, one written in C and the other in
x86 Assembly language. The C implementation is generic in the sense that the
arithmetic functions can process operands of any length. Every function of the
C arithmetic library gets besides the arrays for the operands and the result an
extra parameter that specifies the number of words the arrays consist of. On the
other hand, the x86 Assembler library comes with a dedicated implementation
for each supported operand length, which means, for example, that it contains
five functions for modular multiplication, optimized for 127, 159, 191, 223, and
255-bit fields. Each of these functions was carefully hand-tuned and loops were
fully unrolled to maximize performance.

A multiplication in a pseudo-Mersenne prime field is normally performed in
two steps: first, the field elements are multiplied, yielding a double-length prod-
uct, and thereafter a modular reduction is carried out, taking into account the
special form of the prime. Our Assembler implementation applies the so-called
product-scanning method, which means the 64-bit word-products resulting from
multiplying pairs of 32-bit words are summed up in a column-wise fashion (see

Implementation of Pedersen Commitments Using Twisted Edwards Curves 7

[15, Algorithm 2.10] and [20, Algorithm 1] for a more formal description). The
biggest challenge one has to tackle when implementing the this technique on an
x86 processor is the small register file, consisting of just eight general-purpose
registers, one of which is the stack pointer register ESP. The MUL instruction in
x86 reads one operand from the EAX register, while the second operand can be
either in a register or in memory. It executes an unsigned 32-bit multiplication
and places the 64-bit product in the EDX:EAX register pair. Our implementation
of the modular multiplication stores the double-length product of the two field
elements in a temporary array on the stack, which is accessed via ESP. Of the
remaining seven registers, three hold the column sum, two contain the pointers
to the operand arrays, and EAX/EDX are used to execute MUL instructions.

The square of a field element can be computed using fewer MUL instructions
than the product of two distinct field elements. Our implementation is based on
the optimized squaring technique described in [20].

3.2 Point Arithmetic

The to date most efficient way of performing point arithmetic on a TE curve is
to use the extended coordinates proposed by Hişil et al [16]. In this coordinate
system, a point P = (x, y) is represented by a quadruple (X : Y : T : Z) where
x = X/Z, y = Y/Z, xy = T/Z, and Z 6= 0. Such extended coordinates can be
seen as homogenous projective coordinates of the form (X : Y : Z), augmented
by a fourth coordinate T = XY/Z that corresponds to the product xy in affine
coordinates. The neutral element O is given by (0 : 1 : 0 : 1), and the negative
of a point in extended coordinates is (−X : Y : −T : Z). A point represented in
standard affine coordinates as (x, y) can be converted to extended coordinates
by simply setting X = x, Y = y, T = xy, and Z = 1. The re-conversion is done
in the same way as for homogenous projective coordinates through calculation
of x = X/Z and y = Y/Z, which costs an inversion in the underlying field.

In the following, we roughly explain the unified addition/doubling formulae
using extended coordinates as given by Hişil et al in [16, Sect. 3.1]. Let P1 and
P2 be two arbitrary points on a TE curve represented in extended coordinates
of the form (X1 : Y1 : T1 : Z1) and (X2 : Y2 : T2 : Z2) where Z1, Z2 6= 0. When
a = −1 (as is the case for all our curves from Subsect. 3.4), a unified addition
P3 = P1 + P2 = (X3 : Y3 : T3 : Z3) consists of the following operations.

A← (Y1 −X1) · (Y2 −X2), B ← (Y1 +X1) · (Y2 +X2), C ← k · T1 · T2,
D ← 2Z1 · Z2, E ← B −A, F ← D − C, G← D + C, H ← B +A,

X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G
(4)

The factor k used in the computation of C is −2d/a, which means in our case
k = 2d since the parameter a = −1 for all our TE curves. It is easy to observe
that computational cost of the point addition amounts to nine multiplications
(9M) in the underlying prime field, plus a few “cheaper” field operations like
additions. When P2 is given in affine coordinates (i.e. Z2 = 1), the addition is
a so-called “mixed addition” and requires only eight multiplications (8M). Hişil

8 C. Franck, J. Großschädl

et al also introduced a formula for doubling a point P1 = (X1 : Y1 : T1 : Z1) so
that the result P3 = 2P1 is also given in extended coordinates. For TE curves
with parameter a = −1, the sequence of operations to double a point is

A← X2
1 , B ← Y 2

1 , C ← 2Z2
1 , D ← −A, E ← (X1 + Y1)2 −A−B,

G← D +B, F ← G− C, H ← D −B,
X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G.

