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The genetic diversity of a species is shaped by its recent evolution-
ary history and can be used to infer demographic events or selective
sweeps. Most inference methods are based on the null hypothesis
that natural selection is a weak or infrequent evolutionary force.
However, many species, particularly pathogens, are under continu-
ous pressure to adapt in response to changing environments. A
statistical framework for inference from diversity data of such pop-
ulations is currently lacking. Towards this goal, we explore the
properties of genealogies in a model of continual adaptation in
asexual populations. We show that lineages trace back to a small
pool of highly fit ancestors, in which almost simultaneous coales-
cence of more than two lineages frequently occurs. Whereas such
multiple mergers are unlikely under the neutral coalescent, they
create a unique genetic footprint in adapting populations. The site
frequency spectrum of derived neutral alleles, for example, is
nonmonotonic and has a peak at high frequencies, whereas
Tajima’s D becomes more and more negative with increasing sam-
ple size. Because multiple merger coalescents emerge in many mod-
els of rapid adaptation, we argue that they should be considered
as a null model for adapting populations.

coalescent theory | demographic inference | pathogen evolution |
population genetics

Evolutionary change is usually too slow to be observed in real
time. A sequence sample represents a static snapshot from

which we want to learn about a dynamic evolutionary process.
The predominant framework to analyze such population genetic
data and infer demographic history is Kingman’s neutral co-
alescent. Within this model, all individuals are equivalent (i.e.,
there are no fitness differences), and pairs of lineages merge at
random. The statistical properties of genealogies in this simple
population genetic model can be computed exactly (1, 2), facil-
itating comparison with data. One central prediction of the
neutral coalescent is that the genetic diversity of a population is
proportional to its size. This prediction, however, is at odds with
the observed weak correlation between genetic diversity and
population size, a paradox often remedied by the definition of an
effective population size proportional to the genetic diversity.
The model has been generalized to account for historic changes
in population size, mutation rates, geographical structure, and
effects of purifying selection (3–7). Positive selection, however,
has proved difficult to incorporate, and progress has been limited
to rare selective sweeps (8, 9) and weak selection (10).
In many populations, particularly large microbial populations,

selection is neither rare nor weak. Instead, these populations are
under sustained pressure to adapt to changing environments.
Prominent examples include pathogens like influenza that con-
tinuously evade human immune responses or HIV, which estab-
lishes a chronic infection despite heavy immune predation. The
genealogical trees reconstructed from sequence samples often
suggest substantial departure from neutrality; ref. 11 has examples
from viral evolution, and ref. 12 has eukaryotic examples. The
influenza tree shown in Fig. 1, for instance, is incompatible with
a neutral genealogy, because there are parts where many lineages
merge in a very brief period, and the tree often branches extremely
unevenly, with very few individuals on one branch and many
individuals on the other branch. These two observations represent
fundamental deviations from the standard neutral model, even
when a varying population size is allowed. Strelkowa and Lässig

(14) present a detailed analysis of Influenza A evolution and
conclude that influenza is governed by coalescence processes
different from the Kingman’s coalescent.
To analyze and interpret genealogies of populations under

sustained directional selection, an alternative simple null model
would be extremely useful. The features of genealogies discussed
above are, in fact, common to a class of non-Kingman’s co-
alescence models, which have received considerable attention in
the mathematical coalescent literature (15, 16). A special case is
the Bolthausen–Sznitman coalescent (BSC) (17), which has been
shown to describe the genealogies in models where a population
expands into uninhabited territory (18). On the basis of a par-
ticular exact solution and a phenomenological theory, Brunet
et al. (18) conjectured that genealogies in all models of the same
universality class [the class of stochastic Fisher–Kolmogorov–
Petrovskii–Piscounov (FKPP) waves] (19, 20) are described by
the BSC (recent review in ref. 21). This universality class con-
tains all models with short-range dispersal and logistic growth
with constant rate in partially filled demes.
We will argue in this article that the BSC emerges generically

