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Abstract 

Background: Mephedrone is a synthetic cathinone and one of the most popular recreationally 

used new psychoactive substances. The aim of the present study was to characterize the in 

vitro pharmacology of novel analogs of mephedrone and related newly emerged designer 

stimulants. 

Methods: We determined norepinephrine, dopamine, and serotonin transporter inhibition 

potencies and monoamine release in transporter-transfected human embryonic kidney 293 

cells. We also assessed monoamine receptor and transporter binding affinities. 

Results: Mephedrone analogs potently inhibited the norepinephrine transporter and, with the 

exception of 3-methylmethcathinone (3-MMC), inhibited the serotonin transporter more 

potently than the dopamine transporter. Similar to classic amphetamines, mephedrone 

analogs were substrate-type monoamine releasers. 5-(2-Aminopropyl)indole (5-IT) was a 

highly potent monoamine transporter inhibitor and a releaser of dopamine and serotonin. 4-

Methylamphetamine (4-MA) mediated efflux of all three monoamines and inhibited the 

serotonin transporter more potently than the dopamine transporter, unlike amphetamine. N-

methyl-2-aminoindane (N-methyl-2-AI) was a selective norepinephrine transporter inhibitor 

and norepinephrine releaser, whereas 5-methoxy-6-methyl-2-aminoindane (MMAI) was a 

selective serotonin transporter inhibitor and serotonin releaser. All of the drugs interacted 

with monoamine receptors. 

Conclusion: The predominant actions on serotonin vs. dopamine transporters suggest that 

dimethylmethcathinones, 4-MA, and MMAI cause entactogenic effects similar to 3,4-

methylenedioxymethamphetamine, whereas 3-MMC, 5-IT, and N-methyl-2-AI have more 

stimulant-type properties like amphetamine. Because of pharmacological and structural 

similarity to mephedrone, similar health risks can be expected for these analogs. 
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Abbreviations 

 2,3-DMMC, 2,3-dimethylmethcathinone; 2,4-DMMC, 2,4-dimethylmethcathinone; 3,4-

DMMC, 3,4-dimethylmethcathinone, 3-MMC, 3-methylmethcathinone; 4-MA, 4-

methylamphetamine; 4-MMC, 4-methylmethcathinone (mephedrone); 5-IT, 5-(2-

aminopropyl)indole; 5-HT, 5-hydroxytryptamine (serotonin); DA, dopamine; DAT, 

dopamine transporter; FLIPR, fluorescence imaging plate reader; HPLC, high-performance 

liquid chromatography; MDMA, 3,4-methylenedioxymethamphetamine; MMAI, 5-methoxy-

6-methyl-2-aminoindane; NE, norepinephrine; NET norepinephrine transporter; N-methyl-2-

AI, N-methyl-2-aminoindane; NPS, new psychoactive substances; SERT, serotonin 

transporter; TAAR, trace amine-associated receptor.  
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1. Introduction 

4-Methylmethcathinone (4-MMC, mephedrone) is a substituted synthetic cathinone 

(β-keto amphetamine) that has recently become popular as a party drug (Dargan et al., 2010; 

Green et al., 2014). Mephedrone was widely sold as a “legal high” and continued to be 

available on the illicit drug market after being classified as illegal (Green et al., 2014; Wood 

et al., 2012). Structurally and pharmacologically similar new psychoactive substances (NPS) 

have emerged on the drug market as legal alternatives to the newly banned mephedrone 

(Brandt et al., 2010). Knowledge of the effects and toxicity of NPS is often solely based on 

user reports and clinical intoxication cases, and pharmacological and toxicological data are 

mostly lacking. Therefore, the assessment of in vitro pharmacological profiles of NPS is a 

first approach to better understand their clinical effects and toxicology. In the present study, 

we assessed monoamine transporter and receptor interaction profiles of a new series of 

mephedrone analogs and related designer drugs (Fig. 1) and compared them to mephedrone. 

