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Abstract. Online advertising is increasingly switching to real-time bid-
ding on advertisement inventory, in which the ad slots are sold through
real-time auctions upon users visiting websites or using mobile apps. To
compete with unknown bidders in such a highly stochastic environment,
each bidder is required to estimate the value of each impression and to set
a competitive bid price. Previous bidding algorithms have done so with-
out considering the constraint of budget limits, which we address in this
paper. We model the bidding process as a Constrained Markov Decision
Process based reinforcement learning framework. Our model uses the
predicted click-through-rate as the state, bid price as the action, and ad
clicks as the reward. We propose a bidding function, which outperforms
the state-of-the-art bidding functions in terms of the number of clicks
when the budget limit is low. We further simulate different bidding func-
tions competing in the same environment and report the performances of
the bidding strategies when required to adapt to a dynamic environment.

Keywords: Display Advertising, Real-time Bidding, Markov Decision
Process, Reinforcement Learning

1 Introduction

The share of digital ad spending in the global ad market has increased tremen-
dously in the recent years and is expected to soar up to over 46% by 2020 as
eMarketer forecasts [16]. Programmatic platforms like Real-time bidding (RTB)
gradually takes over as the major tool for the digital ad trading [13]. Instead
of bidding on keywords like in sponsored search [3], or on the context of the
website as in contextual advertising [8], RTB targets the best match of users
and campaigns at each ad impression level.

In an RTB system, the demand-side platform (DSP) plays the role of bidding
for ad impressions on behalf of the advertisers. An ad exchange (ADX) receives
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bids from DSPs and holds second-price auctions; the DSP with the highest bid
wins the auction but pays the second highest price, known as the market price.
According to the Bayesian-Nash equilibrium in the auction theory [14], each
bidder’s optimal strategy in a second-price auction is to bid the value of each
impression evaluated from its own perspective. This is known as truth-telling
bidding.

However, in reality, truth-telling bidding may not be the optimal solution
due to the budget limit for each ad campaign. Bidding constantly at the true
value can lead to running out of budget quickly without having covered a wide
range of users and impressions [20]. Consequently, the bidder fails to obtain
potential profits and might even be subject to heavy losses since the payback of
the impressions may be less than the total cost of winning the auction.

The optimization of bidding strategies has been widely studied in the com-
putational advertising industry [9, 21]. The goal of an optimal bidding strategy
is to intelligently set the bid price for each ad auction in order to maximize the
total number of clicks or profits [17] within a certain budget. This optimization
problem fits perfectly into the framework of a Constrained Markov Decision Pro-
cess (CMDP) [2], which allows to maximize one criterion while keeping another
criterion below a given threshold.

In this paper, we cast the optimization of the sequential bid requests as a
CMDP. This is done in order to find the optimal bid price under budget con-
straints for each auction. A CMDP is defined by the tuple < S,A, P,R,C, V >,
which correspondingly represents state, action, state transition probability, re-
ward, cost, and the value of the constrains. We consider the predicted click-
through-rate (CTR4) as the state, the number of clicks as the reward to maxi-
mize, the market price as the cost, and the budget limit as the constraint. We
integrate the optimization problem and the condition of budget limit into the
model and use the linear programming method [11] to solve the CMDP. The
policy derived from the solution gives an optimal bid price for each state.

Our contributions are summarized as follows:

– We formalize the bidding optimization problem as a CMDP which optimizes
the bidding performance on the impression level. Instead of directly using
the features from the impression space, our approach simplifies and limits
the state as the discretized predicted CTR. This results in a significant de-
crease of the dimensionality of the state space. Another outcome is that we
maximize the number of clicks within the constrained budget.

– We introduce the use of conditional market price distribution derived from
the joint distribution of historical market price and the predicted CTR. This
captures the correlation between the winning probability and the user level
information.

– We show how the well-tuned bidding functions handle the dynamics of the
market price, by simulating scenarios where different bidders compete with

4 The CTR can be seen as the probability of a user clicking on the ad being shown. The
predicted CTR is a prediction of this probability based on features of the publisher
site/app and the user visiting it.
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each other in the same environment. Previous studies compare the bid price
of their proposed bidding strategies with only the historical winning price.

2 Related Work

A bidding strategy is one of the key components of online advertising [3, 12, 21].
An optimal bidding strategy helps advertisers to target the valuable users and to
set a competitive bid price in the ad auction for winning the ad impression and
displaying their ads to the users. If the ads are clicked by the users or the users
make purchases after clicking the ads, profits will be generated for the bidder.