in models of rapidly adapting asexual populations in a similar
way as it describes genealogies in traveling waves of FKPP type.
We present extensive computer simulations and investigate the
distribution of heterozygosity in the population, the average time
to the most recent common ancestor, and the site frequency
spectrum (SFS). Most notably, the SFS is nonmonotonic with
a large number of high frequency-derived alleles. We then study
a simplified model analytically and show that the underlying
genealogical process is approximately the BSC. In the discussion,
we outline the basic features of the BSC and discuss its appli-
cability to wider classes of models.

Model
The evolutionary dynamics of a large population are mainly
determined by the distribution of fitness in the population. In
general, fitness depends on many traits, which are affected by
mutations. In a rapidly changing environment, populations are
far from any fitness optimum, with many mutations available that
increase fitness (and even more that decrease fitness).
To model such scenarios, we consider a collection of N asexual

individuals that are characterized by a log-fitness y, which de-
termines their average reproductive success. Specifically, the
number offspring of an individual is Poisson-distributed with
mean expðy− λÞ, where λ = y− 1+N=N0 keeps the population
size roughly at N0. The log-fitness of individuals is changed by
mutation with probability μ per generation, where the muta-
tional effect, δ, is drawn from a distribution KðδÞ. The balance
between frequent mutation and selection results in a population
that behaves as a traveling pulse along the fitness axis with
a steady fitness variance σ2 (Fig. 2). Absolute fitness itself is, of
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course, not increasing indefinitely, but increasing fitness is offset
by environmental deterioration and deleterious mutations.
We have implemented this model as a computer program (SI

Appendix) that allows for different mutation distributions KðδÞ. In
addition, the program keeps track of the parents of each new in-
dividual and thereby, saves the complete genealogy of the pop-
ulation. Individuals not leaving any offspring are removed from the
genealogical record. From this genealogical record, quantities like
pair coalescence times are readily obtained. Furthermore, we can
calculate SFSs of neutral mutations by integrating over all positions
in the genealogies where such mutations might have occurred.
Similar models have been used by a number of authors (22–

27) who have studied the rate of adaptation in these models.
Here, we focus on genealogies and their relation to observed
genetic diversity. If mutations are frequent relative to the typical
effect size of mutations, the model has a continuous time limit
described by a stochastic differential equation for the distribu-
tion cðy; tÞ of log-fitness y in the population (26, 28, 29)

∂tcðy; tÞ=D∂2y cðy; tÞ−Δμ∂ycðy; tÞ+ ðy− λÞcðy; tÞ+ drift; [1]

where the last term represents the stochastic nature of re-
production (derivation in SI Appendix). The diffusion constant
and the average mutation input are given by D= μhδ2i=2 and
Δμ = μhδi, respectively, where the average h. . .i is over the distri-
bution of mutational effects KðδÞ. The exact form of the distri-
bution of mutational effects and the relative importance of dele-
terious and beneficial mutations are irrelevant as long as this
diffusive approximation is valid (SI Appendix). Unless otherwise
stated, we use μ= 1 and draw mutational effects from a Gaussian
distribution with variance s2 and zero mean.
In this model, large populations attain a steady fitness distribu-

tion of roughly Gaussian shape with variance σ2 ≈D
2
3ð24  log  ~NÞ13,

where ~N =N   D
1
3 (22, 28). The distribution translates to higher

fitness with a velocity v= σ2 +Δμ. The distribution and its land-
marks are sketched in Fig. 2. It is convenient to measure log-
fitness relative to the population mean, x= y− y. The fittest
individuals of the population reside roughly xc ≈ σ4=4D above the
population mean. Computer programs and analysis scripts are
available on the authors’ Web site (http://www.eb.tuebingen.mpg.
de/research/research-groups/richard-neher.html).

