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Abstract. A shallow semantic embedding of an intensional higher-order
modal logic (IHOML) in Isabelle/HOL is presented. IHOML draws on
Montague/Gallin intensional logics and has been introduced by Melvin
Fitting in his textbook Types, Tableaus and Gödel’s God in order to dis-
cuss his emendation of Gödel’s ontological argument for the existence of
God. Utilizing IHOML, the most interesting parts of Fitting’s textbook
are formalized, automated and verified in the Isabelle/HOL proof assis-
tant. A particular focus thereby is on three variants of the ontological
argument which avoid the modal collapse, which is a strongly criticized
side-e↵ect in Gödel’s resp. Scott’s original work.
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1 Introduction

The first part of this paper introduces a shallow semantic embedding of an
intensional higher-order modal logic (IHOML) in classical higher-order logic (Is-
abelle/HOL3). IHOML, as introduced by Fitting [15], is a modification of the
intensional logic originally developed by Montague and later expanded by Gallin
[18] by building upon Church’s type theory and Kripke’s possible-world seman-
tics. Our approach builds on previous work on the semantic embedding of multi-
modal logics with quantification [6], which we expand here to allow for actualist
quantification, intensional terms and their related operations. From an AI per-
spective we contribute a highly flexible framework for automated reasoning in
intensional and modal logic. IHOML, which has not been automated before,
has several applications, e.g. towards the deep semantic analysis of natural lan-
guage rational arguments as envisioned in the new DFG Schwerpunktprogramm
RATIO (SPP 1999).

3 In this paper we work with the Isabelle/HOL proof assistant [22], which explains the
chosen abbreviation. Generally, however, the work presented here can be mapped to
any other system implementing Church’s simple type theory [13].
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In the second part, we present an exemplary, non-trivial application of this rea-
soning infrastructure: A study on computational metaphysics

4, the computer-
formalization and critical assessment of Gödel’s [19] (resp. Dana Scott’s [25])
modern variant of the ontological argument and two of its proposed emenda-
tions as discussed in [15]. Gödel’s ontological argument is amongst the most
discussed formal proofs in modern literature. Several authors (e.g. [3, 2, 11, 20,
15]) have proposed emendations with the aim of retaining its essential result (the
necessary existence of God) while at the same time avoiding the modal collapse

(whatever is the case is so necessarily) [26, 27]. The modal collapse is an unde-
sirable side-e↵ect of the axioms postulated by Gödel (resp. Scott). It essentially
states that there are no contingent truths and everything is determined.

Related work5 has formalized several of these variants on the computer and
verified or falsified them. For example, Gödel’s axiom’s system has been shown
inconsistent [9, 10], while Scott’s version has been verified [8]. Further experi-
ments, contributing amongst others to the clarification of a related debate re-
garding the redundancy of some axioms in Anderson’s emendation, are presented
and discussed in [7]. The enabling technique in these case studies has been shal-
low semantic embeddings of extensional higher-order modal logics in classical
higher-order logic (see [6, 4] and the references therein).6

In contrast to the related work, Fitting’s variant is based on intensional higher-
order modal logic. Our experiments confirm that Fitting’s argument, as pre-
sented in his textbook [15], is valid and that it avoids the modal collapse as
intended. Due to lack of space, we refer the reader to our (computer-verified)
paper [17] for further results. That paper has been written directly in the Is-
abelle/HOL proof assistant and requires some familiarity with this system and
with Fitting’s textbook.

The work presented here originates from the Computational Metaphysics lecture
course held at the FU Berlin in Summer 2016 [28].

2 Embedding of Intensional Higher-Order Modal Logic

2.1 Type Declarations

Since IHOML and Isabelle/HOL are both typed languages, we introduce a type-
mapping between them. We follow as closely as possible the syntax given by

4 This term was originally coined by Fitelson and Zalta in [14] and describes an emerg-
ing, interdisciplinary field aiming at the rigorous formalization and deep logical as-
sessment of philosophical arguments in an automated reasoning environment.

5 More loosely related work studied Anselm’s older, non-modal version of the ontolog-
ical argument directly in Prover9 [23] and PVS [24].