The linear bidding strategy is widely used with real-world applications [17,
21]. This strategy bids proportionally higher for bid requests with higher es-
timated CTR, failing however to deal with the budget constraints. In [21], a
non-linear bidding function is proposed to adapt different budget constraints.
It is shown to outperform the linear bidding function in terms of the number
of clicks per ad campaign, however the winning probability function does not
describe well the real winning price distribution. We are addressing this short-
coming with CMDP, since we derive the winning price distribution directly from
the historical data and use it in the bid optimization process.

Reinforcement learning methods have been widely applied on solving decision
making problems in online advertising applications. The models fall into two ma-
jor frameworks, namely the Multi-Armed Bandits (MAB) [19] and the Markov
Decision Process (MDP). In both models, the key components are the states,
actions, and rewards. Several prior works have tried to formalize the online ad-
vertising problem as a reinforcement learning framework. In [11, 18], the authors
fit the banner delivery and the ad allocation problems into the MAB model while
the rewards are the number of ad clicks and the profits. However, these prior
works, assume no cost for showing the impressions and thus consider no con-
straints. This cost is highly important for an RTB system. Additional user-level
information is also neglected in the previous works, which are of paramount im-
portance for pricing the value of an ad impression, so that profitable customers
are targeted.

In sponsored search, ad impressions are shown with certain costs, namely the
market price, and the ad agent bids on keywords. The ad agent first needs to
place a bid to win the auction, such that its ads can be displayed to the users.
In [4], the authors proposed a bidding function for sequential bidding requests
in sponsored search. That paper addressed the problem of right-censorship for
the market price in the second-price auction scenario. The market price is right-
censored because only the winner of the auction is informed; for lost auctions,
the bidders only know that the market price is equal or higher than their own
bid price. The authors formalized keyword bidding as a MDP, where the number
of auctions and the budget limit are the states, the discretized bid price are the
actions, and the total number of clicks are the rewards. With RTB, auctions
are held for each single impression, thus the budget per auction needs to be
constrained to optimize spending relative to profit. In our work, the CMDP
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model extends MDP by accounting for budget constraints directly and implicitly
takes the impression level information in the predicted CTR to find the optimal
bid price.

The CTR estimation reflects how well the user and the publisher match the
targeting goal of each campaign. It directly impacts the bid price, which subse-
quently affects the winning price. The authors in [7] formulated a reinforcement
learning based bidding function, by extending the concept in [4] and applying
it into the RTB system. However, they implicitly correlate the user features to
the winning rate approximation by multiplying the average CTR to the density
function of the market price. In our work, we discuss the importance of cor-
relating market price with the CTR and directly take the discretized CTR as
the state for the bidding optimization. In addition, their bid price is set in two
steps: state value lookup and action calculation in [7]. In contrast, our model
solved the bidding optimization problem with linear programming which derives
the optimal bid price for each state; thus the bid price can be set after a single
lookup per bid request.

3 Background and Bidding Strategy Modeling

In an RTB system, whenever a user visits the publisher’s website, the ad slots
on the website are sold through real-time auctions. A bid request is sent from
user’s browser to an ad exchange, which contains the user profile, the publisher
side information, and the description of the ad slot. The ADX distributes the
bid requests to multiple DSPs which bid on behalf of advertisers. Each DSP
derives the high dimensional feature vectors from the bid request and estimates
the probability that the user clicks (or purchases) the ad campaign selected for
bidding. The DSP integrates the CTR prediction, the budget, and the winning
probability estimation to compute a bid price sending back to the ADX. An
ADX holds a second-price auction, which selects the winner of the auction as
the DSP with the highest bid and sends the URL of the corresponding ad back
to the publisher. In a second-price auction, the second highest bid is denoted
as the market price or the winning price. In this paper, we use market price
and winning price interchangeably. The ad from the winner will be shown to the
user. If the user clicks the ad, he/she will be redirected to the landing page of
the ad. On the landing page, the user may complete subscription or purchase
depending on the property of the ad. User’s activity of ad clicks or purchase will
be sent back to the DSP as feedback. DSPs correspondingly use the feedback to
adjust their bidding strategies. Fig.1 shows these interactions graphically.

