Types, Tableaus and Gödel's God in Isabelle/HOL

David Fuenmayor ${ }^{1}$ and Christoph Benzmüller ${ }^{2,1}$
${ }^{1}$ Freie Universität Berlin, Germany
${ }^{2}$ University of Luxembourg, Luxembourg

October 11, 2017

Abstract

A computer-formalisation of the essential parts of Fitting's textbook Types, Tableaus and Gödel's God in Isabelle/HOL is presented. In particular, Fitting's (and Anderson's) variant of the ontological argument is verified and confirmed. This variant avoids the modal collapse, which has been criticised as an undesirable side-effect of Kurt Gödel's (and Dana Scott's) versions of the ontological argument. Fitting's work is employing an intensional higher-order modal logic, which we shallowly embed here in classical higher-order logic. We then utilize the embedded logic for the formalisation of Fitting's argument.

Contents

1 Introduction

2 Embedding of Intensional Higher-Order Modal Logic 4
2.1 Type Declarations 4
2.2 Definitions 5
2.2.1 Logical Operators as Truth-Sets 5
2.2.2 Possibilist Quantification 5
2.2.3 Actualist Quantification 5
2.2.4 Modal Operators 6
2.2.5 Extension-of Operator 6
2.2.6 Equality 7
2.2.7 Meta-logical Predicates 7
2.3 Verifying the Embedding 8
2.4 Useful Definitions for Axiomatization of Further Logics 9
3 Textbook Examples 10
3.1 Modal Logic - Syntax and Semantics (Chapter 7) 10
3.1.1 Considerations Regarding $\beta \eta$-redex (p. 94) 10
3.1.2 Exercises (p. 101) 11
3.2 Miscellaneous Matters (Chapter 9) 12
3.2.1 Equality Axioms (Subsection 1.1) 12
3.2.2 Extensionality (Subsection 1.2) 12
3.2.3 De Re and De Dicto (Subsection 2) 12
3.2.4 Rigidity (Subsection 3) 13
3.2.5 Stability Conditions (Subsection 4) 13
4 Gödel's Argument, Formally 15
4.1 Part I - God's Existence is Possible 15
4.1.1 General Definitions 15
4.1.2 Axioms 16
4.1.3 Theorems 16
4.2 Part II - God's Existence is Necessary if Possible 17
4.2.1 General Definitions 17
4.2.2 Results from Part I 18
4.2.3 Axioms 18
4.2.4 Theorems 19
4.2.5 Monotheism 21
4.2.6 Positive Properties are Necessarily Instantiated 23
4.2.7 More Objections 23
5 Fitting's Solution 24
5.1 General Definitions 24
5.2 Part I - God's Existence is Possible 24
5.3 Part II - God's Existence is Necessary if Possible 25
5.4 Conclusion (De Re and De Dicto Reading) 27
5.5 Modal Collapse 27
6 Anderson's Alternative 28
6.1 General Definitions 28
6.2 Part I - God's Existence is Possible 28
6.3 Part II - God's Existence is Necessary if Possible 28
6.4 Modal Collapse 31
7 Conclusion 32

1 Introduction

We present a study on Computational Metaphysics: a computer-formalisation and verification of Fitting's variant of the ontological argument (for the existence of God) as presented in his textbook Types, Tableaus and Gödel's God [12]. Fitting's argument is an emendation of Kurt Gödel's modern variant [15] (resp. Dana Scott's variant [17]) of the ontological argument.

The motivation is to avoid the modal collapse [18, 19], which has been criticised as an undesirable side-effect of the axioms of Gödel resp. Scott. The modal collapse essentially states that there are no contingent truths and that everything is determined. Several authors (e.g. $[2,1,16,10]$) have proposed emendations of the argument with the aim of maintaining the essential result (the necessary existence of God) while at the same time avoiding the modal collapse. Related work has formalised several of these variants on the computer and verified or falsified them. For example, Gödel's axioms [15] have been shown inconsistent $[8,9]$ while Scott's version has been verified [5]. Further experiments, contributing amongst others to the clarification of a related debate between Hájek and Anderson, are presented and discussed in [6]. The enabling technique in all of these experiments has been shallow semantical embeddings of (extensional) higher-order modal logics in classical higher-order logic (see $[6,3]$ and the references therein).

Fitting's emendation also intends to avoid the modal collapse. However, in contrast to the above variants, Fitting's solution is based on the use of an intensional as opposed to an extensional higher-order modal logic. For our work this imposed the additional challenge to provide a shallow embedding of this more advanced logic. The experiments presented below confirm that Fitting's argument as presented in his textbook [12] is valid and that it avoids the modal collapse as intended.

The work presented here originates from the Computational Metaphysics lecture course held at FU Berlin in Summer 2016 [7].

2 Embedding of Intensional Higher-Order Modal Logic

The object logic being embedded, intensional higher-order modal logic (IHOML), is a modification of the intentional logic developed by Montague and Gallin [14]. IHOML is introduced by Fitting in the second part of his textbook [12] in order to formalise his emendation of Gödel's ontological argument. We offer here a shallow embedding of this logic in Isabelle/HOL, which has been inspired by previous work on the semantical embedding of multimodal logics with quantification [6]. We expand this approach to allow for actualist quantifiers, intensional types and their related operations.

2.1 Type Declarations

Since IHOML and Isabelle/HOL are both typed languages, we introduce a type-mapping between them. We follow as closely as possible the syntax given by Fitting (see p. 86). According to this syntax, if τ is an extensional type, $\uparrow \tau$ is the corresponding intensional type. For instance, a set of (red) objects has the extensional type $\langle\mathbf{0}\rangle$, whereas the concept 'red' has intensional type $\uparrow\langle\mathbf{0}\rangle$. In what follows, terms having extensional (intensional) types will be called extensional (intensional) terms.
typedecl $i \quad$ - type for possible worlds
type-synonym io $=(i \Rightarrow$ bool $)$ - formulas with world-dependent truth-value typedecl e (0) - individuals

Aliases for common unary predicate types:

type-synonym $i e=$	$(i \Rightarrow \mathbf{0})$	$(\uparrow \mathbf{0})$
type-synonym $s e=$	($\mathbf{~} \Rightarrow$ bool)	$(\langle\mathbf{0}\rangle)$
type-synonym ise $=$	($\mathbf{0} \Rightarrow$ io)	($\uparrow\langle\mathbf{0}\rangle$)
type-synonym sie $=$	($\uparrow \mathbf{0} \Rightarrow$ bool $)$	($\langle\uparrow \mathbf{0}\rangle$)
type-synonym $i s i e=$	$(\uparrow \mathbf{0} \Rightarrow i o)$	$(\uparrow\langle\uparrow \mathbf{0}\rangle)$
type-synonym sise $=$	$(\uparrow\langle\mathbf{0}\rangle \Rightarrow$ bool $)$	$(\langle\uparrow\langle\mathbf{0}\rangle\rangle)$
type-synonym isise $=$	$(\uparrow\langle\mathbf{0}\rangle \Rightarrow i o)$	$(\uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle)$
type-synonym sisise $=$	$(\uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle \Rightarrow b$	$(\langle\uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle\rangle)$
type-synonym isisise $=$	$(\uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle \Rightarrow i o$	$(\uparrow\langle\uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle\rangle)$
type-synonym sse $=$	$\langle\mathbf{0}\rangle \Rightarrow$ bool	($\langle\langle\mathbf{0}\rangle\rangle$)
type-synonym isse $=$	$\langle\mathbf{0}\rangle \Rightarrow$ io	$(\uparrow\langle\langle\mathbf{0}\rangle\rangle)$

Aliases for common binary relation types:

type-synonym see $=$	$(\mathbf{0} \Rightarrow \mathbf{0} \Rightarrow$ bool $)$	$(\langle\mathbf{0}, \mathbf{0}\rangle)$
type-synonym isee $=$	$(\mathbf{0} \Rightarrow \mathbf{0} \Rightarrow$ io $)$	$(\uparrow\langle\mathbf{0}, \mathbf{0}\rangle)$
type-synonym sieie $=$	$(\uparrow \mathbf{0} \Rightarrow \uparrow \mathbf{0} \Rightarrow$ bool $)$	$(\langle\uparrow \mathbf{0}, \uparrow \mathbf{0}\rangle)$
type-synonym isieie $=$	$(\uparrow \mathbf{0} \Rightarrow \uparrow \mathbf{0} \Rightarrow$ io $)$	$(\uparrow\langle\uparrow \mathbf{0}, \uparrow \mathbf{0}\rangle)$
type-synonym ssese $=$	$(\langle\mathbf{0}\rangle \Rightarrow\langle\mathbf{0}\rangle \Rightarrow$ bool $)$	$(\langle\langle\mathbf{0}\rangle,\langle\mathbf{0}\rangle\rangle)$
type-synonym issese $=$	$(\langle\mathbf{0}\rangle \Rightarrow\langle\mathbf{0}\rangle \Rightarrow$ io $)$	$(\uparrow\langle\langle\mathbf{0}\rangle,\langle\mathbf{0}\rangle\rangle)$

```
type-synonym ssee = (\langle\mathbf{0}=>=>\mathbf{0}=>\mathrm{ bool ) }\quad(\langle\langle\mathbf{0}\rangle,\mathbf{0}\rangle)
type-synonym issee = (\langle0\rangle=>\mathbf{0}=>io) (\uparrow\langle\langle\mathbf{0}\rangle,\mathbf{0}\rangle)
type-synonym isisee = (\uparrow\langle\mathbf{0}\rangle=>\mathbf{0}=>\mathrm{ io ) (个<^<0}\mathbf{0},0\rangle)
type-synonym isiseise = (\uparrow\langle\mathbf{0}\rangle=>\uparrow\langle\mathbf{0}\rangle=>io) (\uparrow\langle\uparrow\langle\mathbf{0}\rangle,\uparrow\langle\mathbf{0}\rangle\rangle)
type-synonym isiseisise= (\uparrow \0 \rangle}=>\uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle=>io)(\uparrow\langle\uparrow\langle\mathbf{0}\rangle,\uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle\rangle
```


2.2 Definitions

2.2.1 Logical Operators as Truth-Sets

```
abbreviation mnot :: io=>io (\neg-[52]53)
    where }\neg\varphi\equiv\lambdaw.\neg(\varphiw
abbreviation negpred :: \langle\mathbf{0}\rangle=>\langle\mathbf{0}\rangle(\rightharpoondown-[52]53)
    where}\rightharpoondown\Phi\equiv\lambdax.\neg(\Phix
abbreviation mnegpred :: \uparrow\langle\mathbf{0}\rangle=>\uparrow\langle\mathbf{0}\rangle(\rightharpoondown-[52]53)
    where}\rightharpoondown\Phi\equiv\lambdax.\lambdaw.\neg(\Phixw
abbreviation mand :: iogio=>io(infixr^ ^51)
    where }\varphi\wedge\psi\equiv\lambdaw.(\varphiw)\wedge(\psiw
abbreviation mor :: io }->io=>io (infixr\vee 50),
    where }\varphi\vee\psi\equiv\lambdaw.(\varphiw)\vee(\psiw
abbreviation mimp :: io }->io=>io(infixr ->49
    where }\varphi->\psi\equiv\lambdaw.(\varphiw)\longrightarrow(\psiw
abbreviation mequ ::io=>io=>io (infixr }\leftrightarrow48
    where }\varphi\leftrightarrow\psi\equiv\lambdaw.(\varphiw)\longleftrightarrow(\psiw
abbreviation xor:: bool }=>\mathrm{ bool }=>\mathrm{ bool (infixr }\oplus50
    where }\varphi\oplus\psi\equiv(\varphi\vee\psi)\wedge\neg(\varphi\wedge\psi
abbreviation mxor :: io=>io=>io(infixr }\oplus50
    where }\varphi\oplus\psi\equiv\lambdaw.(\varphiw)\oplus(\psiw
```


2.2.2 Possibilist Quantification

$$
\begin{aligned}
& \text { abbreviation mforall }::\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow \text { io }(\forall) \\
& \text { where } \forall \Phi \equiv \lambda w . \forall x .(\Phi x w) \\
& \text { abbreviation mexists }::\left({ }^{\prime} t \Rightarrow \text { io }\right) \Rightarrow i o(\exists) \\
& \text { where } \exists \Phi \equiv \lambda w . \exists x .(\Phi x w)
\end{aligned}
$$

abbreviation m forallB $::(' t \Rightarrow i o) \Rightarrow i o$ (binder $\forall[8] 9)$ - Binder notation where $\forall x . \varphi(x) \equiv \forall \varphi$
abbreviation mexists $B::\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow i o$ (binder $\left.\exists[8] 9\right)$
where $\exists x . \varphi(x) \equiv \exists \varphi$

2.2.3 Actualist Quantification

The following predicate is used to model actualist quantifiers by restricting the domain of quantification at every possible world. This standard technique has been referred to as existence relativization ([13], p. 106), highlighting the fact that this predicate can be seen as a kind of meta-logical 'existence predicate' telling us which individuals actually exist at a given world. This meta-logical concept does not appear in our object language.

```
consts Exists::个〈0〉(existsAt)
abbreviation mforallAct \(:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle\left(\forall^{E}\right)\)
    where \(\forall^{E} \Phi \equiv \lambda w . \forall x\). (existsAt \(\left.x w\right) \longrightarrow(\Phi x w)\)
abbreviation mexistsAct \(:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle\left(\exists^{E}\right)\)
    where \(\exists^{E} \Phi \equiv \lambda w . \exists x\). \((\) existsAt \(x w) \wedge(\Phi x w)\)
abbreviation mforallActB \(:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle\) (binder \(\left.\forall^{E}[8] 9\right)\) - binder notation
    where \(\forall^{E} x . \varphi(x) \equiv \forall^{E} \varphi\)
abbreviation mexistsAct \(B:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle\) (binder \(\exists^{E}[8] 9\) )
    where \(\exists^{E} x . \varphi(x) \equiv \exists{ }^{E} \varphi\)
```


