
PHYSICAL REVIEW E 84, 051911 (2011)

Target search on a dynamic DNA molecule
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We study a protein-DNA target search model with explicit DNA dynamics applicable to in vitro experiments.
We show that the DNA dynamics plays a crucial role for the effectiveness of protein “jumps” between sites
distant along the DNA contour but close in three-dimensional space. A strongly binding protein that searches by
one-dimensional sliding and jumping alone explores the search space less redundantly when the DNA dynamics
is fast on the time scale of protein jumps than in the opposite “frozen DNA” limit. We characterize the crossover
between these limits using simulations and scaling theory. We also rationalize the slow exploration in the frozen
limit as a subtle interplay between long jumps and long trapping times of the protein in “islands” within random
DNA configurations in solution.
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I. INTRODUCTION

The quantitative characteristics of proteins searching for
their specific target sites on long DNA molecules have become
a paradigmatic question of biological physics [1–4]. The
question is of considerable biological interest since search
processes of this type are key steps in cellular functions. For
instance, in signal transduction, a protein belonging to the
large class of transcription factors conveys an external signal
and triggers the appropriate genetic response by binding to
specific target sites on the genomic DNA. Similarly, restriction
enzymes, used by bacteria to fight invading viruses, search
for cleavage sites marked by specific DNA sequences. It
is generally assumed that the target search mechanism has
been optimized by evolution due to selective pressure for fast
signaling and rapid responses in competitive environments.
From the physics perspective, the protein-DNA target search is
a complex but tractable stochastic process that combines basic
aspects of Brownian motion, polymer physics, and information
theory [5–16]. Experimentally, the search process can be
probed on the single-molecule level in vitro [17] and even
in vivo [18].

Early in vitro experiments [2] indicated that the association
rate of lac repressor to its target site embedded in short pieces
of DNA is faster than the diffusion limit, ka = 4πDb, for a
direct binding reaction with diffusion constant D and reaction
radius b. Inspired by Adam and Delbrück’s idea that reduction
of dimensionality is a generic way to enhance reaction rates
[19], Richter and Eigen [3] interpreted these experiments
with a two-step mechanism where three-dimensional (3D)
diffusion and nonspecific association to DNA is followed by
one-dimensional (1D) diffusive sliding into the target site. In a
seminal series of papers [4], Berg, Winter, and von Hippel
then established much of what is known today about the
protein-DNA search kinetics. They experimentally varied the
nonspecific binding strength via the ion concentration, identi-
fied an optimum where the search is fastest, and explained the
behavior in a theoretical analysis.
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The existence of an optimum reflects a generic tradeoff in
search processes for hidden targets [20]: A stochastic local
search is exhaustive but redundant; interrupting the search by
phases of rapid movement to new territory is a time investment
that pays off by reducing the redundancy. The optimal fraction
of time spent in each of the two “modes” depends on
the statistical characteristics of the search mechanism. The
simplest scenario, where proteins slide diffusively along the
DNA, dissociate spontaneously, and randomly reattach at
uncorrelated positions, leads to an optimum where, on average,
only half of the proteins are bound somewhere on the DNA
and the other half is in solution [4]. Physically, this is best
understood [9] in terms of the typical dwell times of a protein
in the sliding mode τs and in the dissociated state τd . The
latter should be regarded as a fixed parameter, set by cell size
and composition, whereas τs can be adapted by molecular
evolution of the DNA-binding domain of the protein (to adjust
the nonspecific affinity). If τs < τd , the protein spends too little
time searching, while if τs > τd , the search is too redundant;
the search is fastest when they are equal.

However, in bacterial cells, well-studied transcription fac-
tors are bound to DNA �90% of the time [5]. This fact has
drawn attention to the “intersegment transfer” [4,11,13,15]
of proteins within the same DNA molecule, between sites
close in space but distant along the contour. Potentially, this
process can destroy the redundancy of the 1D search without
the price of interrupting it by long excursions into the solvent.
The term was introduced for proteins with two DNA-binding
domains and refers to a process during which the protein
never detaches from the DNA; a similar transfer but with
a brief unbound period is referred to as “hopping” [4]. In
both cases, the essential difference to the uncorrelated random
reattachment discussed above is the correlated nature of the
process: Transfer does not occur with equal probability to
every site on the DNA but to “linked” sites. Here we simply
refer to both processes as “jumping.”