6 In contrast to deep semantic embeddings, where the embedded logic is presented as
an abstract datatype, our shallow semantic embeddings avoid inductive definitions
and maximize the reuse of logical operations from the meta-level. In particular,
tedious new binding mechanisms are avoided in our approach.
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Fitting ([15] p. 86), according to which, for any extensional type ⌧ , "⌧ becomes
its corresponding intensional type. For instance, a set of (red) objects has the
extensional type hei, whereas the concept ‘red’ has intensional type "hei.

typedecl e — type for entities
typedecl w — type for possible worlds
type-synonym wo = (w)bool) — type for world-dependent formulas

Aliases for some common complex types (predicates and relations).

type-synonym ie=(w)e) ("e) — individual concepts (map worlds to objects)
type-synonym se=(e)bool) (hei) — (extensional) sets
type-synonym ise=(e)wo) ("hei) — (intensional predicative) concepts
type-synonym sise=("hei)bool) (h"heii) — sets of concepts
type-synonym isise=("hei)wo) ("h"heii) — 2-order concepts
type-synonym see=(e)e)bool) (he,ei) — (extensional) relations
type-synonym isee=(e)e)wo) ("he,ei) — (intensional) relational concepts

2.2 Logical Constants as Truth-Sets

We embed modal operators as sets of worlds satisfying a corresponding formula.

abbreviation mand ::wo)wo)wo (infix^) where '^ ⌘ �w . (' w)^( w)
abbreviation mor ::wo)wo)wo (infix_) where '_ ⌘ �w . (' w)_( w)
abbreviation mimp::wo)wo)wo (infix!) where '! ⌘ �w . (' w)�!( w)
abbreviation mequ::wo)wo)wo (infix$) where '$ ⌘ �w . (' w) !( w)
abbreviation mnot ::wo)wo (¬-) where ¬' ⌘ �w . ¬(' w)
abbreviation mnegpred ::"hei)"hei (+-) where +� ⌘ �x .�w . ¬(� x w)

Possibilist quantifiers are embedded as follows.7

abbreviation mforall ::( 0t)wo))wo (8 ) where 8� ⌘ �w .8 x . (� x w)
abbreviation mexists::( 0t)wo))wo (9 ) where 9� ⌘ �w .9 x . (� x w)

The actualizedAt predicate is used to additionally embed actualist quantifiers
by restricting the domain of quantification at every possible world. This stan-
dard technique has been referred to as existence relativization ([16], p. 106),
highlighting the fact that this predicate can be seen as a kind of meta-logical
‘existence predicate’ telling us which individuals actually exist at a given world.
This meta-logical concept does not appear in our object language.

consts Actualized ::"hei (infix actualizedAt)
abbreviation mforallAct ::"h"heii (8 A) — actualist variants use superscript
where 8 A� ⌘ �w .8 x . (x actualizedAt w)�!(� x w)

abbreviation mexistsAct ::"h"heii (9 A)
where 9 A� ⌘ �w .9 x . (x actualizedAt w) ^ (� x w)

Frame’s accessibility relation and modal operators.

7 Possibilist and actualist quantification can be seen as the semantic counterparts of
the concepts of possibilism and actualism in the metaphysics of modality. They relate
to natural-language expressions such as ‘there is’, ‘exists’, ‘is actual’, etc.
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consts aRel ::w)w)bool (infix r)
abbreviation mbox :: wo)wo (⇤-) where ⇤' ⌘ �w .8 v . (w r v)�!(' v)

abbreviation mdia :: wo)wo (⌃-) where ⌃' ⌘ �w .9 v . (w r v)^(' v)

2.3 Equality

abbreviation meq :: 0t) 0t)wo (infix ⇡) — standard equality (for all types)
where x ⇡ y ⌘ �w . x = y

abbreviation meqC :: "h"e,"ei (infix ⇡C) — equality for individual concepts
where x ⇡C y ⌘ �w . 8 v . (x v) = (y v)

abbreviation meqL:: "he,ei (infix ⇡L) — Leibniz equality for individuals
where x ⇡L y ⌘ �w . 8'. (' x w)�!(' y w)

2.4 Extension-of Operator

According to Fitting’s semantics ([15], pp. 92-4), # is an unary operator applying
only to intensional terms. A term of the form #↵ designates the extension of the
intensional object designated by ↵, at some given world. For instance, suppose
we take possible worlds as persons, we can therefore think of the concept ‘red’
as a function that maps each person to the set of objects that person classifies
as red (its extension). We can further state that the intensional term r of type
"hei designates the concept ‘red’. As can be seen, intensional terms in IHOML
designate functions on possible worlds and they always do it rigidly. We will
sometimes refer to an intensional object explicitly as ‘rigid’, implying that its
(rigidly) designated function has the same extension in all possible worlds.8

Terms of the form #↵ are called relativized (extensional) terms; they are always
derived from intensional terms and their type is extensional (in the color example
#r would be of type hei). Relativized terms may vary their denotation from world
to world of a model, because the extension of an intensional term can change
from world to world, i.e. they are non-rigid.

