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Abstract. Hierarchical Control of the Aerial Manipulator is treated here. The modelling aspect of the highly coupled Aerial Vehicle
which includes Quadrotor and manipulator is discussed. The control design to perform tasks in operational space is addressed along
with stability discussion. The simulation studies are successfully performed to validate the design methodology.

INTRODUCTION

The design and development of Aerial Manipulators have increased the applications of Unmanned Aerial Vehicles
(UAVs). With these developments the new applications of aerial vehicles include grasping, manipulation, transporta-
tion etc. This advancement has further lead to new challenges.

In [1] and [2] cartesian impedance control and redundancy is discussed. In [3] outer loop adaptive control was
used to control the Aerial Manipulator and in [4] vision sensors were used for control simulations.

In [5] a hybrid visual servoing was used to control an aerial vehicle with redundant robotic arm. In [6] an
adaptive sliding mode control was implemented on an Aerial Manipulator. In [7] and [8] operational space control
was discussed on an aerial vehicle with redundant manipulator. In [9] operational space control was discussed for an
Aerial Vehicle equipped with a non-redundant manipulator

In current paper we discuss the hierarchical control structure of an Aerial Vehicle attached with 2 degree of
freedom manipulator. Compared with [9] the key contribution of current paper includes the stability discussions of the
hierarchical control structure.The paper is structured in the following way. First the modelling is discussed followed
by control and stability analysis. Finally simulation studies are performed for validation

MODELLING

The kinematics and dynamics of the Aerial Manipulation Vehicle is briefly discussed here based on [7]. The CAD
design of the Aerial Manipulation Vehicle can be seen in Figure-1 while the 2 degree of freedom manipulator can be
seen in Figure-2.

Kinematics
The vehicle body frame fixed to the center of mass of the quadrotor is given by B. The position of B in the world
fixed inertial frame I is given by pb = [x y z]. The orientation of B with respect to I is give by the rotation matrix
Rb(ϕb). Consider ϕb = [ψ θ φ] as the Yaw-Pitch-Roll angles. The frame attached to the end-effector of the manipulator
is defined by E. The position of E with respect to I is given by [7]

pe = pb + Rb pb
eb, (1)

where pb
eb gives the position of E with respect to B. The orientation of E can be described by the rotation matrix [7]

Re = RbRb
e , (2)
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where Rb
e gives the orientation of Ewith respect toB. The differential kinematics expression ve required for the inverse

kinematic algorithm can be given as [7]

ve = Jγ(σb, γ)γ̇ + Jσ(σb, γ)σ̇b (3)

where γ =
[
μT

b qT
]

is the vector of controlled variables , Jη is composed by first 4 columns of JbTA(ϕb), Jσ is

composed by the last 2 columns of JbTA(ϕb), and Jγ =
[
Jη Jeb

]
. We have

Jb =

[
I3 −S (Rb pb

eb)
O3 I3

]
, Jeb =

[
Rb O3

O3 Rb

]
Jb

eb, (4)

where Jb
eb is the manipulator Jacobian and S (·) is a skew symmetric matrix operator. We further need

TA(ϕb) =

[
I3 O3

O3 T (ϕb)

]
(5)

where T (ϕb) can be given by

T (ϕb) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 −sψ cψcθ
0 cψ sψcθ
1 0 −sθ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (6)

We further have q as the joint coordinates of the manipulator and

μb =

[
pb
ψ

]
, σb =

[
θ
φ

]
. (7)

The detailed discussion of the above kinematic discussion can be obtained from [7].

FIGURE 1. Aerial Manipulation Vehicle.

Dynamics
The dynamic model of the aerial manipulation vehicle can be given as [7]

A(χ)χ̈ + B(χ, χ̇)χ̇ + g(χ) = u (8)

where χ =
[
xT

b qT
]
, A is the inertia matrix, B is composed of the coriolis and centrifugal terms, g is the gravity term

and u is the input vector [7]

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
u f
uν
uτ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rb(ϕ) f b
b

T T (ϕb)R(ϕb)νbb
τ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (9)

where τ are the torques applied to the manipulator joint, f b
b and νbb are the forces and moments on the quadrotor

expressed in B.

020069-2



FIGURE 2. 2 DOF Robotic Arm.

CONTROL

The hierarchical control scheme can be seen in Figure-3. The first layer consist of the Closed Loop Inverse Kinematics
followed by position and attitude control for the quadrotor and then the joint control for the manipulator. Here we will
briefly discuss the control problem.

Closed Loop Inverse Kinematics
The Closed Loop Inverse Kinematics algorithm is necessary to generate the reference trajectories to the position,
attitude and joint control loops for the quadrotor and manipulator respectively.The closed loop inverse kinematics is
given by [7],[9]

γ̇r =J†γ(σb, γr)TA(ϕe,r)(ẋe,d + Ke)

− J†γ(σb, γr)Jσ(σb, γr)σ̇b
(10)

where J†γ is the pseudoinverse of Jγ, K is the symmetric positive definite gain and e = xe,d − xe,r is the end-effector
position and attitude error.

Closed Loop Control Structure
The hierarchical control structure of the quadrotor can be seen in Figure-3. The quadrotor control consists of two
loops including attitude and position. The roll and pitch controller can be given by [9]

Urp(t) = Kp

[
εrp(t) − KdΘ̇rp(t)

]
(11)

where εrp = Θ
∗
rp − Θrp. Here Θ∗rp is the roll and pitch demand and finally Urp gives us pitch (τy) and roll torque (τx).

A PID control for the yaw control loop can be given by [9]

Uyaw(t) = Kp

[
εyaw(t) + Ki

∫ t

0

εyaw(δ)dδ − KdΩ̇z(t)
]

(12)

where εyaw = ψ
∗ − ψ is the error in the yaw channel and yaw demand is given by ψ∗.