2．2．4 Modal Operators

consts a Rel $:: i \Rightarrow i \Rightarrow$ bool（infixr r 70）－accessibility relation r
abbreviation mbox ：：io \Rightarrow io（ $\square-[52] 53$ ）
where $\square \varphi \equiv \lambda w . \forall v .(w r v) \longrightarrow(\varphi v)$
abbreviation mdia ：：io \Rightarrow io（ \diamond－［52］53）
where $\diamond \varphi \equiv \lambda w . \exists v .(w r v) \wedge(\varphi v)$

2．2．5 Extension－of Operator

According to Fitting＇s semantics（［12］，pp．92－4）\downarrow is an unary operator applying only to intensional terms．A term of the form $\downarrow \alpha$ designates the extension of the intensional object designated by α ，at some given world． For instance，suppose we take possible worlds as persons，we can therefore think of the concept＇red＇as a function that maps each person to the set of objects that person classifies as red（its extension）．We can further state， the intensional term r of type $\uparrow\langle\mathbf{0}\rangle$ designates the concept＇red＇．As can be seen，intensional terms in IHOML designate functions on possible worlds and they always do it rigidly．We will sometimes refer to an intensional object explicitly as＇rigid＇，implying that its（rigidly）designated function has the same extension in all possible worlds．

Terms of the form $\downarrow \alpha$ are called relativized（extensional）terms；they are always derived from intensional terms and their type is extensional（in the color example $\downarrow r$ would be of type $\langle\mathbf{0}\rangle$ ）．Relativized terms may vary their denotation from world to world of a model，because the extension of an intensional term can change from world to world，i．e．they are non－rigid．

To recap：an intensional term denotes the same function in all worlds（i．e． it＇s rigid），whereas a relativized term denotes a（possibly）different extension （an object or a set）at every world（i．e．it＇s non－rigid）．To find out the denotation of a relativized term，a world must be given．Relativized terms are the only non－rigid terms．

For our Isabelle/HOL embedding, we had to follow a slightly different approach; we model \downarrow as a predicate applying to formulas of the form $\Phi\left(\downarrow \alpha_{1}, \ldots \alpha_{n}\right)$ (for our treatment we only need to consider cases involving one or two arguments, the first one being a relativized term). For instance, the formula $Q\left(\downarrow a_{1}\right)^{w}$ (evaluated at world $\left.w\right)$ is modelled as $\downharpoonleft\left(Q, a_{1}\right)^{w}$ (or $\left(Q \downharpoonleft a_{1}\right)^{w}$ using infix notation), which gets further translated into $Q\left(a_{1}(w)\right)^{w}$.
Depending on the particular types involved, we have to define \downarrow differently to ensure type correctness (see $a-d$ below). Nevertheless, the essence of the Extension-of operator remains the same: a term α preceded by \downarrow behaves as a non-rigid term, whose denotation at a given possible world corresponds to the extension of the original intensional term α at that world.
(a) Predicate φ takes as argument a relativized term derived from an (intensional) individual of type $\uparrow \mathbf{0}$:
abbreviation extIndivArg:: $\uparrow\langle\mathbf{0}\rangle \Rightarrow \uparrow \mathbf{0} \Rightarrow i o($ infix $\downharpoonleft 60)$
where $\varphi \downharpoonleft c \equiv \lambda w . \varphi(c w) w$
(b) A variant of (a) for terms derived from predicates (types of form $\uparrow\langle t\rangle$):
abbreviation extPredArg:: $\left.\left({ }^{\prime} t \Rightarrow b o o l\right) \Rightarrow i o\right) \Rightarrow\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow i o($ infix $\downarrow 60)$
where $\varphi \downarrow P \equiv \lambda w . \varphi(\lambda x$. P x w $) w$
(c) A variant of (b) with a second argument (the first one being relativized): abbreviation extPredArg1 : : ($\left.\left.{ }^{\prime} t \Rightarrow b o o l\right) \Rightarrow{ }^{\prime} b \Rightarrow i o\right) \Rightarrow\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow^{\prime} b \Rightarrow i o$ (infix $\downarrow_{1} 60$) where $\varphi \downarrow_{1} P \equiv \lambda z . \lambda w . \varphi(\lambda x . P x w) z w$

In what follows, the ' ($-(\mid)$ ' parentheses are an operator used to convert extensional objects into 'rigid' intensional ones:
abbreviation trivialConversion::bool \Rightarrow io $((1-))$ where $(|\varphi|) \equiv(\lambda w . \varphi)$
(d) A variant of (b) where φ takes 'rigid' intensional terms as argument:
abbreviation mextPredArg:: ((' $t \Rightarrow i o) \Rightarrow i o) \Rightarrow\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow i o($ infix $\downarrow 60)$
where $\varphi \downarrow P \equiv \lambda w . \varphi(\lambda x .(P x w \mid)) w$

2.2.6 Equality

abbreviation meq $\quad:{ }^{\prime} t \Rightarrow{ }^{\prime} t \Rightarrow i o$ (infix ≈ 60) - normal equality (for all types)
where $x \approx y \equiv \lambda w . x=y$
abbreviation meq $C \quad:: \uparrow\langle\uparrow \mathbf{0}, \uparrow \mathbf{0}\rangle\left(\mathbf{i n f i x r} \approx^{C} 52\right)$ - eq. for individual concepts where $x \approx^{C} y \equiv \lambda w . \forall v .(x v)=(y v)$
abbreviation $m e q L \quad:: \uparrow\langle\mathbf{0}, \mathbf{0}\rangle$ (infixr$\left.\approx^{L} 52\right)$ - Leibniz eq. for individuals where $x \approx^{L} y \equiv \forall \varphi \cdot \varphi(x) \rightarrow \varphi(y)$

2.2.7 Meta-logical Predicates

abbreviation valid $::$ io \Rightarrow bool $(\lfloor-\rfloor[8])$ where $\lfloor\psi\rfloor \equiv \forall w .(\psi w)$
abbreviation satisfiable :: io \Rightarrow bool $\left(\lfloor-\rfloor^{\text {sat }}[8]\right)$ where $\lfloor\psi\rfloor^{\text {sat }} \equiv \exists w .(\psi w)$
abbreviation countersat :: io \Rightarrow bool $\left(\left\lfloor-^{c s a t}[8]\right)\right.$ where $\lfloor\psi\rfloor^{\text {csat }} \equiv \exists w . \neg(\psi w)$
abbreviation invalid :: io \Rightarrow bool $\left(\lfloor-\rfloor^{i n v}[8]\right)$ where $\lfloor\psi\rfloor^{i n v} \equiv \forall w . \neg(\psi w)$

2.3 Verifying the Embedding

The above definitions introduce modal logic K with possibilist and actualist quantifiers, as evidenced by the following tests:

Verifying K Principle and Necessitation:
lemma $K:\lfloor(\square(\varphi \rightarrow \psi)) \rightarrow(\square \varphi \rightarrow \square \psi)\rfloor$ by simp $\quad-K$ schema
lemma NEC: $\lfloor\varphi\rfloor \Longrightarrow\lfloor\square \varphi\rfloor$ by simp - necessitation
Local consequence implies global consequence (we will use this lemma often):
lemma localImp GlobalCons: $\lfloor\varphi \rightarrow \xi\rfloor \Longrightarrow\lfloor\varphi\rfloor \longrightarrow\lfloor\xi\rfloor$ by simp
But global consequence does not imply local consequence:
lemma $\lfloor\varphi\rfloor \longrightarrow\lfloor\xi\rfloor \Longrightarrow\lfloor\varphi \rightarrow \xi\rfloor$ nitpick oops - countersatisfiable
Barcan and Converse Barcan Formulas are satisfied for standard (possibilist) quantifiers:
lemma $\lfloor(\forall x . \square(\varphi x)) \rightarrow \square(\forall x .(\varphi x))\rfloor$ by simp
lemma $\lfloor\square(\forall x .(\varphi x)) \rightarrow(\forall x . \square(\varphi x))\rfloor$ by simp
(Converse) Barcan Formulas not satisfied for actualist quantifiers:
lemma $\left\lfloor\left(\forall^{E} x . \square(\varphi x)\right) \rightarrow \square\left(\forall^{E} x .(\varphi x)\right)\right\rfloor$ nitpick oops - countersatisfiable
lemma $\left\lfloor\square\left(\forall^{E} x .(\varphi x)\right) \rightarrow\left(\forall^{E} x . \square(\varphi x)\right)\right\rfloor$ nitpick oops - countersatisfiable
Above we have made use of (counter-)model finder Nitpick [11] for the first time. For all the conjectured lemmas above, Nitpick has found a countermodel, i.e. a model satisfying all the axioms which falsifies the given formula. This means, the formulas are not valid.

Well known relations between meta-logical notions:
lemma $\lfloor\varphi\rfloor \longleftrightarrow \neg\lfloor\varphi\rfloor^{\text {csat }}$ by simp
lemma $\lfloor\varphi\rfloor^{\text {sat }} \longleftrightarrow \neg\lfloor\varphi\rfloor^{\text {inv }}$ by simp
Contingent truth does not allow for necessitation:
lemma $\lfloor\Delta \varphi\rfloor \longrightarrow\lfloor\square \varphi\rfloor$ nitpick oops - countersatisfiable
lemma $\lfloor\square \varphi\rfloor^{\text {sat }} \longrightarrow\lfloor\square \varphi\rfloor$ nitpick oops - countersatisfiable
Modal collapse is countersatisfiable:
lemma $\lfloor\varphi \rightarrow \square \varphi\rfloor$ nitpick oops - countersatisfiable

2.4 Useful Definitions for Axiomatization of Further Logics

The best known normal logics (K4, K5, KB, K45, KB5, D, D4, D5, D45, \ldots..) can be obtained by combinations of the following axioms:

```
abbreviation \(M\)
    where \(M \equiv \forall \varphi . \square \varphi \rightarrow \varphi\)
abbreviation \(B\)
    where \(B \equiv \forall \varphi . \varphi \rightarrow \square \diamond \varphi\)
abbreviation \(D\)
    where \(D \equiv \forall \varphi . \square \varphi \rightarrow \diamond \varphi\)
abbreviation \(I V\)
    where \(I V \equiv \forall \varphi . \square \varphi \rightarrow \square \square \varphi\)
abbreviation \(V\)
    where \(V \equiv \forall \varphi . \Delta \varphi \rightarrow \square \diamond \varphi\)
```

Instead of postulating (combinations of) the above axioms we instead make use of the well-known Sahlqvist correspondence, which links axioms to constraints on a model's accessibility relation (e.g. reflexive, symmetric, etc.; the definitions of which are not shown here). We show that reflexivity, symmetry, seriality, transitivity and euclideanness imply axioms $M, B, D, I V, V$ respectively.

```
lemma reflexive aRel \(\Longrightarrow\lfloor M\rfloor\) by blast - aka T
lemma symmetric aRel \(\Longrightarrow\lfloor B\rfloor\) by blast
lemma serial aRel \(\Longrightarrow\lfloor D\rfloor\) by blast
lemma transitive aRel \(\Longrightarrow\lfloor I V\rfloor\) by blast
lemma euclidean aRel \(\Longrightarrow\lfloor V\rfloor\) by blast
lemma preorder aRel \(\Longrightarrow\lfloor M\rfloor \wedge\lfloor I V\rfloor\) by blast - S4: reflexive + transitive
lemma equivalence aRel \(\Longrightarrow\lfloor M\rfloor \wedge\lfloor V\rfloor\) by blast - S5: preorder + symmetric
lemma reflexive aRel \(\wedge\) euclidean aRel \(\Longrightarrow\lfloor M\rfloor \wedge\lfloor V\rfloor\) by blast - S5
```

Using these definitions, we can derive axioms for the most common modal logics (see also [4]). Thereby we are free to use either the semantic constraints or the related Sahlqvist axioms. Here we provide both versions. In what follows we use the semantic constraints (for improved performance).

3 Textbook Examples

In this section we provide further evidence that our embedded logic works as intended by proving the examples discussed in the book. In many cases, we consider further theorems which we derived from the original ones. We were able to confirm that all results (proofs or counterexamples) agree with Fitting's claims.

3.1 Modal Logic - Syntax and Semantics (Chapter 7)

Reminder: We call a term relativized if it is of the form $\downarrow \alpha$ (i.e. an intensional term preceded by the extension-of operator), otherwise it is non-relativized. Relativized terms are non-rigid and non-relativized terms are rigid.