Results
We first present simulation results of our model and contrast the
patterns of genetic diversity of continuously adapting popula-

tions with neutral expectations. Below, we will analyze our model
mathematically and show that the striking differences result from
the exponential amplification of individual lineages by selection.

Distribution of Heterozygosity and Pair Coalescence Times.Assuming
a molecular clock, the expected number of neutral differences
between two genomes is π = 2T2μn, where μn is the neutral mu-
tation rate and T2 is the time to the most recent ancestor of the
pair of sequences. Across many realizations of the process (e.g.,
independent loci), T2 follows a distribution PðT2Þ, which in the
neutral case, is exponential with mean N. Simulation results for
our model shown in Fig. 3 display a very different distribution of
T2 and equivalently, π. Very few pairs of sequences coalesce early,
which results in the long terminal branches observed in trees (Fig.
1B). We then observe a peak in coalescence around t≈ σ2=2D,
after which the distribution of pair coalescence times decays ex-
ponentially with a characteristic time constant proportional to
σ2=2D. Within a neutral coalescent framework, a distribution of
this kind would be interpreted as a rapid population expansion
starting σ2=2D in the past. Before this expansion, the population
size would be estimated to have been constant at Ne ∝ σ2=2D.
However, the size of the population did not change in our model.
Instead, the population was adapting by many small steps, and
the conclusion that N increased in the past is wrong.

Two lineages chosen at random from the population are most
likely from near the center of the fitness distribution. There are
many individuals in this part of the distribution, and therefore, the
probability of immediate coalescence is low. Although the sampled
individuals are typical, their ancestors tend to have higher than
average fitness. Only after ancestral lineages have moved to the
high fitness tail of the distribution, where only few individuals are,
does the rate of coalescence become appreciable. This migration of
lineages to higher fitness is a well-known effect (6, 30, 31), and it is
illustrated in Fig. 2. The speed at which lineages move to higher
(relative) fitness is initially σ2 (the speed of the mean minus the
mutational input), whereas they slow down as they reach the tip.
Consistent with the above interpretation, the delay of coalescence,
Tdelay, is roughly two times the time required for the mean fitness to
catch up with the high fitness nose (i.e., Tdelay ≈ 2xcσ−2 = σ2=2D).

multiple mergers

skewed branching

BA

Fig. 1. A shows a maximum-likelihood tree of influenza nucleotide
sequences (HA segment) sampled in Asia in 2009 (subtype H3N2) produced
using Fasttree (13). B shows a tree drawn from a simulation of our model of
adapting populations. Both trees often branch very unevenly, with almost all
descendants on the left-most branch. Although approximate multiple
mergers are common in both trees, the influenza tree does not display the
uniformly long terminal branches that we observe in simulations. This could
be caused by heterogeneous sampling of influenza. Trees are drawn with
Figtree (http://tree.bio.ed.ac.uk/software/figtree/).

Fig. 2. Ancestral lineages in evolving populations. The figure shows the
fitness distribution of the population, translating to higher fitness with ve-
locity σ2 +Δμ, at two time points. Randomly sampled individuals (green,
blue, and violet dots in the later population) tend to come from the center
of the distribution, whereas ancestors tend to be among the fittest in the
population. The ancestral lineages wiggle because of mutations that ran-
domly perturb their fitness. Simultaneously, lineages move to the high fit-
ness edge, where they are likely to meet and coalesce. The fittest individuals
are typically at xc ≈ σ4=4D above the mean fitness.
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After lineages have moved to the high fitness tail, they seem to
coalesce uniformly with a time constant Tc ≈ σ2=2D. From the
dependence of σ2 on population parameters, we see that
Tc ∝ ðlog  ~NÞ13 increases only weakly with the population size.