(5)

A doubling carried out via Eq. (5) requires four multiplications (4M) as well as
four squarings (4S) in the underlying field. Unlike the addition formula given in
Eq. (4), the doubling operation does not use the auxiliary coordinate T1 of the
point P1. Therefore, the computation of T3 in Eq. (5) could be simply omitted
whenever a doubling is followed by another doubling. A similar observation can
be made for the addition because the coordinate T3 in Eq. (4) does not need to
be computed when the subsequent operation is a point doubling.

In order to accelerate the point doubling operation, we do not compute the
auxiliary coordinate T3 as in Eq. (5) but output the two factors E and H it is
composed of instead. In this way, the resulting point P3 = 2P1 consists of five
coordinates instead of four, which means P3 is actually represented in the form
of a quintuple (X3 : Y3 : E3 : H3 : Z3). The coordinate T3 is split up into factors
E3 and H3 such that E3H3 = T3 = X3Y3/Z3, thereby saving a multiplication in
the point doubling. The subsequently-executed operation can recover T3, when
needed, by simply multiplying E3 by H3. Of course, such a modification of the
doubling requires to adapt the point addition accordingly [8]. We modified the
addition formula specified in Eq. (4) to output the two factors E = B − A and
H = B + A instead of T3 = EH. In this case, when the addition is performed
with P1 represented by (X1 : Y1 : E1 :H1 : Z1) as input, the auxiliary coordinate
T1 = E1H1 has to be computed first since it is used as operand. However, this
modification has no impact on the overall cost of the point addition since the
computation of the coordinate T3 = EH is simply replaced by computing the
coordinate T1 = E1H1. On the other hand, the cost of the point doubling gets
reduced from 4M + 4S to 3M + 4S thanks to this optimization.

Our software for Pedersen commitments actually computes so-called mixed
additions, which means point P1 is given in projective coordinates (in our case
extended projective coordinates in the form of a quintuple, see above), whereas
P2 is represented using affine coordinates. We implemented two variants of the
mixed addition; the first expects P2 in standard affine (x, y) coordinates, while
in the other variant, P2 must be provided in extended affine coordinates of the
form (u, v, w) where u = (x− y)/2, v = (x+ y)/2, and w = dxy, similar to the
mixed addition in e.g. [4] and [20]. The exact formula for the former variant is
specified in Appx. A (Algorithm 1) and has a cost of 8M plus a multiplication
by the parameter d, which is fast for all our TE curves since d is small. On the
other hand, the latter variant takes only 7M (because the product dxy is pre-
computed), but this performance gain comes at the expense of requiring three
coordinates for P2, which can be undesirable on certain platforms or for certain
scalar multiplication techniques that pre-compute and store many points.

Implementation of Pedersen Commitments Using Twisted Edwards Curves 9

3.3 Computation of Pedersen Commitments

The high-level strategy we use to compute the commitments is a generalization
of the fast fixed-base exponentiation techniques described in [6, 19, 23], which is
also used by Bernstein et al in [4]. The basic idea is that a scalar multiplication
with a fixed base point, i.e. an operation of the form S = κP where P is known
a priori (e.g. it is the generator of an elliptic-curve subgroup), can be computed
faster using a (possibly small) table with pre-computed points. To avoid cache
attacks, we use constant-time table look-ups as described in e.g. [4]. In order to
accelerate the scalar multiplication, we write the k-bit scalar κ as

κ =

dk/4e∑
i=0

κi · 16i

with 0 ≤ κi ≤ 15 for i ∈ {0, 1, . . . , dk/4e} and pre-compute 15 multiples of the
base point P , namely the set {16iP, (2 · 16i)P, . . . , (15 · 16i)P} for every i from
0 to dk/4e. This reduces the computation of S to dk/4e point additions since

S =

dk/4e∑
i=0

(κi · 16i)P.