3.1.1 Considerations Regarding $\beta \eta$-redex (p. 94)

$\beta \eta$-redex is valid for non-relativized (intensional or extensional) terms:

```
lemma \lfloor((\lambda\alpha.\varphi\alpha) (\tau::`0)) \leftrightarrow(\varphi (\varphi) \rfloor by simp
lemma \lfloor((\lambda\alpha.\varphi\alpha) (\tau::0))\leftrightarrow(\varphi \tau)\rfloor by simp
lemma \lfloor((\lambda\alpha.\square\varphi\alpha) (\tau::`0)) \leftrightarrow(\square\varphi\tau)\rfloor by simp
lemma \lfloor((\lambda\alpha.\square\varphi\alpha)(\tau::0))\leftrightarrow(\square\varphi\tau)\rfloor by simp
```

$\beta \eta$-redex is valid for relativized terms as long as no modal operators occur inside the predicate abstract:
lemma $\lfloor((\lambda \alpha . \varphi \alpha) \downharpoonleft(\tau:: \uparrow \mathbf{0})) \leftrightarrow(\varphi \downharpoonleft \tau)\rfloor$ by simp
$\beta \eta$-redex is non-valid for relativized terms when modal operators are present:
lemma $\lfloor((\lambda \alpha . \square \varphi \alpha) \downharpoonleft(\tau:: \uparrow 0)) \leftrightarrow(\square \varphi \downharpoonleft \tau)\rfloor$ nitpick oops - countersatisfiable lemma $\lfloor((\lambda \alpha . \diamond \varphi \alpha)\rfloor(\tau:: \uparrow 0)) \leftrightarrow(\diamond \varphi \downharpoonleft \tau)\rfloor$ nitpick oops - countersatisfiable

Example 7.13, p. 96 :
lemma $\lfloor(\lambda X . \diamond \exists X) \quad(P:: \uparrow\langle\mathbf{0}\rangle) \rightarrow \diamond((\lambda X . \exists X) \quad P)\rfloor$ by simp
lemma $\lfloor(\lambda X . \diamond \exists X) \downarrow(P:: \uparrow\langle\mathbf{0}\rangle) \rightarrow \diamond((\lambda X . \exists X) \downarrow P)\rfloor$
nitpick[card ' $t=1$, card $i=2$] oops - nitpick finds same counterexample as book
with other types for P :
lemma $\lfloor(\lambda X . \diamond \exists X) \quad(P:: \uparrow\langle\uparrow \mathbf{0}\rangle) \rightarrow \diamond((\lambda X . \exists X) \quad P)\rfloor$ by simp
lemma $\lfloor(\lambda X . \diamond \exists X) \downarrow(P:: \uparrow\langle\uparrow \mathbf{0}\rangle) \rightarrow \diamond((\lambda X . \exists X) \downarrow P)\rfloor$
nitpick [card ' $t=1$, card $i=2]$ oops - countersatisfiable
lemma $\lfloor(\lambda X . \diamond \exists X) \quad(P:: \uparrow\langle\langle\mathbf{0}\rangle\rangle) \rightarrow \diamond((\lambda X . \exists X) \quad P)\rfloor$ by simp
lemma $\lfloor(\lambda X . \diamond \exists X) \downarrow(P:: \uparrow\langle\langle\mathbf{0}\rangle\rangle) \rightarrow \diamond((\lambda X . \exists X) \downarrow P)\rfloor$
nitpick[card ' $t=1$, card $i=2$] oops - countersatisfiable
lemma $\lfloor(\lambda X . \diamond \exists X) \quad(P:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle) \rightarrow \diamond((\lambda X . \exists X) \quad P)\rfloor$ by simp
lemma $\lfloor(\lambda X . \diamond \exists X) \downarrow(P:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle) \rightarrow \diamond((\lambda X . \exists X) \downarrow P)\rfloor$
nitpick $[$ card ' $t=1$, card $i=2]$ oops - countersatisfiable

Example 7.14, p. 98:
lemma $\lfloor(\lambda X . \diamond \exists X) \downarrow(P:: \uparrow\langle\mathbf{0}\rangle) \rightarrow(\lambda X . \exists X) \downarrow P\rfloor$ by simp
lemma $\lfloor(\lambda X . \diamond \exists X) \quad(P:: \uparrow\langle\mathbf{0}\rangle) \rightarrow(\lambda X . \exists X) P\rfloor$
nitpick [card ' $t=1$, card $i=2$] oops - countersatisfiable
with other types for P :
lemma $\lfloor(\lambda X . \diamond \exists X) \downarrow(P:: \uparrow\langle\uparrow \mathbf{0}\rangle) \rightarrow(\lambda X . \exists X) \downarrow P\rfloor$ by simp
lemma $\lfloor(\lambda X . \diamond \exists X) \quad(P:: \uparrow\langle\uparrow \mathbf{0}\rangle) \rightarrow(\lambda X . \exists X) \quad P\rfloor$ nitpick[card ' $t=1$, card $i=2$] oops - countersatisfiable
lemma $\lfloor(\lambda X . \diamond \exists X) \downarrow(P:: \uparrow\langle\langle\mathbf{0}\rangle\rangle) \rightarrow(\lambda X . \exists X) \downarrow P\rfloor$ by simp
lemma $\lfloor(\lambda X . \diamond \exists X) \quad(P:: \uparrow\langle\langle\mathbf{0}\rangle\rangle) \rightarrow(\lambda X . \exists X) \quad P\rfloor$
nitpick [card ' $t=1$, card $i=2]$ oops - countersatisfiable
lemma $\lfloor(\lambda X . \diamond \exists X) \downarrow(P:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle) \rightarrow(\lambda X . \exists X) \downarrow P\rfloor$ by simp
lemma $\lfloor(\lambda X . \diamond \exists X) \quad(P:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle) \rightarrow(\lambda X . \exists X) \quad P\rfloor$
nitpick $[$ card ' $t=1$, card $i=2]$ oops - countersatisfiable
Example 7.15, p. 99:
lemma $\lfloor\square(P(c:: \uparrow \mathbf{0})) \rightarrow(\exists x:: \uparrow \mathbf{0} . \square(P x))\rfloor$ by auto
with other types for P :
lemma $\lfloor\square(P(c:: \mathbf{0})) \rightarrow(\exists x:: \mathbf{0} . \square(P x))\rfloor$ by auto
lemma $[\square(P(c::\langle\mathbf{0}\rangle)) \rightarrow(\exists x::\langle\mathbf{0}\rangle . \square(P x))\rfloor$ by auto
Example 7.16, p. 100:
lemma $\lfloor\square(P \downharpoonleft(c:: \uparrow \mathbf{0})) \rightarrow(\exists x:: \mathbf{0} . \square(P x))\rfloor$
nitpick[card 't=2, card $i=2]$ oops - counterexample with two worlds found
Example 7.17, p. 101:
lemma $\lfloor\forall Z:: \uparrow \mathbf{0} .(\lambda x:: \mathbf{0} . \quad \square((\lambda y:: \mathbf{0} . \quad x \approx y) \downharpoonleft Z)) \downharpoonleft Z\rfloor$
nitpick [card ' $t=2$, card $i=2]$ oops - countersatisfiable
lemma $\lfloor\forall z:: \mathbf{0} .(\lambda x:: \mathbf{0} . \quad \square((\lambda y:: \mathbf{0} . \quad x \approx y) z)) z\rfloor$ by simp
lemma $\lfloor\forall Z:: \uparrow \mathbf{0} .(\lambda X:: \uparrow \mathbf{0} . \square((\lambda Y:: \uparrow \mathbf{0} . X \approx Y) Z)) Z\rfloor$ by simp

3.1.2 Exercises (p. 101)

For Exercises 7.1 and 7.2 see variations on Examples 7.13 and 7.14 above.
Exercise 7.3:
lemma $\lfloor\diamond \exists(P:: \uparrow\langle\mathbf{0}\rangle) \rightarrow(\exists X:: \uparrow \mathbf{0} . \diamond(P \downharpoonleft X))\rfloor$ by auto
Exercise 7.4:
lemma $\lfloor\diamond(\exists x:: \mathbf{0} .(\lambda Y . Y x) \downarrow(P:: \uparrow\langle\mathbf{0}\rangle)) \rightarrow(\exists x .(\lambda Y . \diamond(Y x)) \downarrow P)\rfloor$
nitpick $[$ card ' $t=1$, card $i=2]$ oops - countersatisfiable
For Exercise 7.5 see Example 7.17 above.

3.2 Miscellaneous Matters (Chapter 9)

3.2.1 Equality Axioms (Subsection 1.1)

Example 9.1:
lemma $\lfloor((\lambda X . \square(X \downharpoonleft(p:: \uparrow \mathbf{0}))) \downarrow(\lambda x . \diamond(\lambda z . z \approx x) \downharpoonleft p))\rfloor$
by auto - using normal equality
lemma $\left\lfloor\left((\lambda X . \square(X \downharpoonleft(p:: \uparrow \mathbf{0}))) \downarrow\left(\lambda x . \diamond\left(\lambda z . z \approx^{L} x\right) \downharpoonleft p\right)\right)\right\rfloor$
by auto - using Leibniz equality
lemma $\left\lfloor\left((\lambda X . \square(X \quad(p:: \uparrow \mathbf{0}))) \downarrow\left(\lambda x . \diamond\left(\lambda z . z \approx^{C} x\right) p\right)\right)\right\rfloor$
by simp - using equality as defined for individual concepts

3.2.2 Extensionality (Subsection 1.2)

In Fitting's book (p. 118), extensionality is assumed (globally) for extensional terms. While Fitting introduces the following extensionality principles as axioms, they are already implicitly valid in Isabelle/HOL:
lemma $E X T: \forall \alpha::\langle\mathbf{0}\rangle . \forall \beta::\langle\mathbf{0}\rangle .(\forall \gamma:: \mathbf{0} .(\alpha \gamma \longleftrightarrow \beta \gamma)) \longrightarrow(\alpha=\beta)$ by auto
lemma EXT-set: $\forall \alpha::\langle\langle\mathbf{0}\rangle\rangle . \forall \beta::\langle\langle\mathbf{0}\rangle\rangle .(\forall \gamma::\langle\mathbf{0}\rangle .(\alpha \gamma \longleftrightarrow \beta \gamma)) \longrightarrow(\alpha=\beta)$
by auto

3.2.3 De Re and De Dicto (Subsection 2)

De re is equivalent to de dicto for non-relativized (extensional or intensional) terms:

```
lemma \(\lfloor\forall \alpha .((\lambda \beta . \square(\alpha \beta))(\tau:: \mathbf{0})) \quad \leftrightarrow \square((\lambda \beta .(\alpha \beta)) \tau)\rfloor\) by simp
lemma \(\lfloor\forall \alpha .((\lambda \beta . \square(\alpha \beta))(\tau:: \uparrow \mathbf{0})) \leftrightarrow \square((\lambda \beta .(\alpha \beta)) \tau)\rfloor\) by simp
lemma \(\lfloor\forall \alpha .((\lambda \beta . \square(\alpha \beta))(\tau::\langle\mathbf{0}\rangle)) \leftrightarrow \square((\lambda \beta .(\alpha \beta)) \tau)\rfloor\) by simp
lemma \(\lfloor\forall \alpha .((\lambda \beta . \square(\alpha \beta))(\tau:: \uparrow\langle\mathbf{0}\rangle)) \leftrightarrow \square((\lambda \beta .(\alpha \beta)) \tau)\rfloor\) by simp
```

De re is not equivalent to de dicto for relativized terms:

```
lemma \lfloor\forall\alpha. ((\lambda\beta.\square(\alpha\beta)) \(\tau::\uparrow\mathbf{0}))\leftrightarrow\square(( (\lambda\beta. (\alpha\beta)) \\tau)\rfloor
    nitpick[card 't=2, card i=2] oops - countersatisfiable
lemma \lfloor\forall\alpha.((\lambda\beta.\square(\alpha\beta))\downarrow(\tau::\uparrow\langle\mathbf{0}\rangle))\leftrightarrow\square\square((\lambda\beta.(\alpha\beta))\downarrow\tau)\rfloor
    nitpick[card 't=1, card i=2] oops - countersatisfiable
```

Proposition 9.6 - If we can prove one side of the equivalence, then we can prove the other (p. 120):
abbreviation deDictoImplDeRe:: $\uparrow \mathbf{0} \Rightarrow$ io
where deDictoImplDeRe $\tau \equiv \forall \alpha . \square((\lambda \beta .(\alpha \beta)) \downharpoonleft \tau) \rightarrow((\lambda \beta . \square(\alpha \beta)) \downharpoonleft \tau)$
abbreviation deReImplDeDicto: $: \uparrow \mathbf{0} \Rightarrow i o$
where deReImplDeDicto $\tau \equiv \forall \alpha .((\lambda \beta . \square(\alpha \beta)) \downharpoonleft \tau) \rightarrow \square((\lambda \beta .(\alpha \beta)) \downharpoonleft \tau)$
abbreviation deReEquDeDicto:: $\uparrow \mathbf{0} \Rightarrow$ io
where deReEquDeDicto $\tau \equiv \forall \alpha .((\lambda \beta . \square(\alpha \beta)) \downharpoonleft \tau) \leftrightarrow \square((\lambda \beta .(\alpha \beta)) \downharpoonleft \tau)$
abbreviation deDictoImplDeRe-pred $::\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow i o$
where deDictoImplDeRe-pred $\tau \equiv \forall \alpha . \square((\lambda \beta .(\alpha \beta)) \downarrow \tau) \rightarrow((\lambda \beta . \square(\alpha \beta)) \downarrow \tau)$
abbreviation deReImplDeDicto-pred $::\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow i o$
where deReImplDeDicto-pred $\tau \equiv \forall \alpha .((\lambda \beta . \square(\alpha \beta)) \downarrow \tau) \rightarrow \square((\lambda \beta .(\alpha \beta)) \downarrow \tau)$
abbreviation deReEquDeDicto-pred $::\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow i o$
where deReEquDeDicto-pred $\tau \equiv \forall \alpha$. $((\lambda \beta . \square(\alpha \beta)) \downarrow \tau) \leftrightarrow \square((\lambda \beta .(\alpha \beta)) \downarrow \tau)$
We can prove local consequence:

```
lemma AimpB: \(\lfloor\) deReImplDeDicto \((\tau:: \uparrow \mathbf{0}) \rightarrow\) deDictoImplDeRe \(\tau\rfloor\)
    by force - for individuals
lemma AimpB- \(p:\lfloor\) deReImplDeDicto-pred \((\tau:: \uparrow\langle\mathbf{0}\rangle) \rightarrow\) deDictoImplDeRe-pred \(\tau\rfloor\)
    by force - for predicates
```