The interplay of protein sliding and jumping leads to
intricate search dynamics. An analytical study [11] consid-
ered the effect of jumps using the fractional Fokker-Planck
equation [21], which assumes that consecutive jumps are
uncorrelated, i.e., that the DNA configuration randomizes
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FIG. 1. (Color online) Illustration of the target search by sliding
(1D diffusion) and jumping on a dynamic polymer.

between two jumps. In contrast, a numerical study of sliding
and jumping on a random but frozen contour [22] showed
that correlations between jumps drastically alter the dynamics,
leading to “paradoxical” quasidiffusive behavior instead of
superdiffusion along the contour. Specifically, the distribution
of the protein on the DNA exhibits characteristic heavy
tails even though its width increases only diffusively. These
findings, and the fact that the dynamics of real DNA is neither
frozen nor annealed over the relevant range of microsecond to
second time scales [4], call for an analysis of target search on a
dynamic DNA; see Fig. 1. Here we characterize the crossover
between the frozen and the annealed regime using simulations
and scaling theory. We then study the mechanism whereby
correlated jumps create the paradoxical behavior in the frozen
limit.

II. MODEL

To make the problem tractable, we describe the DNA
contour as a path of L segments on a simple cubic lattice and
generate its conformational dynamics with a kinetic Monte
Carlo scheme based on a generalized Verdier-Stockmayer
move set [23] with moves for kinks, chain ends, and
crankshafts; see Fig. 2. These moves, carried out at rate kD,
implement Rouse dynamics on a lattice for an ideal chain (no
self-avoidance). That crankshaft turns are necessary to obtain
Rouse dynamics becomes intuitively clear if one considers

 

FIG. 2. (Color online) Illustration of the move set of our kinetic
Monte Carlo scheme. (left) The DNA chain is represented by a path
on a cubic lattice. The protein is represented by a point particle
that moves at rate kp, either by randomly sliding along the chain
contour or by jumping to another segment of the chain at the same
position. (right) The link diagram representation has the DNA contour
stretched out to a line and indicates possible jumps by arcs. Links
can be created or destroyed by the Rouse dynamics of the DNA,
which is implemented with a generalized Verdier-Stockmayer move
set allowing for kink flips, turns at the chain end, and crankshaft
moves. Each move is carried out at the rate kD.

a planar DNA conformation as the initial state: without the
crankshaft move, only the ends of the contour can move out
of the plane, which would lead to an equilibration time slower
than the L2 scaling in the Rouse model.

We describe a protein as a point particle on the lattice,
which diffuses along the DNA contour at rate kp. If another
DNA segment passes through the same point, the protein can
randomly jump to it (at the same rate kp, for simplicity). The
dimensionless kinetic ratio

k = kD/kp (1)

is an important parameter of our model that measures the time
scale of the protein kinetics relative to the DNA kinetics (see
further below for a rough experimental estimate). We focus on
the limit of strong DNA binding without explicit 3D diffusion
of the protein (although jumps may involve 3D diffusion, as
discussed above). As initial condition, we use a random DNA
configuration with the protein on the central segment. Clearly,
the configuration of the DNA inside a bacterial cell is not
random due to genome packaging and confinement, but a
random configuration is an interesting starting point for the
exploration of the physical principles and mimics the situation
of in vitro experiments.

III. RESULTS

A. Transport

To characterize how a protein explores the search space,
we study the time evolution of its probability distribution
P (s,t) along the DNA contour (0 � s � L). Figure 3 plots its
width �(t), defined as the interquartile range � = I−1( 3

