
Kalpa Publications in Computing

Volume 1, 2017, Pages 113–118

LPAR-21S: IWIL Workshop
and LPAR Short Presentations

Capability Discovery for Automated Reasoning Systems∗

Alexander Steen1, Max Wisniewski1, Hans-Jörg Schurr13, and Christoph
Benzmüller21

1 Freie Universität Berlin, Berlin, Germany
2 University of Luxembourg, Luxembourg

3 TU Wien, Vienna, Austria

Abstract

Automated reasoning systems such as theorem provers often employ interaction or co-
operation with further reasoning software. Whereas in most cases the concrete choice of
cooperating software is, to some extent, irrelevant, these systems are nevertheless often
rigid in practice due to compatibility issues. In order to support more flexible cooper-
ation schemes, a machine-readable description format for automated reasoning systems’
capabilities is proposed. Additionally, a simple HTTP-based protocol for system and ca-
pability discovery is outlined. Both the format and the protocol are designed to be simple,
extensible and easy to use with none to minor modifications for existing reasoning systems.

1 Introduction

Automated reasoning systems such as theorem provers or model finders significantly differ in
scope and supported language features. While projects such as TPTP [13] and SMT-LIB [2]
provide a widely accepted infrastructure for automated reasoning systems within their domain,
including standard language representations for input problems and generated outputs (e.g.
proof objects), not all principally valid inputs are, in fact, supported by a given system and
may thus lead to unexpected errors or results. For example, the current TPTP version supports
seven different languages with more or less distinct grammatical representations. During the
development of tools (called meta tools in the following) that employ reasoning systems as a
subroutine, one faces the peculiarity of either fixing one system of choice, or handcrafting a list
of supported systems together with their characteristics.

In order to increase the flexibility of an automated reasoning system’s employment, we
propose a machine-readable format which can be used to describe the capabilities of a reasoning
system. Such capability information can then be used by meta tools to appropriately adjust their
cooperation behavior according to available features at the target system. We give practically
motivated examples for such capabilities. Furthermore, we outline a simple text-based protocol
which can be used by meta tools for discovering both locally and remotely installed systems as
well as for identifying their respective capabilities.

∗This work has been supported by the DFG under grant BE 2501/11-1 (Leo-III).

T.Eiter, D.Sands, G.Sutcliffe and A.Voronkov (eds.), LPAR-21S (Kalpa Publications in Computing, vol. 1),
pp. 113–118

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/141495211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Capability Discovery for Automated Reasoning Systems Steen, Wisniewski, Schurr and Benzmüller

A protocol for the above scope of operation must meet certain criteria for being instrumental
in practical scenarios. First, the protocol needs to be lean, easy to use and admit a fairly
effective way of invoking reasoning systems. This way, a meta tool will not pay too much of a
price actually using the protocol rather than hard-coding certain systems. Secondly, adaption
of existing reasoning systems needs to be simple with none to minor changes. Otherwise no
well-established system will, in the end, support the protocol. Finally, the protocol should
ideally be extensible in the sense that new languages or language features can be expressed
without changing existent capability descriptions.

The availability of a capability discovery protocol is of special interest in the context of the
authors’ development of the higher-order (HO) automated theorem prover (ATP) Leo-III [11].
The Leo-III prover is designed to cooperate with first-order (FO) provers during proof search. In
principle, it is of no importance which FO prover is employed (as long as it supports input and
output according to TPTP/TSTP standard) and so the user may register further cooperating
provers, e.g. via command-line arguments. Nevertheless, depending on the features of the used
prover, the mode of cooperation might be different when e.g. only untyped first-order provers
are given to Leo-III. Here, a capability discovery protocol could be used to identify which
features the registered provers have. Alternatively, when no particular prover is suggested by
the user, the protocol can be used to discover available systems and then automatically choose
some of them.

Further HO ATPs which cooperate with external systems are LEO-II [3] and Satallax [5],
which use FO provers and both SAT solvers and FO provers, respectively.

Related work. SystemOnTPTP [13] provides an online interface for using various automated
reasoning systems. This interface is also capable of recommending systems based on their
evaluation results wrt. the TPTP library. The ’System report’ of SystemOnTPTP also includes
a short (partially) machine readable description of the systems. One of the fields contained in
this report is a list of Specialist Problem Classes (SPCs) supported by the system. SPCs are
used to describe syntactic similar problems. SPCs include information about the supported
languages of the system. However, SPC information are not shipped with the reasoning system
but added externally as annotation, hence are not available when using a system outside of
the SystemOnTPTP context. Additionally, they do not provide enough information about
supported syntax features within a TPTP language.

