
Types, Tableaus and Gödel’s God

in Isabelle/HOL

David Fuenmayor1 and Christoph Benzmüller2,1

1Freie Universität Berlin, Germany
2University of Luxembourg, Luxembourg

October 11, 2017

Abstract

A computer-formalisation of the essential parts of Fitting’s text-
book Types, Tableaus and Gödel’s God in Isabelle/HOL is presented.
In particular, Fitting’s (and Anderson’s) variant of the ontological ar-
gument is verified and confirmed. This variant avoids the modal col-
lapse, which has been criticised as an undesirable side-effect of Kurt
Gödel’s (and Dana Scott’s) versions of the ontological argument. Fit-
ting’s work is employing an intensional higher-order modal logic, which
we shallowly embed here in classical higher-order logic. We then utilize
the embedded logic for the formalisation of Fitting’s argument.

Contents

1 Introduction 3

2 Embedding of Intensional Higher-Order Modal Logic 4
2.1 Type Declarations . 4
2.2 Definitions . 5

2.2.1 Logical Operators as Truth-Sets 5
2.2.2 Possibilist Quantification 5
2.2.3 Actualist Quantification 5
2.2.4 Modal Operators . 6
2.2.5 Extension-of Operator 6
2.2.6 Equality . 7
2.2.7 Meta-logical Predicates 7

2.3 Verifying the Embedding . 8
2.4 Useful Definitions for Axiomatization of Further Logics . . . 9

1

3 Textbook Examples 10
3.1 Modal Logic - Syntax and Semantics (Chapter 7) 10

3.1.1 Considerations Regarding βη-redex (p. 94) 10
3.1.2 Exercises (p. 101) . 11

3.2 Miscellaneous Matters (Chapter 9) 12
3.2.1 Equality Axioms (Subsection 1.1) 12
3.2.2 Extensionality (Subsection 1.2) 12
3.2.3 De Re and De Dicto (Subsection 2) 12
3.2.4 Rigidity (Subsection 3) 13
3.2.5 Stability Conditions (Subsection 4) 13

4 Gödel’s Argument, Formally 15
4.1 Part I - God’s Existence is Possible 15

4.1.1 General Definitions . 15
4.1.2 Axioms . 16
4.1.3 Theorems . 16

4.2 Part II - God’s Existence is Necessary if Possible 17
4.2.1 General Definitions . 17
4.2.2 Results from Part I . 18
4.2.3 Axioms . 18
4.2.4 Theorems . 19
4.2.5 Monotheism . 21
4.2.6 Positive Properties are Necessarily Instantiated 23
4.2.7 More Objections . 23

5 Fitting’s Solution 24
5.1 General Definitions . 24
5.2 Part I - God’s Existence is Possible 24
5.3 Part II - God’s Existence is Necessary if Possible 25
5.4 Conclusion (De Re and De Dicto Reading) 27
5.5 Modal Collapse . 27

6 Anderson’s Alternative 28
6.1 General Definitions . 28
6.2 Part I - God’s Existence is Possible 28
6.3 Part II - God’s Existence is Necessary if Possible 28
6.4 Modal Collapse . 31

7 Conclusion 32

2

1 Introduction

We present a study on Computational Metaphysics: a computer-formalisation
and verification of Fitting’s variant of the ontological argument (for the exis-
tence of God) as presented in his textbook Types, Tableaus and Gödel’s God
[12]. Fitting’s argument is an emendation of Kurt Gödel’s modern variant
[15] (resp. Dana Scott’s variant [17]) of the ontological argument.

The motivation is to avoid the modal collapse [18, 19], which has been crit-
icised as an undesirable side-effect of the axioms of Gödel resp. Scott. The
modal collapse essentially states that there are no contingent truths and that
everything is determined. Several authors (e.g. [2, 1, 16, 10]) have proposed
emendations of the argument with the aim of maintaining the essential re-
sult (the necessary existence of God) while at the same time avoiding the
modal collapse. Related work has formalised several of these variants on the
computer and verified or falsified them. For example, Gödel’s axioms [15]
have been shown inconsistent [8, 9] while Scott’s version has been verified
[5]. Further experiments, contributing amongst others to the clarification of
a related debate between Hájek and Anderson, are presented and discussed
in [6]. The enabling technique in all of these experiments has been shallow
semantical embeddings of (extensional) higher-order modal logics in classical
higher-order logic (see [6, 3] and the references therein).

Fitting’s emendation also intends to avoid the modal collapse. However, in
contrast to the above variants, Fitting’s solution is based on the use of an
intensional as opposed to an extensional higher-order modal logic. For our
work this imposed the additional challenge to provide a shallow embedding
of this more advanced logic. The experiments presented below confirm that
Fitting’s argument as presented in his textbook [12] is valid and that it
avoids the modal collapse as intended.

The work presented here originates from the Computational Metaphysics
lecture course held at FU Berlin in Summer 2016 [7].

3

2 Embedding of Intensional Higher-Order Modal
Logic

The object logic being embedded, intensional higher-order modal logic (IHOML),
is a modification of the intentional logic developed by Montague and Gallin
[14]. IHOML is introduced by Fitting in the second part of his textbook
[12] in order to formalise his emendation of Gödel’s ontological argument.
We offer here a shallow embedding of this logic in Isabelle/HOL, which has
been inspired by previous work on the semantical embedding of multimodal
logics with quantification [6]. We expand this approach to allow for actualist
quantifiers, intensional types and their related operations.

2.1 Type Declarations

Since IHOML and Isabelle/HOL are both typed languages, we introduce a
type-mapping between them. We follow as closely as possible the syntax
given by Fitting (see p. 86). According to this syntax, if τ is an extensional
type, ↑τ is the corresponding intensional type. For instance, a set of (red)
objects has the extensional type 〈0〉, whereas the concept ‘red’ has inten-
sional type ↑〈0〉. In what follows, terms having extensional (intensional)
types will be called extensional (intensional) terms.

typedecl i — type for possible worlds
type-synonym io = (i⇒bool) — formulas with world-dependent truth-value
typedecl e (0) — individuals

Aliases for common unary predicate types:

type-synonym ie = (i⇒0) (↑0)
type-synonym se = (0⇒bool) (〈0〉)
type-synonym ise = (0⇒io) (↑〈0〉)
type-synonym sie = (↑0⇒bool) (〈↑0〉)
type-synonym isie = (↑0⇒io) (↑〈↑0〉)
type-synonym sise = (↑〈0〉⇒bool) (〈↑〈0〉〉)
type-synonym isise = (↑〈0〉⇒io) (↑〈↑〈0〉〉)
type-synonym sisise= (↑〈↑〈0〉〉⇒bool) (〈↑〈↑〈0〉〉〉)
type-synonym isisise= (↑〈↑〈0〉〉⇒io) (↑〈↑〈↑〈0〉〉〉)
type-synonym sse = 〈0〉⇒bool (〈〈0〉〉)
type-synonym isse = 〈0〉⇒io (↑〈〈0〉〉)

Aliases for common binary relation types:

type-synonym see = (0⇒0⇒bool) (〈0,0〉)
type-synonym isee = (0⇒0⇒io) (↑〈0,0〉)
type-synonym sieie = (↑0⇒↑0⇒bool) (〈↑0,↑0〉)
type-synonym isieie = (↑0⇒↑0⇒io) (↑〈↑0,↑0〉)
type-synonym ssese = (〈0〉⇒〈0〉⇒bool) (〈〈0〉,〈0〉〉)
type-synonym issese = (〈0〉⇒〈0〉⇒io) (↑〈〈0〉,〈0〉〉)

4

type-synonym ssee = (〈0〉⇒0⇒bool) (〈〈0〉,0〉)
type-synonym issee = (〈0〉⇒0⇒io) (↑〈〈0〉,0〉)
type-synonym isisee = (↑〈0〉⇒0⇒io) (↑〈↑〈0〉,0〉)
type-synonym isiseise = (↑〈0〉⇒↑〈0〉⇒io) (↑〈↑〈0〉,↑〈0〉〉)
type-synonym isiseisise= (↑〈0〉⇒↑〈↑〈0〉〉⇒io) (↑〈↑〈0〉,↑〈↑〈0〉〉〉)

2.2 Definitions

2.2.1 Logical Operators as Truth-Sets

abbreviation mnot :: io⇒io (¬-[52]53)
where ¬ϕ ≡ λw . ¬(ϕ w)

abbreviation negpred :: 〈0〉⇒〈0〉 (⇁-[52]53)
where ⇁Φ ≡ λx . ¬(Φ x)

abbreviation mnegpred :: ↑〈0〉⇒↑〈0〉 (⇁-[52]53)
where ⇁Φ ≡ λx .λw . ¬(Φ x w)

abbreviation mand :: io⇒io⇒io (infixr∧51)
where ϕ∧ψ ≡ λw . (ϕ w)∧(ψ w)

abbreviation mor :: io⇒io⇒io (infixr∨50)
where ϕ∨ψ ≡ λw . (ϕ w)∨(ψ w)

abbreviation mimp :: io⇒io⇒io (infixr→49)
where ϕ→ψ ≡ λw . (ϕ w)−→(ψ w)

abbreviation mequ :: io⇒io⇒io (infixr↔48)
where ϕ↔ψ ≡ λw . (ϕ w)←→(ψ w)

abbreviation xor :: bool⇒bool⇒bool (infixr⊕50)
where ϕ⊕ψ ≡ (ϕ∨ψ) ∧ ¬(ϕ∧ψ)

abbreviation mxor :: io⇒io⇒io (infixr⊕50)
where ϕ⊕ψ ≡ λw . (ϕ w)⊕(ψ w)

2.2.2 Possibilist Quantification

abbreviation mforall :: (′t⇒io)⇒io (∀)
where ∀Φ ≡ λw .∀ x . (Φ x w)

abbreviation mexists :: (′t⇒io)⇒io (∃)
where ∃Φ ≡ λw .∃ x . (Φ x w)

abbreviation mforallB :: (′t⇒io)⇒io (binder∀ [8]9) — Binder notation
where ∀ x . ϕ(x) ≡ ∀ϕ

abbreviation mexistsB :: (′t⇒io)⇒io (binder∃ [8]9)
where ∃ x . ϕ(x) ≡ ∃ϕ

2.2.3 Actualist Quantification

The following predicate is used to model actualist quantifiers by restricting
the domain of quantification at every possible world. This standard tech-
nique has been referred to as existence relativization ([13], p. 106), high-
lighting the fact that this predicate can be seen as a kind of meta-logical
‘existence predicate’ telling us which individuals actually exist at a given
world. This meta-logical concept does not appear in our object language.