In our Isabelle/HOL embedding, we had to follow a slightly di↵erent approach;
we model # as a predicate applying to formulas of the form �(#↵1,. . .↵n). For
instance, the formula Q(#a1)w (evaluated at world w) is modeled as ⇡(Q ,a1)w,
or (Q ⇡ a1)w using infix notation, which gets further translated into Q(a1(w))w.

(a) Predicate ' takes as argument a relativized term derived from an (inten-
sional) individual concept of type "e.

abbreviation extIndArg ::"hei)"e)wo (infix ⇡) where ' ⇡c ⌘ �w . ' (c w) w

(b) A variant of (a) for terms derived from predicates (types of form "hti).

abbreviation extPredArg ::(( 0t)bool))wo))( 0t)wo))wo (infix #)
where ' #P ⌘ �w . ' (�x . P x w) w

8 The notion of rigid designation was introduced by Kripke in [21], where he discusses
its many interesting ramifications in logic and the philosophy of language.
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2.5 Verifying the Embedding

The above definitions introduce modal logic K with possibilist and actualist
quantifiers, as evidenced by the following tests.9

abbreviation valid ::wo)bool (b-c) where b c ⌘ 8w .( w) — modal validity
lemma K : b(⇤(' !  )) ! (⇤' ! ⇤ )c by simp — verifying K principle
lemma NEC : b'c =) b⇤'c by simp — verifying necessitation rule

Local consequence implies global consequence (not the other way round).10

lemma localImpGlobalCons: b' ! ⇠c =) b'c �! b⇠c by simp
lemma b'c �! b⇠c =) b' ! ⇠c nitpick oops — countersatisfiable

(Converse-)Barcan formulas are satisfied for possibilist, but not for actualist,
quantification.

lemma b(8 x .⇤(' x )) ! ⇤(8 x .(' x ))c by simp
lemma b⇤(8 x .(' x )) ! (8 x .⇤(' x ))c by simp
lemma b(8 Ax .⇤(' x )) ! ⇤(8 Ax .(' x ))c nitpick oops — countersatisfiable
lemma b⇤(8 Ax .(' x )) ! (8 Ax .⇤(' x ))c nitpick oops — countersatisfiable

�-redex is valid for non-relativized (intensional or extensional) terms.

lemma b(�↵. ' ↵) (⌧ ::"e) $ (' ⌧)c by simp
lemma b(�↵. ' ↵) (⌧ ::e) $ (' ⌧)c by simp
lemma b(�↵. ⇤' ↵) (⌧ ::"e) $ (⇤' ⌧)c by simp
lemma b(�↵. ⇤' ↵) (⌧ ::e) $ (⇤' ⌧)c by simp

�-redex is valid for relativized terms as long as no modal operators occur.

lemma b(�↵. ' ↵) ⇡(⌧ ::"e) $ (' ⇡⌧)c by simp
lemma b(�↵. ⇤' ↵) ⇡(⌧ ::"e) $ (⇤' ⇡⌧)c nitpick oops — countersatisfiable

Modal collapse is countersatisfiable.

lemma b' ! ⇤'c nitpick oops — countersatisfiable

2.6 Stability, Rigid Designation, De Dicto and De Re

Intensional terms are trivially rigid. This predicate tests whether an intensional
predicate is ‘rigid’ in the sense of denoting a world-independent function.

abbreviation rigid ::( 0t)wo))wo where rigid ⌧ ⌘ (��. ⇤((�z . �⇡z ) #⌧)) #⌧
9 We prove theorems in Isabelle by using the keyword ‘by’ followed by the name of a
proof method. Some methods used here are: simp (term rewriting), blast (tableaus),
meson (model elimination), metis (ordered resolution and paramodulation), auto
(classical reasoning and term rewriting) and force (exhaustive search trying di↵erent
tools). In our computer-formalization and assessment of Fitting’s textbook [17], we
provide further evidence that our embedded logic works as intended by verifying the
book’s theorems and examples.