As will be detailed in Subsect. 3.4, we use primes of the form p = 2k − c, where
k is a multiple of 32 minus 1, and also the bitlength of our scalars is a multiple
of 32 minus 1, similar to [2]. Thus, we can assume 0 ≤ κdk/4e ≤ 7, which means
we can also utilize signed coefficients κ′i with −8 ≤ κ′i < 8, so that

S =

dk/4e∑
i=0

(κ′i · 16i)P.

Signed coefficients have the big advantage that only eight pre-computed points
(namely {16iP, (2 · 16i)P, . . . , (8 · 16i)P}) are needed for every i. They have no
impact on performance because the negative of a point (x, y) on a TE curve is
simply (−x, y). To further reduce the number of pre-computed points, we write

S =

dk/8e∑
i=0

(κ′2i · 162i)P + 16 ·
dk/8e∑
i=0

(κ′2i+1 · 162i)P.

Hence, at the cost of four point doublings (since 16 = 24 = 2 · 2 · 2 · 2), we can
halve the number of necessary pre-computed points, and the pre-computations
need to be done only for i ∈ {0, . . . , dk/8e} instead of i ∈ {0, . . . , dk/4e}. In the
context of Pedersen commitments, we can have expressions of the form

C = s1P1 + s2P2 + · · ·+ snPn + rQ,

which have several base points. We “integrate” these computations according to

C =

dk/8e∑
i=0

κ
(1)
2i 162iP1 + · · ·+ r2i162iQ + 16

dk/8e∑
i=0

κ
(1)
2i+1162iP1 + · · ·+ r2i+1162iQ16

10 C. Franck, J. Großschädl

so that we have to do the four point doublings of the second term only once. As
the number of base points gets larger, the relative cost of these four doublings
decreases, and it can make sense to do some further modifications to obtain an
expression of the form

C =

dk/16e∑
i=0

· · ·+ 16

(dk/16e∑
i=0

· · ·+ 16

(dk/16e∑
i=0

· · ·+ 16

dk/16e∑
i=0

· · ·

))
,

which again reduces the number of pre-computed points at the expense of eight
point doublings (i.e. we have to perform 12 doublings altogether).

Our software for Pedersen commitments supports all these possibilities; it is
up to the user to choose which trade-off between the amount of pre-computed
points and number of point doublings suits best for a certain application. The
amount of memory m (in bytes) required to store the pre-computed points can
be calculated using the formula

m = b · (k + 1)2

4(t+ 1)
,

where b is the number of base points, t ∈ {2, 4, 8, 16, 32} is the number of times
that the four point doublings are performed, and k denotes the bitlength of the
scalar (which is, in our case, the same as the bitlength of the underlying prime
field and is always a multiple of 32 minus 1). The factor (k + 1)2 in the above
formula implies that choosing a smaller prime p whenever possible will reduce
the memory requirements significantly.

The high-level API of our x86 software for the computation and verification
of Pedersen commitments supports the following six functions:

– Pre-computation: Ω = precomp(Γ, (P1, P2, . . .), τ). Pre-computes points to
speed up a fixed-base scalar multiplication using the TE curve parameters
Γ = (k, c, d), a set of base points (P1, P2, . . .), and a parameter τ to trade
memory usage for speed.

– Commitment: C = commit(Γ, (s1, . . . , sn), r, Ω). Computes a commitment
for the set of secret values (s1, . . . , sn) using the random number r and the
pre-computed points Ω. The output is compressed as described in [4].

– Verification: {0, 1} = verify(C, Γ, (s1, . . . , sn), r, Ω). Verifies whether the set
(s1, . . . , sn) and number r correspond to the commitment C.