5

consts Exists::↑〈0〉 (existsAt)

abbreviation mforallAct :: ↑〈↑〈0〉〉 (∀ E)
where ∀ EΦ ≡ λw .∀ x . (existsAt x w)−→(Φ x w)

abbreviation mexistsAct :: ↑〈↑〈0〉〉 (∃ E)
where ∃ EΦ ≡ λw .∃ x . (existsAt x w) ∧ (Φ x w)

abbreviation mforallActB :: ↑〈↑〈0〉〉 (binder∀ E [8]9) — binder notation
where ∀ Ex . ϕ(x) ≡ ∀ Eϕ

abbreviation mexistsActB :: ↑〈↑〈0〉〉 (binder∃ E [8]9)
where ∃ Ex . ϕ(x) ≡ ∃ Eϕ

2.2.4 Modal Operators

consts aRel ::i⇒i⇒bool (infixr r 70) — accessibility relation r

abbreviation mbox :: io⇒io (�-[52]53)
where �ϕ ≡ λw .∀ v . (w r v)−→(ϕ v)

abbreviation mdia :: io⇒io (♦-[52]53)
where ♦ϕ ≡ λw .∃ v . (w r v)∧(ϕ v)

2.2.5 Extension-of Operator

According to Fitting’s semantics ([12], pp. 92-4) ↓ is an unary operator
applying only to intensional terms. A term of the form ↓α designates the
extension of the intensional object designated by α, at some given world.
For instance, suppose we take possible worlds as persons, we can therefore
think of the concept ‘red’ as a function that maps each person to the set of
objects that person classifies as red (its extension). We can further state,
the intensional term r of type ↑〈0〉 designates the concept ‘red’. As can
be seen, intensional terms in IHOML designate functions on possible worlds
and they always do it rigidly. We will sometimes refer to an intensional
object explicitly as ‘rigid’, implying that its (rigidly) designated function
has the same extension in all possible worlds.

Terms of the form ↓α are called relativized (extensional) terms; they are
always derived from intensional terms and their type is extensional (in the
color example ↓r would be of type 〈0〉). Relativized terms may vary their
denotation from world to world of a model, because the extension of an
intensional term can change from world to world, i.e. they are non-rigid.

To recap: an intensional term denotes the same function in all worlds (i.e.
it’s rigid), whereas a relativized term denotes a (possibly) different extension
(an object or a set) at every world (i.e. it’s non-rigid). To find out the
denotation of a relativized term, a world must be given. Relativized terms
are the only non-rigid terms.

6

For our Isabelle/HOL embedding, we had to follow a slightly different ap-
proach; we model ↓ as a predicate applying to formulas of the form Φ(↓α1,. . .αn)
(for our treatment we only need to consider cases involving one or two ar-
guments, the first one being a relativized term). For instance, the formula
Q(↓a1)

w (evaluated at world w) is modelled as �(Q ,a1)
w (or (Q � a1)

w using
infix notation), which gets further translated into Q(a1(w))w.

Depending on the particular types involved, we have to define ↓ differently
to ensure type correctness (see a-d below). Nevertheless, the essence of the
Extension-of operator remains the same: a term α preceded by ↓ behaves
as a non-rigid term, whose denotation at a given possible world corresponds
to the extension of the original intensional term α at that world.

(a) Predicate ϕ takes as argument a relativized term derived from an (in-
tensional) individual of type ↑0:

abbreviation extIndivArg ::↑〈0〉⇒↑0⇒io (infix � 60)
where ϕ �c ≡ λw . ϕ (c w) w

(b) A variant of (a) for terms derived from predicates (types of form ↑〈t〉):
abbreviation extPredArg ::((′t⇒bool)⇒io)⇒(′t⇒io)⇒io (infix ↓ 60)

where ϕ ↓P ≡ λw . ϕ (λx . P x w) w

(c) A variant of (b) with a second argument (the first one being relativized):

abbreviation extPredArg1 ::((′t⇒bool)⇒ ′b⇒io)⇒(′t⇒io)⇒ ′b⇒io (infix ↓1 60)
where ϕ ↓1P ≡ λz . λw . ϕ (λx . P x w) z w

In what follows, the ‘(|-|)’ parentheses are an operator used to convert ex-
tensional objects into ‘rigid’ intensional ones:

abbreviation trivialConversion::bool⇒io ((|-|)) where (|ϕ|) ≡ (λw . ϕ)

(d) A variant of (b) where ϕ takes ‘rigid’ intensional terms as argument:

abbreviation mextPredArg ::((′t⇒io)⇒io)⇒(′t⇒io)⇒io (infix ↓ 60)
where ϕ ↓P ≡ λw . ϕ (λx . (|P x w |)) w

2.2.6 Equality

abbreviation meq :: ′t⇒ ′t⇒io (infix≈60) — normal equality (for all types)
where x ≈ y ≡ λw . x = y

abbreviation meqC :: ↑〈↑0,↑0〉 (infixr≈C52) — eq. for individual concepts
where x ≈C y ≡ λw . ∀ v . (x v) = (y v)

abbreviation meqL :: ↑〈0,0〉 (infixr≈L52) — Leibniz eq. for individuals
where x ≈L y ≡ ∀ϕ. ϕ(x)→ϕ(y)

2.2.7 Meta-logical Predicates

abbreviation valid :: io⇒bool (b-c [8]) where bψc ≡ ∀w .(ψ w)
abbreviation satisfiable :: io⇒bool (b-csat [8]) where bψcsat ≡ ∃w .(ψ w)
abbreviation countersat :: io⇒bool (b-ccsat [8]) where bψccsat ≡ ∃w .¬(ψ w)
abbreviation invalid :: io⇒bool (b-cinv [8]) where bψcinv ≡ ∀w .¬(ψ w)

7

2.3 Verifying the Embedding

The above definitions introduce modal logic K with possibilist and actualist
quantifiers, as evidenced by the following tests:

Verifying K Principle and Necessitation:

lemma K : b(�(ϕ → ψ)) → (�ϕ → �ψ)c by simp — K schema
lemma NEC : bϕc =⇒ b�ϕc by simp — necessitation

Local consequence implies global consequence (we will use this lemma often):

lemma localImpGlobalCons: bϕ → ξc =⇒ bϕc −→ bξc by simp

But global consequence does not imply local consequence:

lemma bϕc −→ bξc =⇒ bϕ → ξc nitpick oops — countersatisfiable

Barcan and Converse Barcan Formulas are satisfied for standard (possibilist)
quantifiers:

lemma b(∀ x .�(ϕ x)) → �(∀ x .(ϕ x))c by simp
lemma b�(∀ x .(ϕ x)) → (∀ x .�(ϕ x))c by simp

(Converse) Barcan Formulas not satisfied for actualist quantifiers:

lemma b(∀ Ex .�(ϕ x)) → �(∀ Ex .(ϕ x))c nitpick oops — countersatisfiable
lemma b�(∀ Ex .(ϕ x)) → (∀ Ex .�(ϕ x))c nitpick oops — countersatisfiable

Above we have made use of (counter-)model finder Nitpick [11] for the first
time. For all the conjectured lemmas above, Nitpick has found a counter-
model, i.e. a model satisfying all the axioms which falsifies the given formula.
This means, the formulas are not valid.

Well known relations between meta-logical notions:

lemma bϕc ←→ ¬bϕccsat by simp
lemma bϕcsat ←→ ¬bϕcinv by simp

Contingent truth does not allow for necessitation:

lemma b♦ϕc −→ b�ϕc nitpick oops — countersatisfiable
lemma b�ϕcsat −→ b�ϕc nitpick oops — countersatisfiable

Modal collapse is countersatisfiable:

lemma bϕ → �ϕc nitpick oops — countersatisfiable

8

2.4 Useful Definitions for Axiomatization of Further Logics

The best known normal logics (K4, K5, KB, K45, KB5, D, D4, D5, D45,
...) can be obtained by combinations of the following axioms:

abbreviation M
where M ≡ ∀ϕ. �ϕ → ϕ

abbreviation B
where B ≡ ∀ϕ. ϕ → �♦ϕ

abbreviation D
where D ≡ ∀ϕ. �ϕ → ♦ϕ

abbreviation IV
where IV ≡ ∀ϕ. �ϕ → ��ϕ

abbreviation V
where V ≡ ∀ϕ. ♦ϕ → �♦ϕ

Instead of postulating (combinations of) the above axioms we instead make
use of the well-known Sahlqvist correspondence, which links axioms to con-
straints on a model’s accessibility relation (e.g. reflexive, symmetric, etc.;
the definitions of which are not shown here). We show that reflexivity, sym-
metry, seriality, transitivity and euclideanness imply axioms M,B,D, IV, V
respectively.

lemma reflexive aRel =⇒ bM c by blast — aka T
lemma symmetric aRel =⇒ bBc by blast
lemma serial aRel =⇒ bDc by blast
lemma transitive aRel =⇒ bIV c by blast
lemma euclidean aRel =⇒ bV c by blast
lemma preorder aRel =⇒ bM c ∧ bIV c by blast — S4: reflexive + transitive
lemma equivalence aRel =⇒ bM c ∧ bV c by blast — S5: preorder + symmetric

lemma reflexive aRel ∧ euclidean aRel =⇒ bM c ∧ bV c by blast — S5

Using these definitions, we can derive axioms for the most common modal
logics (see also [4]). Thereby we are free to use either the semantic con-
straints or the related Sahlqvist axioms. Here we provide both versions. In
what follows we use the semantic constraints (for improved performance).