10 We utilize here (counter-)model finder Nitpick [12] for the first time. For the conjec-
tured lemma, Nitpick finds a countermodel (not shown here), i.e. a model satisfying
all the axioms which falsifies the given formula.
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Following definitions are called ‘stability conditions’ by Fitting ([15], p. 124).

abbreviation stabilityA::( 0t)wo))wo where stabilityA ⌧ ⌘ 8 ↵. (⌧ ↵) ! ⇤(⌧ ↵)
abbreviation stabilityB ::( 0t)wo))wo where stabilityB ⌧ ⌘ 8 ↵. ⌃(⌧ ↵) ! (⌧ ↵)

We prove them equivalent in S5 logic (using Sahlqvist correspondence).

lemma equivalence aRel =) bstabilityA (⌧ ::"hei)c �! bstabilityB ⌧c by blast
lemma equivalence aRel =) bstabilityB (⌧ ::"hei)c �! bstabilityA ⌧c by blast

A term is ‘rigid’ if and only if it satisfies the stability conditions.

lemma brigid (⌧ ::"hei)c  ! b(stabilityA ⌧ ^ stabilityB ⌧)c by meson
lemma brigid (⌧ ::"h"ei)c  ! b(stabilityA ⌧ ^ stabilityB ⌧)c by meson

De re is equivalent to de dicto for non-relativized terms.11

lemma b8 ↵. ((��. ⇤(↵ �)) (⌧ ::hei)) $ ⇤((��. (↵ �)) ⌧)c by simp
lemma b8 ↵. ((��. ⇤(↵ �)) (⌧ ::"hei)) $ ⇤((��. (↵ �)) ⌧)c by simp

De re is not equivalent to de dicto for relativized terms.

lemma b8 ↵. ((��. ⇤(↵ �)) #(⌧ ::"hei)) $ ⇤((��. (↵ �)) #⌧)c
nitpick[card e=1 , card w=2 ] oops — countersatisfiable

2.7 Useful Definitions for the Axiomatization of Further Logics

The best-known normal logics (K4, K5, KB, K45, KB5, D, D4, D5, D45, ...)
can be obtained by combinations of the following axioms:

abbreviation T where T ⌘ 8'. ⇤' ! '
abbreviation B where B ⌘ 8'. ' ! ⇤⌃'
abbreviation D where D ⌘ 8'. ⇤' ! ⌃'
abbreviation IV where IV ⌘ 8'. ⇤' ! ⇤⇤'
abbreviation V where V ⌘ 8'. ⌃' ! ⇤⌃'

Instead of postulating combinations of the above axioms we make use of the well-
known Sahlqvist correspondence, which links axioms to constraints on a model’s
accessibility relation. We show that reflexivity, symmetry, seriality, transitivity
and euclideanness imply axioms T,B,D, IV, V respectively.12

lemma reflexive aRel =) bTc by blast
lemma symmetric aRel =) bBc by blast
lemma serial aRel =) bDc by blast
lemma transitive aRel =) bIV c by blast
lemma euclidean aRel =) bV c by blast
lemma preorder aRel =) bTc ^ bIV c by blast — S4: reflexive + transitive
lemma equivalence aRel =) bTc ^ bV c by blast — S5: preorder + symmetric

11 The de dicto/de re distinction is used regularly in the philosophy of language for
disambiguation of sentences involving intensional contexts.

12 Implication can also be proven in the reverse direction (which is not needed for our
purposes). Using these definitions, we can derive axioms for the most common modal
logics (see also [5]). Thereby we are free to use either the semantic constraints or the
related Sahlqvist axioms. Here we provide both versions. In what follows we use the
semantic constraints for improved performance.
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3 Gödel’s Ontological Argument

3.1 Part I - God’s Existence is Possible

Gödel’s particular version of the argument is a direct descendant of that of
Leibniz, which in turn derives from one of Descartes. His argument relies on
proving (T1) ‘Positive properties are possibly instantiated’, which together with
(T2) ‘God is a positive property’ directly implies the conclusion. In order to
prove T1, Gödel assumes (A2) ‘Any property entailed by a positive property is

positive’. As we will see, the success of this argumentation depends on how we
formalize our notion of entailment.