And global consequence follows directly (since local consequence implies global consequence, as shown before):
lemma \lfloor deReImplDeDicto ($\tau:: \uparrow \mathbf{0})\rfloor \longrightarrow\lfloor$ deDictoImplDeRe $\tau\rfloor$
using AimpB by (rule localImpGlobalCons) - for individuals
lemma \lfloor deReImplDeDicto-pred $(\tau:: \uparrow\langle\mathbf{0}\rangle)\rfloor \longrightarrow\lfloor$ deDictoImplDeRe-pred $\tau\rfloor$
using AimpB-p by (rule localImpGlobalCons) - for predicates

3.2.4 Rigidity (Subsection 3)

(Local) rigidity for intensional individuals:

```
abbreviation rigidIndiv::\uparrow\langle\uparrow0\rangle where
    rigidIndiv }\tau\equiv(\lambda\beta.\square((\lambdaz.\beta\approxz)\downharpoonleft\tau))\downharpoonleft
```

(Local) rigidity for intensional predicates:

```
abbreviation rigidPred::(' }t=>io)=>io wher
```

 rigidPred \(\tau \equiv(\lambda \beta . \square((\lambda z . \beta \approx z) \downarrow \tau)) \downarrow \tau\)
 Proposition 9.8 - An intensional term is rigid if and only if the de re/de dicto distinction vanishes. Note that we can prove this theorem for local consequence (global consequence follows directly).

```
lemma \lfloorrigidIndiv (\tau::`\mathbf{0})->\mathrm{ deReEquDeDicto }\tau\rfloor\mathrm{ by simp}
lemma \lfloordeReImplDeDicto ( }\tau::\uparrow\mathbf{0})->\mathrm{ rigidIndiv }\tau\rfloor\mathrm{ by auto
lemma \lfloorrigidPred ( }\tau::\uparrow\langle\mathbf{0}\rangle)->\mathrm{ deReEquDeDicto-pred }\tau\rfloor\mathrm{ by simp
lemma \lfloordeReImplDeDicto-pred ( }\tau::\uparrow\langle\mathbf{0}\rangle)->\mathrm{ rigidPred }\tau\rfloor\mathrm{ by auto
```


3.2.5 Stability Conditions (Subsection 4)

axiomatization where

S5: equivalence aRel - using Sahlqvist correspondence for improved performance
Definition 9.10 - Stability conditions come in pairs:
abbreviation stability $A::\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow$ io where stability $A \tau \equiv \forall \alpha .(\tau \alpha) \rightarrow \square(\tau \alpha)$ abbreviation stability $B::\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow i o$ where stability $B \tau \equiv \forall \alpha . \diamond(\tau \alpha) \rightarrow(\tau \alpha)$

Proposition 9.10 - In an $S 5$ modal logic both stability conditions are equivalent.

The last proposition holds for global consequence:
lemma \lfloor stability $A(\tau:: \uparrow\langle\mathbf{0}\rangle)\rfloor \longrightarrow\lfloor$ stability $B \tau\rfloor$ using $S 5$ by blast
lemma \lfloor stability $B(\tau:: \uparrow\langle\mathbf{0}\rangle)\rfloor \longrightarrow\lfloor$ stability $A \tau\rfloor$ using $S 5$ by blast
But it does not hold for local consequence:

```
lemma \stabilityA (\tau::\uparrow\langle\mathbf{0}\rangle)}->\mathrm{ stabilityB }\tau
    nitpick[card 't=1, card i=2] oops - countersatisfiable
lemma \stabilityB (\tau::\uparrow\langle\mathbf{0}\rangle)}->\mathrm{ stability A }\tau
    nitpick[card 't=1, card i=2] oops - countersatisfiable
```

Theorem 9.11 - A term is rigid if and only if it satisfies the stability conditions. Note that we can prove this theorem for local consequence (global consequence follows directly).
theorem \lfloor rigidPred $(\tau:: \uparrow\langle\mathbf{0}\rangle) \leftrightarrow($ stability $A \tau \wedge$ stability $B \tau)\rfloor$ by meson
theorem \lfloor rigidPred $(\tau:: \uparrow\langle\uparrow \mathbf{0}\rangle) \leftrightarrow($ stability $A \tau \wedge$ stability $B \tau)\rfloor$ by meson
theorem \lfloor rigidPred $(\tau:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle) \leftrightarrow($ stability $A \tau \wedge$ stability $B \tau)\rfloor$ by meson

4 Gödel's Argument, Formally

"Gödel's particular version of the argument is a direct descendent of that of Leibniz, which in turn derives from one of Descartes. These arguments all have a two-part structure: prove God's existence is necessary, if possible; and prove God's existence is possible." [12], p. 138.

4.1 Part I - God's Existence is Possible

We separate Gödel's Argument as presented in Fitting's textbook (ch. 11) in two parts. For the first one, while Leibniz provides some kind of proof for the compatibility of all perfections, Gödel goes on to prove an analogous result: (T1) Every positive property is possibly instantiated, which together with (T2) God is a positive property directly implies the conclusion. In order to prove T1, Gödel assumes A2: Any property entailed by a positive property is positive.

We are currently contemplating a follow-up analysis of the philosophical implications of these axioms, which encompasses some criticism of the notion of property entailment used by Gödel throughout the argument.

4.1.1 General Definitions

abbreviation existencePredicate: $: \uparrow\langle\mathbf{0}\rangle(E!)$
where $E!x \equiv \lambda w .\left(\exists^{E} y . y \approx x\right) w$ - existence predicate in object language
lemma E ! $x w \longleftrightarrow$ existsAt $x w$
by simp - safety check: E ! correctly matches its meta-logical counterpart
consts positiveProperty:: $\uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle(\mathcal{P})$ - positiveness/perfection
Definitions of God (later shown to be equivalent under axiom $A 1 b$):
abbreviation $G o d:: \uparrow\langle\mathbf{0}\rangle(G)$ where $G \equiv(\lambda x . \forall Y . \mathcal{P} Y \rightarrow Y x)$
abbreviation God-star: : $\uparrow\langle\mathbf{0}\rangle(G *)$ where $G * \equiv(\lambda x . \forall Y . \mathcal{P} Y \leftrightarrow Y x)$
Definitions needed to formalise A3:
abbreviation appliesToPositiveProps:: $\uparrow\langle\uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle\rangle$ (pos) where $\operatorname{pos} Z \equiv \forall X . Z X \rightarrow \mathcal{P} X$
abbreviation intersection $O f:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle, \uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle\rangle$ (intersec) where
intersec $X Z \equiv \square(\forall x .(X x \leftrightarrow(\forall Y .(Z Y) \rightarrow(Y x))))$ - quantifier is possibilist
abbreviation Entailment $:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle, \uparrow\langle\mathbf{0}\rangle\rangle($ infix $\Rightarrow 60)$ where
$X \Rightarrow Y \equiv \square\left(\forall^{E} z . X z \rightarrow Y z\right)$

4.1.2 Axioms

axiomatization where

$$
\begin{aligned}
& \text { A1a: }\lfloor\forall X . \mathcal{P}(\neg X) \rightarrow \neg(\mathcal{P} X)\rfloor \text { and } \quad \text { - axiom } 11.3 \mathrm{~A} \\
& \text { A1b: } \forall X . \neg(\mathcal{P} X) \rightarrow \mathcal{P}(\rightharpoondown X)\rfloor \text { and } \quad \text { - axiom 11.3B } \\
& \text { A2: }\lfloor\forall X Y \cdot(\mathcal{P} X \wedge(X \Rightarrow Y)) \rightarrow \mathcal{P} Y\rfloor \text { and -axiom } 11.5 \\
& \text { A3: }\lfloor\forall Z X .(\text { pos } Z \wedge \text { intersec } X Z) \rightarrow \mathcal{P} X\rfloor \text { axiom } 11.10
\end{aligned}
$$

lemma True nitpick[satisfy] oops - model found: axioms are consistent
lemma $\lfloor D\rfloor$ using $A 1 a$ A1b A2 by blast - axioms already imply D axiom lemma $\lfloor D\rfloor$ using $A 1 a$ A3 by metis

4.1.3 Theorems

lemma $\lfloor\exists X . \mathcal{P} X\rfloor$ using $A 1 b$ by auto
lemma $\left\lfloor\exists X, \mathcal{P} X \wedge \diamond \exists^{E} X\right\rfloor$ using $A 1 a A 1 b$ A2 by metis
Being self-identical is a positive property:
lemma $\left\lfloor\left(\exists X . \mathcal{P} X \wedge \diamond \exists^{E} X\right) \rightarrow \mathcal{P}(\lambda x w . x=x)\right\rfloor$ using A2 by fastforce
Proposition 11.6
lemma $\lfloor(\exists X . \mathcal{P} X) \rightarrow \mathcal{P}(\lambda x w . x=x)\rfloor$ using A2 by fastforce
lemma $\lfloor\mathcal{P}(\lambda x w . x=x)\rfloor$ using $A 1 b$ A2 by blast
lemma $\lfloor\mathcal{P}(\lambda x w, x=x)\rfloor$ using $A 3$ by metis
Being non-self-identical is a negative property:
lemma $\lfloor(\exists X . \mathcal{P} X \wedge \diamond \exists E X) \rightarrow \mathcal{P}(\rightharpoondown(\lambda x w . \neg x=x))\rfloor$ using $A 2$ by fastforce
lemma $\lfloor(\exists X . \mathcal{P} X) \rightarrow \mathcal{P}(\rightharpoondown(\lambda x w . \neg x=x))\rfloor$ using $A 2$ by fastforce lemma $\lfloor(\exists X . \mathcal{P} X) \rightarrow \mathcal{P}(\rightharpoondown(\lambda x w . \neg x=x))\rfloor$ using $A 3$ by metis

Proposition 11.7
lemma $\lfloor(\exists X . \mathcal{P} X) \rightarrow \neg \mathcal{P}((\lambda x w . \neg x=x))\rfloor$ using A1a A2 by blast lemma $\lfloor\neg \mathcal{P}(\lambda x w . \neg x=x)\rfloor$ using A1a A2 by blast

Proposition 11.8 (Informal Proposition 1) - Positive properties are possibly instantiated:
theorem T1: $\left\lfloor\forall X . \mathcal{P} X \rightarrow \diamond \exists{ }^{E} X\right\rfloor$ using A1a A2 by blast
Proposition 11.14 - Both defs $\left(G o d / G o d^{*}\right)$ are equivalent. For improved performance we may prefer to use one or the other:
lemma GodDefsAreEquivalent: $\lfloor\forall x . G x \leftrightarrow G * x\rfloor$ using A1b by force
Proposition 11.15 - Possibilist existence of God directly implies $A 1 b$:
lemma $\lfloor\exists G * \rightarrow(\forall X . \neg(\mathcal{P} X) \rightarrow \mathcal{P}(\rightharpoondown X))\rfloor$ by meson

```
Proposition 11.16 - \(A 3\) implies \(P(G)\) (local consequence):
lemma A3implT2-local: \(\lfloor(\forall Z X .(\operatorname{pos} Z \wedge\) intersec \(X Z) \rightarrow \mathcal{P} X) \rightarrow \mathcal{P} G\rfloor\)
proof -
    \{
    fix \(w\)
    have 1 : pos \(\mathcal{P} w\) by simp
    have 2: intersec \(G \mathcal{P} w\) by simp
    \{
        assume \((\forall Z X .(\operatorname{pos} Z \wedge\) intersec \(X Z) \rightarrow \mathcal{P} X) w\)
        hence \((\forall X\). \(((\) pos \(\mathcal{P}) \wedge(\) intersec \(X \mathcal{P})) \rightarrow \mathcal{P} X) w\) by (rule allE)
        hence \((((\) pos \(\mathcal{P}) \wedge(\) intersec \(G \mathcal{P})) \rightarrow \mathcal{P} G) w\) by (rule allE)
        hence 3: \(((\operatorname{pos} \mathcal{P} \wedge\) intersec \(G \mathcal{P}) w) \longrightarrow \mathcal{P} G w\) by simp
        hence 4 : \(((\) pos \(\mathcal{P}) \wedge(\) intersec \(G \mathcal{P})) w\) using 12 by simp
        from 34 have \(\mathcal{P} G w\) by (rule \(m p\) )
    \}
    hence \((\forall Z X .(\operatorname{pos} Z \wedge\) intersec \(X Z) \rightarrow \mathcal{P} X) w \longrightarrow \mathcal{P} G w\) by (rule impI)
    \}
    thus ?thesis by (rule allI)
qed
A3 implies \(P(G)\) (as global consequence):
lemma A3implT2-global: \(\lfloor\forall Z X\). (pos \(Z \wedge\) intersec \(X Z) \rightarrow \mathcal{P} X\rfloor \longrightarrow\lfloor\mathcal{P} G\rfloor\)
    using A3implT2-local by (rule localImpGlobalCons)
```

Being Godlike is a positive property. Note that this theorem can be axiomatized directly, as noted by Dana Scott (see [12], p. 152). We will do so for the second part.
theorem T2: $\lfloor\mathcal{P} G\rfloor$ using A3implT2-global A3 by simp
Theorem 11.17 (Informal Proposition 3) - Possibly God exists:
theorem $T 3:\left\lfloor\diamond \exists^{E} G\right\rfloor$ using T1 T2 by simp

4.2 Part II - God's Existence is Necessary if Possible

We show here that God's necessary existence follows from its possible existence by adding some additional (potentially controversial) assumptions including an essentialist premise and the $S 5$ axioms. Further results like monotheism and the rejection of free will (modal collapse) are also proved.