Several of the tested substances were first described in the 20th century, but the widespread 

availability and recreational use of these substances is a rather recent phenomenon 

(Baumeister et al., 2015; Brandt et al., 2014; King, 2014; Liechti, 2015). The substituted 

cathinones 2,3-dimethylmethcathinone (2,3-DMMC), 2,4-dimethylmethcathinone (2,4-

DMMC), and 3,4-dimethylmethcathinone (3,4-DMMC) have received relatively little 

attention to date. 3,4-DMMC has recently been sold and confiscated in various countries 

(Locos and Reynolds, 2012; Odoardi et al., 2016; Zancajo et al., 2014). 3-

Methylmethcathinone (3-MMC) has become one of the most popular NPS in various 

European countries after the ban of mephedrone, and it has been associated with clinical 

toxicity and several fatal cases (Adamowicz et al., 2016; Adamowicz et al., 2014; Backberg 

et al., 2015; European Monitoring Centre for Drugs and Drug Addiction, 2015). 5-(2-

Aminopropyl)indole (5-IT) is an indole derivative and stimulant NPS that has been 
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associated with numerous fatal and non-fatal intoxications in recent years (Backberg et al., 

2014; Katselou et al., 2015; Kronstrand et al., 2013; Seetohul and Pounder, 2013). 5-IT has 

been shown to be a substrate at the transporter for norepinephrine (NET), dopamine (DAT), 

and serotonin (SERT) in rat brain synaptosomes with greater potency for release at NET and 

DAT over SERT (Marusich et al., 2016). Moreover, 5-IT produced locomotor stimulation 

and stimulant effects similar to 3,4-methylenedioxymethamphetamine (MDMA) in mice 

(Marusich et al., 2016). 4-Methylamphetamine (4-MA) is an NPS that has been detected in 

street amphetamine (“speed”) samples across Europe and was linked to several fatalities in 

combination with amphetamine (Blanckaert et al., 2013). In a study comparing the 

monoamine releasing potencies of a series of amphetamines analogs in vitro, 4-MA and d-

amphetamine had similar potencies as releasers of norepinephrine (NE) and dopamine (DA), 

but 4-MA was a more potent releaser of serotonin (5-HT) (Wee et al., 2005). 4-MA was self-

administered at a lower rate by rhesus monkeys compared to d-amphetamine (Wee et al., 

2005). N-methyl-2-aminoindane (N-methyl-2-AI) and 5-methoxy-6-methyl-2-

aminoindane (MMAI) are two psychoactive aminoindanes that have been sold as designer 

drugs online. MMAI has previously been shown to have effects on the SERT similar to 

MDMA (Rudnick and Wall, 1993) and a high selectivity for 5-HT vs. NE and DA uptake 

inhibition (Johnson et al., 1991). 

 

2. Material and methods 

2.1. Drugs 

MDMA, mephedrone, and 4-MA were purchased from Lipomed (Arlesheim, 

Switzerland) with high-performance liquid chromatography (HPLC) purity > 98.5%. 2,3-

DMMC, 2,4-DMMC, 3,4-DMMC, 3-MMC, 5-IT, and MMAI were purchased from Cayman 

Chemicals (Ann Arbor, MI, USA) with purity > 98%. N-methyl-2-AI was provided by Dr. 
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Christian Bissig (Forensic Institute, Zürich, Switzerland) with purity > 98%. 5-IT was 

obtained as racemic base; the remaining compounds were obtained as racemic 

hydrochlorides. Radiolabelled norepinephrine and dopamine ([3H]-NE and [3H]-DA, 

respectively) were obtained from Perkin-Elmer (Schwerzenbach, Switzerland). Radiolabeled 

serotonin ([3H]-5-HT) was purchased from Anawa (Zürich, Switzerland). 

 

2.2. Monoamine uptake transport inhibition 

Inhibition of the human NE, DA, and 5-HT transporter (hNET, hDAT, and hSERT, 

respectively) was assessed in human embryonic kidney (HEK) 293 cells (Invitrogen, Zug, 

Switzerland) stably transfected with the respective human transporter as previously described 

(Hysek et al., 2012; Tatsumi et al., 1997). Briefly, cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM; Gibco, Life Technologies, Zug, Switzerland) with 10% fetal 

bovine serum (Gibco) and 250 µg/ml Geneticin (Gibco) to 70-90% confluence, detached, and 

then resuspended (3 × 106 cells/ml) in Krebs-Ringer Bicarbonate Buffer (Sigma-Aldrich, 

Buchs, Switzerland). For [3H]-DA uptake experiments, the uptake buffer was supplemented 

with 0.2 mg/ml ascorbic acid. The cell suspension (100 µl) was incubated with 25 µl buffer 

containing the test drugs, vehicle control, or monoamine-specific inhibitors (10 µM 

nisoxetine for NET, 10 µM mazindol for DAT, and 10 µM fluoxetine for SERT) for 10 min 

in a round bottom 96-well plate at room temperature by shaking at 450 rotations per minute 

on a rotary shaker. To initiate uptake transport, 50 µl of [3H]-NE, [3H]-DA, or [3H]-5-HT 

dissolved in uptake buffer were added at a final concentration of 5 nM for additional 10 min. 