abbreviation Entails::"h"hei,"heii (infixV) where XVY ⌘ ⇤(8 Az . X z ! Y z )
lemma b(�x w . x 6= x ) V �c by simp — an impossible property entails anything
lemma b¬(' V �) ! ⌃9 A 'c by auto — possible instantiation of ' implicit

The definition of property entailment introduced by Gödel can be criticized on
the grounds that it lacks some notion of relevance and is therefore exposed
to the paradoxes of material implication. In particular, when we assert that
property A does not entail property B, we implicitly assume that A is possibly
instantiated. Conversely, an impossible property (like being a round square)
entails any property (like being a triangle). It is precisely by virtue of these
paradoxes that Gödel manages to prove T1.13

consts Positiveness::"h"heii (P) — positiveness applies to intensional predicates
abbreviation Existence::"hei (E !) — object-language existence predicate
where E ! x ⌘ �w . (9 Ay . y⇡x ) w

Gödel’s axioms for the first part essentially say that (A1) either a property or its
negation must be positive, (A2) positive properties are closed under entailment
and (A3) also closed under conjunction.

abbreviation appliesToPositiveProps::"h"h"heiii (pos) where

pos Z ⌘ 8X . Z X ! P X
abbreviation intersectionOf ::"h"hei,"h"heiii (intersec) where

intersec X Z ⌘ ⇤(8 x .(X x $ (8Y . (Z Y ) ! (Y x ))))
axiomatization where

A1a: b8X . P (+X ) ! ¬(P X ) c and
A1b: b8X . ¬(P X ) ! P (+X )c and
A2 : b8X Y .(P X ^ (X V Y )) ! P Y c and
A3 : b8 Z X . (pos Z ^ intersec X Z ) ! P X c

lemma True nitpick[satisfy ] oops — model found: axioms are consistent
lemma bDc using A1a A1b A2 by blast — D axiom is implicitely assumed

Positive properties are possibly instantiated.

13 To prove T1, the fact is used that positive properties cannot entail negative
ones (A2), from which the possible instantiation of positive properties follows. A
computer-formalization of Leibniz’s theory of concepts can be found in [1], where
the notion of concept containment in contrast to ordinary property entailment is
discussed.
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theorem T1 : b8X . P X ! ⌃9 A X c using A1a A2 by blast

Being Godlike is defined as having all (and only) positive properties.

abbreviation God ::"hei (G) where G ⌘ (�x . 8Y . P Y ! Y x )
abbreviation God-star ::"hei (G⇤) where G⇤ ⌘ (�x . 8Y . P Y $ Y x )
lemma GodDefsAreEquivalent : b8 x . G x $ G⇤ xc using A1b by force

While Leibniz provides an informal proof for the compatibility of all perfections,
Gödel postulates this as A3 (the conjunction of any collection of positive prop-
erties is positive), which is a third-order axiom. As shown below, the only use
of A3 is to prove that being Godlike is positive (T2 ). Dana Scott, apparently
noting this, proposed taking it directly as an axiom (see [15], p. 152).14

theorem T2 : bP Gc proof �
{ fix w
have 1 : ((pos P) ^ (intersec G P)) w by simp
have (8 Z X . (pos Z ^ intersec X Z ) ! P X ) w using A3 by (rule allE )
hence (((pos P) ^ (intersec G P)) ! P G) w using allE by (rule allE )
hence ((pos P ^ intersec G P) w) �! P G w by simp
hence P G w using 1 by (rule mp)

} thus ?thesis by (rule allI )
qed

Conclusion for the first part: Possibly God exists.

theorem T3 : b⌃9 A Gc using T1 T2 by simp

3.2 Part II - God’s Existence is Necessary, if Possible

We show here that some additional (philosophically controversial) assumptions
are needed to prove the argument’s conclusion, including an essentialist premise
and the S5 axioms. (Gödel’s resp. Scott’s original version works in extensional

HOML already for modal logic B [8, 9]). Further derived results like monotheism
and absence of free will are also discussed.

axiomatization where A4a: b8X . P X ! ⇤(P X )c

A4b was originally assumed by Gödel as an axiom. We can now prove it.

lemma A4b: b8X . ¬(P X ) ! ⇤¬(P X )c using A1a A1b A4a by blast
lemma True nitpick[satisfy ] oops — model found: all axioms A1-4 consistent

Axiom A4a and its consequence A4b together imply that P satisfies Fitting’s
stability conditions ([15], p. 124). This means P designates rigidly. Note that this
makes for an essentialist assumption which may be considered controversial by
some philosophers: every property considered positive in our world (e.g. honesty)
is necessarily so.