4.2.1 General Definitions

abbreviation existencePredicate $:: \uparrow\langle\mathbf{0}\rangle(E!)$ where

$$
E!x \equiv\left(\lambda w \cdot\left(\exists^{E} y \cdot y \approx x\right) w\right)
$$

consts positiveProperty:: $\uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle(\mathcal{P})$

```
abbreviation \(G o d:: \uparrow\langle\mathbf{0}\rangle(G)\) where \(G \equiv(\lambda x . \forall Y . \mathcal{P} Y \rightarrow Y x)\)
```

abbreviation God-star: : $\uparrow\langle\mathbf{0}\rangle(G *)$ where
$G * \equiv(\lambda x . \forall Y . \mathcal{P} Y \leftrightarrow Y x)$
abbreviation Entailment $:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle, \uparrow\langle\mathbf{0}\rangle\rangle($ infix $\Rightarrow 60)$ where
$X \Rightarrow Y \equiv \square\left(\forall^{E} z . X z \rightarrow Y z\right)$

4.2.2 Results from Part I

Note that the only use Gödel makes of axiom A3 is to show that being Godlike is a positive property (T2). We follow therefore Scott's proposal and take (T2) directly as an axiom:

axiomatization where

$$
\begin{aligned}
& \text { A1a: }\lfloor\forall X . \mathcal{P}(\neg X) \rightarrow \neg(\mathcal{P} X)\rfloor \text { and } \quad \text { - axiom 11.3A } \\
& \text { A1b: }\lfloor\forall X . \neg(\mathcal{P} X) \rightarrow \mathcal{P}(\rightharpoondown X)\rfloor \text { and } \quad \text { axiom 11.3B } \\
& \text { A2: }\lfloor\forall X Y .(\mathcal{P} X \wedge(X \Rightarrow Y)) \rightarrow \mathcal{P} Y\rfloor \text { and -axiom } 11.5 \\
& \text { T2: }\lfloor\mathcal{P} G\rfloor
\end{aligned}
$$

lemma True nitpick[satisfy] oops - model found: axioms are consistent
lemma $\lfloor D\rfloor$ using $A 1 a$ A1b A2 by blast - axioms already imply D axiom
lemma GodDefsAreEquivalent: $\lfloor\forall x . G x \leftrightarrow G * x\rfloor$ using $A 1 b$ by fastforce
theorem T1: $\left\lfloor\forall X . \mathcal{P} X \rightarrow \diamond \exists \exists^{E} X\right\rfloor$
using A1a A2 by blast - positive properties are possibly instantiated
theorem $T 3:\left\lfloor\diamond \exists^{E} G\right\rfloor$ using $T 1$ T2 by simp - God exists possibly

4.2.3 Axioms

\mathcal{P} satisfies the so-called stability conditions (see [12], p. 124), which means it designates rigidly (note that this makes for an essentialist assumption).
axiomatization where
$A \nleftarrow a:\lfloor\forall X . \mathcal{P} X \rightarrow \square(\mathcal{P} X)\rfloor \quad$ - axiom 11.11
lemma $A \nleftarrow b:\lfloor\forall X . \neg(\mathcal{P} X) \rightarrow \square \neg(\mathcal{P} X)\rfloor$ using A1a A1b A4a by blast
abbreviation rigidPred: $:\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow i o$ where
rigidPred $\tau \equiv(\lambda \beta . \square((\lambda z . \beta \approx z) \downarrow \tau)) \downarrow \tau$
lemma \lfloor rigidPred $\mathcal{P}\rfloor$
using $A \nleftarrow a A \not \subset b$ by blast $-\mathcal{P}$ is therefore rigid
lemma True nitpick[satisfy] oops - model found: so far all axioms A1-4 consistent

4.2.4 Theorems

Remark: Essence is defined here (and in Fitting's variant) in the version of Scott; Gödel's original version leads to the inconsistency reported in [8, 9]
abbreviation essence Of $:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle, \mathbf{0}\rangle(\mathcal{E})$ where
$\mathcal{E} Y x \equiv(Y x) \wedge(\forall Z . Z x \rightarrow Y \Rightarrow Z)$
abbreviation beingIdenticalTo::0 $\Rightarrow \uparrow\langle\mathbf{0}\rangle$ (id) where
$i d x \equiv(\lambda y . y \approx x)$ - note that $i d$ is a rigid predicate
Theorem 11.20-Informal Proposition 5
theorem GodIsEssential: $\lfloor\forall x . G x \rightarrow(\mathcal{E} G x)\rfloor$ using A1b A\&a by metis
Theorem 11.21
theorem $\lfloor\forall x . G * x \rightarrow(\mathcal{E} G * x)\rfloor$ using $A \nleftarrow a$ by meson
Theorem 11.22 - Something can have only one essence:
theorem $\lfloor\forall X Y z .(\mathcal{E} X z \wedge \mathcal{E} Y z) \rightarrow(X \Rightarrow Y)\rfloor$ by meson
Theorem 11.23 - An essence is a complete characterization of an individual:

```
theorem EssencesCharacterizeCompletely: \(\lfloor\forall X y . \mathcal{E} X y \rightarrow(X \Rightarrow(i d y))\rfloor\)
proof (rule ccontr)
    assume \(\neg\lfloor\forall X y . \mathcal{E} X y \rightarrow(X \Rightarrow(i d y))\rfloor\)
    hence \(\exists w . \neg((\forall X y . \mathcal{E} X y \rightarrow X \Rightarrow\) id \(y) w)\) by simp
    then obtain \(w\) where \(\neg((\forall X y . \mathcal{E} X y \rightarrow X \Rightarrow i d y) w)\)..
    hence \((\exists X y . \mathcal{E} X y \wedge \neg(X \Rightarrow i d y)) w\) by simp
    hence \(\exists X y . \mathcal{E} X\) y \(w \wedge(\neg(X \Rightarrow i d y)) w\) by simp
    then obtain \(P\) where \(\exists y . \mathcal{E} P\) y \(w \wedge(\neg(P \Rightarrow i d y)) w\).
    then obtain \(a\) where \(1: \mathcal{E} P\) a \(w \wedge(\neg(P \Rightarrow i d a)) w .\).
    hence 2: \(\mathcal{E} P\) a \(w\) by (rule conjunct1)
    from 1 have \((\neg(P \Rightarrow i d a)) w\) by (rule conjunct2)
    hence \(\exists x\). \(\exists z . w r x \wedge\) existsAt \(z x \wedge P z x \wedge \neg(a=z)\) by blast
    then obtain \(w 1\) where \(\exists z . w r w 1 \wedge\) existsAt \(z w 1 \wedge P z w 1 \wedge \neg(a=z)\)..
    then obtain \(b\) where 3: wrw1 \(\wedge\) existsAt \(b w 1 \wedge P b w 1 \wedge \neg(a=b) .\).
    hence \(w r w 1\) by simp
    from 3 have existsAt \(b w 1\) by simp
    from 3 have \(P b w 1\) by simp
    from 3 have 4: \(\neg(a=b)\) by simp
    from 2 have \(P\) a w by simp
    from 2 have \(\forall Y\). Y a \(w \longrightarrow((P \Rightarrow Y) w)\) by auto
    hence \((\rightharpoondown(i d b))\) a \(w \longrightarrow(P \Rightarrow(\rightharpoondown(i d b)))\) by (rule allE)
    hence \(\neg(\rightharpoondown(i d b))\) a \(w \vee((P \Rightarrow(\rightharpoondown(i d b))) w)\) by blast
    then show False proof
        assume \(\neg(\rightharpoondown(i d b))\) a \(w\)
    hence \(a=b\) by simp
    thus False using 4 by auto
    next
    assume \(((P \Rightarrow(\rightharpoondown(i d b))) w)\)
    hence \(\forall x . \forall z .(w r x \wedge\) existsAt \(z x \wedge P z x) \longrightarrow(\rightharpoondown(i d b)) z x\) by blast
```

```
    hence }\forallz.(wrw1\wedge existsAt zw1\wedgePzw1)\longrightarrow(\rightharpoondown(id b))zw
    by (rule allE)
    hence (wrw1 ^ existsAt b w1 ^Pbw1)\longrightarrow(\rightharpoondown(id b)) b w1 by (rule allE)
    hence }\neg(wrw1\wedge existsAt b w1 ^Pbw1)\vee (\rightharpoondown(id b)) b w1 by sim
    hence (}\checkmark(id b)) b w using 3 by sim
    hence }\neg(b=b)\mathrm{ by simp
    thus False by simp
    qed
qed
```

Definition 11.24 - Necessary Existence (Informal Definition 6):
abbreviation necessaryExistencePred $:: \uparrow\langle\mathbf{0}\rangle(N E)$
where $N E x \equiv\left(\lambda w .\left(\forall Y . \mathcal{E} Y x \rightarrow \square \exists^{E} Y\right) w\right)$
Axiom 11.25 (Informal Axiom 5)

axiomatization where

$A 5:\lfloor\mathcal{P} \quad N E\rfloor$
lemma True nitpick[satisfy] oops - model found: so far all axioms consistent
Theorem 11.26 (Informal Proposition 7) - Possibilist existence of God implies necessary actualist existence:

```
theorem GodExistenceImpliesNecExistence: \\existsG-> \square\exists E G\rfloor
proof -
{
    fix w
    {
        assume }\existsx.Gx
        then obtain g}\mathrm{ where 1: Ggw..
        hence NE g w using A5 by auto - axiom 11.25
        hence }\forallY.(\mathcal{E}Ygw)\longrightarrow(\square\exists\mp@subsup{}{}{E}Y)w\mathrm{ by simp
        hence 2: (\mathcal{E G g w) \longrightarrow( }\square\mp@subsup{\exists}{}{E}G)w\mathrm{ by (rule allE)}
        have ( }\forallx.Gx->(\mathcal{E}Gx))w\mathrm{ using GodIsEssential
            by (rule allE) - GodIsEssential follows from Axioms 11.11 and 11.3B
    hence (Gg->(\mathcal{E}Gg)) w by (rule allE)
    hence }Ggw\longrightarrow\mathcal{E}Ggw\mathrm{ by simp
    from this 1 have 3:\mathcal{E G g w by (rule mp)}
    from 2 3 have (\square\exists}\mp@subsup{}{}{E}G)w\mathrm{ by (rule mp)
    }
    hence (\existsx.Gxw)\longrightarrow(\square\existsE}G)w\mathrm{ by (rule impI)
    hence}((\existsx.Gx)->\square\square\existsE G)w by sim
}
    thus ?thesis by (rule allI)
qed
Modal collapse is countersatisfiable (unless we introduce S 5 axioms):
lemma \(\lfloor\forall \Phi .(\Phi \rightarrow(\square \Phi))\rfloor\) nitpick oops
```

We postulate semantic frame conditions for some modal logics. Taken together, reflexivity, transitivity and symmetry make for an equivalence relation and therefore an $S 5$ logic (via Sahlqvist correspondence). We prefer to postulate them individually here in order to get more detailed information about their relevance in the proofs presented below.

axiomatization where

refl: reflexive aRel and
tran: transitive aRel and
symm: symmetric aRel
lemma True nitpick[satisfy] oops - model found: axioms still consistent
Using an $S 5$ logic, modal collapse $(\lfloor\forall \Phi .(\Phi \rightarrow(\square \Phi))\rfloor)$ is actually valid (see 'More Objections' some pages below)

We prove some useful inference rules:
lemma modal-distr: $\lfloor\square(\varphi \rightarrow \psi)\rfloor \Longrightarrow\lfloor(\diamond \varphi \rightarrow \diamond \psi)\rfloor$ by blast
lemma modal-trans: $(\lfloor\varphi \rightarrow \psi\rfloor \wedge\lfloor\psi \rightarrow \chi\rfloor) \Longrightarrow\lfloor\varphi \rightarrow \chi\rfloor$ by simp
Theorem 11.27 - Informal Proposition 8. Note that only symmetry and transitivity for the accessibility relation are used.

```
theorem possExistenceImpliesNecEx: \(\left\lfloor\diamond \exists G \rightarrow \square \exists \exists^{E} G\right\rfloor\) - local consequence
proof -
    have \(\left\lfloor\exists G \rightarrow \square \exists^{E} G\right\rfloor\) using GodExistenceImpliesNecExistence
        by simp - follows from Axioms 11.11, 11.25 and 11.3B
    hence \(\left\lfloor\square\left(\exists G \rightarrow \square \exists \exists^{E} G\right)\right\rfloor\) using NEC by simp
    hence \(1:\left\lfloor\diamond \exists G \rightarrow \diamond \square \exists{ }^{E} G\right\rfloor\) by (rule modal-distr)
    have 2: \(\left\lfloor\diamond \square \exists \exists^{E} G \rightarrow \square \exists \exists^{E} G\right\rfloor\) using symm tran by metis - frame conditions
    from 12 have \(\left\lfloor\diamond \exists G \rightarrow \diamond \square \exists \exists^{E} G\right\rfloor \wedge\left\lfloor\diamond \square \exists^{E} G \rightarrow \square \exists^{E} G\right\rfloor\) by simp
    thus ?thesis by (rule modal-trans)
qed
lemma T4: \(\lfloor\checkmark \exists G\rfloor \longrightarrow\left\lfloor\square \exists \exists^{E} G\right\rfloor\) using possExistenceImpliesNecEx
    by (rule localImpGlobalCons) - global consequence
```