Thereafter, 100 µl of the cell suspension was transferred to 500 µl microcentrifuge tubes that 

contained 50 µl of 3 M KOH and 200 µl silicon oil (1:1 mixture of silicon oil types AR 20 

and AR 200; Sigma-Aldrich). The tubes were centrifuged for 3 min at 16,550g to transport 

the cells through the silicone oil into the KOH. The tubes were frozen in liquid nitrogen and 
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the cell pellet was then cut into 6 ml scintillation vials (Perkin-Elmer) that contained 0.5 ml 

lysis buffer (0.05 M TRIS-HCl, 50 mM NaCl, 5 mM EDTA, and 1% NP-40 in water). The 

samples were shaken for 1 h before 5 ml scintillation fluid (Ultimagold, Perkin Elmer, 

Schwerzenbach, Switzerland) was added. Monoamine uptake was then quantified by liquid 

scintillation counting on a Packard Tri-Carb Liquid Scintillation Counter 1900 TR. 

Nonspecific uptake in the presence of selective inhibitors was subtracted from the total 

counts. 

 

2.3. Transporter-mediated monoamine release 

Transporter-mediated monoamine efflux was assessed in HEK 293 cells stably 

expressing the respective transporter as previously described (Simmler et al., 2013; Simmler 

et al., 2014a). Briefly, 100,000 cells per well were cultured overnight in a poly-D-lysine 

coated XF24 cell culture microplate (Seahorse Biosciences, North Billerica, MA, USA). 

Thereafter, the cells were preloaded with 10 nM [3H]-NE, [3H]-DA, or [3H]-5-HT diluted in 

85 µl Krebs-HEPES buffer (130 mM NaCl, 1.3 mM KCl, 2.2 mM CaCl2, 1.2 mM MgSO4, 

1.2 mM KH2PO4, 10 mM HEPES, 10 mM D-glucose, pH 7.5) containing 10 µM pargyline 

and 0.2 mg/mL ascorbic acid for 20 min at 37 °C, washed twice, and treated with 1000 µl 

Krebs-HEPES buffer containing 100 µM of the test drugs for 15 min (DAT and SERT) or 45 

min (NET) at 37 ºC by shaking at 300 rotations per minute on a rotary shaker. The cells were 

then washed again with cold buffer and lysed in 50 µl lysis buffer during 1 h. Thereafter, 40 

µl of the cell lysate was transferred into 4 ml scintillation vials with 3.5 ml scintillation fluid 

and the radioactivity inside the cells was quantified by liquid scintillation counting as 

described for the monoamine uptake inhibition assay. Monoamine transporter blockers (10 

µM nisoxetine for NET, 10 µM mazindol for DAT, and 10 µM citalopram for SERT) were 

included in the experiment to determine “pseudo-efflux” caused by nonspecific monoamine 
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release and subsequent reuptake inhibition (Scholze et al., 2000). The use of a single high 

concentration and the release durations were based on kinetic evaluation of the release-over-

time curves for substrate-releasers in previous studies (Hysek et al., 2012; Simmler et al., 

2014a). 

 

2.4. Radioligand receptor and transporter binding assays 

 The radioligand binding assays were performed as previously described in detail for 

transporters (Hysek et al., 2012) and receptors (Revel et al., 2011). Briefly, HEK 293 cell 

membrane preparations (Invitrogen, Zug, Switzerland) overexpressing the respective 

transporters (Tatsumi et al., 1997) or receptors (human genes except rat and mouse genes for 

trace amine-associated receptors [TAARs]) (Revel et al., 2011) were incubated with 

radiolabeled selective ligands at concentrations equal to Kd and ligand displacement by the 

compounds was measured. The difference between the total binding and nonspecific binding 

that was determined in the presence of the selected competitors in excess, was defined as 

specific binding of the radioligand to the target. The following radioligands and competitors, 

respectively, were used: N-methyl-[3H]-nisoxetine and indatraline (NET), [3H]citalopram and 

indatraline (SERT), [3H]WIN35,428 and indatraline (DAT), [3H]8-hydroxy-2-(di-n-

propylamine)tetralin and indatraline (5-HT1A receptor), [3H]ketanserin and spiperone (5-

HT2A receptor), [3H]mesulgerine and mianserin (5-HT2C receptor), [3H]prazosin and 

risperidone (α1 adrenergic receptor), [3H]rauwolscine and phentolamine (α2 adrenergic 

receptor), [3H]spiperone and spiperone (D2 receptor), and [3H]RO5166017 and RO5166017 

(TAAR1). 