The SPASS-XDB system [12] can use external sources to retrieve axioms. A TPTP-based
description format is used to describe the external axiom sources.

Recent versions of the E prover include Deduction as a Service [8], which can potentially
mediate between multiple provers, but it does not provide a way for clients to adapt to the
target systems.

MathServe [14], which has emerged in the OMEGA project [1] from the earlier MathWeb
system [15, 7], uses so-called brokers for finding appropriate reasoning systems for a given input
problem wrt. its semantical aspects, e.g. finding systems that are marked as more specialized on
certain problem features. However, it does not enumerate the supported language representation
and syntax features of the respective language. Also, invocation of systems in MathServe using
SOAP or XML-RPC seems rather verbose for local employment.

2 Capability Description Format

To enable the automatic detection of available features, theorem proving systems should provide
a machine-readable description. This description can be provided either as a static file as part

114



Capability Discovery for Automated Reasoning Systems Steen, Wisniewski, Schurr and Benzmüller

of the installation (e.g. a .caps file), or, preferable, as system output for a specific command
line argument. Unix systems print customary a short help text when called with the --help

command line argument. In this spirit, we suggest the argument --caps as switch to request the
output of the capability description. To facilitate simple employment, we advocate for the use
of the commonly used description language JSON [6]. JSON is a light-weight data-interchange
format that is supported, natively or via library, by almost every programming language.

An automated reasoning system can be designed towards one or multiple applications. For
instance, it might be a theorem prover or a model finder. A client has to know this intention
since e.g. a model finder might not be very useful for finding proofs and vice versa. Each
supported input format, as well as the name and version of the system are features to be
included in the description. Represented as JSON, this reads

{

"name" : "myprover",

"version" : 1.1,

"applications" : [...],

"languages" : [...]

}

where possible applications include "prover", "model finder" and "proof verifier". The
field languages contains a list of concrete language specifications.

A language specification object consists of a member denoting the language name and fur-
ther members depending on the selected base language. In the case of TPTP languages two
additional members are used: roles enumerating the supported formula roles and features

enumerating supported syntax features within the language. While a white-list of supported
features might seem overly verbose, it allows for extensions of the languages without any need
to modify existing capability descriptions.

The following is an example output from a system that supports theorem proving on untyped
and typed FO problems (represented via FOF and TFF syntax, respectively):

{

"name" : "myprover",

"version" : "1.1",

"applications" : ["prover"],

"languages" : [{ "language" : "tptp_fof",

"roles" : ["axiom", "definition", "conjecture"],

"features" : ["sequent"]

},

{ "language" : "tptp_tff",

"roles" : ["axiom", "definition", "type", "conjecture"],

"features" : ["let", "conditional", "polytypes"]

}]

}

From this description it is extractable that myprover supports TF1 [4], since polytypes is
a feature of the system wrt. its TFF language capability. Of course, the concrete language
features need to be interpreted relative to the language itself. Hence, in the above example,
one needs to agree on a standard way of specifying the features of a TPTP language.

Further possible languages include tptp cnf and tptp thf for TPTP CNF format and
TPTP higher-order form, respectively. In the case of tptp tff, possible features are sequent,
tuple, polytypes, let, and conditional. The tptp thf language supports the features of

115



Capability Discovery for Automated Reasoning Systems Steen, Wisniewski, Schurr and Benzmüller

Method Query address Effect / Description

GET URL/ Returns all reasoning systems known to the underlying
discovery service

GET URL/<prover> Returns the capability description of <prover>, error code
404 if the prover is not known

GET URL/?language=X Returns the subset of reasoning systems that support lan-
guage X

GET URL/?application=X Returns the subset of reasoning systems that support ap-
plication type X

GET URL/?feature=X Returns the subset of reasoning systems that support fea-
ture X in some language

Table 1: The API specification for system and capability discovery

tptp tff and additionally definite description and indefinite description. Further-
more, the tptp thf language might also contain support for TH1 combinators [9]. Also, ap-
propriate features for the support of arithmetic in TPTP languages should be chosen.