Corollary 11.28 - Necessary (actualist) existence of God (for both definitions); reflexivity is still not used:

```
lemma GodNecExists: \(\left\lfloor\square \exists{ }^{E} G\right\rfloor\) using \(T 3\) T4 by metis
lemma God-starNecExists: \(\left\lfloor\square \exists^{E} \quad G *\right\rfloor\)
    using GodNecExists GodDefsAreEquivalent by simp
```


4.2.5 Monotheism

Monotheism for non-normal models (with Leibniz equality) follows directly from God having all and only positive properties:

```
theorem Monotheism-LeibnizEq: \\forallx.G x->(\forally.Gy->(x * *
    using GodDefsAreEquivalent by simp
```

Monotheism for normal models is trickier. We need to consider some previous results (p. 162):
lemma GodExistenceIsValid: $\left\lfloor\exists^{E} G\right\rfloor$ using GodNecExists refl
by auto - reflexivity is now required by the solver

```
Proposition 11.29:
theorem Monotheism-normalModel: \(\lfloor\exists x . \forall y . G y \leftrightarrow x \approx y\rfloor\)
proof -
\{
    fix \(w\)
    have \(\left\lfloor\exists^{E} G\right\rfloor\) using GodExistenceIs Valid by simp - follows from corollary 11.28
    hence \(\left(\exists^{E} G\right) w\) by (rule allE)
    then obtain \(g\) where 1: existsAt \(g w \wedge G g w .\).
    hence 2: \(\mathcal{E} G g w\) using GodIsEssential by blast - follows from ax. 11.11/11.3B
    \{
        fix \(y\)
        have \(G y w \longleftrightarrow(g \approx y) w\) proof
            assume \(G\) y \(w\)
            hence 3: \(\mathcal{E}\) Gyw using GodIsEssential by blast
            have \((\mathcal{E} G y \rightarrow(G \Rightarrow i d y)) w\) using EssencesCharacterizeCompletely
            by simp - follows from theorem 11.23
        hence \(\mathcal{E} G y w \longrightarrow((G \Rightarrow i d y) w)\) by simp
        from this 3 have \((G \Rightarrow i d y) w\) by (rule \(m p\) )
        hence \(\left(\square\left(\forall^{E} z . G z \rightarrow z \approx y\right)\right) w\) by simp
        hence \(\forall x . w r x \longrightarrow((\forall z\). (existsAt \(z x \wedge G z x) \longrightarrow z=y))\) by auto
        hence \(w r w \longrightarrow((\forall z\). (existsAt \(z w \wedge G z w) \longrightarrow z=y))\) by (rule allE)
        hence \(\forall z\). \((w r w \wedge\) existsAt \(z w \wedge G z w) \longrightarrow z=y\) by auto
        hence 4: \((w r w \wedge\) existsAt \(g w \wedge G g w) \longrightarrow g=y\) by (rule allE)
        have \(w r w\) using refl
            by simp - using frame reflexivity (Axiom M)
        hence \(w r w \wedge(\) existsAt \(g w \wedge G g w)\) using 1 by (rule conjI)
        from 4 this have \(g=y\) by (rule \(m p\) )
        thus \((g \approx y) w\) by simp
    next
            assume \((g \approx y) w\)
            from this 2 have \(\mathcal{E} G\) y \(w\) by simp
            thus \(G y w\) by (rule conjunct1)
    qed
    \}
    hence \(\forall y\). \(G\) y \(w \longleftrightarrow(g \approx y) w\) by (rule allI)
    hence \(\exists x\). \((\forall y . G y w \longleftrightarrow(x \approx y) w)\) by (rule exI)
    hence \((\exists x .(\forall y . G y \leftrightarrow(x \approx y))) w\) by \(\operatorname{simp}\)
\}
thus ?thesis by (rule allI)
qed
```

Corollary 11.30:
lemma GodImpliesExistence: $\lfloor\forall x . G x \rightarrow E!x\rfloor$
using GodExistenceIsValid Monotheism-normalModel by metis

4.2.6 Positive Properties are Necessarily Instantiated

lemma PosPropertiesNecExist: $\left\lfloor\forall Y . \mathcal{P} Y \rightarrow \square \exists \exists^{E} Y\right\rfloor$ using GodNecExists A\&a
by meson - proposition 11.31: follows from corollary 11.28 and axiom A4a

4.2.7 More Objections

Fitting discusses the objection raised by Sobel [19], who argues that Gödel's axiom system is too strong: it implies that whatever is the case is so necessarily, i.e. the modal system collapses $(\varphi \longrightarrow \square \varphi)$. The modal collapse has been philosophically interpreted as implying the absence of free will.

We start by proving an useful FOL lemma:
lemma useful: $(\forall x . \varphi x \longrightarrow \psi) \Longrightarrow((\exists x . \varphi x) \longrightarrow \psi)$ by simp
In the context of our S 5 axioms, the modal collapse becomes valid (pp. 163-4):

```
lemma ModalCollapse: \(\lfloor\forall \Phi .(\Phi \rightarrow(\square \Phi))\rfloor\)
proof -
    \{
    fix \(w\)
        \{
        fix \(Q\)
        have \((\forall x . G x \rightarrow(\mathcal{E} G x)) w\) using GodIsEssential
            by (rule allE) - follows from Axioms 11.11 and 11.3B
        hence \(\forall x . G x w \longrightarrow \mathcal{E} G x w\) by simp
        hence \(\forall x . G x w \longrightarrow\left(\forall Z . Z x \rightarrow \square\left(\forall^{E} z . G z \rightarrow Z z\right)\right) w\) by force
        hence \(\forall x . G x w \longrightarrow\left((\lambda y . Q) x \rightarrow \square\left(\forall^{E} z . G z \rightarrow(\lambda y . Q) z\right)\right) w\) by force
        hence \(\forall x . G x w \longrightarrow\left(Q \rightarrow \square\left(\forall^{E} z . G z \rightarrow Q\right)\right) w\) by simp
        hence 1: \((\exists x . G x w) \longrightarrow\left(\left(Q \rightarrow \square\left(\forall^{E} z . G z \rightarrow Q\right)\right) w\right)\) by (rule useful)
        have \(\exists x\). \(G x w\) using GodExistenceIsValid by auto
        from 1 this have \(\left(Q \rightarrow \square\left(\forall^{E} z . G z \rightarrow Q\right)\right.\) ) \(w\) by (rule \(m p\) )
        hence \(\left(Q \rightarrow \square\left(\left(\exists^{E} z . G z\right) \rightarrow Q\right)\right) w\) using useful by blast
        hence \(\left(Q \rightarrow\left(\square\left(\exists^{E} z . G z\right) \rightarrow \square Q\right)\right) w\) by simp
        hence \((Q \rightarrow \square Q)\) w using GodNecExists by simp
    \}
    hence \((\forall \Phi . \Phi \rightarrow \square \Phi) w\) by (rule allI)
    \}
    thus ?thesis by (rule allI)
qed
```


5 Fitting's Solution

In this section we consider Fitting's solution to the objections raised in his discussion of Gödel's Argument pp. 164-9, especially the problem of modal collapse, which has been metaphysically interpreted as implying a rejection of free will. Since we are generally commited to the existence of free will (in a pre-theoretical sense), such a result is philosophically unappealing and rather seen as a problem in the argument's formalisation.

This part of the book still leaves several details unspecified and the reader is thus compelled to fill in the gaps. As a result, we came across some premises and theorems allowing for different formalisations and therefore leading to disparate implications. Only some of those cases are shown here for illustrative purposes. The options we have chosen here are such that they indeed validate the argument (and we assume that they correspond to Fitting's intention.

5.1 General Definitions

The following is an existence predicate for our object-language. (We have previously shown it is equivalent to its meta-logical counterpart.)
abbreviation existencePredicate $: \uparrow\langle\mathbf{0}\rangle(E!)$ where

$$
E!x \equiv\left(\lambda w \cdot\left(\exists^{E} y \cdot y \approx x\right) w\right)
$$

Reminder: The '($-($)' parenthesis are used to convert an extensional object into its 'rigid' intensional counterpart (e.g. $(|\varphi|) \equiv \lambda w . \varphi)$.

```
consts positiveProperty::\uparrow\langle\langle\mathbf{0}\rangle\rangle(\mathcal{P})
```

abbreviation $G o d:: \uparrow\langle\mathbf{0}\rangle(G)$ where $G \equiv(\lambda x . \forall Y . \mathcal{P} Y \rightarrow(Y x \mid))$
abbreviation God-star:: $\uparrow\langle\mathbf{0}\rangle(G *)$ where $G * \equiv(\lambda x . \forall Y . \mathcal{P} Y \leftrightarrow(Y x \mid))$

```
abbreviation Entailment::\uparrow\langle\langle\mathbf{0}\rangle,\langle\mathbf{0}\rangle\rangle(\mathrm{ infix }=>60)\mathrm{ where}
```

 \(X \Rightarrow Y \equiv \square\left(\forall^{E} z .(|X z|) \rightarrow(Y z \mid)\right.\)

5.2 Part I - God's Existence is Possible

axiomatization where

$$
\begin{aligned}
& \text { A1a: }\lfloor\forall X . \mathcal{P}(\neg X) \rightarrow \neg(\mathcal{P} X)\rfloor \text { and } \quad-\text { axiom 11.3A } \\
& \text { A1b: }\lfloor X X \cdot \neg(\mathcal{P} X) \rightarrow \mathcal{P}(\neg X)\rfloor \text { and } \quad-\text { axiom 11.3B } \\
& \text { A2: }\lfloor\forall X Y \cdot(\mathcal{P} X \wedge(X \Rightarrow Y)) \rightarrow \mathcal{P} Y\rfloor \text { and - axiom 11.5 } \\
& \text { T2: }\lfloor\mathcal{P} \downarrow G\rfloor \\
& \quad-\text { proposition } 11.16 \text { (modified) }
\end{aligned}
$$

lemma True nitpick[satisfy] oops - model found: axioms are consistent
lemma $\lfloor D\rfloor$ using $A 1 a A 1 b$ A2 by blast - axioms already imply D axiom
lemma GodDefsAreEquivalent: $\lfloor\forall x . G x \leftrightarrow G * x\rfloor$ using $A 1 b$ by fastforce
$T 1$ (Positive properties are possibly instantiated) can be formalised in two different ways:
theorem T1a: $\left\lfloor\forall X::\langle\mathbf{0}\rangle . \mathcal{P} X \rightarrow \diamond\left(\exists^{E} z .(|X z|)\right)\right\rfloor$
using A1a A2 by blast - this is the one used in the book
theorem $T 1 b:\left\lfloor\forall X:: \uparrow\langle\mathbf{0}\rangle, \mathcal{P} \downarrow X \rightarrow \diamond\left(\exists^{E} z . X z\right)\right\rfloor$
nitpick oops - this one is also possible but not valid so we won't use it
Some interesting (non-)equivalences:

```
lemma \lfloor\square\exists\exists}\mp@subsup{}{}{E}(Q::\uparrow\langle\mathbf{0}\rangle)\leftrightarrow\square\square(\exists\mp@subsup{\exists}{}{E}\downarrowQ)\rfloor\mathrm{ by simp
lemma [\square\exists E}(Q::\uparrow\langle\mathbf{0}\rangle)\leftrightarrow((\lambdaX.\square\exists\mp@subsup{\exists}{}{E}X)Q)] by sim
lemma [\square\exists}\mp@subsup{}{}{E}(Q::\uparrow\langle\mathbf{0}\rangle)\leftrightarrow((\lambdaX.\square\exists\mp@subsup{\exists}{}{E}\downarrowX)Q)]\mathrm{ by simp
lemma [\square\existsE}(Q::\uparrow\langle\mathbf{0}\rangle)\leftrightarrow((\lambdaX.\square\existsE X)\downarrowQ)\rfloor\mathrm{ nitpick oops - not equivalent!
```

T3 (God exists possibly) can be formalised in two different ways, using a de re or a de dicto reading.

```
theorem T3-deRe: \lfloor(\lambdaX. \diamond\existsE X) \downarrowG\rfloor using T1a T2 by simp
theorem T3-deDicto: \lfloor\diamond\existsE \downarrowG\rfloor nitpick oops - countersatisfiable
```

From the last two theorems, we think T3-deRe should be the version originally implied in the book, since T3-deDicto is not valid (T1b were valid but it isn't)
lemma assumes $T 1 b:\left\lfloor\forall X . \mathcal{P} \downarrow X \rightarrow \diamond\left(\exists^{E} z . X z\right)\right\rfloor$
shows T3-deDicto: $\left\lfloor\diamond \exists{ }^{E} \downarrow G\right\rfloor$ using assms T2 by simp

5.3 Part II - God's Existence is Necessary if Possible

In this variant \mathcal{P} also designates rigidly, as shown in the last section.

axiomatization where

$A \not 4 a:\lfloor\forall X . \mathcal{P} X \rightarrow \square(\mathcal{P} X)\rfloor \quad$ - axiom 11.11
lemma $A \nleftarrow b:\lfloor\forall X . \neg(\mathcal{P} X) \rightarrow \square \neg(\mathcal{P} X)\rfloor$ using A1a A1b A\&a by blast
lemma True nitpick[satisfy] oops - model found: so far all axioms consistent
abbreviation essence $O f:: \uparrow\langle\langle\mathbf{0}\rangle, \mathbf{0}\rangle(\mathcal{E})$ where
$\mathcal{E} Y x \equiv(Y x) \wedge(\forall Z::\langle\mathbf{0}\rangle .(|Z x|) \rightarrow Y \Rightarrow Z)$
Theorem 11.20 - Informal Proposition 5
theorem GodIsEssential: $\left\lfloor\forall x . G x \rightarrow\left(\left(\mathcal{E} \downarrow_{1} G\right) x\right)\right\rfloor$ using $A 1 b$ by metis
Theorem 11.21
theorem God-starIsEssential: $\left\lfloor\forall x . G * x \rightarrow\left(\left(\mathcal{E} \downarrow_{1} G *\right) x\right)\right\rfloor$ by meson
abbreviation necExistencePred:: $\uparrow\langle\mathbf{0}\rangle(N E)$ where
$N E x \equiv \lambda w .\left(\forall Y . \mathcal{E} Y x \rightarrow \square\left(\exists^{E} z .(Y z)\right)\right) w$

Informal Axiom 5
axiomatization where
$A 5:\lfloor\mathcal{P} \downarrow N E\rfloor$
lemma True nitpick[satisfy] oops - model found: so far all axioms consistent
Reminder: We use $\downarrow G$ instead of G because it is more explicit. See (non)equivalences above.

```
lemma |\existsG\leftrightarrow\exists\downarrowG| by simp
lemma [\existsE}G\leftrightarrow\not\exists\mp@subsup{\exists}{}{E}\downarrowG\rfloor\mathrm{ by simp
lemma \\square\exists\mp@subsup{}{}{E}G\leftrightarrow \square\exists\exists}\mp@subsup{}{}{E}\downarrowG\rfloor\mathrm{ by simp
```

Theorem 11.26 (Informal Proposition 7) - (possibilist) existence of God implies necessary (actualist) existence.