 

2.5. Activity at the serotonin 5-HT2A receptor 
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Mouse embryonic fibroblasts (NIH-3T3 cells) expressing the human 5-HT2A receptor 

were incubated in HEPES-Hank's Balanced Salt Solution (HBSS) buffer (Gibco; 70,000 

cells/100 µl) for 1 h at 37 °C in 96-well poly-D-lysine-coated plates. To each well, 100 µl dye 

solution (fluorescence imaging plate reader [FLIPR] calcium 5 assay kit; Molecular Devices, 

Sunnyvale, CA, USA) was added and the plates were incubated for 1 h at 37 °C. The plates 

were placed in a FLIPR and 25 µl of the test drugs diluted in HEPES-HBSS buffer containing 

250 mM probenicid were added online. The increase in fluorescence was then measured and 

EC50 values were derived from the concentration-response curves using nonlinear regression. 

The maximal receptor activity (efficacy) is expressed relative to 5-HT activity, which was set 

to 100%. 

 

2.6. Activity at the serotonin 5-HT2B receptor  

 HEK 293 cells expressing the human 5-HT2B receptor were incubated in growth 

medium (DMEM high glucose [Invitrogen, Zug, Switzerland], 10 ml/l PenStrep [Gibco], 

10% fetal calf serum [non-dialysed, heat-inactivated], and 250 mg/l Geneticin) at a density of 

50,000 cells/well at 37 °C in poly-D-lysine-coated 96-well plates overnight. The growth 

medium was then removed by snap inversion, and 100 µl of the calcium indicator Fluo-4 

solution (Molecular Probes, Eugene, OR, USA) was added to each well. The plates were 

incubated for 45 min at 31 °C before the Fluo-4 solution was removed by snap inversion, and 

100 µl of Fluo-4 solution was added a second time for 45 min at 31 °C. The cells were 

washed with HBSS and 20 mM HEPES (assay buffer) immediately before testing using an 

EMBLA cell washer, and 100 µl assay buffer was added. The plates were placed in a FLIPR, 

and 25 µl of the test substances diluted in assay buffer was added online. The increase in 

fluorescence was then measured and EC50 values were derived from the concentration-
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response curves using nonlinear regression. The maximal receptor activity (efficacy) is 

expressed relative to 5-HT activity, which was set to 100%. 

 

2.7. Cytotoxicity 

Cytotoxicity in hSERT-, hDAT-, and hNET-transfected HEK 293 cells was assessed 

with the ToxiLight bioassay kit (Lonza, Basel, Switzerland) according to the manufacturer’s 

protocol. The cells were treated for 1 h at room temperature with the drugs at the highest 

assay concentrations. Adenylate kinase release as a result of cell membrane integrity loss was 

then quantified and compared to control. 

 

2.8. Statistical analysis 

 Monoamine uptake data were fit by nonlinear regression to variable-slope sigmoidal 

dose-response curves and IC50 values were assessed with Prism software (version 7.0a, 

GraphPad, San Diego, CA, USA). The DAT/SERT ratio is expressed as 1/DAT IC50 : 

1/SERT IC50. Analysis of variance followed by the Holm-Sidak test was used to analyze 

drug-induced release of five independent experiments. The drugs were considered 

monoamine releasers if they caused significantly higher (*p < 0.05) efflux than the selective 

inhibitors. IC50 values of radioligand binding were determined by calculating nonlinear 

regression curves for a one-site model using three independent 10-point concentration-

response curves for each substance. Ki (affinity) values, which correspond to the dissociation 

constants, were calculated using the Cheng-Prusoff equation. Nonlinear regression 

concentration-response curves were used to determine EC50 values for 5-HT2A and 5-HT2B 

receptors activation. Efficacy (maximal activity) is expressed relative to the activity of 5-HT, 

which was used as a control set to 100%.  
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3. Results 

3.1. Monoamine uptake transporter inhibition 

 IC50 values for NET, DAT, and SERT inhibition are listed in Table 1, and the 

corresponding uptake inhibition curves are presented in Fig. 2. Mephedrone analogs potently 

inhibited the NET and, with the exception of 3-MMC, were more potent SERT vs. DAT 

inhibitors. 5-IT was a highly potent inhibitor of the NET and a potent inhibitor of the DAT 

and SERT. 4-MA and MMAI inhibited the SERT at submicromolar concentrations but were 

only weak inhibitors of the DAT. N-methyl-2-AI was a selective NET inhibitor with only 

very weak inhibition of the SERT and DAT. 