9

3 Textbook Examples

In this section we provide further evidence that our embedded logic works
as intended by proving the examples discussed in the book. In many cases,
we consider further theorems which we derived from the original ones. We
were able to confirm that all results (proofs or counterexamples) agree with
Fitting’s claims.

3.1 Modal Logic - Syntax and Semantics (Chapter 7)

Reminder: We call a term relativized if it is of the form ↓α (i.e. an intensional
term preceded by the extension-of operator), otherwise it is non-relativized.
Relativized terms are non-rigid and non-relativized terms are rigid.

3.1.1 Considerations Regarding βη-redex (p. 94)

βη-redex is valid for non-relativized (intensional or extensional) terms:

lemma b((λα. ϕ α) (τ ::↑0)) ↔ (ϕ τ)c by simp
lemma b((λα. ϕ α) (τ ::0)) ↔ (ϕ τ)c by simp
lemma b((λα. �ϕ α) (τ ::↑0)) ↔ (�ϕ τ)c by simp
lemma b((λα. �ϕ α) (τ ::0)) ↔ (�ϕ τ)c by simp

βη-redex is valid for relativized terms as long as no modal operators occur
inside the predicate abstract:

lemma b((λα. ϕ α) �(τ ::↑0)) ↔ (ϕ �τ)c by simp

βη-redex is non-valid for relativized terms when modal operators are present:

lemma b((λα. �ϕ α) �(τ ::↑0))↔ (�ϕ �τ)c nitpick oops — countersatisfiable
lemma b((λα. ♦ϕ α) �(τ ::↑0)) ↔ (♦ϕ �τ)c nitpick oops — countersatisfiable

Example 7.13, p. 96:

lemma b(λX . ♦∃X) (P ::↑〈0〉) → ♦((λX . ∃X) P)c by simp
lemma b(λX . ♦∃X) ↓(P ::↑〈0〉) → ♦((λX . ∃X) ↓P)c
nitpick[card ′t=1 , card i=2] oops — nitpick finds same counterexample as book

with other types for P :

lemma b(λX . ♦∃X) (P ::↑〈↑0〉) → ♦((λX . ∃X) P)c by simp
lemma b(λX . ♦∃X) ↓(P ::↑〈↑0〉) → ♦((λX . ∃X) ↓P)c

nitpick[card ′t=1 , card i=2] oops — countersatisfiable
lemma b(λX . ♦∃X) (P ::↑〈〈0〉〉) → ♦((λX . ∃X) P)c by simp
lemma b(λX . ♦∃X) ↓(P ::↑〈〈0〉〉) → ♦((λX . ∃X) ↓P)c

nitpick[card ′t=1 , card i=2] oops — countersatisfiable
lemma b(λX . ♦∃X) (P ::↑〈↑〈0〉〉)→ ♦((λX . ∃X) P)c by simp
lemma b(λX . ♦∃X) ↓(P ::↑〈↑〈0〉〉)→ ♦((λX . ∃X) ↓P)c

nitpick[card ′t=1 , card i=2] oops — countersatisfiable

10

Example 7.14, p. 98:

lemma b(λX . ♦∃X) ↓(P ::↑〈0〉) → (λX . ∃X) ↓Pc by simp
lemma b(λX . ♦∃X) (P ::↑〈0〉) → (λX . ∃X) Pc

nitpick[card ′t=1 , card i=2] oops — countersatisfiable

with other types for P :

lemma b(λX . ♦∃X) ↓(P ::↑〈↑0〉) → (λX . ∃X) ↓Pc by simp
lemma b(λX . ♦∃X) (P ::↑〈↑0〉) → (λX . ∃X) Pc

nitpick[card ′t=1 , card i=2] oops — countersatisfiable
lemma b(λX . ♦∃X) ↓(P ::↑〈〈0〉〉) → (λX . ∃X) ↓Pc by simp
lemma b(λX . ♦∃X) (P ::↑〈〈0〉〉) → (λX . ∃X) Pc

nitpick[card ′t=1 , card i=2] oops — countersatisfiable
lemma b(λX . ♦∃X) ↓(P ::↑〈↑〈0〉〉)→ (λX . ∃X) ↓Pc by simp
lemma b(λX . ♦∃X) (P ::↑〈↑〈0〉〉)→ (λX . ∃X) Pc

nitpick[card ′t=1 , card i=2] oops — countersatisfiable

Example 7.15, p. 99:

lemma b�(P (c::↑0)) → (∃ x ::↑0. �(P x))c by auto

with other types for P :

lemma b�(P (c::0)) → (∃ x ::0. �(P x))c by auto
lemma b�(P (c::〈0〉)) → (∃ x ::〈0〉. �(P x))c by auto

Example 7.16, p. 100:

lemma b�(P �(c::↑0)) → (∃ x ::0. �(P x))c
nitpick[card ′t=2 , card i=2] oops — counterexample with two worlds found

Example 7.17, p. 101:

lemma b∀ Z ::↑0. (λx ::0. �((λy ::0. x ≈ y) �Z)) �Z c
nitpick[card ′t=2 , card i=2] oops — countersatisfiable

lemma b∀ z ::0. (λx ::0. �((λy ::0. x ≈ y) z)) zc by simp
lemma b∀ Z ::↑0. (λX ::↑0. �((λY ::↑0. X ≈ Y) Z)) Z c by simp

3.1.2 Exercises (p. 101)

For Exercises 7.1 and 7.2 see variations on Examples 7.13 and 7.14 above.

Exercise 7.3:

lemma b♦∃ (P ::↑〈0〉) → (∃X ::↑0. ♦(P �X))c by auto

Exercise 7.4:

lemma b♦(∃ x ::0. (λY . Y x) ↓(P ::↑〈0〉)) → (∃ x . (λY . ♦(Y x)) ↓P)c
nitpick[card ′t=1 , card i=2] oops — countersatisfiable

For Exercise 7.5 see Example 7.17 above.

11

3.2 Miscellaneous Matters (Chapter 9)

3.2.1 Equality Axioms (Subsection 1.1)

Example 9.1:

lemma b((λX . �(X �(p::↑0))) ↓(λx . ♦(λz . z ≈ x) �p))c
by auto — using normal equality

lemma b((λX . �(X �(p::↑0))) ↓(λx . ♦(λz . z ≈L x) �p))c
by auto — using Leibniz equality

lemma b((λX . �(X (p::↑0))) ↓(λx . ♦(λz . z ≈C x) p))c
by simp — using equality as defined for individual concepts

3.2.2 Extensionality (Subsection 1.2)

In Fitting’s book (p. 118), extensionality is assumed (globally) for exten-
sional terms. While Fitting introduces the following extensionality principles
as axioms, they are already implicitly valid in Isabelle/HOL:

lemma EXT : ∀α::〈0〉. ∀β::〈0〉. (∀ γ::0. (α γ ←→ β γ)) −→ (α = β) by auto
lemma EXT-set : ∀α::〈〈0〉〉. ∀β::〈〈0〉〉. (∀ γ::〈0〉. (α γ ←→ β γ)) −→ (α = β)

by auto

3.2.3 De Re and De Dicto (Subsection 2)

De re is equivalent to de dicto for non-relativized (extensional or intensional)
terms:

lemma b∀α. ((λβ. �(α β)) (τ ::0)) ↔ �((λβ. (α β)) τ)c by simp
lemma b∀α. ((λβ. �(α β)) (τ ::↑0)) ↔ �((λβ. (α β)) τ)c by simp
lemma b∀α. ((λβ. �(α β)) (τ ::〈0〉)) ↔ �((λβ. (α β)) τ)c by simp
lemma b∀α. ((λβ. �(α β)) (τ ::↑〈0〉)) ↔ �((λβ. (α β)) τ)c by simp

De re is not equivalent to de dicto for relativized terms:

lemma b∀α. ((λβ. �(α β)) �(τ ::↑0)) ↔ �((λβ. (α β)) �τ)c
nitpick[card ′t=2 , card i=2] oops — countersatisfiable

lemma b∀α. ((λβ. �(α β)) ↓(τ ::↑〈0〉)) ↔ �((λβ. (α β)) ↓τ)c
nitpick[card ′t=1 , card i=2] oops — countersatisfiable

Proposition 9.6 - If we can prove one side of the equivalence, then we can
prove the other (p. 120):

abbreviation deDictoImplDeRe::↑0⇒io
where deDictoImplDeRe τ ≡ ∀α. �((λβ. (α β)) �τ) → ((λβ. �(α β)) �τ)

abbreviation deReImplDeDicto::↑0⇒io
where deReImplDeDicto τ ≡ ∀α. ((λβ. �(α β)) �τ) → �((λβ. (α β)) �τ)

abbreviation deReEquDeDicto::↑0⇒io
where deReEquDeDicto τ ≡ ∀α. ((λβ. �(α β)) �τ) ↔ �((λβ. (α β)) �τ)