The interaction between the bidder and the ADX can be framed as an in-
teraction between an agent and an environment, similar to the reinforcement
learning framework [19]. As shown in Fig.1, an agent (a DSP) receives a state
(bid request) from the environment and takes an action (sets a bid price) which
triggers the environment to respond with a reward (feedback per auction) and
the next state (next bid request). The goal of the DSP is to learn an optimal
mapping from a bid request to a bid price, which maximizes the reward it re-
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Fig. 1. A RTB system overview

ceives over a finite time period (an episodic task) or an infinite time period (a
continuous task). In our work, the end of the time period is when the budget is
exhausted.

3.1 Learning with constraints

When no additional constraints exist, reinforcement learning is usually formal-
ized as a Markov decision process (MDP) [19]. However, RTB requires to keep
the budget under certain constraints and in the meantime maximize the total
number of clicks. A Constrained Markov Decision Process (CMDP) is a class
of MDP models which can set more than one conflicting objectives. A typical
case of CMDP is the situation where we want to maximize one criterion while
keeping another below a given threshold. Therefore we relied on such models to
describe the bidding function.

Fig.2 shows a graphical representation of a MDP at time t. A CMDP is
defined by the tuple < S,A, P,R,C, V >.
– S is the state set.
– A is the action set.
– P (s′|s, a) is the transition probability function, such that P (s′|s, a) is the

probability that the system moves to state s′ given that it is in state s and
the agent takes an action a.

– R(s, a) is the expected reward to maximize, when the system is in state s
and action a is taken.

– C is the constraint cost function. C(s, a) is the expected cost acquired when
the system is in state s and the agent chooses an action a.

– V is a vector of values that correspond to each constraint.
A policy is defined as a function π : S 7→ A which maps the state space S to

the action space A, and specifies the action a = π(s) that the agent will choose
when being in state s.
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Fig. 2. Graphical representation of an MDP. At each time t the agent knows the
environment state st and based on the transition probability model, it takes action at
and receives the reward Rt and observe the next state st+1.

The objective of a CMDP is to solve the following optimization problem

max
ρ

R =
∑
s,a
ρ(s, a)R(s, a) (1)

s.t
∑
s,a
ρ(s, a)C(s, a) ≤ V

and
∑
s∈S

∑
a∈A(s)

ρ(s, a) = 1

where ρ is a vector of length |S| ∗ |A| in which each element corresponds to
the probability of being in state s and taking action a. Let ρ̃ be the optimal
solution of Eq.(1), the optimal policy π̃ to apply in each state is the action a
which is in the ρ̃(s, a).

3.2 RTB as a Model-based CMDP

As described above, an optimal bidding function combines the CTR estimation,
the winning probability, and the budget constraint to set a bid price for each
bid request. The dynamics of the RTB system depend on the diversity of the
users and the behavior of all other bidders. The user diversity is reflected in
the high dimensional feature vector derived from each bid request. The market
price, which is the highest among all loosing bids, determines how much the
winner pays for the winning auction, in other words, how much budget is spent.
The historical market price distribution can be used to estimate the winning
probability of bidding a certain price.

Directly using the high dimensional user feature vector x as the state in the
Markov model is very difficult because of the sparsity of the data. However,
mapping this feature vector into a lower dimensional space is possible through
the CTR prediction θ(x). The latter takes the feature vector x as input and
calculates the probability of a click. This method has been used to optimize a
non-linear bidding strategy [21]. The underlying assumption is that the state
dynamics of the RTB system can be completely captured by CTR. Obviously,
both the bidding strategy and the winning rate estimation are dependent on the
CTR.
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We therefore also assume that user dynamics are described by the pre-
dicted CTR θ(x) and thus project the high dimensional feature space into
an 1-dimensional space. The predicted CTR is the state of the RTB system,
S = Θ. The set of actions, A, consists of the set of permitted bids, i.e., A =
{0, 1, 2, ..., amax}, where amax is the maximum bid that a bidder wants to pay
for showing its ad. The transition probability function P equals the probability
density function (pdf) of θ and is independent of the current state and the action
taken. Formally:

P (θ′|θ, a) = pCTR(θ′) (2)

where pCTR is the pdf of the predicted CTR. pCTR can be approximated from
historical data using a kernel density estimation.