14 We provide a proof in Isabelle/Isar, a language specifically tailored for writing proofs
that are both computer- and human-readable. We refer the reader to [17] for other
proofs not shown in this article.
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lemma brigid Pc using A4a A4b by blast

Gödel defines a particular notion of essence. Y is an essence of x i↵ Y entails

every other property x possesses.15

abbreviation Essence::"h"hei,ei (E) where E Y x ⌘ Y x ^ (8 Z . Z x ! YVZ )
abbreviation beingIdenticalTo::e)"hei (id) where id x ⌘ (�y . y⇡x )

Being Godlike is an essential property.

lemma GodIsEssential : b8 x . G x ! (E G x )c using A1b A4a by metis

Something can have only one essence.

lemma b8X Y z . (E X z ^ E Y z ) ! (X V Y )c by meson

An essential property o↵ers a complete characterization of an individual.

lemma EssencesCharacterizeCompletely : b8X y . E X y ! (X V (id y))c
proof (rule ccontr) — Isar proof by contradiction not shown here

Gödel introduces a particular notion of necessary existence as the property some-
thing has, provided any essence of it is necessarily instantiated.

abbreviation necessaryExistencePredicate::"hei (NE)
where NE x ⌘ (�w . (8Y . E Y x ! ⇤9 A Y ) w)

axiomatization where A5 : bP NEc — necessary existence is a positive property
lemma True nitpick[satisfy ] oops — model found: so far all axioms consistent

(Possibilist) existence of God implies its necessary (actualist) existence.

theorem T4 : b9 G ! ⇤9 A Gc proof � — not shown

We postulate the S5 axioms (via Sahlqvist correspondence) separately, in order
to get more detailed information about their relevance in the proofs below.

axiomatization where

ax-T : reflexive aRel and ax-B : symmetric aRel and ax-IV : transitive aRel

lemma True nitpick[satisfy ] oops — model found: axioms still consistent

Possible existence of God implies its necessary (actualist) existence (note that
we only rely on axioms B and IV ).

theorem T5 : b⌃9 Gc �! b⇤9 A Gc proof � — not shown
theorem GodExistsNecessarily : b⇤9 A Gc using T3 T5 by metis
lemma GodExistenceIsValid : b9 A Gc using GodExistsNecessarily ax-T by auto

Monotheism for non-normal models (using Leibniz equality) follows directly from
God having all and only positive properties, but the proof for normal models is
trickier. We need to consider previous results ([15], p. 162).

lemma Monotheism-LeibnizEq :b8 x . G⇤ x ! (8 y . G⇤ y ! x⇡Ly)c by meson

15 Essence is defined here (and in Fitting’s variant) in the version of Scott; Gödel’s
original version leads to the inconsistency reported in [9, 10].
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lemma Monotheism-normal : b9 x .8 y . G y $ x ⇡ yc proof � — not shown

Fitting [15] also discusses the objection raised by Sobel [27], who argues that
Gödel’s axiom system is too strong since it implies that whatever is the case is
so necessarily: the modal system collapses. In the context of our S5 axioms, we
can formalize Sobel’s argument and prove modal collapse valid ([15], pp. 163-4).

lemma useful : (8 x . ' x �!  ) =) ((9 x . ' x ) �!  ) by simp
lemma ModalCollapse: b8�. � ! ⇤�c proof �
{ fix w
{ fix Q
have (8 x . G x ! (E G x )) w using GodIsEssential by (rule allE )
hence 8 x . G x w �! (Q ! ⇤(8 Az . G z ! Q)) w by force
hence 1 : (9 x . G x w) �! ((Q ! ⇤(8 Az . G z ! Q)) w) by (rule useful)
have 9 x . G x w using GodExistenceIsValid by auto
from 1 this have (Q ! ⇤(8 Az . G z ! Q)) w by (rule mp)
hence (Q ! ⇤((9 Az . G z ) ! Q)) w using useful by blast
hence (Q ! (⇤(9 Az . G z ) ! ⇤Q)) w by simp
hence (Q ! ⇤Q) w using GodExistsNecessarily by simp
} hence (8�. � ! ⇤ �) w by (rule allI )
} thus ?thesis by (rule allI )