12

abbreviation deDictoImplDeRe-pred ::(′t⇒io)⇒io
where deDictoImplDeRe-pred τ ≡ ∀α. �((λβ. (α β)) ↓τ)→ ((λβ. �(α β)) ↓τ)

abbreviation deReImplDeDicto-pred ::(′t⇒io)⇒io
where deReImplDeDicto-pred τ ≡ ∀α. ((λβ. �(α β)) ↓τ)→ �((λβ. (α β)) ↓τ)

abbreviation deReEquDeDicto-pred ::(′t⇒io)⇒io
where deReEquDeDicto-pred τ ≡ ∀α. ((λβ. �(α β)) ↓τ) ↔ �((λβ. (α β)) ↓τ)

We can prove local consequence:

lemma AimpB : bdeReImplDeDicto (τ ::↑0) → deDictoImplDeRe τc
by force — for individuals

lemma AimpB-p: bdeReImplDeDicto-pred (τ ::↑〈0〉) → deDictoImplDeRe-pred τc
by force — for predicates

And global consequence follows directly (since local consequence implies
global consequence, as shown before):

lemma bdeReImplDeDicto (τ ::↑0)c −→ bdeDictoImplDeRe τc
using AimpB by (rule localImpGlobalCons) — for individuals

lemma bdeReImplDeDicto-pred (τ ::↑〈0〉)c −→ bdeDictoImplDeRe-pred τc
using AimpB-p by (rule localImpGlobalCons) — for predicates

3.2.4 Rigidity (Subsection 3)

(Local) rigidity for intensional individuals:

abbreviation rigidIndiv ::↑〈↑0〉 where
rigidIndiv τ ≡ (λβ. �((λz . β ≈ z) �τ)) �τ

(Local) rigidity for intensional predicates:

abbreviation rigidPred ::(′t⇒io)⇒io where
rigidPred τ ≡ (λβ. �((λz . β ≈ z) ↓τ)) ↓τ

Proposition 9.8 - An intensional term is rigid if and only if the de re/de
dicto distinction vanishes. Note that we can prove this theorem for local
consequence (global consequence follows directly).

lemma brigidIndiv (τ ::↑0) → deReEquDeDicto τc by simp
lemma bdeReImplDeDicto (τ ::↑0) → rigidIndiv τc by auto
lemma brigidPred (τ ::↑〈0〉) → deReEquDeDicto-pred τc by simp
lemma bdeReImplDeDicto-pred (τ ::↑〈0〉) → rigidPred τc by auto

3.2.5 Stability Conditions (Subsection 4)

axiomatization where
S5 : equivalence aRel — using Sahlqvist correspondence for improved performance

Definition 9.10 - Stability conditions come in pairs:

abbreviation stabilityA::(′t⇒io)⇒io where stabilityA τ ≡ ∀α. (τ α)→ �(τ α)
abbreviation stabilityB ::(′t⇒io)⇒io where stabilityB τ ≡ ∀α. ♦(τ α)→ (τ α)

13

Proposition 9.10 - In an S5 modal logic both stability conditions are equiv-
alent.

The last proposition holds for global consequence:

lemma bstabilityA (τ ::↑〈0〉)c −→ bstabilityB τc using S5 by blast
lemma bstabilityB (τ ::↑〈0〉)c −→ bstabilityA τc using S5 by blast

But it does not hold for local consequence:

lemma bstabilityA (τ ::↑〈0〉) → stabilityB τc
nitpick[card ′t=1 , card i=2] oops — countersatisfiable

lemma bstabilityB (τ ::↑〈0〉) → stabilityA τc
nitpick[card ′t=1 , card i=2] oops — countersatisfiable

Theorem 9.11 - A term is rigid if and only if it satisfies the stability con-
ditions. Note that we can prove this theorem for local consequence (global
consequence follows directly).

theorem brigidPred (τ ::↑〈0〉) ↔ (stabilityA τ ∧ stabilityB τ)c by meson
theorem brigidPred (τ ::↑〈↑0〉) ↔ (stabilityA τ ∧ stabilityB τ)c by meson
theorem brigidPred (τ ::↑〈↑〈0〉〉) ↔ (stabilityA τ ∧ stabilityB τ)c by meson

14

4 Gödel’s Argument, Formally

”Gödel’s particular version of the argument is a direct descendent of that
of Leibniz, which in turn derives from one of Descartes. These arguments
all have a two-part structure: prove God’s existence is necessary, if possible;
and prove God’s existence is possible.” [12], p. 138.

4.1 Part I - God’s Existence is Possible

We separate Gödel’s Argument as presented in Fitting’s textbook (ch. 11)
in two parts. For the first one, while Leibniz provides some kind of proof
for the compatibility of all perfections, Gödel goes on to prove an analogous
result: (T1) Every positive property is possibly instantiated, which together
with (T2) God is a positive property directly implies the conclusion. In order
to prove T1, Gödel assumes A2: Any property entailed by a positive property
is positive.

We are currently contemplating a follow-up analysis of the philosophical
implications of these axioms, which encompasses some criticism of the notion
of property entailment used by Gödel throughout the argument.

4.1.1 General Definitions

abbreviation existencePredicate::↑〈0〉 (E !)
where E ! x ≡ λw . (∃ Ey . y≈x) w — existence predicate in object language

lemma E ! x w ←→ existsAt x w
by simp — safety check: E ! correctly matches its meta-logical counterpart

consts positiveProperty ::↑〈↑〈0〉〉 (P) — positiveness/perfection

Definitions of God (later shown to be equivalent under axiom A1b):

abbreviation God ::↑〈0〉 (G) where G ≡ (λx . ∀Y . P Y → Y x)
abbreviation God-star ::↑〈0〉 (G∗) where G∗ ≡ (λx . ∀Y . P Y ↔ Y x)

Definitions needed to formalise A3 :

abbreviation appliesToPositiveProps::↑〈↑〈↑〈0〉〉〉 (pos) where
pos Z ≡ ∀X . Z X → P X

abbreviation intersectionOf ::↑〈↑〈0〉,↑〈↑〈0〉〉〉 (intersec) where
intersec X Z ≡ �(∀ x .(X x↔ (∀Y . (Z Y)→ (Y x)))) — quantifier is possibilist

abbreviation Entailment ::↑〈↑〈0〉,↑〈0〉〉 (infix V 60) where
X V Y ≡ �(∀ Ez . X z → Y z)

15

4.1.2 Axioms

axiomatization where
A1a:b∀X . P (⇁X) → ¬(P X) c and — axiom 11.3A
A1b:b∀X . ¬(P X) → P (⇁X)c and — axiom 11.3B
A2 : b∀X Y . (P X ∧ (X V Y)) → P Y c and — axiom 11.5
A3 : b∀ Z X . (pos Z ∧ intersec X Z) → P X c — axiom 11.10

lemma True nitpick[satisfy] oops — model found: axioms are consistent

lemma bDc using A1a A1b A2 by blast — axioms already imply D axiom
lemma bDc using A1a A3 by metis

4.1.3 Theorems

lemma b∃X . P X c using A1b by auto
lemma b∃X . P X ∧ ♦∃ E X c using A1a A1b A2 by metis

Being self-identical is a positive property:

lemma b(∃X . P X ∧ ♦∃ E X) → P (λx w . x = x)c using A2 by fastforce

Proposition 11.6

lemma b(∃X . P X) → P (λx w . x = x)c using A2 by fastforce

lemma bP (λx w . x = x)c using A1b A2 by blast
lemma bP (λx w . x = x)c using A3 by metis

Being non-self-identical is a negative property:

lemma b(∃X . P X ∧ ♦∃ E X) → P (⇁ (λx w . ¬x = x))c
using A2 by fastforce

lemma b(∃X . P X) → P (⇁ (λx w . ¬x = x))c using A2 by fastforce
lemma b(∃X . P X) → P (⇁ (λx w . ¬x = x))c using A3 by metis

Proposition 11.7

lemma b(∃X . P X) → ¬P ((λx w . ¬x = x))c using A1a A2 by blast
lemma b¬P (λx w . ¬x = x)c using A1a A2 by blast

Proposition 11.8 (Informal Proposition 1) - Positive properties are possibly
instantiated:

theorem T1 : b∀X . P X → ♦∃ E X c using A1a A2 by blast

Proposition 11.14 - Both defs (God/God*) are equivalent. For improved
performance we may prefer to use one or the other:

lemma GodDefsAreEquivalent : b∀ x . G x ↔ G∗ xc using A1b by force

Proposition 11.15 - Possibilist existence of God directly implies A1b:

lemma b∃ G∗ → (∀X . ¬(P X) → P (⇁X))c by meson

16

Proposition 11.16 - A3 implies P(G) (local consequence):

lemma A3implT2-local : b(∀ Z X . (pos Z ∧ intersec X Z) → P X) → P Gc
proof −
{
fix w
have 1 : pos P w by simp
have 2 : intersec G P w by simp
{

assume (∀ Z X . (pos Z ∧ intersec X Z) → P X) w
hence (∀X . ((pos P) ∧ (intersec X P)) → P X) w by (rule allE)
hence (((pos P) ∧ (intersec G P)) → P G) w by (rule allE)
hence 3 : ((pos P ∧ intersec G P) w) −→ P G w by simp
hence 4 : ((pos P) ∧ (intersec G P)) w using 1 2 by simp
from 3 4 have P G w by (rule mp)
}
hence (∀ Z X . (pos Z ∧ intersec X Z) → P X) w −→ P G w by (rule impI)
}
thus ?thesis by (rule allI)

qed

A3 implies P(G) (as global consequence):

lemma A3implT2-global : b∀ Z X . (pos Z ∧ intersec X Z) → P X c −→ bP Gc
using A3implT2-local by (rule localImpGlobalCons)

Being Godlike is a positive property. Note that this theorem can be axiom-
atized directly, as noted by Dana Scott (see [12], p. 152). We will do so for
the second part.

theorem T2 : bP Gc using A3implT2-global A3 by simp

Theorem 11.17 (Informal Proposition 3) - Possibly God exists:

theorem T3 : b♦∃ E Gc using T1 T2 by simp

4.2 Part II - God’s Existence is Necessary if Possible

We show here that God’s necessary existence follows from its possible ex-
istence by adding some additional (potentially controversial) assumptions
including an essentialist premise and the S5 axioms. Further results like
monotheism and the rejection of free will (modal collapse) are also proved.