There are two different ways of formalising this theorem. Both of them are proven valid:

```
First version:
theorem GodExImpliesNecEx-v1: \(\left\lfloor\exists \downarrow G \rightarrow \square \exists{ }^{E} \downarrow G\right\rfloor\)
proof -
\{
    fix \(w\)
    \{
        assume \(\exists x . G x w\)
        then obtain \(g\) where \(1: G g w .\).
        hence \(N E g w\) using \(A 5\) by auto
        hence \(\forall Y\). (E Y g w \() \longrightarrow\left(\square\left(\exists^{E} z .(Y z \|)\right)\right.\) w by simp
        hence \((\mathcal{E}(\lambda x . G x w) g w) \longrightarrow\left(\square\left(\exists^{E} z .((\lambda x . G x w) z)\right)\right) w\) by (rule allE)
        hence 2: \(\left(\left(\mathcal{E} \downarrow_{1} G\right) g w\right) \longrightarrow\left(\square\left(\exists^{E} G\right)\right) w\) using \(A \not 4 b\) by meson
        have \(\left(\forall x . G x \rightarrow\left(\left(\mathcal{E} \downarrow_{1} G\right) x\right)\right)\) w using GodIsEssential by (rule allE)
        hence \(\left(G g \rightarrow\left(\left(\mathcal{E} \downarrow_{1} G\right) g\right)\right) w\) by (rule allE)
        hence \(G g w \longrightarrow\left(\mathcal{E} \downarrow_{1} G\right) g w\) by simp
        from this 1 have 3: \(\left(\mathcal{E} \downarrow_{1} G\right) g w\) by (rule \(m p\) )
        from 23 have \(\left(\square \exists \exists^{E} G\right.\) ) \(w\) by (rule \(m p\) )
    \}
    hence \((\exists x . G x w) \longrightarrow\left(\square \exists{ }^{E} G\right) w\) by (rule impI)
    hence \(\left((\exists x . G x) \rightarrow \square \exists{ }^{E} G\right) w\) by simp
\}
thus ?thesis by (rule allI)
qed
```

Second version (which can be proven directly by automated tools using the previous version):
theorem GodExImpliesNecEx-v2: $\left\lfloor\exists \downarrow G \rightarrow\left(\left(\lambda X . \square \exists{ }^{E} X\right) \downarrow G\right)\right\rfloor$
using A4a GodExImpliesNecEx-v1 by metis
In contrast to Gödel's argument (as presented by Fitting), the following theorems can be proven in logic K (the $S 5$ axioms are no longer needed):

Theorem 11.27-Informal Proposition 8

```
theorem possExImpliesNecEx-v1: \(\left\lfloor\diamond \exists \downarrow G \rightarrow \square \exists{ }^{E} \downarrow G\right\rfloor\)
    using GodExImpliesNecEx-v1 T3-deRe by metis
theorem possExImpliesNecEx-v2: \(\left\lfloor\left(\lambda X . \diamond \exists{ }^{E} X\right) \downarrow G \rightarrow\left(\left(\lambda X . \square \exists^{E} X\right) \downarrow G\right)\right\rfloor\)
    using GodExImpliesNecEx-v2 by blast
```

Corollaries:
lemma $T 4$-v1: $\lfloor\diamond \exists \downarrow G\rfloor \longrightarrow\left\lfloor\square \exists \exists^{E} \downarrow G\right\rfloor$
using possExImpliesNecEx-v1 by simp
lemma T4-v2: $\left\lfloor\left(\lambda X . \diamond \exists^{E} X\right) \downarrow G\right\rfloor \longrightarrow\left\lfloor\left(\lambda X . \square \exists{ }^{E} X\right) \downarrow G\right\rfloor$
using possExImpliesNecEx-v2 by simp

5.4 Conclusion (De Re and De Dicto Reading)

Version I - Necessary Existence of God (de dicto):
lemma GodNecExists-v1: $\left|\square \exists^{E} \downarrow G\right|$
using GodExImpliesNecEx-v1 T3-deRe by fastforce - corollary 11.28
lemma God-starNecExists-v1: $\left\lfloor\square \exists^{E} \downarrow G *\right\rfloor$
using GodNecExists-v1 GodDefsAreEquivalent by simp
lemma $\left\lfloor\square\left(\lambda X . \exists^{E} X\right) \downarrow G *\right\rfloor$
using God-starNecExists-v1 by simp - de dicto shown here explicitly
Version II - Necessary Existence of God (de re)
lemma GodNecExists-v2: $\left\lfloor\left(\lambda X . \square \exists{ }^{E} X\right) \downarrow G\right\rfloor$
using T3-deRe T4-v2 by blast
lemma God-starNecExists-v2: $\left\lfloor\left(\lambda X . \square \exists{ }^{E} X\right) \downarrow G *\right\rfloor$
using GodNecExists-v2 GodDefsAreEquivalent by simp

5.5 Modal Collapse

Modal collapse is countersatisfiable even in $S 5$. Note that countermodels with a cardinality of one for the domain of individuals are found by Nitpick (the countermodel shown in the book has cardinality of two).

```
lemma \lfloor\forall\Phi.(\Phi -> (\square\Phi))\rfloor
    nitpick[card 't=1, card i=2] oops - countermodel found in K
axiomatization where
    S5: equivalence aRel - assume S5 logic
lemma \lfloor\forall\Phi.( }\Phi->(\square\Phi))
    nitpick[card 't=1, card i=2] oops - countermodel also found in S5
```


6 Anderson's Alternative

In this final section, we verify Anderson's emendation of Gödel's argument, as it is presented in the last part of the textbook by Fitting (pp. 169-171).

6.1 General Definitions

abbreviation existencePredicate: $: \uparrow\langle\mathbf{0}\rangle(E$!)
where $E!x \equiv \lambda w$ 。 $\left(\exists^{E} y . y \approx x\right) w$
consts positiveProperty: $: \uparrow\langle\uparrow\langle\mathbf{0}\rangle\rangle(\mathcal{P})$
abbreviation $G o d:: \uparrow\langle\mathbf{0}\rangle\left(G^{A}\right)$ where $G^{A} \equiv \lambda x . \forall Y .(\mathcal{P} Y) \leftrightarrow \square(Y x)$
abbreviation Entailment $:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle, \uparrow\langle\mathbf{0}\rangle\rangle($ infix $\Rightarrow 60)$ where
$X \Rightarrow Y \equiv \square\left(\forall^{E} z . X z \rightarrow Y z\right)$

6.2 Part I - God's Existence is Possible

axiomatization where

$$
\begin{aligned}
& \text { A1a: }\lfloor\forall X \cdot \mathcal{P}(\neg X) \rightarrow \neg(\mathcal{P} X)\rfloor \text { and } \quad \text { - Axiom 11.3A } \\
& \text { A2: }\lfloor\forall X Y .(\mathcal{P} X \wedge(X \Rightarrow Y)) \rightarrow \mathcal{P} Y\rfloor \text { and - Axiom } 11.5 \\
& \text { T2: }\left\lfloor\mathcal{P} G^{A}\right\rfloor \quad-\text { Proposition } 11.16
\end{aligned}
$$

lemma True nitpick[satisfy] oops - model found: axioms are consistent
theorem T1: $\left\lfloor\forall X . \mathcal{P} X \rightarrow \diamond \exists^{E} X\right\rfloor$
using A1a A2 by blast - positive properties are possibly instantiated
theorem T3: $\left\lfloor\diamond \exists^{E} G^{A}\right\rfloor$ using $T 1$ T2 by simp - God exists possibly

6.3 Part II - God's Existence is Necessary if Possible

\mathcal{P} now satisfies only one of the stability conditions. But since the argument uses an $S 5$ logic, the other stability condition is implied. Therefore \mathcal{P} becomes rigid (see p. 124).
axiomatization where

$$
\text { A\& } a:\lfloor\forall X . \mathcal{P} X \rightarrow \square(\mathcal{P} X)\rfloor \quad \text { - axiom } 11.11
$$

We again postulate our $S 5$ axioms:

axiomatization where

refl: reflexive aRel and
tran: transitive aRel and
symm: symmetric aRel
lemma True nitpick[satisfy] oops - model found: so far all axioms consistent
abbreviation rigidPred $::\left({ }^{\prime} t \Rightarrow i o\right) \Rightarrow i o$ where
rigidPred $\tau \equiv(\lambda \beta . \square((\lambda z . \beta \approx z) \downarrow \tau)) \downarrow \tau$

```
lemma \(A \not 4 b:\lfloor\forall X . \neg(\mathcal{P} X) \rightarrow \square \neg(\mathcal{P} X)\rfloor\)
    using \(A \not 4\) a symm by auto - symmetry is needed (which corresponds to \(B\) axiom)
lemma \(\lfloor\) rigidPred \(\mathcal{P}\rfloor\)
    using \(A \not 4 a A \notin b\) by blast \(-\mathcal{P}\) is therefore rigid in a \(B\) logic
```

Essence, Anderson Version (Definition 11.34)
abbreviation essence $O f:: \uparrow\langle\uparrow\langle\mathbf{0}\rangle, \mathbf{0}\rangle\left(\mathcal{E}^{A}\right)$ where
$\mathcal{E}^{A} Y x \equiv(\forall Z . \square(Z x) \leftrightarrow Y \Rightarrow Z)$
Necessary Existence, Anderson Version (Definition 11.35)
abbreviation necessaryExistencePred $:: \uparrow\langle\mathbf{0}\rangle\left(N E^{A}\right)$
where $N E^{A} x \equiv\left(\lambda w .\left(\forall Y . \mathcal{E}^{A} Y x \rightarrow \square \exists^{E} Y\right) w\right)$

Theorem 11.36 - If g is God-like, then the property of being God-like is the essence of g .