 

3.2. Monoamine release 

 Monoamine efflux at a 100 µM concentration of the test drugs is shown in Fig. 3. All 

of the cathinones were releasers of all three monoamines, with the exception of 3,4-DMMC, 

for which 5-HT release was not significantly higher than the inhibitor control. 5-IT caused 

DA and 5-HT efflux. 4-MA caused NE, DA, and 5-HT efflux. N-methyl-2-AI was a selective 

NE releaser. MMAI was a selective 5-HT releaser. 

 

3.3. Monoamine receptor and transporter binding affinities 

 The monoamine receptor and transporter binding affinities and receptor activation 

potentials of the mephedrone analogs and related designer drugs are shown in Table 2. None 

of the drugs interacted with the dopamine D2 receptor, but all of the drugs had low 

micromolar or submicromolar affinity for α1A or α2A adrenergic receptors. 4-MA and N-

methyl-2-AI interacted with the α2A receptor but not the α1A receptor. All other compounds 

interacted with the α1A and the α2A receptor. 3-MMC, N-methyl-2-AI, and MMAI had low 

micromolar affinities for the serotonin 5-HT1A receptor, and the other drugs had only low or 
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no affinity for this receptor. All of the drugs bound to the 5-HT2A receptor, but only 2,3-

DMMC, 5-IT, 4-MA, and mephedrone activated the receptor. Only 5-IT and 4-MA activated 

the 5-HT2B receptor. N-methyl-2-AI did not bind to the 5-HT2C receptor, whereas the other 

drugs bound with affinities of 1.3–8.1 µM. All of the drugs interacted with rat and mouse 

TAARs. 

 

3.4. Cytotoxicity 

 None of the drugs were cytotoxic up to 1 h at the investigated concentrations, thus 

confirming cell integrity during the functional assays. 

 

4. Discussion 

4.1. Monoamine uptake transporter inhibition 

Similar to mephedrone, the novel mephedrone analogs potently inhibited the NET, 

which likely results in similar sympathomimetic stimulation (Hysek et al., 2011). The crucial 

role of NE in the acute effects of psychostimulants is supported by the finding that the release 

of NE but not DA correlates with human doses of amphetamine-type stimulants (Rothman et 

al., 2001). Additionally, NET inhibition potency values strongly correlated with the 

psychotropic effective doses of psychostimulants including cathinones in humans (Simmler 

et al., 2013). Furthermore, NE has been shown to contribute to the acute subjective 

stimulation and cardiovascular effects of MDMA in humans (Hysek et al., 2011). (Hysek et 

al., 2011) 

3-MMC more potently inhibited the DAT than the SERT. Mephedrone (4-MMC) had 

similar potency at the DAT and SERT as previously shown in some other studies (Baumann 

et al., 2012; Hadlock et al., 2011; Simmler et al., 2013), while others found 5–10-fold higher 

potency at the DAT vs. SERT (Eshleman et al., 2013; Mayer et al., 2016; Pifl et al., 2015). 
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Moreover, the present high NET vs. DAT selectivity of mephedrone was not or less observed 

in some other studies (Eshleman et al., 2013; Mayer et al., 2016; Pifl et al., 2015). While the 

selectivity of mephedrone for the NET over the SERT in our study is similar to other in vitro 

studies (Eshleman et al., 2013; Mayer et al., 2016; Pifl et al., 2015), the NET over DAT 

selectivity appears to be higher compared with other labs. This has been observed for 

mephedrone in previous studies of our lab (Rickli et al., 2015a; Simmler et al., 2013), 

suggesting that those differences may be explained by differences in the experimental design 

or the transfected cell line. 

The dimethylmethcathinones inhibited the SERT more potently than the DAT. These 

results suggest that 3-MMC has stronger amphetamine-like stimulant properties compared 

with mephedrone and especially the other more serotonergic dimethylmethcathinones. 

Stimulant toxicity was reported to be the main clinical feature in patients with recreational 3-

MMC intoxication, although often combined with other drugs (Backberg et al., 2015). 

Dimethylmethcathinones presumably have entactogenic properties that are similar to MDMA 

because of greater activation of the 5-HT system (Hysek et al., 2012; Simmler et al., 2013). 