4.2.1 General Definitions

abbreviation existencePredicate::↑〈0〉 (E !) where
E ! x ≡ (λw . (∃ Ey . y≈x) w)

consts positiveProperty ::↑〈↑〈0〉〉 (P)

17

abbreviation God ::↑〈0〉 (G) where G ≡ (λx . ∀Y . P Y → Y x)
abbreviation God-star ::↑〈0〉 (G∗) where

G∗ ≡ (λx . ∀Y . P Y ↔ Y x)

abbreviation Entailment ::↑〈↑〈0〉,↑〈0〉〉 (infix V 60) where
X V Y ≡ �(∀ Ez . X z → Y z)

4.2.2 Results from Part I

Note that the only use Gödel makes of axiom A3 is to show that being
Godlike is a positive property (T2). We follow therefore Scott’s proposal
and take (T2) directly as an axiom:

axiomatization where
A1a:b∀X . P (⇁X) → ¬(P X) c and — axiom 11.3A
A1b:b∀X . ¬(P X) → P (⇁X)c and — axiom 11.3B
A2 : b∀X Y . (P X ∧ (X V Y)) → P Y c and — axiom 11.5
T2 : bP Gc — proposition 11.16

lemma True nitpick[satisfy] oops — model found: axioms are consistent

lemma bDc using A1a A1b A2 by blast — axioms already imply D axiom

lemma GodDefsAreEquivalent : b∀ x . G x ↔ G∗ xc using A1b by fastforce

theorem T1 : b∀X . P X → ♦∃ E X c
using A1a A2 by blast — positive properties are possibly instantiated

theorem T3 : b♦∃ E Gc using T1 T2 by simp — God exists possibly

4.2.3 Axioms

P satisfies the so-called stability conditions (see [12], p. 124), which means
it designates rigidly (note that this makes for an essentialist assumption).

axiomatization where
A4a: b∀X . P X → �(P X)c — axiom 11.11

lemma A4b: b∀X . ¬(P X) → �¬(P X)c using A1a A1b A4a by blast

abbreviation rigidPred ::(′t⇒io)⇒io where
rigidPred τ ≡ (λβ. �((λz . β ≈ z) ↓τ)) ↓τ

lemma brigidPred Pc
using A4a A4b by blast — P is therefore rigid

lemma True nitpick[satisfy] oops — model found: so far all axioms A1-4 consis-
tent

18

4.2.4 Theorems

Remark: Essence is defined here (and in Fitting’s variant) in the version of
Scott; Gödel’s original version leads to the inconsistency reported in [8, 9]

abbreviation essenceOf ::↑〈↑〈0〉,0〉 (E) where
E Y x ≡ (Y x) ∧ (∀ Z . Z x → Y V Z)

abbreviation beingIdenticalTo::0⇒↑〈0〉 (id) where
id x ≡ (λy . y≈x) — note that id is a rigid predicate

Theorem 11.20 - Informal Proposition 5

theorem GodIsEssential : b∀ x . G x → (E G x)c using A1b A4a by metis

Theorem 11.21

theorem b∀ x . G∗ x → (E G∗ x)c using A4a by meson

Theorem 11.22 - Something can have only one essence:

theorem b∀X Y z . (E X z ∧ E Y z) → (X V Y)c by meson

Theorem 11.23 - An essence is a complete characterization of an individual:

theorem EssencesCharacterizeCompletely : b∀X y . E X y → (X V (id y))c
proof (rule ccontr)

assume ¬ b∀X y . E X y → (X V (id y))c
hence ∃w . ¬((∀X y . E X y → X V id y) w) by simp
then obtain w where ¬((∀X y . E X y → X V id y) w) ..
hence (∃X y . E X y ∧ ¬(X V id y)) w by simp
hence ∃X y . E X y w ∧ (¬(X V id y)) w by simp
then obtain P where ∃ y . E P y w ∧ (¬(P V id y)) w ..
then obtain a where 1 : E P a w ∧ (¬(P V id a)) w ..
hence 2 : E P a w by (rule conjunct1)
from 1 have (¬(P V id a)) w by (rule conjunct2)
hence ∃ x . ∃ z . w r x ∧ existsAt z x ∧ P z x ∧ ¬(a = z) by blast
then obtain w1 where ∃ z . w r w1 ∧ existsAt z w1 ∧ P z w1 ∧ ¬(a = z) ..
then obtain b where 3 : w r w1 ∧ existsAt b w1 ∧ P b w1 ∧ ¬(a = b) ..
hence w r w1 by simp
from 3 have existsAt b w1 by simp
from 3 have P b w1 by simp
from 3 have 4 : ¬(a = b) by simp
from 2 have P a w by simp
from 2 have ∀Y . Y a w −→ ((P V Y) w) by auto
hence (⇁(id b)) a w −→ (P V (⇁(id b))) w by (rule allE)
hence ¬(⇁(id b)) a w ∨ ((P V (⇁(id b))) w) by blast
then show False proof

assume ¬(⇁(id b)) a w
hence a = b by simp
thus False using 4 by auto
next
assume ((P V (⇁(id b))) w)
hence ∀ x . ∀ z . (w r x ∧ existsAt z x ∧ P z x) −→ (⇁(id b)) z x by blast

19

hence ∀ z . (w r w1 ∧ existsAt z w1 ∧ P z w1) −→ (⇁(id b)) z w1
by (rule allE)

hence (w r w1 ∧ existsAt b w1 ∧ P b w1) −→ (⇁(id b)) b w1 by (rule allE)
hence ¬(w r w1 ∧ existsAt b w1 ∧ P b w1) ∨ (⇁(id b)) b w1 by simp
hence (⇁(id b)) b w using 3 by simp
hence ¬(b=b) by simp
thus False by simp

qed
qed

Definition 11.24 - Necessary Existence (Informal Definition 6):

abbreviation necessaryExistencePred ::↑〈0〉 (NE)
where NE x ≡ (λw . (∀Y . E Y x → �∃ E Y) w)

Axiom 11.25 (Informal Axiom 5)

axiomatization where
A5 : bP NEc

lemma True nitpick[satisfy] oops — model found: so far all axioms consistent

Theorem 11.26 (Informal Proposition 7) - Possibilist existence of God implies
necessary actualist existence:

theorem GodExistenceImpliesNecExistence: b∃ G → �∃ E Gc
proof −
{

fix w
{

assume ∃ x . G x w
then obtain g where 1 : G g w ..
hence NE g w using A5 by auto — axiom 11.25
hence ∀Y . (E Y g w) −→ (�∃ E Y) w by simp
hence 2 : (E G g w) −→ (�∃ E G) w by (rule allE)
have (∀ x . G x → (E G x)) w using GodIsEssential

by (rule allE) — GodIsEssential follows from Axioms 11.11 and 11.3B
hence (G g → (E G g)) w by (rule allE)
hence G g w −→ E G g w by simp
from this 1 have 3 : E G g w by (rule mp)
from 2 3 have (�∃ E G) w by (rule mp)
}
hence (∃ x . G x w) −→ (�∃ E G) w by (rule impI)
hence ((∃ x . G x) → �∃ E G) w by simp
}
thus ?thesis by (rule allI)

qed

Modal collapse is countersatisfiable (unless we introduce S5 axioms):

lemma b∀Φ.(Φ → (� Φ))c nitpick oops

20

We postulate semantic frame conditions for some modal logics. Taken to-
gether, reflexivity, transitivity and symmetry make for an equivalence rela-
tion and therefore an S5 logic (via Sahlqvist correspondence). We prefer to
postulate them individually here in order to get more detailed information
about their relevance in the proofs presented below.

axiomatization where
refl : reflexive aRel and
tran: transitive aRel and
symm: symmetric aRel

lemma True nitpick[satisfy] oops — model found: axioms still consistent

Using an S5 logic, modal collapse (b∀Φ.(Φ → (� Φ))c) is actually valid
(see ‘More Objections’ some pages below)

We prove some useful inference rules:

lemma modal-distr : b�(ϕ → ψ)c =⇒ b(♦ϕ → ♦ψ)c by blast
lemma modal-trans: (bϕ → ψc ∧ bψ → χc) =⇒ bϕ → χc by simp

Theorem 11.27 - Informal Proposition 8. Note that only symmetry and
transitivity for the accessibility relation are used.

theorem possExistenceImpliesNecEx : b♦∃ G → �∃ E Gc — local consequence
proof −

have b∃ G → �∃ E Gc using GodExistenceImpliesNecExistence
by simp — follows from Axioms 11.11, 11.25 and 11.3B

hence b�(∃ G → �∃ E G)c using NEC by simp
hence 1 : b♦∃ G → ♦�∃ E Gc by (rule modal-distr)
have 2 : b♦�∃ E G→ �∃ E Gc using symm tran by metis — frame conditions
from 1 2 have b♦∃ G → ♦�∃ E Gc ∧ b♦�∃ E G → �∃ E Gc by simp
thus ?thesis by (rule modal-trans)

qed

lemma T4 : b♦∃ Gc −→ b�∃ E Gc using possExistenceImpliesNecEx
by (rule localImpGlobalCons) — global consequence