qed

4 Fitting’s Variant

In this section we consider Fitting’s solution to the objections raised in his dis-
cussion of Gödel’s Argument ([15], pp. 164-9), especially the problem of modal
collapse, which has been metaphysically interpreted as implying a rejection of
free will. In Gödel’s variant, positiveness and essence were thought of as pred-
icates applying to intensional properties and correspondingly formalized using
intensional types for their arguments ("h"heii and "h"hei,ei respectively). In this
variant, Fitting chooses to reformulate these definitions using extensional types
("hheii and "hhei,ei) instead, and makes the corresponding adjustments to the
rest of the argument (to ensure type correctness). This has some philosophical
repercussions; e.g. while we could say before that honesty (as concept) was a
positive property, now we can only talk of its extension at some world and say of
some group of people that they are honest (necessarily honest, in fact, because
P has also been proven ‘rigid’ in this variant).16

consts Positiveness::"hheii (P)
abbreviation Entails::"hhei,heii (infixV) where XVY ⌘ ⇤(8 Az . (|X z |)!(|Y z |))
abbreviation Essence::"hhei,ei (E) where E Y x ⌘ (|Y x |) ^ (8 Z .(|Z x |)!(YVZ ))

Axioms and theorems remain essentially the same. Particularly (T2) bP #Gc
and (A5) bP #NEc work with relativized extensional terms now.

theorem T1 : b8X ::hei. P X ! ⌃(9 Az . (|X z |))c using A1a A2 by blast

16 In what follows, the ‘(|-|)’ parentheses are used to convert an extensional object into
its ‘rigid’ intensional counterpart (e.g. (|'|) ⌘ �w . ').
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theorem T3deRe: b(�X . ⌃9 A X ) #Gc using T1 T2 by simp
lemma GodIsEssential : b8 x . G x ! ((E #1G) x )c using A1b by metis

The following theorem could be formalized in two variants17 (drawing on the
de re/de dicto distinction). We prove both of them valid and show how the
argument splits, culminating in two non-equivalent versions of the conclusion,
both of which are proven valid.

lemma T4v1 : b9 #G ! ⇤9 A #Gc proof � — not shown
lemma T4v2 : b9 #G ! ((�X . ⇤9 A X ) #G)c using A4a T4v1 by metis

In contrast to Gödel’s version (as presented by Fitting), the following theorems
can be proven in logic K (the S5 axioms are no longer needed).

lemma T5v1 :b⌃9 #Gc�!b⇤9 A #Gc using T4v1 T3deRe by metis
lemma T5v2 :b(�X . ⌃9 A X ) #Gc �! b(�X . ⇤9 A X ) #Gc using T4v2 by blast

Necessary Existence of God (de dicto and de re readings).

lemma GodNecExists-deDicto: b⇤9 A #Gc using T3deRe T4v1 by blast
lemma GodNecExists-deRe: b(�X . ⇤9 A X ) #Gc using T3deRe T5v2 by blast

Modal collapse is countersatisfiable even in S5. Note that countermodels with
a cardinality of one for the domain of individuals are found by Nitpick (the
countermodel shown in Fitting’s book has cardinality of two).

lemma equivalence aRel=)b8�. �! ⇤�c nitpick[card e=1 , card w=2 ] oops

5 Anderson’s Variant

In this section, we verify Anderson’s emendation of Gödel’s argument [3], as
presented by Fitting ([15], pp. 169-171). In the previous variants there were
no ‘indi↵erent’ properties, either a property or its negation had to be positive.
Anderson makes room for ‘indi↵erent’ properties by dropping axiom A1b (b8X .
¬(P X ) ! P (+X )c). As a consequence, he changes the following definitions
to ensure argument’s validity.

abbreviation God ::"hei (G) where G ⌘ �x . 8Y . (P Y ) $ ⇤(Y x )
abbreviation Essence::"h"hei,ei (E) where E Y x ⌘ (8 Z . ⇤(Z x ) $ Y V Z )

There is now the requirement that a Godlike being must have positive properties
necessarily. For the definition of essence, Scott’s addition [25], that the essence
of an object actually applies to the object, is dropped. A necessity operator has
been introduced instead.18

The rest of the argument is essentially similar to Gödel’s (also in S5 logic).

theorem T1 : b8X . P X ! ⌃9 A X c using A1a A2 by blast
theorem T3 : b⌃9 A Gc using T1 T2 by simp

17 Fitting’s original treatment in [15] left several details unspecified and we had to fill
in the gaps by choosing appropriate formalization variants (see [17] for details).