High selectivity for the SERT vs. DAT was also observed for the para-substituted 4-MA, 

whereas previous studies found high inhibition selectivity for the DAT vs. SERT for 

amphetamine (Rickli et al., 2015a; Simmler et al., 2013). The strong serotonergic activity of 

4-MA has been hypothesized to decrease its reinforcing potency compared with other 

amphetamine analogs (Baumann et al., 2011; Wee et al., 2005). However, the strong 

serotonergic activity of 4-MA may have led to several fatal cases when combined with the 

strong dopaminergic activity of amphetamine in users of 4-MA contaminated “speed” 

(Blanckaert et al., 2013). Moreover, the extreme hyperthermia that is observed in such 

patients may be explained by the strong serotonergic potency of 4-MA, which is not shared 

by amphetamine (Blanckaert et al., 2013). 5-IT was a very potent inhibitor of the NET, with 
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potent inhibition also of the DAT and SERT. 5-IT has been associated with sympathomimetic 

and serotonergic toxicity and was involved in numerous deaths across Europe (Backberg et 

al., 2014; Katselou et al., 2015; Kronstrand et al., 2013; Seetohul and Pounder, 2013). N-

methyl-2-AI selectively inhibited the NET, with very weak inhibition potency for the DAT 

and SERT, suggesting mild psychoactive effects that are similar to 2-aminoindane (2-AI) 

(Simmler et al., 2014b). MMAI had NET inhibition potencies that were similar to N-methyl-

2-AI. Unlike N-methyl-2-AI, however, MMAI potently inhibited the SERT at submicromolar 

concentrations. 

 

4.2. Monoamine release 

Consistent with previous studies, mephedrone caused efflux of all three monoamines 

(Baumann et al., 2012; Eshleman et al., 2013; Mayer et al., 2016). The cathinone analogs of 

mephedrone were also monoamine releasers, indicating that they are monoamine transporter 

substrates like most amphetamines (Sitte and Freissmuth, 2015). One exception was 3,4-

DMMC, which was a potent inhibitor of the SERT but did not cause significant 5-HT efflux. 

The monoamine transporter inhibition profile of 3,4-DMMC is similar to MDMA (Simmler 

et al., 2013), but their differences in 5-HT release may partially explain their different 

subjective effects and potency. 4-MA released all three monoamines as described for 

amphetamine (Rickli et al., 2015a). 5-IT was a very potent inhibitor of the NET, but NE 

release was not observed. N-methyl-2-AI selectively inhibited the NET and was also a 

selective NE releaser. MMAI was a highly selective 5-HT releaser, consistent with previous 

reports (Marona-Lewicka and Nichols, 1994, 1998). The high serotonergic activation by 

MMAI suggests entactogenic effects. However, the lack of any effect on the DA or NE 

system indicates that the psychopharmacology of MMAI differs from typical entactogens like 

MDMA (Marona-Lewicka and Nichols, 1994). 
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4.3. Receptor-binding profiles 

All of the drugs potently bound to adrenergic receptors, which are known to modulate 

stimulant-induced behavior (Schmidt and Weinshenker, 2014). Furthermore, the drugs 

interacted with several serotonin receptors. All of the compounds bound to the 5-HT2A 

receptor as previously shown for mephedrone and MDMA (Eshleman et al., 2013; Simmler 

et al., 2013) and typically for serotonergic hallucinogens (Eshleman et al., 2014; Nichols, 

2016; Rickli et al., 2015c; Rickli et al., 2016). Additionally, 2,3-DMMC, mephedrone, and 5-

IT were potent functional 5-HT2A agonists in our calcium mobilization assay like MDMA 

(Rickli et al., 2015b) and classic serotonergic hallucinogens (Rickli et al., 2016) known to 

produce their psychotropic effects at least in part via 5-HT2A receptor activation (Liechti et 

al., 2000; Preller et al., 2017; Vollenweider et al., 1998). Another study documented 5-HT2A 

receptor antagonistic properties for mephedrone in another 5-HT-induced inositol 

monophosphate formation assay (Eshleman et al., 2013). However, MDMA had both agonist 

(Eshleman et al., 2014) and antagonist effects (Eshleman et al., 2013) in this assay indicating 

that the 5-HT2A ligands may act as agonist and antagonists depending on assay set-up. 