Corollary 11.28 - Necessary (actualist) existence of God (for both defini-
tions); reflexivity is still not used:

lemma GodNecExists: b�∃ E Gc using T3 T4 by metis
lemma God-starNecExists: b�∃ E G∗c

using GodNecExists GodDefsAreEquivalent by simp

4.2.5 Monotheism

Monotheism for non-normal models (with Leibniz equality) follows directly
from God having all and only positive properties:

theorem Monotheism-LeibnizEq : b∀ x . G x → (∀ y . G y → (x ≈L y))c
using GodDefsAreEquivalent by simp

21

Monotheism for normal models is trickier. We need to consider some previ-
ous results (p. 162):

lemma GodExistenceIsValid : b∃ E Gc using GodNecExists refl
by auto — reflexivity is now required by the solver

Proposition 11.29:

theorem Monotheism-normalModel : b∃ x .∀ y . G y ↔ x ≈ yc
proof −
{

fix w
have b∃ E Gc using GodExistenceIsValid by simp — follows from corollary 11.28

hence (∃ E G) w by (rule allE)
then obtain g where 1 : existsAt g w ∧ G g w ..
hence 2 : E G g w using GodIsEssential by blast — follows from ax. 11.11/11.3B

{
fix y
have G y w ←→ (g ≈ y) w proof

assume G y w
hence 3 : E G y w using GodIsEssential by blast
have (E G y → (G V id y)) w using EssencesCharacterizeCompletely

by simp — follows from theorem 11.23
hence E G y w −→ ((G V id y) w) by simp
from this 3 have (G V id y) w by (rule mp)
hence (�(∀ Ez . G z → z ≈ y)) w by simp
hence ∀ x . w r x −→ ((∀ z . (existsAt z x ∧ G z x) −→ z = y)) by auto
hence w r w −→ ((∀ z . (existsAt z w ∧ G z w) −→ z = y)) by (rule allE)
hence ∀ z . (w r w ∧ existsAt z w ∧ G z w) −→ z = y by auto
hence 4 : (w r w ∧ existsAt g w ∧ G g w) −→ g = y by (rule allE)
have w r w using refl

by simp — using frame reflexivity (Axiom M)
hence w r w ∧ (existsAt g w ∧ G g w) using 1 by (rule conjI)
from 4 this have g = y by (rule mp)
thus (g ≈ y) w by simp

next
assume (g ≈ y) w
from this 2 have E G y w by simp
thus G y w by (rule conjunct1)

qed
}
hence ∀ y . G y w ←→ (g ≈ y) w by (rule allI)
hence ∃ x . (∀ y . G y w ←→ (x ≈ y) w) by (rule exI)
hence (∃ x . (∀ y . G y ↔ (x ≈ y))) w by simp
}
thus ?thesis by (rule allI)
qed

22

Corollary 11.30:

lemma GodImpliesExistence: b∀ x . G x → E ! xc
using GodExistenceIsValid Monotheism-normalModel by metis

4.2.6 Positive Properties are Necessarily Instantiated

lemma PosPropertiesNecExist : b∀Y . P Y→ �∃ E Y c using GodNecExists A4a
by meson — proposition 11.31: follows from corollary 11.28 and axiom A4a

4.2.7 More Objections

Fitting discusses the objection raised by Sobel [19], who argues that Gödel’s
axiom system is too strong: it implies that whatever is the case is so neces-
sarily, i.e. the modal system collapses (ϕ −→ �ϕ). The modal collapse has
been philosophically interpreted as implying the absence of free will.

We start by proving an useful FOL lemma:

lemma useful : (∀ x . ϕ x −→ ψ) =⇒ ((∃ x . ϕ x) −→ ψ) by simp

In the context of our S5 axioms, the modal collapse becomes valid (pp.
163-4):

lemma ModalCollapse: b∀Φ.(Φ → (� Φ))c
proof −
{
fix w
{
fix Q
have (∀ x . G x → (E G x)) w using GodIsEssential

by (rule allE) — follows from Axioms 11.11 and 11.3B
hence ∀ x . G x w −→ E G x w by simp
hence ∀ x . G x w −→ (∀ Z . Z x → �(∀ Ez . G z → Z z)) w by force
hence ∀ x . G x w −→ ((λy . Q) x → �(∀ Ez . G z → (λy . Q) z)) w by force
hence ∀ x . G x w −→ (Q → �(∀ Ez . G z → Q)) w by simp
hence 1 : (∃ x . G x w) −→ ((Q → �(∀ Ez . G z → Q)) w) by (rule useful)
have ∃ x . G x w using GodExistenceIsValid by auto
from 1 this have (Q → �(∀ Ez . G z → Q)) w by (rule mp)
hence (Q → �((∃ Ez . G z) → Q)) w using useful by blast
hence (Q → (�(∃ Ez . G z) → �Q)) w by simp
hence (Q → �Q) w using GodNecExists by simp
}

hence (∀Φ. Φ → � Φ) w by (rule allI)
}
thus ?thesis by (rule allI)

qed

23

5 Fitting’s Solution

In this section we consider Fitting’s solution to the objections raised in his
discussion of Gödel’s Argument pp. 164-9, especially the problem of modal
collapse, which has been metaphysically interpreted as implying a rejection
of free will. Since we are generally commited to the existence of free will
(in a pre-theoretical sense), such a result is philosophically unappealing and
rather seen as a problem in the argument’s formalisation.

This part of the book still leaves several details unspecified and the reader
is thus compelled to fill in the gaps. As a result, we came across some
premises and theorems allowing for different formalisations and therefore
leading to disparate implications. Only some of those cases are shown here
for illustrative purposes. The options we have chosen here are such that
they indeed validate the argument (and we assume that they correspond to
Fitting’s intention.

5.1 General Definitions

The following is an existence predicate for our object-language. (We have
previously shown it is equivalent to its meta-logical counterpart.)

abbreviation existencePredicate::↑〈0〉 (E !) where
E ! x ≡ (λw . (∃ Ey . y≈x) w)

Reminder: The ‘(|-|)’ parenthesis are used to convert an extensional object
into its ‘rigid’ intensional counterpart (e.g. (|ϕ|) ≡ λw . ϕ).

consts positiveProperty ::↑〈〈0〉〉 (P)
abbreviation God ::↑〈0〉 (G) where G ≡ (λx . ∀Y . P Y → (|Y x |))
abbreviation God-star ::↑〈0〉 (G∗) where G∗ ≡ (λx . ∀Y . P Y ↔ (|Y x |))

abbreviation Entailment ::↑〈〈0〉,〈0〉〉 (infix V 60) where
X V Y ≡ �(∀ Ez . (|X z |) → (|Y z |))

5.2 Part I - God’s Existence is Possible

axiomatization where
A1a:b∀X . P (⇁X) → ¬(P X) c and — axiom 11.3A
A1b:b∀X . ¬(P X) → P (⇁X)c and — axiom 11.3B
A2 : b∀X Y . (P X ∧ (X V Y)) → P Y c and — axiom 11.5
T2 : bP ↓Gc — proposition 11.16 (modified)

lemma True nitpick[satisfy] oops — model found: axioms are consistent

lemma bDc using A1a A1b A2 by blast — axioms already imply D axiom

lemma GodDefsAreEquivalent : b∀ x . G x ↔ G∗ xc using A1b by fastforce

24

T1 (Positive properties are possibly instantiated) can be formalised in two
different ways:

theorem T1a: b∀X ::〈0〉. P X → ♦(∃ Ez . (|X z |))c
using A1a A2 by blast — this is the one used in the book

theorem T1b: b∀X ::↑〈0〉. P ↓X → ♦(∃ Ez . X z)c
nitpick oops — this one is also possible but not valid so we won’t use it

Some interesting (non-)equivalences:

lemma b�∃ E (Q ::↑〈0〉) ↔ �(∃ E ↓Q)c by simp
lemma b�∃ E (Q ::↑〈0〉) ↔ ((λX . �∃ E X) Q)c by simp
lemma b�∃ E (Q ::↑〈0〉) ↔ ((λX . �∃ E ↓X) Q)c by simp
lemma b�∃ E (Q ::↑〈0〉)↔ ((λX . �∃ E X) ↓Q)c nitpick oops — not equivalent!

T3 (God exists possibly) can be formalised in two different ways, using a de
re or a de dicto reading.

theorem T3-deRe: b(λX . ♦∃ E X) ↓Gc using T1a T2 by simp
theorem T3-deDicto: b♦∃ E ↓Gc nitpick oops — countersatisfiable

From the last two theorems, we think T3-deRe should be the version origi-
nally implied in the book, since T3-deDicto is not valid (T1b were valid but
it isn’t)

lemma assumes T1b: b∀X . P ↓X → ♦(∃ Ez . X z)c
shows T3-deDicto: b♦∃ E ↓Gc using assms T2 by simp

5.3 Part II - God’s Existence is Necessary if Possible

In this variant P also designates rigidly, as shown in the last section.

axiomatization where
A4a: b∀X . P X → �(P X)c — axiom 11.11

lemma A4b: b∀X . ¬(P X) → �¬(P X)c using A1a A1b A4a by blast

lemma True nitpick[satisfy] oops — model found: so far all axioms consistent

abbreviation essenceOf ::↑〈〈0〉,0〉 (E) where
E Y x ≡ (|Y x |) ∧ (∀ Z ::〈0〉. (|Z x |) → Y V Z)

Theorem 11.20 - Informal Proposition 5

theorem GodIsEssential : b∀ x . G x → ((E ↓1G) x)c using A1b by metis

Theorem 11.21

theorem God-starIsEssential : b∀ x . G∗ x → ((E ↓1G∗) x)c by meson

abbreviation necExistencePred :: ↑〈0〉 (NE) where
NE x ≡ λw . (∀Y . E Y x → �(∃ Ez . (|Y z |))) w

25

Informal Axiom 5

axiomatization where
A5 : bP ↓NEc

lemma True nitpick[satisfy] oops — model found: so far all axioms consistent

Reminder: We use ↓G instead of G because it is more explicit. See (non-
)equivalences above.

lemma b∃ G ↔ ∃ ↓Gc by simp
lemma b∃ E G ↔ ∃ E ↓Gc by simp
lemma b�∃ E G ↔ �∃ E ↓Gc by simp

Theorem 11.26 (Informal Proposition 7) - (possibilist) existence of God im-
plies necessary (actualist) existence.