3 System and Capability Discovery Protocol

The capability description format by itself is very helpful for implementing meta tools as it
allows automated detection and seamless employment of a priori unknown systems. Both,
the capability description and the discovery protocol, are well separated. On one hand, the
capability description format allows the clients (i.e. meta tools) to query the appropriate
provers. On the other hand, the discovery protocol allows the clients to inspect available
systems in the first place.

For the system and capability discovery protocol, we follow common API design patterns
and suggest a RESTful API utilizing the standard HTTP protocol. Not only is this approach
system independent, it is also well supported by programming languages and libraries. A small
program, which provides the HTTP API, mediates the communication between clients and
proving systems regardless whether they are located on the same machine or distributed across
a network.

The protocol is given in Table 1. The discovery service must be reachable by a certain URL,
denoted URL. Then, a GET request to URL with the respective arguments returns a prover
description for all provers, a subset of provers or the capability description for a particular
prover. For example, the GET request to URL without any parameters returns

[{

"name" : "myprover",

"capabilites" : <capabilities of myprover>,

"usage" : [{ "protocol" : "cmd",

"address" : "myprover -t %d %s" },

{ "protocol" : "http",

"address" : "http://myaddress.com/myprover?t=%d" },

{ "protocol" : "systemontptp",

"address" : "myprover" }]

}, ... ]

The above list contains one object for each system, which consists of at least the members

116



Capability Discovery for Automated Reasoning Systems Steen, Wisniewski, Schurr and Benzmüller

name and capabilites containing the system’s name and its capability object, respectively.
Furthermore, the description object should also provide one member for each supported way of
interacting with the system, i.e. how the reasoning process is invoked.

We refrain from predetermining the possible ways to interact with the reasoning systems.
A simple form of interaction would be calling the system manually with a given shell command
(cf. cmd) or via a HTTP call (cf. http) where the proof problem is submitted e.g. via the POST
method. In this example, the meta constants %d and %s represent the system timeout and the
problem file, respectively. Furthermore, the system name in the SystemOnTPTP infrastructure
could be presented. Should a theorem prover support deduction as a service [8], the description
object could contain a deductionAsAService member pointing to the address and port of the
service.

Since the protocol supports invocation of locally installed reasoning systems, the usage of
the discovery does not put a heavy burden on the actual system’s usage.

4 Applications

There are at least two applications of the above sketched discovery service. Firstly, as mentioned
before, automated HO ATPs such as Leo-III rely on cooperation with FO theorem provers.
Thereby, Leo-III can choose between various possible encoding techniques to reduce a HO
problem to a FO problem. When translating to a (polymorphically) typed FO form, encoding
of FO types can be avoided. During cooperation with a prover for untyped FO logic, on the
other hand, type encoding cannot be avoided. Furthermore, various grammatical language
features, such as let-expressions, conditionals and choice might, or might not, be supported by
the target system. For systems that do not support some language constructs, these features
need to be encoded as well, possibly resulting in performance loss.

Secondly, a capability discovery protocol could be used by interactive theorem provers
that allow discharging of proof tasks using automated reasoning systems. For example, in
Isabelle/HOL [10], the Sledgehammer tool invokes automated theorem provers depending on
their supported target logic and language features. Currently, Sledgehammer relies on a hard
coded database of supported systems for selecting the appropriate problem encoding scheme.

Hard coding specific provers should be avoided, and rather be replaced by support of a whole
class of provers with the specific encoding scheme parameterized by the prover’s capabilities.
Then, if a description of a prover’s features can be accessed via a discovery service, also unknown
reasoning systems can be employed for cooperation.

5 Summary and Further Work

In this paper, a description of a machine-readable format for describing capabilities of automated
reasoning systems is given. Furthermore, a simple protocol is presented that allows clients to
discover available reasoning systems and their capabilities. Such a protocol could not only be
useful for the ATP community, but in particular, it could foster flexible integrations of theorem
proving technology in e.g. larger AI systems such as IBM Watson, etc.

Static capability description files for the LEO-II and Leo-III prover can be accessed at the
Leo-III project website.1 Also, as of version 1.1 the Leo-III prover supports the --caps switch
to print its capability description. A reference implementation of a discovery service is work-
in-progress. Further work includes a thorough evaluation of a practical employment scenario.

1See http://inf.fu-berlin.de/~lex/leo3/#downloads.