– Compression: C = compress(Γ,A). Converts the point A in standard affine
to a commitment C (in compressed representation).

– Decompression: A = decompress(Γ,C). Decompresses a commitment C to
recover the x and y coordinate of the corresponding affine point A.

– Addition: A = add(Γ,A1, A2). Adds the two affine points A1 and A2.

3.4 Supported TE Curves

A TE curve needs to meet several security and efficiency criteria in order to be
suitable for cryptography applications. A discussion of these criteria is outside

Implementation of Pedersen Commitments Using Twisted Edwards Curves 11

the scope of this paper; we refer the interested reader to [14] and the references
given therein. Our software for Pedersen commitments comes with a set of five
TE curves, which are defined over pseudo-Mersenne prime fields having lengths
of 127, 159, 191, 223, and 255 bits. The co-factor of the curves is h = 8, and so
they provide security levels of 62, 78, 94, 110, and 126 bits. Concretely, the five
TE curves we use are specified by the following equations.

−x2 + y2 = 1 + 182146x2y2 mod 2127 − 507

−x2 + y2 = 1 + 49445x2y2 mod 2159 − 91

−x2 + y2 = 1 + 141087x2y2 mod 2191 − 19

−x2 + y2 = 1 + 987514x2y2 mod 2223 − 235

−x2 + y2 = 1 + 4998299x2y2 mod 2255 − 19

The latter four curves are taken from [14], where it is described how they were
generated and what security properties they meet. We generated the first curve
(i.e. the curve based on the 127-bit field) from scratch, following the guidelines
in [14]. However, it must be noted that solving the ECDLP in a 124-bit elliptic
curve subgroup is well within reach for a well-funded adversary; therefore, this
curve is only suitable for commitments with short-time security requirements in
the area of a few seconds. Also the adequacy of the curve over the 159-bit field
(providing a security level of roughly 78 bits) must be carefully evaluated. The
main characteristics of all five curves are summarized in Table 2.

Our software is not restricted to these curves and can be easily extended to
support other pseudo-Mersenne prime fields and TE curves, provided that the
following conditions are fulfilled. First, the constant c of the pseudo-Mersenne
prime p = 2k − c is at most 29 bits long and k is a multiple of 32 minus 1. The
resulting prime p must be congruent to 5 modulo 8 so that a = −1 is a square
in Fp (and the TE addition law can be complete [3]) and square roots modulo
p (which are needed for the decompression of compressed curve points [4]) can
be computed efficiently via Atkin’s method [1]. Second, the parameter d of the
TE curve is at most 32 bits long and a is fixed to −1 so that the fast addition
formula proposed by Hişil et al [16] can be used. The resulting TE curve needs
to have a co-factor of h = 8 and meet all other requirements listed in [14].

4 Benchmarking Results

In this section, we present some benchmarks for the field arithmetic operations
and the computation of commitments for five different security levels using the
curves given above. We made an effort to ensure the C and Assembler source
codes can be compiled (and execute correctly) with three different compilers on
three different operating systems, namely Microsoft Visual C on Window 7, gcc
on Linux, and clang on macOS. All timings were collected with a test program
that was compiled with clang version 3.9.0 (using -O2 optimization level) and
executed on an Intel Core i7 CPU clocked at 2.7 GHz. We measured the cycle
counts of the different operations following the approach described in [17].

12 C. Franck, J. Großschädl

Table 1. Computation time of field operations on a 2.7 GHz Core i7 CPU.