4 ) −
I−1( 1

4 ) of the cumulative distribution I (y) = ∫ y

0 ds P (s,t), for
different kinetic ratios k. We obtain P (s,t) by averaging over
�103 simulations, with L = 5000 and different initial DNA
configurations. In the “quenched limit” k → 0 (squares), the
protein moves on a frozen contour, and the width grows
quasidiffusively with time, � ∼ t1/2, despite the long-range
jumps along the contour and a heavy tail of the distribution
P (s,t) at fixed t [22]. In the opposite “annealed limit” k → ∞
(crosses, obtained by randomly drawing a new DNA con-
figuration after each jump), the distribution initially spreads
superdiffusively along the contour, � ∼ tα (here α ≈ 1.7).
The width saturates at � → L/2 as the protein explores the
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FIG. 3. Time evolution of the width � of the protein distribution
P (s,t) for different kinetic ratios k = kD/kp. A crossover from
superdiffusive to quasidiffusive dynamics occurs for finite k.
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FIG. 4. (Color online) Simulation results for the target search on the dynamic DNA chain (of length L = 5000). The protein was initially
placed in the center of the chain and the time was measured until it first arrived at a target site placed a distance s away. These simulations were
performed 1000 times, using different initial polymer configurations, to determine the median of the search time, which represents a typical
search time. Both s and the kinetic ratio k = kD/kp of DNA to protein moves were varied. The simulation of the target search on the dynamic
chain is computationally expensive, which limits our range of k values. (a) The typical search time to a target site at distance s = 2000 as a
function of the kinetic ratio k. A substantial increase of the search time with slowing DNA kinetics is apparent. (b) The typical search time
plotted against the distance of the target site for the different kinetic ratios. The dependence of the search time on the distance s becomes
weaker as k is increased (however, a significant dependence on s remains for all our k values).

entire DNA. In the regime of intermediate k, which is relevant
in most experimental situations, �(t) displays a crossover
from superdiffusive to quasidiffusive scaling. The curves for
different k show that the crossover time scale τc increases
with k.

For large k, the connectivity of the DNA meshwork on
which the protein moves changes rapidly, such that successive
jumps are uncorrelated (they occur on different link sets).
One can then describe the dynamics by the average jump
probability P (s,s ′) from site s to site s ′, which is physically
determined by the DNA looping probability. For an ideal chain,
this probability decays as |s − s ′|−3/2 for large loops before
it is cut off by the finite DNA length. When successive jump
lengths are independently drawn from this distribution, the
typical distance � from the initial position is dominated by the
largest jump, which grows with the number of jumps (∼t) as
�(t) ∼ t2 [24]. Indeed, our numerical exponent α approaches
2 at large L (data not shown). However, what does the transport
�(t) imply for the target search process?

B. Search time

Without a guiding “funnel,” no search process can be faster
than linear exploration. A faster than linear �(t) leads to a
“sloppy search” [11] where patches dispersed over the entire
contour are explored before the target is located. This is
precisely what is required to break the redundancy of 1D
diffusion, suggesting that jumping is an effective mechanism
that could replace 3D diffusion in the annealed regime. On
the other hand, we expect that jumping is ineffective in
the frozen limit, as it leads only to quasidiffusive spreading
along the DNA. To study the target search on dynamic DNA
explicitly, we performed simulations with a target site placed at
different distances from the initial protein position. Figure 4(a)
shows that the search indeed takes increasingly longer as the
DNA dynamics is slowed. Figure 4(b) shows that the strong

dependence of the search time on the initial distance to the
target (at k = 0) becomes weaker as k is increased; see caption
for details.

It will require single-molecule experiments of the type of
[18] (but under controlled in vitro conditions) to find out which
regime of k values is biologically most relevant. However, a
rough estimate, based on the experimental relaxation time of
τ = 30 s for the contour of a L = 43 μm DNA fragment and
the experimental scaling law τ ∼ L1.65 [25], indicates that on
the millisecond time scale of protein jumps [4], only short
DNA segments will be equilibrated. We therefore expect that
neither the annealed nor the frozen limit but the crossover
regime will be most relevant experimentally.

C. Scaling of the crossover

To understand the physics of the crossover regime within
our model, we apply a scaling argument to the interplay of
DNA and protein dynamics: A DNA segment of length �

equilibrates on a time scale τ ∼ �2 (Rouse dynamics). Within
a time τ after a protein docks onto the DNA and starts
exploring, it typically visits a DNA stretch �(τ ). During
this time, a DNA segment of size � ∼ (kDτ )1/2 equilibrates.
Superdiffusive protein transport results as long as �(τ ) < �;
however, the fast growing �(t) ∼ (kpt)α quickly outruns the
“equilibration blob,” and the passing point marks the crossover
to the quasidiffusive regime. With α = 2, this crossover time
scale tc then depends on the kinetic ratio k as kptc ∼ k1/3. Our
simulations cannot explore a wide range of k values due to
computational cost and do not allow a precise determination of
this scaling (however, the scaling exponent that best describes
our limited data deviates only by 0.08 from the expected value
of 1/3; see Fig. 5). The small numerical value of the exponent
leads to a broad crossover as a function of k, again suggesting
that neither the annealed nor the frozen limit is experimentally
attainable.
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FIG. 5. (Color online) Data collapse to extract an estimate of
the scaling behavior of the crossover between superdiffusive and
quasidiffusive dynamics. The three curves from Fig. 3 with different
finite kinetic ratios k can be collapsed onto each other by rescaling the
axes (here we have used the asymptotic value of 2 for the exponent
α). The best collapse is obtained when the time is rescaled as t/kδ

with δ around 0.25. This exponent deviates from the theoretically
expected value of 1/3; however, the deviation is not significant given
the finite size effect of our simulations.

D. Quenched limit

To obtain a better understanding of the mechanism respon-
sible for the slowdown of the search, we focus on the quenched
limit. When first reported [22], the quasidiffusive transport was
attributed to correlation effects. However, what is the nature
of these correlations, and how do they render the long-range
jumping process quasidiffusive? We distinguish two types of
correlations, which we refer to as temporal and spatial. For
this distinction, it is useful to picture the DNA configuration
in the link diagram representation of Fig. 2. On static DNA,
a protein can use the same links multiple times, leading to
temporal correlations. Additionally, the positions of different
links are spatially correlated since an existing link strongly
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FIG. 6. (Color online) Kinetic Monte Carlo simulation of the
protein dynamics on reshuffled link sets. The data are obtained from
simulations using the actual link set of a random DNA configuration
and then randomly reshuffling the positions of these links (while
conserving the length of each link). The protein dynamics is simulated
on this reshuffled but temporally fixed link set. Finally, the average
dynamics of the width �(t) is obtained by averaging over many
initial DNA configurations (each randomly drawn). The dynamics of
�(t) is superdiffusive, showing that the temporal correlations are not
sufficient to produce the quasidiffusive behavior (see main text).
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FIG. 7. (Color online) (a) The link diagram for a typical DNA
conformation is separable into islands (top green line). (b) Random
reshuffling of the same links destroys the islands. (c) A toy model
for transport on the island structure leads to the dynamical phase
diagram, which explains the quasidiffusive regime as a cancellation
of the effect of traps and long-range jumps.

enhances the probability to find another link nearby (e.g., a
loop in the DNA favors further contacts within the loop). To
separate the effect of temporal and spatial correlations, we
destroy the latter by choosing a new random starting point
for each link while conserving its arc length |s − s ′|. The
protein transport on such reshuffled link sets is superdiffusive,
as revealed by simulations shown in Fig. 6. Hence temporal
correlations alone are not sufficient to cause the quasidiffusive
behavior. A simple argument makes this plausible: If the region
visited by the protein grows superdiffusively as �(t) ∼ t2, the
protein visits only a fraction ∼1/t of the sites within �. Since
it sees each site O(1) times, it mostly uses novel links, and the
persistence of links is unimportant.

E. Islands

A striking consequence of the spatial correlations is
revealed in Fig. 7(a), where all links in a typical DNA
configuration are depicted as arcs. The arcs cluster into
“islands” with many internal links but no links between islands.
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FIG. 8. (Color online) Distribution of islands sizes. The distri-
bution was obtained by generating random DNA conformations of
length L and picking a single island from each link diagram at random.
The distribution displays the same power law decay as the distribution
of link lengths.
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FIG. 9. (Color online) Exit probability from an island to the right
as a function of the starting position x0 (normalized here by the island
size s). The exit probability is shown both for a single randomly
chosen island (blue downward triangles) with the link configuration
indicated by the link diagram in the bottom and averaged over an
ensemble of 1000 islands of the same size (black triangles). For
comparison, the case of pure diffusion (no links), where the exit
probability depends linearly on the starting position, is also shown
(the solid line shows the analytical dependence, while the circles
indicate simulation data, which were obtained as a control using
the same simulation code as for the islands). It is evident that the
probability of exiting an island on a given side depends only weakly
on the initial position, at least in the core of the island. This justifies
our coarse grained hopping model in island space.