The reward of an RTB system is usually defined by the advertisers. For
branding purpose, the goal of the advertisers can be to maximize the number
of ad impressions. However, more commonly, the advertisers are not satisfied by
only displaying their ads. Thus, they set the goal as acquiring user interactions
like clicks or even further, purchases. In this paper, the reward of an RTB system
is the number of clicks. Since for example, in the iPinYou dataset, there are 5
out of 9 campaigns without any purchase in both training and test datasets. It
is a chain process to calculate the expected reward. Firstly, the bidder needs
to win an ad auction by placing a bid. The winning probability is derived from
the market price distribution. After winning the auction, the expected reward is
given by the estimated CTR. The cost is defined as the market price each bidder
pays for a winning auction. If the bid price of a bidder is not the highest among
all the bidders, the bidder loses the auction with no cost.

Hence, the system reward, R, and cost, C, are given by

R(θ, a) = θ
a∑
δ=0

pMP (δ|θ) (3)

C(θ, a) =
a∑
δ=0

δpMP (δ|θ) (4)

where pMP is the pdf of the market price that can be derived from historical
data. Since CTR is a continuous value ranging from 0 to 1, it is discretized into
bins and δ denotes the market price of a bin of CTR. The R(θ, a) represents
the probability of winning an auction by bidding a multiplying the probability
of getting a click after winning the auction. The C(θ, a) represents the expected
cost of winning an auction by bidding a.

Our objective is to maximize the expected reward while keeping the expected
cost below a certain threshold, V . We interpret V as the maximum of the average
cost per impression each bidder is willing to spend. The derived policy from
CMDP determines the bid price to set in each state.
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3.3 Learning from historical data: Batch-CMDP

In the CMDP model, the correlation between the CTR and the real feedbacks
(clicks of impressions) in the historical data is neglected. We argue that it should
be utilized as valuable experience to learn from. We thus leverage Batch Rein-
forcement Learning (Batch-RL) to derive the best policy from a set of priori-
known transition samples [15]. The objective of Batch-RL is to derive a model
reflecting the reality learned from the historical data. The advantage of such
approach is the efficiency in the learning process compared to the model free
approaches, like the Q learning algorithm [19], which needs a huge amount of
interactions with the environment to converge to the optimal solution, and which
is often not possible in real life applications.

We modify the previous RTB model to derive the best policy from historical
data. In the CMDP model, the only variable not derived from historical data is
the probability for a click, θ, used in calculating the reward in Eq.(3). We adopt
the reward function from the previous model to use only information from the
historical data. For each bin of θ, we calculate the corresponding probability of
a click using historical data. We denote f(θ) as the probability of a click given
θ. We call this new model Batch-CMDP, formally defined as:

R(θ, a) = f(θ)
a∑
δ=0

pMP (δ|θ) (5)

C(θ, a) =
a∑
δ=0

δpMP (δ|θ) (6)

3.4 Market Price Distribution

The market price can be seen as drawing from an unknown distribution gen-
erated from the online marketplace. In [7, 10], the authors directly model the
market price distribution. However, since the winning probability also relies on
the CTR estimation, we introduce the correlation between the winning price and
the CTR in the estimation of market price distribution. We estimate the prob-
ability distribution function of the market price pMP using Eq.(7). This derives
implicitly from the joint distribution of the winning price and corresponding
CTR, as well as from the distribution of the predicted CTR according to the
Bayesian theorem [6].

pMP (δ|θ) = p(δ,θ)
p(θ) (7)

In order to validate our approach, we prove that a strong correlation exists
between the market price and the CTR. A commonly used method for this pur-
pose is to calculate the Pearson’s correlation coefficient [1]. This technique is
efficient in linear correlation cases, however it fails to capture non-linear rela-
tionships. Mutual Information (MI)[5] is one of the measures that captures any
type of non-linear dependencies between two random variables. MI quantifies
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the amount of information obtained about one random variable given another
random variable. In other words, it measures the degree of uncertainty of one
variable knowing the other variable. Formally, the mutual information of two
random variables X and Y is defined as

MI(X;Y ) =

∫
Y

∫
X

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (8)

where p(x, y) is the joint probability density of X and Y , p(x) and p(y) are the
probability density function of X and Y respectively. In the following section,
we present the mutual information between the market price and the CTR.

4 Experiment and Results

We have implemented a CMDP model for bidding trained on two real-world
RTB datasets. The bidding results are compared with several state-of-the-art
bidding algorithms. In this section, we elaborate the experiments and discuss
the results.