Certain hallucinogenic properties have been described for mephedrone (Kasick et al., 2012; 

Schifano et al., 2011) and our results suggest that 2,3-DMMC could have hallucinogen-like 

properties as well. 5-IT is a positional isomer of the psychedelic tryptamine α-

methyltryptamine (αMT). 5-IT has been previously suggested to also have hallucinogenic 

properties (Marusich et al., 2016), and its potent 5-HT2A receptor activation supports this 

possibility. All of the substances interacted with rat and mouse TAARs. Many stimulant NPS 

interact with TAARs (Simmler et al., 2016), which have a modulatory role on 

monoaminergic activity (Revel et al., 2012; Revel et al., 2011). In a recent screening of a 

large set of NPS, cathinones were described as poor TAAR1 ligands (Simmler et al., 2016). 
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Our results suggest that this does not apply to all cathinones as submicromolar affinity for rat 

and mouse TAARs was observed for 2,4-DMMC and 2,3-DMMC, respectively. 

The present study has limitations. First, we did not investigate the effects of the drugs 

on intracellular targets such as the vesicular monoamine transporter 2 (VMAT2). Lower 

potency VMAT2 interactions have been reported for methcathinones compared to MDMA 

and methamphetamine (Eshleman et al., 2013; Fleckenstein et al., 2009; Pifl et al., 2015). It 

was therefore concluded that mephedrone is unlikely to cause neurotransmitter release form 

synaptic vesicles (Eshleman et al., 2013). Second, the static monoamine release assay used in 

the present study was only useful to qualitatively determine whether a drug is a substrate 

releaser or not, but the assay was not suitable to assess the potency of the releasers. 

Superfusion assays would be more suitable to also determine the potency of the substances to 

release monoamines (Eshleman et al., 2013). However, the potency of the substances to 

release monoamine is reflected by their potency to inhibit monoamine uptake in the uptake 

assay used in the present study (Simmler et al., 2013). Finally, we included no in vivo data. 

However, in vivo microdialysis studies showed that the cathinones mephedrone and 

methylone markedly released both 5-HT and DA at similar potencies reflecting their in vitro 

pharmacological profiles (Baumann et al., 2012; Kehr et al., 2011). Additionally, 

methcathinone was a more potent inhibitor of the DAT than SERT in vitro, more potently 

released monoamines via the DAT than SERT (Cozzi et al., 2013; Simmler et al., 2013), and 

consistently also more potently increased extracellular DA than 5-HT in rat brain nucleus 

accumbens dialysate (Cozzi et al., 2013). Vice versa, the more potent in vitro SERT than 

DAT inhibitor and predominant 5-HT releaser 4-trifluoromethylmethcathinone (4-TFMAP) 

increased 5-HT but not DA in vivo (Cozzi et al., 2013). Thus, for several cathinones the in 

vitro profiles accurately predicted the in vivo neurochemical effects.  
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5. Conclusion 

 The present study characterized a series of novel mephedrone analogs that potently 

interacted with monoamine transporters and receptors, suggesting their potential abuse 

liability, which has been previously observed for synthetic cathinones. 4-MA is a potent 

inhibitor of the SERT, which may explain its higher toxicity when combined with the potent 

DAT inhibitor amphetamine. 5-IT is a highly potent monoamine transporter inhibitor that has 

been associated with sympathomimetic toxicity and numerous fatalities across Europe. N-

methyl-2-AI is a selective NET inhibitor and NE releaser, and MMAI is a selective SERT 

inhibitor and 5-HT releaser. 
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Figures 

 

Fig. 1. Chemical structures of mephedrone analogs and related designer drugs. 
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Fig. 2. Monoamine uptake inhibition in stably transfected HEK 293 cells that expressed the 

hNET, hDAT, or hSERT. Curves were fitted by non-linear regression, and corresponding 

IC50 values are shown in Table 1. The data are presented as the mean ± SEM. Numbers in 

parentheses indicate the number of individual experiments performed in triplicate 

(hNET/hDAT/hSERT): 2,3-DMMC (3/3/7), 2,4-DMMC (4/6/3), 3,4-DMMC (4/3/3), 3-

MMC (3/3/3), 4-MMC (3/3/3), 5-IT (3/4/3), 4-MA (4/3/4), N-methyl-2-AI (3/6/5), MMAI 

(4/6/5). 
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Fig. 3. Monoamine release induced by 100 µM of the drugs after preloading hNET-, hDAT-, 

or hSERT-expressing HEK 293 cells with radiolabeled monoamines. “Pseudo-efflux” that 

arose from monoamine diffusion and subsequent reuptake inhibition is marked with a dashed 

line. Substances that caused significantly higher monoamine efflux (*p < 0.05) than pure 

uptake inhibitors (open bars) were determined to be monoamine releasers. The data are 

presented as the mean ± SEM of five independent experiments. 
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Tables 

Table 1. Monoamine transport inhibition. 