These islands disappear when the same links are randomly
placed on the DNA; see Fig. 7(b). Intuitively, it is clear that
the existence of islands slows the exploration of the DNA
since the protein can move from one island to another only by
sliding. In fact, if the islands had a well-defined typical size s,
the protein dynamics would be diffusive on long scales s � s.
However, the problem is more intricate since the distribution
of island sizes has the same heavy tail p(s) ∼ s−3/2 as the
link length distribution; see Fig. 8. Nevertheless, the existence
of islands is a crucial clue; we show below that it leads to a
dynamics that can be described by a 1D transport model with
traps and long-distance jumps. To this end, we first note two
essential transport properties of islands: (i) Due to the internal
links, the position of a protein is rapidly randomized within an
island, such that for most starting positions within an island,
it leaves the island with nearly the same probability to each
side; see Fig. 9. (ii) The typical trapping time within an island
scales as τ ∼ s3/2 with the island size; see Fig. 10.

Given these properties, we consider protein transport on an
array of islands with sizes si drawn from the distribution p(s).
Each island has an associated trapping time τi(si). It will be
instructive to allow for adjustable exponents μ and κ in the
scaling behavior, p(s) ∼ s−1−μ and τ ∼ sκ . Combining these
relations, we obtain a distribution of trapping times w(τ ) ∼
τ−1−μ/κ since w(τ )dτ = p(s)ds. The transport behavior of
the protein in island space is then determined by the ratio of
the exponents: Using the first passage time calculus [26], the
typical time needed to move over n islands is

T ∼ n

n∑
i=1

τi ∼
{

n
1+ κ

μ for κ > μ

n2 for κ < μ
, (2)
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FIG. 10. (Color online) Average trapping time of a protein within
an island as a function of island size s. Each data point is obtained
as an average over many simulations where a protein is initialized
in the center of an island of size s within a randomly drawn DNA
configuration, and the time until it exits from the island is recorded.
This island size dependent characteristic trapping time scales as
τ (s) ∼ s3/2.

with the sum dominated by the largest term for the case κ > μ

while a typical trapping time exists for κ < μ. To map the
dynamics in island space back onto the DNA, note that the
total DNA length S of n islands scales as

S(n) ∼
{

n1/μ for μ < 1
n for μ > 1

, (3)

as S is dominated by the largest island for μ < 1. Combining
(2) and (3) yields the transport behavior along the DNA, i.e.,
the typical time to travel a given distance. Figure 7(c) shows
the phase diagram spanned by the exponents μ and κ . It
exhibits four different regimes. For μ > 1, the distribution
of island sizes has a well-defined mean and no superdiffusion
can occur, but subdiffusive dynamics results when the trapping
time distribution has a sufficiently heavy tail (μ < κ). If
μ < 1, the dynamics is superdiffusive unless long trapping
times in islands compensate for long jumps. In particular,
t ∼ sμ+κ for μ < κ , which includes the case of interest here,
where the two exponents precisely add up to 2, rationalizing
quasidiffusion in the quenched limit. Within our more general
island model, a whole line of points exists where the dynamics
is quasidiffusive. In contrast, for the protein transport on the
DNA contour, μ and κ are not independent since they are both
related to the statistics of the network topologies created by
the DNA conformations. Why this leads to μ + κ = 2 remains
to be understood.

IV. CONCLUSION

We analyzed the transport and search of proteins on a
dynamic DNA contour. We showed that the highly correlated
nature of the protein dynamics persists over a broad range
of our dimensionless dynamic parameter k = kD/kp and
significantly slows down the search process. Our findings
imply that under the in vitro conditions of our model, protein
jumping is effective as a mechanism to destroy the redundancy
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of a diffusive 1D search only if the DNA dynamics is
sufficiently fast compared to the time scale between protein
jumps or if many proteins search in parallel. Of course, the
in vivo situation is complicated by many additional factors,
such as the nonrandom conformation and the confinement of
the DNA. We also found that the “paradoxical” quasidiffusive
dynamics in the quenched limit [22] can be viewed as a subtle
cancellation of the effect of traps and long-distance jumps. The
interplay between traps, jumps, and memory in 1D transport
is an intricate problem in statistical mechanics [27,28]. The

protein-DNA system naturally displays a nontrivial interplay
and surprisingly is tuned to a critical point in our dynamical
phase diagram.
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