4.1 Datasets and CTR Prediction

In our experiments, two real-world datasets are used. Due to privacy reasons, the
public dataset of RTB bidding logs is very limited. A detailed RTB dataset was
released by iPinYou, a leading RTB company in China, for a bidding competition
in 2013. This is the only public dataset which contains the historical market
price. It contains 19.5M impressions, ~15K clicks and 1.2K conversions over 9
ad campaigns. The training and test data are chronologically split into 7 days
and 3 days, respectively. The other dataset is from OLAmobile, a global mobile
advertising company in Luxembourg. The data are collected from 8 campaigns
over 6 days, which include 800K impressions and 6K clicks.

The iPinYou dataset contains bid requests, winning impressions, ad clicks,
and conversions. Each row in the log file represents a bid request at a certain time.
The features can be categorized as user profile, publisher, and ad description.
The user profile includes the time stamp of the visit, user agent, IP address,
region, and city. The publisher is represented by domain and ad exchange ID
and the ad slot is described by slot size and format, advertiser ID, and creative
ID.

We applied the data pre-processing procedure5 used in [22], which utilizes the
one-hot-encoding method to convert the categorical features into binary features
and we used the logistic regression training like in [21] to estimate the predicted
CTR.

For the reproducibility, our code is available online6. We mainly report and
publish the results on the iPinYou dataset. Due to the privacy reason, the OLAm-
obile dataset is not released, but the results are listed as supplementary.

5 http://data.computational-advertising.org/
6 https://github.com/manxing-du/cmdp-rtb
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Table 1. Mutual information of the market price δ and CTR θ

iPinYou Camp. 1458 2259 2261 2821 2997 3358 3386 3427 3476

MI(δ, θ) 0.50 0.58 0.59 0.55 0.55 0.56 0.50 0.51 0.53

OLA Camp. 1 2 3 4 5 6 7 8

MI(δ, θ) 0.18 0.22 0.40 0.35 0.41 0.16 0.36 0.44

4.2 The Correlation Between Market Price and CTR

As introduced in Sect.3.4, Table 1 shows the results of the normalized mutual
information of δ and θ calculated in the iPinYou dataset. The normalization
of the Mutual Information scales the results between 0 and 1 where 0 means
no relationship and 1 means perfect correlation. It can be inferred from Table 1
that for all campaigns in the iPinYou, MI(δ, θ) is significantly higher than 0. We
conclude that δ and θ are strongly dependent on each other in the iPinYou data.
This supports the rationale of our approach to model the relationship between
δ and θ as a batch CMDP.

4.3 Evaluation Methods

The evaluation of the bidding functions is carried out on a per campaign basis.
In our experiments we only focus on the total number of clicks as the KPI, due
to the insufficient number of conversions. In addition, since every campaign has
a limited budget, our goal is to maximize the number of clicks given the budget
constraint. Thus, the expected cost per click (eCPC) is also used to measure how
efficient the budget is spent.

4.4 Experiment 1: Compare Bid Prices To the Historical Data

In experiment 1, each bidding function computes a bid price for the same bid
request and the price is compared with the historical market price. If the bid
price is higher than the historical market price, then it wins the auction and the
cost is the market price. The subsequent click will be accumulated. Otherwise
we assume that the auction is lost with no additional cost. We used the source
code available7 for the work in [7] to generate results for the Mcpc, Lin, and
RLB functions.
– Mcpc. Sets a maximum eCPC which is the goal of the bidding function.

The bid price is calculated by multiplying the max eCPC from the training
data with the predicted CTR.

– Lin. As proposed by [17], the bid price depends linearly on the predicted

CTR as b0
θ(x)
θavg

,where b0 is tuned as in [7] and θavg is the average CTR in

the training set.
– RLB. One of the recent papers in [7] formalizes the bidding problem into

a reinforcement learning framework. More details in this approach can be
found in their paper [7].

– CMDP. Our proposed model of CMDP as described in Sect.3.2

7 https://github.com/han-cai/rlb-dp
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Table 2. Total number of clicks and (eCPC), c0 =1/32

iPinYou
Camp.