Prime p 2127 − 507 2159 − 91 2191 − 19 2223 − 235 2255 − 19

C99

multiplication 95 cycles 123 cycles 165 cycles 200 cycles 256 cycles

squaring 89 cycles 120 cycles 156 cycles 191 cycles 230 cycles

Assembler

multiplication 51 cycles 68 cycles 85 cycles 111 cycles 140 cycles

squaring 48 cycles 59 cycles 71 cycles 87 cycles 108 cycles

4.1 Field Operations

As explained in Subsect. 3.1, our software contains two implementations of the
field arithmetic: one is speed-optimized (i.e. written in x86 Assembly language)
and supports 127, 159, 191, 223, and 255-bit primes, whereas the second aims
for high flexibility and is “generic” so that it can be used for pseudo-Mersenne
primes of arbitrary length (in steps of 32 bits). This second implementation is
written in ANSI C99 and not particularly optimized in any way. Table 1 shows
the cycle counts of multiplication and squaring (including modular reduction)
on an Intel Core i7 processor. We can observe that the field operations become
significantly more expensive as the bitlength of the prime increases. For exam-
ple, multiplication and squaring for 255-bit operands is roughly 2.5 times more
costly as the same operations for operands of a length of 127 bits. Squaring is
about 23% faster than multiplication (for 255-bit operands), but the difference
decreases for shorter operands or when the operations are written in C. While
the assembler implementations of multiplication are nearly two times as fast as
their C counterparts, the speed-up factor due to Assembly programming grows
even above two for squaring.

The performance of the field arithmetic on an Intel Core processor could be
much improved by using 64-bit instructions or the SSE extensions. However, as
stated in the previous section, we aimed to support a wide range of x86 plat-
forms, and hence we restricted ourselves to the standard 32-bit x86 instruction
set. In this way, the software can also run on embedded x86 processors like the
Intel Quark [18], which features neither 64-bit instructions nor SSE.

4.2 Commitments

As mentioned in Subsect. 3.3, we use tables with pre-computed points to speed
up the computation of the Pedersen commitments. These tables are generated
dynamically for the chosen TE curve, taking into account the number of base
points. It is possible to trade performance for RAM requirements by choosing
between standard affine and extended affine coordinates, and by increasing the
number of point doublings as described in Subsect. 3.3.

The results in Table 2 show that the size of the pre-computed tables grows
rapidly as the elliptic-curve groups (and underlying fields) become larger. When

Implementation of Pedersen Commitments Using Twisted Edwards Curves 13

Table 2. Parameters and benchmark results for selected twisted Edwards curves on a
2.7 GHz Core i7 CPU.

Prime p 2127 − 507 2191 − 19 2223 − 235 2255 − 19

Curve par. d 182146 141087 987514 4998299

Security (Safe curves)