117

http://inf.fu-berlin.de/~lex/leo3/#downloads


Capability Discovery for Automated Reasoning Systems Steen, Wisniewski, Schurr and Benzmüller

Also, further discussions about the invocation schemes and presented prover capabilites need to
be carried out. The capability format itself could be enhanced or modified such that it enhances
the already existing SPC information in the context of TPTP languages.

References

[1] Serge Autexier, Christoph Benzmüller, Dominik Dietrich, and Jörg Siekmann. OMEGA: Resource-
adaptive processes in an automated reasoning systems. In Matthew W. Crocker and Jörg Siek-
mann, editors, Resource-Adaptive Cognitive Processes, Cognitive Technologies, pages 389–423.
Springer, 2010.

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

[3] Christoph Benzmüller, Lawrence C. Paulson, Nik Sultana, and Frank Theiß. The Higher-Order
Prover LEO-II. Journal of Automated Reasoning, 55(4):389–404, 2015.

[4] Jasmin Christian Blanchette and Andrei Paskevich. TFF1: The TPTP Typed First-Order Form
with Rank-1 Polymorphism. In Maria Paola Bonacina, editor, Automated Deduction, 24th Inter-
national Conference, Proceedings, volume 7898 of LNCS, pages 414–420. Springer, 2013.

[5] Chad E. Brown. Satallax: An automatic higher-order prover. In Automated Reasoning, volume
7364 of LNCS, pages 111–117. Springer Berlin Heidelberg, 2012.

[6] Ecma International. The JSON Data Interchange Format, 2013. Standard ECMA-404.

[7] Andreas Franke, Stephan M. Hess, Christoph G. Jung, Michael Kohlhase, and Volker Sorge.
Agent-oriented integration of distributed mathematical services. J. UCS, 5(3):156–187, 1999.

[8] Mohamed Hassona and Stephan Schulz. Deduction as a Service. In Proceedings of the 5th Workshop
on Practical Aspects of Automated Reasoning, volume 1635 of CEUR Workshop Proceedings, pages
32–40. CEUR-WS.org, 2016.

[9] Cezary Kaliszyk, Geoff Sutcliffe, and Florian Rabe. TH1: the TPTP typed higher-order form with
rank-1 polymorphism. In Pascal Fontaine, Stephan Schulz, and Josef Urban, editors, Proceedings of
the 5th Workshop on Practical Aspects of Automated Reasoning, volume 1635 of CEUR Workshop
Proceedings, pages 41–55. CEUR-WS.org, 2016.

[10] Tobias Nipkow, Lawrence C. Paulson, and Makarius Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Lecture Notes in Computer Science. Springer, 2002.

[11] Alexander Steen, Max Wisniewski, and Christoph Benzmüller. Agent-based HOL reasoning. In G.-
M. Greuel, T. Koch, P. Paule, and A. Sommese, editors, Mathematical Software, 5th International
Congress, Proceedings, volume 9725 of LNCS, pages 75–81, Berlin, Germany, 2016. Springer.

[12] Martin Suda, Geoff Sutcliffe, Patrick Wischnewski, Manuel Lamotte-Schubert, and Gerard
de Melo. External sources of axioms in automated theorem proving. In KI 2009: Advances in
Artificial Intelligence, 32nd Annual German Conference on AI, Paderborn, Germany, September
15-18, 2009. Proceedings, pages 281–288, 2009.

[13] Geoff Sutcliffe. The TPTP world - infrastructure for automated reasoning. In Proceedings of the
16th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR’10, pages 1–12, Berlin, Heidelberg, 2010. Springer-Verlag.

[14] Jürgen Zimmer and Serge Autexier. The MathServe System for Semantic Web Reasoning Services.
In Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning: Third International
Joint Conference, Proceedings, pages 140–144. Springer Berlin Heidelberg, 2006.

[15] Jürgen Zimmer and Michael Kohlhase. System description: The mathweb software bus for dis-
tributed mathematical reasoning. In Andrei Voronkov, editor, Automated Deduction - CADE-18,
18th International Conference on Automated Deduction, Copenhagen, Denmark, July 27-30, 2002,
Proceedings, volume 2392 of Lecture Notes in Computer Science, pages 139–143. Springer, 2002.

118


	Introduction
	Capability Description Format
	System and Capability Discovery Protocol
	Applications
	Summary and Further Work