AUC CTR Mcpc Lin RLB CMDP Batch CMDP

1458 97.95% 0.084% 392(3.34) 464 (1.09) 424 (3.09) 464 (2.71) 462 (2.8)
2259 67.12% 0.031% 10 (120.63) 7 (173.52) 12 (101.02) 13(89.47) 10 (119.16)
2261 62.69% 0.028% 7 (137.06) 9 (105.67) 11 (87.39) 8 (118.10) 7 (116.46)
2821 61.28% 0.057% 17 (107.63) 40 (40.26) 47 (39) 39 (45.32) 41 (45.05)
2997 60.79% 0.34% 62 (4.9) 64 (2.73) 82 (3.7) 71 (2.95) 71 (2.98)
3358 97.48% 0.086% 180 (4.75) 189 (3.77) 199 (4.29) 208 (3.38) 203 (4.28)
3386 77.39% 0.082% 56 (23.12) 55 (5.52) 61 (21.21) 92 (12.99) 91 (14.26)
3427 97.23% 0.068% 227 (5.91) 203 (6.55) 261 (5.14) 292 (4.47) 292 (4.36)
3476 95.88% 0.055% 101 (12.76) 162 (5.92) 131 (9.87) 181 (7.16) 188 (6.82)

– Batch-CMDP. The second model we proposed in Sect.3.3 where the policy
is learned by using the real feedback (click or not) as the reward.
We first compare each bidding strategy with limited budget. We determine

the budget B = CPMtrain ∗ c0 ∗ Ntest, where c0 = 1/32, 1/16, 1/8, and 1/4.
The c0 setting is as the same as in [7] to make our results comparable with
theirs. In Table 2, the total number of clicks and the eCPC for c0 = 1/32 are
listed. We find that (i) CMDP and batch-CMDP models outperforms all the
other bidding strategies in terms of number of clicks when the CTR estimation
has higher AUC, since the state only contains the CTR which directly impacts
the performance of our model. (ii) In terms of eCPC, the CMDP solution does
not always achieve the least cost. This is due to CMDP trying to keep the
cost per impression (CPM) under the averaged value in the training set while
obtaining the maximum number of clicks. We did not directly set the goal as
the cost per click because before getting clicks, we need to win a certain amount
of impressions first. As we can see in Table 2, for example, the Lin function has
lower eCPC for campaign 2997 while the number of clicks is fewer than CMDP.
We should note that even all the bidding strategies has the same budget setting,
each of them spends different amount of the budget until the end of the test. In
other words, within the same budget limit, different algorithms has won different
number of auctions. The results suggests CMDP set the bid price efficiently to
cover a wider range of impressions and also gets more clicks.

Fig.3 illustrates the performance of the bidding functions with respect to dif-
ferent budget settings. The bidding functions are compared in terms of (i) num-
ber of clicks (ii) Winning rate (iii) eCPC and (iv) CPM

Without budget control, the lin and mcpc bidding wins fewer auctions and
obtains fewer clicks than all the other bidding functions. Not surprisingly, with
the same amount of budget, they win the auctions with high market price, so
that the eCPC and CPM are both higher than the others. In general, RLB,
CMDP, and Batch-CMDP perform better and especially with the low budget
setting, CMDP outperforms all the other functions.

In Table 3, the results of OLAmobile dataset show that Batch CMDP obtains
the most clicks among all the bidding functions. In Batch CMDP, the reward
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Fig. 3. Overall bidding performance on iPinYou Data.

Table 3. Total number of clicks and (eCPC), c0 =1/32

OLA Camp. AUC CTR Mcpc Lin RLB CMDP Batch CMDP

1 69.96% 0.445% 1(46.41) 3(13.63) 3(15.42) 0 (NA) 4(30.59)
2 56.79% 0.466% 2(45.67) 2(39.56) 2(45.23) 3(29.84) 4(26.51)
3 73.22% 1.827% 6(2.74) 5(1.21) 6(2.51) 2(2.26) 3(1.53)
4 75.18% 0.938% 21(6.04) 22(4.34) 26(4.86) 14(8.94) 26(6.82)
5 71.35% 1.833% 3(3.4) 3(3.39) 4(2.54) 4(2.23) 13(2.64)
6 58.15% 0.465% 8(30.01) 16(14.28) 10(23.9) 6(39.55) 28(38.54)
7 67.69% 1.237% 4(60.95) 14(16.53) 5(48.42) 9(27.21) 23(23.83)
8 68.07% 0.554% 33(9.46) 51(5.78) 61(5.07) 71(4.37) 88(5.93)

is computed by Eq.(5) in which the probability of a click is derived from the
historical clicking probability given the state θ (pCTR). Since the OLAmobile
dataset spans 1-2 days, the conditional distribution of the winning probability
given the predicted CTR is more reliable to be used as a factor in the reward
function. Thus, it shows that if the model of the environment reflects the reality,
Batch-CMDP provides the optimal policy for making bidding decisions. In the
iPinYou dataset, the training data are from 7 days and the test data are from the
following 3 days. Our interpretation is that the market price model changes over
time, thus the model based on the long term history degrades the performance
of CMDP and Batch-CMDP.
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Table 4. Comparing bidding functions in the same environment, c0 = 1/32