The x, y position control loop uses a PID type controller. The output of this controller generates the pitch and
roll demand [9]

Θ∗rp(t) = Kp

[
εxy(t) + Ki

∫ t

0

εxy(δ)dδ − Kdvxy(t)

− Kddv̇xy(t)
]

(13)
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where εxy = ξ
∗
xy − ξxy is the x, y− position error and vxy is the position rate and v̇xy is the respective acceleration. For

the z− axis control a PID controller is used [9]

T (t) = Kp

[
εz(t) + Ki

∫ t

0

εz(δ)dδ − Kdvz(t) − Kddv̇z(t)
]

(14)

where εz = ξ
∗
z − ξz is the z position error and vz is the z position rate and v̇z is the acceleration. A PD type of control is

used for the manipulator control [9]

Um(t) = Kp

[
Kp1q̃(t) − Kdq̇(t)

]
(15)

where q̃ is a joint angle error.

Inverse
Kinematics

Position
Controller

Controller

Controller

Attitude

Manipulator

Mixer
Control

Aerial

Manipulation

Vehicle

xe,d γr, γ̇r

σb, σ̇b

σb, σ̇b

τ

Rotor Speed
T

M

γ, γ̇

FIGURE 3. Aerial Manipulation Vehicle: Control Structure [9].

Stability Discussion
In the current section we will briefly discuss the stability of the closed loop system. But before we consider a more
basic result. Let an autonomous system with disturbance be described as below [10]:

ẋ = Ax + U (16)

where A is assumed to a Hurwitz matrix and U can be considered as disturbance. With A being Hurwitz we have the
Lyapunov equation AT P + PA = −Q with Q positive definite. Let us choose the following Lyapunov function for the
system V = xT Px with P symmetric positive definite. The time derivative of the Lyapunov function along the system
trajectory gives us [10],[11]

V̇ = −xT Qx + 2xT PU (17)

≤ −λmin(Q)||x||22 + 2λmax(P)||x||2||U ||2 (18)

≤ −λmin(Q)||x||2
(
||x||2 − 2||U ||λmax(P)

)
(19)

The stability of the system is then ensured if

||x||2 ≥ 2||U ||2λmax(P) (20)

which implies that the disturbance control input norm is bounded [10], [11]

||U ||2 ≤ 1

2λmax(P)
||x||2 (21)

where λmin and λmax are minimum and maximum Eigen values of the respective matrices and || · ||2 is the corresponding
2-norm.
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Now considering the stability discussion of our quadrotor control problem. The inner loop attitude control with
different PID controllers can be considered as the system in equation (16). Now considering Va = xT

a Pxa as the
Lyapunov function for different attitude loops such as yaw, pitch and roll, stability can be attained if we satisfy
equation (21). Similarly by choosing Vp = xT

p Pxp the position control loop can be stabilized given equation (21) is
satisfied.

For the inverse kinematics loop choose the function e = xd − xe as the error between desired and actual end-
effector position. According to the discussion in [12] by choosing Ve = eT Ke the closed loop inverse kinematics
algorithm can be rendered asymptotically stable with K positive definite. Finally similar to the discussion in [8] under
the assumption that perfect tracking of desired values is obtained and by choosing the Lyapunov function

Vcl = Ve + Vp + Va (22)

for the complete system, V̇cl can be rendered negative definite from negative definite property of V̇e,V̇p and V̇a to attain
asymptotic stability of the complete system.

SIMULATION

In the current section we will briefly discuss the application of the above discussed control methods to our considered
benchmark Aerial Manipulator. The benchmark simulation system considered here is an Asctec Pelican Quadrotor
which is fixed with a custom made 2-Degree of Freedom manipulator of mass 110 g. The Asctec Pelican Quadrotor

has a mass of 2 Kg and Inertia I = diag
[
1.24 1.24 2.48

]
which has been obtained from [7]. The design and model

of the Aerial manipulator and the manipulator can be seen in Figure-1 and Figure-2.
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FIGURE 4. End Effector Position Control Error.

The operational space control is tested here on the given Aerial Manipulation Vehicle (AMV). The task here
is that the AMV starts from hover condition with quadrotor position starting at {0 + 0.27587, 0, 2 − 0.1184} and
manipulator end-effector position from [0, 0] has to reach {0.5 + 0.27587, 0.5, 1.5 − 0.1184}. In-order to perform the
simulation a single set of control parameters are used. The pitch and roll control gains Kp = 5,Kd = 5 are used while
for the yaw control the gains are Kp = −3,Ki = 0.001,Kd = 0.01. The outer loop position control gains are Kp =

[10,−10],Ki = [0.1, 0.1],Kd = [7, 7],Kdd = [1, 1] for x − y position control and Kp = 10,Ki = 0.1,Kd = 5,Kdd = 1
are the gains used for z− axis. For the manipulator control the gains used are Kp = 1,Kp1 = 50,Kd = 0.1 for each of
the joint and the gains for inverse kinematics loop are K = [1, 1, 1, 1, 1, 1]. The gains chosen here are obtained from
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FIGURE 5. End Effector Attitude Control Error.

trial and error procedure. The simulation results can be seen in Figure-4 and Figure-5. In Figure-4 we can see position
error of the end-effector while in Figure-5 we can see the attitude error of the end-effector. From the results we can
observe that the tracking error asymptotically converges to zero.

CONCLUSION

In the current paper we discussed the hierarchical control problem of the Aerial Manipulation Vehicle in the oper-
ational space. The nonlinear modelling aspect was discussed followed by control design. The stability properties of
the hierarchical control system was also addressed and finally simulation was performed to validate the methodology.
The future perspective of the current research include experimental validation of the proposed methodology.
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