As shown before, this theorem's proof could be completely automatized for Gödel's and Fitting's variants. For Anderson's version however, we had to provide Isabelle with some help based on the corresponding natural-language proof given by Anderson (see [2] Theorem 2*, p. 296)

```
theorem GodIsEssential: }\\forallx.\mp@subsup{G}{}{A}x->(\mp@subsup{\mathcal{E}}{}{A}\mp@subsup{G}{}{A}x)
proof -
{
    fix w
    {
        fix g
        {
        assume GG g w
```



```
        {
            fix Q
            from 1 have 2:(\mathcal{P Q w) \longleftrightarrow(\square(Q g)) w by (rule allE)}
            have (\square(Q g)) w\longleftrightarrow (G}\mp@subsup{}{}{A}=>Q)w- we need to prove -> and 
            proof
                assume (\square(Qg)) w- suppose g is God-like and necessarily has Q
                    hence 3: (\mathcal{P}Qw) using 2 by simp - then Q is positive
                    {
                        fix u
                        have (\mathcal{P Q u) \longrightarrow( }\forallx.\mp@subsup{G}{}{A}xu\longrightarrow(\square(Qx))u)
                                by auto - using the definition of God-like
                        have (\mathcal{P Q u) \longrightarrow( }\forallx.G\mp@subsup{G}{}{A}xu\longrightarrow((Qx))u)
                        using refl by auto - and using \square(\varphix)\longrightarrow\varphix
                    }
```



```
                    hence }\lfloor\mathcal{P}Q->(\forallx.\mp@subsup{G}{}{A}x->Qx)
```

```
                    by auto - if Q is positive, then whatever is God-like has Q
                    hence }\lfloor\square(\mathcal{P}Q->(\forallx.\mp@subsup{G}{}{A}x->Qx))\rfloor\mathrm{ by (rule NEC)
                    hence }\lfloor(\square(\mathcal{P}Q))->\square(\forallx.\mp@subsup{G}{}{A}x->Qx)\rfloor\mathrm{ using K by auto
                    hence \lfloor(\square(\mathcal{P}Q))->\mp@subsup{G}{}{A}=>Q\rfloor\mathrm{ by simp}
                            hence ((\square(\mathcal{P}Q))->G G
            hence 4:(\square(\mathcal{P}Q))w\longrightarrow(G}\mp@subsup{}{}{A}=>Q)w\mathrm{ by simp
            have }{\forallX.\mathcal{P}X->\square(\mathcal{P}X)\rfloor\mathrm{ by (rule A&a) - using axiom 4
            hence (}\forallX.\mathcal{P}X->(\square(\mathcal{P}X))) w by (rule allE
            hence \mathcal{P}Qw\longrightarrow(\square(\mathcal{P}Q))w by (rule allE)
            hence }\mathcal{P}Qw\longrightarrow(\mp@subsup{G}{}{A}=>Q)w\mathrm{ using 4 by simp
                    thus (G}\mp@subsup{G}{}{A}=>Q)w\mathrm{ using 3 by (rule mp)}\longrightarrow\mathrm{ direction
                next
                    assume 5: (G}\mp@subsup{G}{}{A}=>Q)w-\mathrm{ suppose Q is entailed by being God-like
                    have }|\forallXY.(\mathcal{P}X\wedge(X=>Y))->\mathcal{P}Y\rfloor\mathrm{ by (rule A2)
                    hence (\forallXY.(\mathcal{P}X\wedge(X=>Y))->\mathcal{P}Y)w\mathrm{ by (rule allE)}
                    hence }\forallXY.(\mathcal{P}Xw\wedge(X=>Y)w)\longrightarrow\mathcal{P}Yw\mathrm{ by simp
                    hence }\forallY.(\mathcal{P}\mp@subsup{G}{}{A}w\wedge(\mp@subsup{G}{}{A}=>Y)w)\longrightarrow\mathcal{P}Yw\mathrm{ by (rule allE)
                    hence 6:(\mathcal{P}\mp@subsup{G}{}{A}w\wedge(\mp@subsup{G}{}{A}=>Q)w)\longrightarrow\mathcal{P}Qw\mathrm{ by (rule allE)}
                    have \lfloor\mathcal{P}\mp@subsup{G}{}{A}\rfloor\mathrm{ by (rule T2)}
                    hence }\mathcal{P}\mp@subsup{G}{}{A}w\mathrm{ by (rule allE)
                    hence }\mathcal{P}\mp@subsup{G}{}{A}w\wedge(\mp@subsup{G}{}{A}=>Q)w\mathrm{ using }5\mathrm{ by (rule conjI)
                    from 6 this have \mathcal{P Q w by (rule mp) - Q is positive by A2 and T2}
                    thus ( }\square(Qg))w\mathrm{ using 2 by simp
            qed
        }
        hence }\forallZ.(\square(Zg))w\longleftrightarrow(\mp@subsup{G}{}{A}=>Z)w\mathrm{ by (rule allI)
        hence ( }\forallZ.\square(Zg)\leftrightarrow\quadG\mp@subsup{G}{}{A}=>Z)w\mathrm{ by simp
        hence }\mp@subsup{\mathcal{E}}{}{A}\mp@subsup{G}{}{A}gw\mathrm{ by simp
        }
        hence }\mp@subsup{G}{}{A}gw\longrightarrow\mp@subsup{\mathcal{E}}{}{A}\mp@subsup{G}{}{A}gw\mathrm{ by (rule impI)
    }
    hence }\forallx.\mp@subsup{G}{}{A}xw\longrightarrow\mp@subsup{\mathcal{E}}{}{A}\mp@subsup{G}{}{A}xw\mathrm{ by (rule allI)
}
    thus ?thesis by (rule allI)
qed
```

Axiom 11.37 (Anderson's version of 11.25)
axiomatization where

```
A5: \lfloor\mathcal{P NE A}\rfloor
```

lemma True nitpick[satisfy] oops - model found: so far all axioms consistent
Theorem 11.38 - Possibilist existence of God implies necessary actualist existence:

```
theorem GodExistenceImpliesNecExistence: \\exists G A}->\square\square\exists\mp@subsup{}{}{E}\mp@subsup{G}{}{A}
proof -
{
    fix }
```

```
    {
    assume }\existsx.\mp@subsup{G}{}{A}x
    then obtain g}\mathrm{ where 1: G}\mp@subsup{G}{}{A}gw .
    hence NEA g w using A5 by blast - axiom 11.25
    hence }\forallY.(\mp@subsup{\mathcal{E}}{}{A}Ygw)\longrightarrow(\square\exists\mp@subsup{}{}{E}Y)w\mathrm{ by simp
    hence 2: (\mathcal{E}}\mp@subsup{|}{}{\mathcal{E}}\mp@subsup{G}{}{A}gw)\longrightarrow(\square\exists\mp@subsup{\exists}{}{E}\mp@subsup{G}{}{A})w\mathrm{ by (rule allE)
    have ( }\forallx.\mp@subsup{G}{}{A}x->(\mp@subsup{\mathcal{E}}{}{A}\mp@subsup{G}{}{A}x))w\mathrm{ using GodIsEssential
        by (rule allE) - GodIsEssential follows from Axioms 11.11 and 11.3B
    hence (GA}g->(\mp@subsup{\mathcal{E}}{}{A}\mp@subsup{G}{}{A}g))w\mathrm{ by (rule allE)
    hence G G}|\mp@code{d}\longrightarrow\mp@subsup{\mathcal{E}}{}{A}\mp@subsup{G}{}{A}gw\mathrm{ by blast
    from this 1 have 3: \mathcal{E}}\mp@subsup{|}{}{A}\mp@subsup{G}{}{A}gw\mathrm{ by (rule mp)
    from 2 3 have ( }\square\mp@subsup{\exists}{}{E}\mp@subsup{G}{}{A}\mathrm{ ) w by (rule mp)
    }
    hence (\existsx. G G x w) \longrightarrow(\square\exists\existsE G G})w\mathrm{ by (rule impI)
    hence ((\existsx.GG}\mp@subsup{|}{}{A}x)->\square\exists\mp@subsup{\exists}{}{E}\mp@subsup{G}{}{A})w\mathrm{ by simp
}
    thus ?thesis by (rule allI)
qed
Some useful rules:
lemma modal-distr: \(\lfloor\square(\varphi \rightarrow \psi)\rfloor \Longrightarrow\lfloor(\diamond \varphi \rightarrow \diamond \psi)\rfloor\) by blast
lemma modal-trans: \((\lfloor\varphi \rightarrow \psi\rfloor \wedge\lfloor\psi \rightarrow \chi\rfloor) \Longrightarrow\lfloor\varphi \rightarrow \chi\rfloor\) by simp
```

Anderson's version of Theorem 11.27
theorem possExistenceImpliesNecEx: $\left\lfloor\diamond \exists G^{A} \rightarrow \square \exists{ }^{E} G^{A}\right\rfloor$ - local consequence
proof -
have $\left\lfloor\exists G^{A} \rightarrow \square \exists{ }^{E} G^{A}\right\rfloor$ using GodExistenceImpliesNecExistence by simp - follows from Axioms 11.11, 11.25 and 11.3B
hence $\left\lfloor\square\left(\exists G^{A} \rightarrow \square \exists^{E} G^{A}\right)\right\rfloor$ using NEC by simp
hence $1:\left\lfloor\diamond \exists G^{A} \rightarrow \diamond \square \exists \exists^{E} G^{A}\right\rfloor$ by (rule modal-distr)
have 2: $\left\lfloor\diamond \square \exists{ }^{E} G^{A} \rightarrow \square \exists^{E} G^{A}\right\rfloor$ using symm tran by metis
from 12 have $\left\lfloor\diamond \exists G^{A} \rightarrow \diamond \square \exists \exists^{E} G^{A}\right\rfloor \wedge\left\lfloor\diamond \square \exists \exists^{E} G^{A} \rightarrow \square \exists{ }^{E} G^{A}\right\rfloor$ by simp
thus ?thesis by (rule modal-trans)
qed
lemma T4: $\left\lfloor\diamond \exists G^{A}\right\rfloor \longrightarrow\left\lfloor\square \exists \exists^{E} G^{A}\right\rfloor$ using possExistenceImpliesNecEx by (rule localImpGlobalCons) - global consequence

Conclusion - Necessary (actualist) existence of God:
lemma GodNecExists: $\left\lfloor\square \exists \exists^{E} G^{A}\right\rfloor$ using T3 T4 by metis

6.4 Modal Collapse

Modal collapse is countersatisfiable
lemma $\lfloor\forall \Phi .(\Phi \rightarrow(\square \Phi))\rfloor$ nitpick oops

7 Conclusion

We presented a shallow semantical embedding in Isabelle/HOL for an intensional higher-order modal logic (a successor of Montague/Gallin intensional logics) as introduced by M. Fitting in his textbook Types, Tableaus and Gödel's God [12]. We subsequently employed this logic to formalise and verify all results (theorems, examples and exercises) relevant to the discussion of Gödel's ontological argument in the last part of Fitting's book. Three different versions of the ontological argument have been considered: the first one by Gödel himself (respectively, Scott), the second one by Fitting and the last one by Anderson.

By employing an interactive theorem-prover like Isabelle, we were not only able to verify Fitting's results, but also to guarantee consistency. We could prove even stronger versions of many of the theorems and find better countermodels (i.e. with smaller cardinality) than the ones presented in the book. Another interesting aspect was the possibility to explore the implications of alternative formalisations for definitions and theorems which shed light on interesting philosophical issues concerning entailment, essentialism and free will, which are currently the subject of some follow-up analysis.

The latest developments in automated theorem proving allow us to engage in much more experimentation during the formalisation and assessment of arguments than ever before. The potential reduction (of several orders of magnitude) in the time needed for proving or disproving theorems (compared to pen-and-paper proofs), results in almost real-time feedback about the suitability of our speculations. The practical benefits of computer-supported argumentation go beyond mere quantitative (easier, faster and more reliable proofs). The advantages are also qualitative, since it fosters a different approach to argumentation: We can now work iteratively (by 'trial-anderror') on an argument by making gradual adjustments to its definitions, axioms and theorems. This allows us to continuously expose and revise the assumptions we indirectly commit ourselves everytime we opt for some particular formalisation.

References

[1] A. Anderson and M. Gettings. Gödel ontological proof revisited. In Gödel'96: Logical Foundations of Mathematics, Computer Science, and Physics: Lecture Notes in Logic 6, pages 167-172. Springer, 1996.
[2] C. Anderson. Some emendations of Gödel's ontological proof. Faith and Philosophy, 7(3), 1990.
[3] C. Benzmüller. Universal reasoning, rational argumentation and human-machine interaction. arXiv, http://arxiv.org/abs/1703.09620, 2017.
[4] C. Benzmüller, M. Claus, and N. Sultana. Systematic verification of the modal logic cube in Isabelle/HOL. In C. Kaliszyk and A. Paskevich, editors, PxTP 2015, volume 186, pages 27-41, Berlin, Germany, 2015. EPTCS.
[5] C. Benzmüller and B. W. Paleo. Automating Gödel's ontological proof of God's existence with higher-order automated theorem provers. In T. Schaub, G. Friedrich, and B. O'Sullivan, editors, ECAI 2014, volume 263 of Frontiers in Artificial Intelligence and Applications, pages 93 98. IOS Press, 2014.
[6] C. Benzmüller and L. Paulson. Quantified multimodal logics in simple type theory. Logica Universalis (Special Issue on Multimodal Logics), 7(1):7-20, 2013.
[7] C. Benzmüller, A. Steen, and M. Wisniewski. The computational metaphysics lecture course at Freie Universität Berlin. In S. Krajewski and P. Balcerowicz, editors, Handbook of the 2nd World Congress on Logic and Religion, Warsaw, Poland, page 2, 2017.
[8] C. Benzmüller and B. Woltzenlogel Paleo. The inconsistency in Gödels ontological argument: A success story for AI in metaphysics. In IJCAI 2016, 2016.
[9] C. Benzmüller and B. Woltzenlogel Paleo. An object-logic explanation for the inconsistency in Gödel's ontological theory (extended abstract). In M. Helmert and F. Wotawa, editors, KI 2016: Advances in Artificial Intelligence, Proceedings, LNCS, Berlin, Germany, 2016. Springer.
[10] F. Bjørdal. Understanding Gödel's ontological argument. In T. Childers, editor, The Logica Yearbook 1998. Filosofia, 1999.
[11] J. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-order logic based on a relational model finder. In Proc. of ITP 2010, number 6172 in LNCS, pages 131-146. Springer, 2010.
[12] M. Fitting. Types, Tableaus and Gödel's God. Kluwer, 2002.
[13] M. Fitting and R. Mendelsohn. First-Order Modal Logic, volume 277 of Synthese Library. Kluwer, 1998.
[14] D. Gallin. Intensinonal and Higher-Order Modal Logic. N.-Holland, 1975.
[15] K. Gödel. Appx.A: Notes in Kurt Gödel's Hand, pages 144-145. In [19], 2004.
[16] P. Hájek. A new small emendation of Gödel's ontological proof. Studia Logica, 71(2):149-164, 2002.
[17] D. Scott. Appx.B: Notes in Dana Scott's Hand, pages 145-146. In [19], 2004.
[18] J. Sobel. Gödel's ontological proof. In On Being and Saying. Essays for Richard Cartwright, pages 241-261. MIT Press, 1987.
[19] J. Sobel. Logic and Theism: Arguments for and Against Beliefs in God. Cambridge U. Press, 2004.