18 Gödel’s original axioms (without Scott’s addition) are proven inconsistent in [9].
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If g is Godlike, the property of being Godlike is its essence.19

theorem GodIsEssential : b8 x . G x ! (E G x )c proof � — not shown

The necessary existence of God follows from its possible existence.

theorem T5 : b⌃9 Gc �! b⇤9 A Gc proof � — not shown

The conclusion could be proven (with one fewer axiom, though more complex
definitions) and Nitpick is able to find a countermodel for the modal collapse.

lemma GodExistsNecessarily : b⇤9 A Gc using T3 T5 by metis
lemma ModalCollapse: b8�. � ! ⇤�c nitpick oops — countersatisfiable

6 Conclusion

We presented a shallow semantic embedding in Isabelle/HOL for an intensional
higher-order modal logic (a successor of Montague/Gallin intensional logics) and
employed this logic to formalize and verify three di↵erent variants of the onto-
logical argument: the first one by Gödel himself (resp. Scott), the second one by
Fitting and the last one by Anderson.

By employing our embedding of IHOML in Isabelle/HOL, we could not only
verify Fitting’s results, but also guarantee consistency of axioms. Moreover, for
many theorems we could prove stronger versions and find better countermod-
els (i.e. with smaller cardinality) than the ones presented by Fitting. Another
interesting aspect was the possibility to explore the implications of alternative
formalizations of axioms and theorems which shed light on interesting philosoph-
ical issues concerning entailment, essentialism and free will.

The latest developments in automated theorem proving, in combination with the
embedding approach, allow us to engage in much better experimentation during
the formalization and assessment of arguments than ever before. The potential
reduction (of several orders of magnitude) in the time needed for proving or
disproving theorems (compared to pen-and-paper proofs), results in almost real-
time feedback about the suitability of our speculations. The practical benefits of
computer-supported argumentation go beyond mere quantitative aspects (easier,
faster and more reliable proofs). The advantages are also qualitative, since a
significantly di↵erent approach to argumentation is fostered: We can now work
iteratively (by trial-and-error) on an argument by making gradual adjustments
to its definitions, axioms and theorems. This allows us to continuously expose
and revise the assumptions we indirectly commit ourselves to every time we opt
for some particular formalization.

19 This theorem’s proof could be completely automatized for Gödel’s and Fitting’s
variants. For Anderson’s version however, we had to reproduce in Isabelle/HOL the
original natural-language proof given by Anderson (see [3], Theorem 2*, p. 296).
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ical Foundations of Mathematics, Computer Science, and Physics: Lecture Notes
in Logic 6, pages 167–172. Springer, 1996.
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20. P. Hájek. A new small emendation of Gödel’s ontological proof. Studia Logica,

71(2):149–164, 2002.
21. S. Kripke. Naming and Necessity. Harvard University Press, 1980.



14

22. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

23. P. Oppenheimera and E. Zalta. A computationally-discovered simplification of the
ontological argument. Australasian Journal of Philosophy, 89(2):333–349, 2011.

24. J. Rushby. The ontological argument in PVS. In Proc. of CAV Workshop “Fun
With Formal Methods”, St. Petersburg, Russia, 2013.

25. D. Scott. Appx.B: Notes in Dana Scott’s Hand, pages 145–146. In [27], 2004.
26. J. Sobel. Gödel’s ontological proof. In On Being and Saying. Essays for Richard

Cartwright, pages 241–261. MIT Press, 1987.
27. J. Sobel. Logic and Theism: Arguments for and Against Beliefs in God. Cambridge

U. Press, 2004.
28. M. Wisniewski, A. Steen, and C. Benzmüller. Einsatz von Theorembeweisern in

der Lehre. In A. Schwill and U. Lucke, editors, Hochschuldidaktik der Informatik:
7. Fachtagung des GI-Fachbereichs Informatik und Ausbildung/Didaktik der Infor-
matik; 13.-14. September 2016 an der Universität Potsdam, Commentarii infor-
maticae didacticae (CID), Potsdam, Germany, 2016.