Camp. 1458 mcpc Lin RLB CMDP Batch CMDP

Dual win clk 55 367 361 101 100
Sig win clk 9 46 28 2 14

Dual win imp 216 700 2978 3512 3350
Sig win imp 30991 84 13731 4755 41783
total ecpc 23269 453 2608 4647 10059

Camp. 2997 mcpc Lin RLB CMDP Batch CMDP

Dual win clk 0 0 7 5 3
Sig win clk 45 0 48 4 10

Dual win imp 11 0 2753 2736 2369
Sig win imp 15560 0 25799 1051 3718
total ecpc 7458 0 5441 3624 4077

We should also note that in Eq.1, the sum of ρ(s, a) over the entire state
and action is 1. In other words, the policy learned by CMDP also depends
on the pCTR distribution in the training set. If the pCTR distribution in the
test set changes dramatically, the policy may lead to budget overspending or
underspending. The dynamics of the pCTR distribution is a strong focus of our
future work.

4.5 Experiment 2: Compare Bidding Functions in the Same
Environment

In the previous experiment, the performance of the bidding functions is inde-
pendently compared with the historical winning prices. However, in a real world
scenario, every bidder will try to improve his/her bidding functions at any time.
Thus, we present the impact of the fluctuation of the market price distribution
on the bidding strategies. We simulate the scenario by assuming that the histor-
ical winning prices come from a single virtual bidder and let the other bidding
functions compete with each other as well as with the virtual bidder. The winner
is the one which bids the highest and the winning price is the second highest
price. If more than one bidders set the same price, all of them win the auction,
which produces the maximum number of auctions and clicks each function can
win in this setting.

If more than one functions bid the same price, all of them are considered as
winners. The corresponding clicks and impressions are denoted as Dual win clk
and Dual win imp respectively in Table 4. Meanwhile, the single winner case
is represented as Sig win clk and Sig win imp. The RLB, CMDP, and Batch
CMDP models are trained using the historical market price and the experiment
was running on the test data. In this setting, the market price in the test set
shifts towards higher prices when more than one functions bid higher than the
historical market price.
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The result suggests that for the campaigns with high AUC (e.g. campaign
1458), the linear bidding function targets the right impressions to bid high. Other
functions, for example, like CMDP wins 10 times more impressions but only get
1/3 of clicks as Lin, which significantly increase the eCPC. On the contrary,
Lin loses its advantage when the predicted CTR is not accurate since it only
relies on pCTR to calculate the bid price. One extreme case is campaign 2997
having the lowest AUC in the dataset. Lin sets the bid price too low comparing
to other functions and it does not win any impression. The results also show
that the eCPC should not be the only metric to evaluate how well the bidding
function performs. For example, for campaign 2997, CMDP has a lower eCPC
while having 6 times less number of clicks than RLB. In this case, CMDP bids
more conservative than RLB since CMDP follows the policy learned from the
pCTR density function in the training set.

5 Conclusions and Future work

In this paper, we formalize the bidding problem in the RTB system as a Con-
strained Markov Decision Process. We use linear programming to maximize the
total reward with a cost limit. The reward is either derived from the CTR es-
timation (in CMDP) or from the historical observations (in Batch-CMDP), in
which case the best policy is learned given the training data. We use Bayesian
inference to obtain the market price distribution, which not only considers the
correlation between the market price and the state (pCTR) but also captures
the dynamics of market price. Our model outperforms the state-of-art bidding
functions in terms of the total number of clicks constrained to a limited budget.
However, when the bidding functions compete with each other, linear bidding
performs the best for campaigns with a high AUC while RLB obtains more clicks
for campaigns with a low AUC. CMDP relies on the correlation of the historical
market price distribution and the predicted CTR distribution, thus bids more
conservative compared to the others.

For future work, we will model the time-dependent dynamics of RTB to
improve on the use of a single fixed market price distribution. In addition, we
will investigate a model-free approach which does not assume a modeling of the
market price distribution but only learns from the rewards.
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