subgr. order n 2124 2188 2220 2252

pollard-rho 261.83 293.83 2109.83 2125.83

embed. degree n/4 n n/2 n/9

tr. Frobenius −263.17 −296.00 −2112.19 −2127.40

CM field discr. −2126.75 −2189.99 −2221.46 −2254.64

twist secure yes yes yes yes

rigid design yes yes yes yes

Size

commit. size 128 bit 192 bit 224 bit 256 bit

Precomputed Affine coordinates

Simple commitment with 2 base points

computation 71158 cycles 152229 cycles 204995 cycles 253231 cycles

precomp. 3892328 cycles 10658120 cycles 14830488 cycles 21045653 cycles

table size 8192 bytes 18432 bytes 25088 bytes 32768 bytes

Multiple commitment with 10 base points

computation 307827 cycles 676167 cycles 928502 cycles 1117830 cycles

precomp. 19696098 cycles 50817550 cycles 74457348 cycles 104493723 cycles

table size 40960 bytes 92160 bytes 125440 bytes 163840 bytes

Multiple commitment with 25 base points

computation 758717 cycles 1651434 cycles 2284449 cycles 2797713 cycles

precomp. 49074094 cycles 127289535 cycles 186253419 cycles 260234216 cycles

table size 102400 bytes 230400 bytes 313600 bytes 409600 bytes

Precomputed Extended Affine coordinates

Simple commitment with 2 base points

computation 71912 cycles 150958 cycles 204109 cycles 235712 cycles

precomp. 3949639 cycles 10222641 cycles 14974472 cycles 21170345 cycles

table size 12288 bytes 27648 bytes 37632 bytes 49152 bytes

Multiple commitment with 10 base points

computation 311964 cycles 670083 cycles 923140 cycles 1099020 cycles

precomp. 19833071 cycles 51258665 cycles 74953927 cycles 107634723 cycles

table size 61440 bytes 138240 bytes 188160 bytes 245760 bytes

Multiple commitment with 25 base points

computation 774411 cycles 1651590 cycles 2257933 cycles 2633260 cycles

precomp. 49852794 cycles 128884006 cycles 188669593 cycles 263449068 cycles

table size 153600 bytes 345600 bytes 470400 bytes 614400 bytes

14 C. Franck, J. Großschädl

the size of the underlying field doubles from 127 to 255 bits, the table size and
computation time increases by a factor of roughly between three and four. The
time spent for the pre-computation of tables grows by even larger factors. This
confirms that committing to a secret value through two 128-bit commitments is
much cheaper in terms of table size and computation time than using a single
256-bit commitment instead. However, as stated in Subsect. 3.4, commitments
generated using a TE curve of such small order can only be considered secure
for a very short period of time (e.g. a few seconds)

We can further see in Table 2 that for the TE curve over the 255-bit prime
field, the computation of a commitment using pre-computed points in extended
affine coordinates is only marginally faster than when using conventional affine
coordinates. However, the tables holding points in extended affine coordinates
are 50% larger than the tables containing conventional affine coordinates. It is
remarkable that the advantage of pre-computing three coordinates vanishes the
smaller the order of the curve becomes. For example, for the TE curve over the
127-bit field, the variant using standard affine coordinates turns out to be even
faster than the approach based on extended affine coordinates.

The verification of a commitment consists in using the revealed value(s) to
accomplish the same computations that were made when the commitment was
created. Therefore, the computational cost of a verification is the same as the
cost of computing a commitment.

5 Applications

Since Pedersen commitments are used in an increasing number of contexts, we
believe that our software can be useful in many application domains. To give
concrete examples, we discuss potential usage scenarios in two areas.

First, we look at the field of untraceable communication where two variants
of the dining cryptographers protocol [7] have been introduced that both make
extensive use of Pedersen commitments. The dining cryptographers protocol is
multiparty protocol in which all participants first establish pairwise secret keys
and then later they publish random-looking values derived from said keys. The
sum of all the published values can reveal the message, but it is impossible to
determine which participant was the sender. For many years, this protocol was
considered to be impractical because a malicious participant could disrupt the
communication by publishing wrong values and remain undetected. In the two
more recent approaches [12, 13], this problem has been tackled using Pederson
commitments. During the initialization phase, the n participants are required
to compute n or n2 Pedersen commitments for each subsequent transmission
round. This makes a large number of commitments to pre-compute during the
initialization and many commitments to verify in each transmission round. In
settings where the expected lifetime of commitments is in the range of seconds
to minutes, an elliptic curve of small order can be used, e.g. our curve over the
127-bit field). The number of bases depends on the size of the messages; when
only short signalling messages are transmitted, a few bases will suffice.

Implementation of Pedersen Commitments Using Twisted Edwards Curves 15

Another field in which Pedersen commitments can be used is the long-time
archiving of digital documents containing sensitive data [10]. Certain countries
like Estonia require hospitals to store large amounts of medical data, and there
are also lots of sensible government data that has to be kept secure for several
decades. To guarantee the privacy and authenticity of the data without having
to reveal it, one may opt to generate Pedersen commitments. In this case, the
expected lifetime and the required security level of the commitments has to be
much higher than in the previous example, and so one may decide to utilize an
elliptic curve providing a security level of 128 bits (e.g. our TE curve over the
255-bit field) or even above. The data can be longer, so one might chose to go
for a larger number of bases. It is possible to replace a commitment after some
time by an equivalent commitment with stronger security parameters [10].

These two examples clearly illustrate that different usage scenarios require
different kinds of Pedersen commitments. While in the first scenario there is a
need for “lightweight” commitments for small messages, the second scenario is
about long-term security for large(r) documents. Our software was designed in
such a way that it can easily be configured for any of these use cases.