There are two different ways of formalising this theorem. Both of them are
proven valid:

First version:

theorem GodExImpliesNecEx-v1 : b∃ ↓G → �∃ E ↓Gc
proof −
{

fix w
{

assume ∃ x . G x w
then obtain g where 1 : G g w ..
hence NE g w using A5 by auto
hence ∀Y . (E Y g w) −→ (�(∃ Ez . (|Y z |))) w by simp
hence (E (λx . G x w) g w) −→ (�(∃ Ez . (|(λx . G x w) z |))) w by (rule allE)
hence 2 : ((E ↓1G) g w) −→ (�(∃ E G)) w using A4b by meson
have (∀ x . G x → ((E ↓1G) x)) w using GodIsEssential by (rule allE)
hence (G g → ((E ↓1G) g)) w by (rule allE)
hence G g w −→ (E ↓1G) g w by simp
from this 1 have 3 : (E ↓1G) g w by (rule mp)
from 2 3 have (�∃ E G) w by (rule mp)
}
hence (∃ x . G x w) −→ (�∃ E G) w by (rule impI)
hence ((∃ x . G x) → �∃ E G) w by simp
}
thus ?thesis by (rule allI)

qed

Second version (which can be proven directly by automated tools using the
previous version):

theorem GodExImpliesNecEx-v2 : b∃ ↓G → ((λX . �∃ E X) ↓G)c
using A4a GodExImpliesNecEx-v1 by metis

In contrast to Gödel’s argument (as presented by Fitting), the following
theorems can be proven in logic K (the S5 axioms are no longer needed):

26

Theorem 11.27 - Informal Proposition 8

theorem possExImpliesNecEx-v1 : b♦∃ ↓G → �∃ E ↓Gc
using GodExImpliesNecEx-v1 T3-deRe by metis

theorem possExImpliesNecEx-v2 : b(λX . ♦∃ E X) ↓G → ((λX . �∃ E X) ↓G)c
using GodExImpliesNecEx-v2 by blast

Corollaries:

lemma T4-v1 : b♦∃ ↓Gc −→ b�∃ E ↓Gc
using possExImpliesNecEx-v1 by simp

lemma T4-v2 : b(λX . ♦∃ E X) ↓Gc −→ b(λX . �∃ E X) ↓Gc
using possExImpliesNecEx-v2 by simp

5.4 Conclusion (De Re and De Dicto Reading)

Version I - Necessary Existence of God (de dicto):

lemma GodNecExists-v1 : b�∃ E ↓Gc
using GodExImpliesNecEx-v1 T3-deRe by fastforce — corollary 11.28

lemma God-starNecExists-v1 : b�∃ E ↓G∗c
using GodNecExists-v1 GodDefsAreEquivalent by simp

lemma b�(λX . ∃ E X) ↓G∗c
using God-starNecExists-v1 by simp — de dicto shown here explicitly

Version II - Necessary Existence of God (de re)

lemma GodNecExists-v2 : b(λX . �∃ E X) ↓Gc
using T3-deRe T4-v2 by blast

lemma God-starNecExists-v2 : b(λX . �∃ E X) ↓G∗c
using GodNecExists-v2 GodDefsAreEquivalent by simp

5.5 Modal Collapse

Modal collapse is countersatisfiable even in S5. Note that countermodels
with a cardinality of one for the domain of individuals are found by Nitpick
(the countermodel shown in the book has cardinality of two).

lemma b∀Φ.(Φ → (� Φ))c
nitpick[card ′t=1 , card i=2] oops — countermodel found in K

axiomatization where
S5 : equivalence aRel — assume S5 logic

lemma b∀Φ.(Φ → (� Φ))c
nitpick[card ′t=1 , card i=2] oops — countermodel also found in S5

27

6 Anderson’s Alternative

In this final section, we verify Anderson’s emendation of Gödel’s argument,
as it is presented in the last part of the textbook by Fitting (pp. 169-171).

6.1 General Definitions

abbreviation existencePredicate::↑〈0〉 (E !)
where E ! x ≡ λw . (∃ Ey . y≈x) w

consts positiveProperty ::↑〈↑〈0〉〉 (P)

abbreviation God ::↑〈0〉 (GA) where GA ≡ λx . ∀Y . (P Y) ↔ �(Y x)

abbreviation Entailment ::↑〈↑〈0〉,↑〈0〉〉 (infix V 60) where
X V Y ≡ �(∀ Ez . X z → Y z)

6.2 Part I - God’s Existence is Possible

axiomatization where
A1a:b∀X . P (⇁X) → ¬(P X) c and — Axiom 11.3A
A2 : b∀X Y . (P X ∧ (X V Y)) → P Y c and — Axiom 11.5
T2 : bP GAc — Proposition 11.16

lemma True nitpick[satisfy] oops — model found: axioms are consistent

theorem T1 : b∀X . P X → ♦∃ E X c
using A1a A2 by blast — positive properties are possibly instantiated

theorem T3 : b♦∃ E GAc using T1 T2 by simp — God exists possibly

6.3 Part II - God’s Existence is Necessary if Possible

P now satisfies only one of the stability conditions. But since the argu-
ment uses an S5 logic, the other stability condition is implied. Therefore P
becomes rigid (see p. 124).

axiomatization where
A4a: b∀X . P X → �(P X)c — axiom 11.11

We again postulate our S5 axioms:

axiomatization where
refl : reflexive aRel and
tran: transitive aRel and
symm: symmetric aRel

lemma True nitpick[satisfy] oops — model found: so far all axioms consistent

abbreviation rigidPred ::(′t⇒io)⇒io where
rigidPred τ ≡ (λβ. �((λz . β ≈ z) ↓τ)) ↓τ

28

lemma A4b: b∀X . ¬(P X) → �¬(P X)c
using A4a symm by auto — symmetry is needed (which corresponds to B axiom)

lemma brigidPred Pc
using A4a A4b by blast — P is therefore rigid in a B logic

Essence, Anderson Version (Definition 11.34)

abbreviation essenceOf ::↑〈↑〈0〉,0〉 (EA) where
EA Y x ≡ (∀ Z . �(Z x) ↔ Y V Z)

Necessary Existence, Anderson Version (Definition 11.35)

abbreviation necessaryExistencePred ::↑〈0〉 (NEA)
where NEA x ≡ (λw . (∀Y . EA Y x → �∃ E Y) w)

Theorem 11.36 - If g is God-like, then the property of being God-like is the
essence of g.

As shown before, this theorem’s proof could be completely automatized for
Gödel’s and Fitting’s variants. For Anderson’s version however, we had to
provide Isabelle with some help based on the corresponding natural-language
proof given by Anderson (see [2] Theorem 2*, p. 296)

theorem GodIsEssential : b∀ x . GA x → (EA GA x)c
proof −
{

fix w
{

fix g
{

assume GA g w
hence 1 : ∀Y . (P Y w) ←→ (�(Y g)) w by simp
{

fix Q
from 1 have 2 : (P Q w) ←→ (�(Q g)) w by (rule allE)
have (�(Q g)) w ←→ (GA V Q) w — we need to prove → and ←
proof

assume (�(Q g)) w — suppose g is God-like and necessarily has Q
hence 3 : (P Q w) using 2 by simp — then Q is positive

{
fix u
have (P Q u) −→ (∀ x . GA x u −→ (�(Q x)) u)

by auto — using the definition of God-like
have (P Q u) −→ (∀ x . GA x u −→ ((Q x)) u)

using refl by auto — and using �(ϕ x) −→ ϕ x
}
hence ∀ z . (P Q z) −→ (∀ x . GA x z −→ Q x z) by (rule allI)
hence bP Q → (∀ x . GA x → Q x)c

29

by auto — if Q is positive, then whatever is God-like has Q
hence b�(P Q → (∀ x . GA x → Q x))c by (rule NEC)

hence b(�(P Q)) → �(∀ x . GA x → Q x)c using K by auto
hence b(�(P Q)) → GA V Qc by simp
hence ((�(P Q)) → GA V Q) w by (rule allE)
hence 4 : (�(P Q)) w −→ (GA V Q) w by simp
have b∀X . P X → �(P X)c by (rule A4a) — using axiom 4
hence (∀X . P X → (�(P X))) w by (rule allE)
hence P Q w −→ (�(P Q)) w by (rule allE)
hence P Q w −→ (GA V Q) w using 4 by simp
thus (GA V Q) w using 3 by (rule mp) — → direction

next
assume 5 : (GA V Q) w — suppose Q is entailed by being God-like
have b∀X Y . (P X ∧ (X V Y)) → P Y c by (rule A2)
hence (∀X Y . (P X ∧ (X V Y)) → P Y) w by (rule allE)
hence ∀X Y . (P X w ∧ (X V Y) w) −→ P Y w by simp
hence ∀Y . (P GA w ∧ (GA V Y) w) −→ P Y w by (rule allE)
hence 6 : (P GA w ∧ (GA V Q) w) −→ P Q w by (rule allE)
have bP GAc by (rule T2)
hence P GA w by (rule allE)
hence P GA w ∧ (GA V Q) w using 5 by (rule conjI)
from 6 this have P Q w by (rule mp) — Q is positive by A2 and T2
thus (�(Q g)) w using 2 by simp