 NET 

IC50 [µM] (95% CI) 

DAT 

IC50 [µM] (95% CI) 

SERT 

IC50 [µM] (95% CI) 

DAT/SERT 

 ratio (95% CI) 

Cathinones     

3-MMC 0.27 (0.21-0.36) 2.6 (2.0-3.3) 9.5 (6.9-13.2) 3.7 (2.1-6.6) 

4-MMC 0.26 (0.19-0.35) 5.7 (4.5-7.2) 3.6 (2.8-4.6) 0.63 (0.39-1.02) 

2,3-DMMC 0.53 (0.36-0.78) 7.4 (5.4-10.1) 1.2 (1.0-1.4) 0.16 (0.10-0.26) 

3,4-DMMC 0.45 (0.33-0.60) 9.4 (7.6-11.7) 1.1 (0.9-1.4) 0.12 (0.08-0.18) 

2,4-DMMC 1.5 (1.1-2.0) 83 (65-105) 1.5 (1.0-2.2) 0.02 (0.01-0.03) 

Phenethylamines     

5-IT 0.04 (0.03-0.06) 0.68 (0.55-0.85) 1.3 (0.9-1.7) 1.9 (1.1-3.1) 

4-MA 0.31 (0.24-0.42) 5.6 (4.5-6.9) 0.82 (0.64-1.05) 0.15 (0.09-0.23) 

Aminoindanes     

N-methyl-2-AI 2.4 (1.9-3.1) 90 (71-113) 223 (175-284) 2.5 (1.5-4.0) 

MMAI 3.6 (2.5-5.3) 193 (167-225) 0.68 (0.50-0.92) 0.004 (0.002-0.006) 

Values are means and 95% confidence intervals (CI). DAT/SERT ratio = 1/DAT IC50 : 1/SERT IC50. 



	  
	  

31	  

 

 

 

Table 2. Monoamine transporter and receptor binding affinities. 

 
NET DAT SERT D2 α1A α2A 5-HT1A 5-HT2A 5-HT2A 5-HT2B 5-HT2C TA1rat TA1mouse 

 
Ki Ki Ki Ki Ki Ki Ki Ki EC50 Emax EC50 Emax Ki Ki Ki 

Cathinones 

               2,3-DMMC 8.4±0.3 4.2±0.6 6.1±0.5 >11 0.78±0.10 3.0±0.1 >17 0.64±0.19 0.13±0.02 84±12 >10 
 

2.4±0.9 1.2±0.1 0.88±0.06 

2,4-DMMC >26 >26 17±1 >11 0.16±0.02 3.0±0.3 15±3 1.3±0.1 >10 
 

>10 
 

1.3±0.3 0.59±0.08 3.1±0.2 

3,4-DMMC 12±2 7.6±0.6 5.7±0.3 >11 1.9±0.3 3.5±0.2 >17 1.9±0.3 >10 
 

>10 
 

1.5±0.2 2.6±0.2 4.5±0.4 

3-MMC 5.6±1.5 3.2±0.6 >22 >12 7.9±0.2 1.1±0.1 4.8±0.5 3.4±0.8 >20 
 

>20 
 

3.6±1.0 5.7±1.4a 10±1a 

4-MMC >26 2.9±0.2 >22 >11 1.1±0.1 11±1 >17 1.6±0.2 0.36±0.19 79±20 >10 
 

8.1±5.4 5.0±0.1 12±1 

Phenethylamines 

               5-IT 1.3±0.3 0.92±0.13 10±2 >25 5.4±0.5 1.7±0.1 11±2 0.38±0.11 0.49±0.17 42±9 1.5±0.6 36±5 3.0±0.8 0.15±0.02a 0.36±0.15a 

4-MA 9.4±1.2 9.4±0.9 13±3 >25 >12 2.1±0.4 18±6 3.3±0.5 3.3±1.0 71±4 0.86±0.38 54±8 6.3±1.1 0.10±0.01a 0.15±0.07a 

Aminoindanes 

               N-methyl-2-AI >30 >30 >30 >25 >12 0.49±0.07 3.6±0.1 5.4±0.9 >20 
 

>20 
 

>15 0.53±0.04a 2.6±0.1a 

MMAI >26 >26 11±1 >11 4.0±0.2 1.0±0.1 1.6±0.2 8.3±1.3     >10   5.4±1.4 0.14±0.02 4.9±1.1 

Ki and EC50 values are given as µM (mean±SD); activation efficacy (Emax) is given as percentage of maximum±SD. 

aValues are from Simmler et al., 2016. 