6 Concluding Remarks

We presented an x86 software library specifically aimed at computing Pedersen
commitment based on TE curves with optimized formulae for the addition and
doubling of points. The arithmetic functions in the underlying pseudo-Mersenne
prime fields have been implemented in both ANSI C and x86 Assembly. On the
higher level it is possible to dynamically pre-compute points for fast fixed-base
scalar multiplication with a variable number of base points.

The results of the benchmark tests confirm that the stronger commitments
based on large-order curves are much more expensive in terms of computation
time and memory requirements than their more “lightweight” counterparts. To
provide a concrete example, a 256-bit commitment can be three to four times
more expensive than a 128-bit commitment. It makes therefore sense to have a
software that allows to adjust the commitments to their expected lifetime, the
size of the secret data, and the available memory for pre-computed points.

Finally, we discussed possible application scenarios for the software, but we
believe there are many more. We hope that the software will prove to be useful
to researchers who plan to implement protocols using Pedersen commitments.

References

1. A. O. Atkin. Probabilistic primality testing (summary by F. Morain). In INRIA
Research Report 1779, pp. 159–163. INRIA, 1992. Available for download at http:
//algo.inria.fr/seminars/sem91-92/atkin.pdf.

2. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Public Key
Cryptography — PKC 2006, vol. 3958 of Lecture Notes in Computer Science, pp.
207–228. Springer Verlag, 2006.

16 C. Franck, J. Großschädl

3. D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards
curves. In Progress in Cryptology — AFRICACRYPT 2008, vol. 5023 of Lecture
Notes in Computer Science, pp. 389–405. Springer Verlag, 2008.

4. D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-
security signatures. Journal of Cryptographic Engineering, 2(2):77–89, Sept. 2012.

5. S. Brands. Rapid demonstration of linear relations connected by Boolean opera-
tors. In Advances in Cryptology — EUROCRYPT ’97, vol. 1233 of Lecture Notes
in Computer Science, pp. 318–333. Springer Verlag, 1997.

6. E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponen-
tiation with precomputation (Extended abstract). In Advances in Cryptology —
EUROCRYPT ’92, vol. 658 of Lecture Notes in Computer Science, pp. 200–207.
Springer Verlag, 1992.

7. D. Chaum. The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. Journal of Cryptology, 1(1):65–75, Jan. 1988.

8. D. Chu, J. Großschädl, Z. Liu, V. Müller, and Y. Zhang. Twisted Edwards-form
elliptic curve cryptography for 8-bit AVR-based sensor nodes. In Proceedings of
the 1st ACM Workshop on Asia Public-Key Cryptography (AsiaPKC 2013), pp.
39–44. ACM Press, 2013.

9. I. B. Damg̊ard. Commitment schemes and zero-knowledge protocols. In Lectures
on Data Security: Modern Cryptology in Theory and Practice, vol. 1561 of Lecture
Notes in Computer Science, chapter 3, pp. 63–86. Springer Verlag, 1999.

10. D. Demirel and J. Lancrenon. How to securely prolong the computational bind-
ingness of Pedersen commitments. Cryptology ePrint Archive, Report 2015/584,
2015. Available for download at http://eprint.iacr.org/2015/584.

11. H. M. Edwards. A normal form for elliptic curves. Bulletin of the American
Mathematical Society, 44(3):393–422, July 2007.

12. C. Franck and U. K. Sorger. Untraceable VoIP communication based on DC-nets.
CoRR, abs/1610.06549, 2016. Available for download at http://arxiv.org/abs/

1610.06549.

13. C. Franck and J. van de Graaf. Dining cryptographers are practical (Preliminary
version). CoRR, abs/1402.2269, 2014. Available for download at http://arxiv.

org/abs/1402.2269.

14. S. Ghatpande, J. Großschädl, and Z. Liu. A family of lightweight twisted Edwards
curves for the Internet of things. Preprint, submitted for publication, 2017.