qed
}
hence ∀Z . (�(Z g)) w ←→ (GA V Z) w by (rule allI)
hence (∀ Z . �(Z g) ↔ GA V Z) w by simp
hence EA GA g w by simp
}
hence GA g w −→ EA GA g w by (rule impI)
}
hence ∀ x . GA x w −→ EA GA x w by (rule allI)
}
thus ?thesis by (rule allI)

qed

Axiom 11.37 (Anderson’s version of 11.25)

axiomatization where
A5 : bP NEAc

lemma True nitpick[satisfy] oops — model found: so far all axioms consistent

Theorem 11.38 - Possibilist existence of God implies necessary actualist
existence:

theorem GodExistenceImpliesNecExistence: b∃ GA → �∃ E GAc
proof −
{

fix w

30

{
assume ∃ x . GA x w
then obtain g where 1 : GA g w ..
hence NEA g w using A5 by blast — axiom 11.25
hence ∀Y . (EA Y g w) −→ (�∃ E Y) w by simp
hence 2 : (EA GA g w) −→ (�∃ E GA) w by (rule allE)
have (∀ x . GA x → (EA GA x)) w using GodIsEssential

by (rule allE) — GodIsEssential follows from Axioms 11.11 and 11.3B
hence (GA g → (EA GA g)) w by (rule allE)
hence GA g w −→ EA GA g w by blast
from this 1 have 3 : EA GA g w by (rule mp)
from 2 3 have (�∃ E GA) w by (rule mp)
}
hence (∃ x . GA x w) −→ (�∃ E GA) w by (rule impI)
hence ((∃ x . GA x) → �∃ E GA) w by simp
}
thus ?thesis by (rule allI)

qed

Some useful rules:

lemma modal-distr : b�(ϕ → ψ)c =⇒ b(♦ϕ → ♦ψ)c by blast
lemma modal-trans: (bϕ → ψc ∧ bψ → χc) =⇒ bϕ → χc by simp

Anderson’s version of Theorem 11.27

theorem possExistenceImpliesNecEx : b♦∃ GA→ �∃ E GAc— local consequence

proof −
have b∃ GA → �∃ E GAc using GodExistenceImpliesNecExistence

by simp — follows from Axioms 11.11, 11.25 and 11.3B
hence b�(∃ GA → �∃ E GA)c using NEC by simp
hence 1 : b♦∃ GA → ♦�∃ E GAc by (rule modal-distr)
have 2 : b♦�∃ E GA → �∃ E GAc using symm tran by metis
from 1 2 have b♦∃ GA → ♦�∃ E GAc ∧ b♦�∃ E GA → �∃ E GAc by simp
thus ?thesis by (rule modal-trans)

qed

lemma T4 : b♦∃ GAc −→ b�∃ E GAc using possExistenceImpliesNecEx
by (rule localImpGlobalCons) — global consequence

Conclusion - Necessary (actualist) existence of God:

lemma GodNecExists: b�∃ E GAc using T3 T4 by metis

6.4 Modal Collapse

Modal collapse is countersatisfiable

lemma b∀Φ.(Φ → (� Φ))c nitpick oops

31

7 Conclusion

We presented a shallow semantical embedding in Isabelle/HOL for an inten-
sional higher-order modal logic (a successor of Montague/Gallin intensional
logics) as introduced by M. Fitting in his textbook Types, Tableaus and
Gödel’s God [12]. We subsequently employed this logic to formalise and
verify all results (theorems, examples and exercises) relevant to the discus-
sion of Gödel’s ontological argument in the last part of Fitting’s book. Three
different versions of the ontological argument have been considered: the first
one by Gödel himself (respectively, Scott), the second one by Fitting and
the last one by Anderson.

By employing an interactive theorem-prover like Isabelle, we were not only
able to verify Fitting’s results, but also to guarantee consistency. We could
prove even stronger versions of many of the theorems and find better coun-
termodels (i.e. with smaller cardinality) than the ones presented in the book.
Another interesting aspect was the possibility to explore the implications of
alternative formalisations for definitions and theorems which shed light on
interesting philosophical issues concerning entailment, essentialism and free
will, which are currently the subject of some follow-up analysis.

The latest developments in automated theorem proving allow us to engage
in much more experimentation during the formalisation and assessment of
arguments than ever before. The potential reduction (of several orders of
magnitude) in the time needed for proving or disproving theorems (compared
to pen-and-paper proofs), results in almost real-time feedback about the
suitability of our speculations. The practical benefits of computer-supported
argumentation go beyond mere quantitative (easier, faster and more reliable
proofs). The advantages are also qualitative, since it fosters a different
approach to argumentation: We can now work iteratively (by ‘trial-and-
error’) on an argument by making gradual adjustments to its definitions,
axioms and theorems. This allows us to continuously expose and revise
the assumptions we indirectly commit ourselves everytime we opt for some
particular formalisation.

32

References

[1] A. Anderson and M. Gettings. Gödel ontological proof revisited. In
Gödel’96: Logical Foundations of Mathematics, Computer Science, and
Physics: Lecture Notes in Logic 6, pages 167–172. Springer, 1996.

[2] C. Anderson. Some emendations of Gödel’s ontological proof. Faith
and Philosophy, 7(3), 1990.

[3] C. Benzmüller. Universal reasoning, rational argumentation and
human-machine interaction. arXiv, http:// arxiv.org/ abs/ 1703.09620 ,
2017.

[4] C. Benzmüller, M. Claus, and N. Sultana. Systematic verification of the
modal logic cube in Isabelle/HOL. In C. Kaliszyk and A. Paskevich,
editors, PxTP 2015, volume 186, pages 27–41, Berlin, Germany, 2015.
EPTCS.

[5] C. Benzmüller and B. W. Paleo. Automating Gödel’s ontological proof
of God’s existence with higher-order automated theorem provers. In
T. Schaub, G. Friedrich, and B. O’Sullivan, editors, ECAI 2014, volume
263 of Frontiers in Artificial Intelligence and Applications, pages 93 –
98. IOS Press, 2014.

[6] C. Benzmüller and L. Paulson. Quantified multimodal logics in simple
type theory. Logica Universalis (Special Issue on Multimodal Logics),
7(1):7–20, 2013.

[7] C. Benzmüller, A. Steen, and M. Wisniewski. The computational meta-
physics lecture course at Freie Universität Berlin. In S. Krajewski and
P. Balcerowicz, editors, Handbook of the 2nd World Congress on Logic
and Religion, Warsaw, Poland, page 2, 2017.

[8] C. Benzmüller and B. Woltzenlogel Paleo. The inconsistency in Gödels
ontological argument: A success story for AI in metaphysics. In IJCAI
2016, 2016.

[9] C. Benzmüller and B. Woltzenlogel Paleo. An object-logic explanation
for the inconsistency in Gödel’s ontological theory (extended abstract).
In M. Helmert and F. Wotawa, editors, KI 2016: Advances in Artificial
Intelligence, Proceedings, LNCS, Berlin, Germany, 2016. Springer.

[10] F. Bjørdal. Understanding Gödel’s ontological argument. In
T. Childers, editor, The Logica Yearbook 1998. Filosofia, 1999.

[11] J. Blanchette and T. Nipkow. Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In Proc. of ITP
2010, number 6172 in LNCS, pages 131–146. Springer, 2010.

33

http://arxiv.org/abs/1703.09620

[12] M. Fitting. Types, Tableaus and Gödel’s God. Kluwer, 2002.

[13] M. Fitting and R. Mendelsohn. First-Order Modal Logic, volume 277
of Synthese Library. Kluwer, 1998.

[14] D. Gallin. Intensinonal and Higher-Order Modal Logic. N.-Holland,
1975.

[15] K. Gödel. Appx.A: Notes in Kurt Gödel’s Hand, pages 144–145. In
[19], 2004.

[16] P. Hájek. A new small emendation of Gödel’s ontological proof. Studia
Logica, 71(2):149–164, 2002.

[17] D. Scott. Appx.B: Notes in Dana Scott’s Hand, pages 145–146. In [19],
2004.

[18] J. Sobel. Gödel’s ontological proof. In On Being and Saying. Essays
for Richard Cartwright, pages 241–261. MIT Press, 1987.

[19] J. Sobel. Logic and Theism: Arguments for and Against Beliefs in God.
Cambridge U. Press, 2004.

34

	Introduction
	Embedding of Intensional Higher-Order Modal Logic
	Type Declarations
	Definitions
	Logical Operators as Truth-Sets
	Possibilist Quantification
	Actualist Quantification
	Modal Operators
	Extension-of Operator
	Equality
	Meta-logical Predicates

	Verifying the Embedding
	Useful Definitions for Axiomatization of Further Logics

	Textbook Examples
	Modal Logic - Syntax and Semantics (Chapter 7)
	Considerations Regarding 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -redex (p. 94)
	Exercises (p. 101)

	Miscellaneous Matters (Chapter 9)
	Equality Axioms (Subsection 1.1)
	Extensionality (Subsection 1.2)
	De Re and De Dicto (Subsection 2)
	Rigidity (Subsection 3)
	Stability Conditions (Subsection 4)

	Gödel's Argument, Formally
	Part I - God's Existence is Possible
	General Definitions
	Axioms
	Theorems

	Part II - God's Existence is Necessary if Possible
	General Definitions
	Results from Part I
	Axioms
	Theorems
	Monotheism
	Positive Properties are Necessarily Instantiated
	More Objections

	Fitting's Solution
	General Definitions
	Part I - God's Existence is Possible
	Part II - God's Existence is Necessary if Possible
	Conclusion (De Re and De Dicto Reading)
	Modal Collapse

	Anderson's Alternative
	General Definitions
	Part I - God's Existence is Possible
	Part II - God's Existence is Necessary if Possible
	Modal Collapse

	Conclusion