15. D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve
Cryptography. Springer Verlag, 2004.

16. H. Hişil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves
revisited. In Advances in Cryptology — ASIACRYPT 2008, vol. 5350 of Lecture
Notes in Computer Science, pp. 326–343. Springer Verlag, 2008.

17. Intel Corporation. How to Benchmark Code Execution Times on IntelR© IA-32
and IA-64 Instruction Set Architectures. White paper, available for download
at http://www.intel.com/content/dam/www/public/us/en/documents/white-

papers/ia-32-ia-64-benchmark-code-execution-paper.pdf, 2010.

18. Intel Corporation. IntelR© QuarkTM SoC X1000. Product specification, available
online at http://ark.intel.com/products/79084/Intel-Quark-SoC-X1000-

16K-Cache-400-MHz, 2015.

19. C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation. In
Advances in Cryptology — CRYPTO ’94, vol. 839 of Lecture Notes in Computer
Science, pp. 95–107. Springer Verlag, 1994.

Implementation of Pedersen Commitments Using Twisted Edwards Curves 17

20. Z. Liu, J. Großschädl, L. Li, and Q. Xu. Energy-efficient elliptic curve cryptography
for MSP430-based wireless sensor nodes. In Information Security and Privacy —
ACISP 2016, vol. 9722 of Lecture Notes in Computer Science, pp. 94–112. Springer
Verlag, 2016.

21. National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS). FIPS Publication 186-4, available for download at http://nvlpubs.

nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf, July 2013.
22. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In Advances in Cryptology — CRYPTO ’91, vol. 576 of Lecture Notes in
Computer Science, pp. 129–140. Springer Verlag, 1992.

23. N. Pippenger. On the evaluation of powers and related problems (Preliminary ver-
sion). In Proceedings of the 17th Annual Symposium on Foundations of Computer
Science (FOCS 1976), pp. 258–263. IEEE Computer Society Press, 1976.

A Algorithms for Point Arithmetic

Algorithm 1. Point addition on a twisted Edwards curve with a = −1

Input: Point P1 in extended projective coordinates (X1 : Y1 : E1 : H1 : Z1) satisfying
E1H1 = T1 = X1Y1/Z1, point P2 in affine coordinates (x2, y2), curve parameter d

Output: Sum P3 = P1 +P2 in extended projective coordinates (X3 : Y3 : E3 : H3 : Z3)

1: T1 ← E1 ·H1

2: E3 ← Y1 −X1

3: H3 ← Y1 + X1

4: U2 ← y2 − x2

5: V2 ← y2 + x2

6: X3 ← E3 · U2

7: Y3 ← H3 · V2

8: E3 ← Y3 −X3

9: H3 ← Y3 + X3

10: U2 ← x2 · y2

11: V2 ← 2d · U2

12: X3 ← T1 · V2

13: Y3 ← 2Z1

14: U2 ← Y3 −X3

15: V2 ← Y3 + X3

16: X3 ← E3 · U2

17: Y3 ← V2 ·H3

18: Z3 ← U2 · V2

19: return (X3 : Y3 : E3 : H3 : Z3)

Algorithm 2. Point doubling on a twisted Edwards curve with a = −1

Input: Point P1 in extended projective coordinates (X1 : Y1 : E1 : H1 : Z1) satisfying
E1H1 = T1 = X1Y1/Z1

Output: Double P3 = 2 ·P1 in extended projective coordinates (X3 : Y3 : E3 : H3 : Z3)

1: E3 ← X1
2

2: H3 ← Y1
2

3: T1 ← E3 −H3

4: H3 ← E3 + H3

5: X3 ← X1 + Y1

6: E3 ← X3
2

7: E3 ← H3 − E3

8: Y3 ← Z1
2

9: Y3 ← 2Y3

10: Y3 ← T1 + Y3

11: X3 ← E3 · Y3

12: Z3 ← Y3 · T1

13: Y3 ← T1 ·H3

14: return (X3 : Y3 : E3 : H3 : Z3)