Site Frequency Spectra. The density f ðνÞdν of neutral-derived
alleles in the frequency interval ½ν; ν+ dν� is known as the SFS.
The neutral SFS is a convenient summary of the neutral diversity
segregating in the population. A mutation that happened on
a particular branch of the genealogy will later be present in all
individuals that descend from this branch. Hence, the SFS har-
bors information about the distribution of branch weights and
the branch length of the genealogy. In Kingman’s coalescent, the
SFS is simply given by f ðνÞ=Θ=ν, where Θ= 2hT2iμ is the av-
erage heterozygosity. Importantly, it is a monotonically de-
creasing function of the frequency. Fig. 4 shows SFSs measured
in simulations of our model. The most striking qualitative dif-
ference is the nonmonotonicity, a feature known to be common
in the presence of selective sweeps caused by hitchhiking (32).
The nonmonotonicity of f ðνÞ implies the existence of long

branches deep in the tree that are ancestors of almost everybody
in the population, whereas a small minority of the population
descends from different lineages. Such very asymmetric branch-
ings are unlikely in Kingman’s coalescent, where at any split, the
fraction of individuals that go left or right is uniformly distributed
(2). Such asymmetric branchings are common in our model and
frequently observed in reconstructed genealogies from rapidly
adapting organisms (Fig. 1A).
The axes in Fig. 4 are scaled to facilitate the comparison with

analytic results. At low frequencies, the SFS is proportional to
ν−2 (33, 34) and hence much steeper than the neutral SFS in
Kingman’s coalescent, f ðνÞ∝ ν−1. Hence, samples will be domi-
nated by singletons. In addition, f ðνÞ is nonmonotonic and increases
as ν→ 1.
Themajority of the contributions to the increase of f ðνÞ for ν→ 1

stems from the very last coalescent event. In this last coalescent
event, two or more lineages are merging. One of these lineages is
typically the ancestor of almost the entire sample, whereas the
others share the remaining minority. The distribution of the off-
spring of these lineages and their number has been studied by

Goldschmidt and Martin (35), who showed that the distribution
of the size of the biggest lineage is asymptotically ∝ ð1− νÞ−1. In SI
Appendix, section III, we derive the more accurate approximation

f ðνÞ≈ Tcμ

ðν− 1Þ log ð1− νÞ for 1− ν � 1: [2]

To compare the SFS of our model with SFS of the BSC across
the entire range of ν, we simulated the idealized BSC and find
very good agreement (solid black line in Fig. 4). The SFS of the
idealized BSC deviates from the SFS of the model of adaptation
only at very low allele frequencies. The model of adaptation
tends to have even more rare alleles than the BSC, which is
because of the fact that lineages have to move to the high fitness
tail before coalescence begins.
The nonmonotonicity f ðνÞ is a clear indication that the gene-

alogies in this model with selection are fundamentally different
from canonical neutral genealogies (Kingman). In Kingman’s
coalescent, neither constant nor exponentially growing population
sizes gives rise to nonmonotonic SFS (Fig. S2).

Time to the Most Recent Common Ancestor. In Kingman’s co-
alescent, the expected time to the most recent common an-
cestor (MRCA) of a sample of size n, hTMRCAi= Nð2− 2=nÞ,
increases only very slowly with n. This saturation is a conse-
quence of the even branching ratios; an additional individual
will most likely coalesce with existing samples and only rarely
increase TMRCA. In contrast, the trees generated by our model
of adaptation tend to branch very unevenly, and one often
observes that one external branch goes all of the way back to
the MRCA of the sample, as in Fig. 1B. As the sample size is
increased, one continues to sample deeper into the tree. This
increasing tree depth is a generic property of the BSC (16),
where the average hTMRCAi increases as log  log  n with the sample
size n. Similarly, hTMRCAi of the entire population is expected to
increase as Tc   log  log  ~N with the population size. Our simulations
are consistent with this behavior (Fig. S3).

Note that Tc depends weakly on N in adapting populations,
whereas it increases linearly with N in Kingman’s coalescent.
In contrast, the rescaled time to the MRCA, T−1

c hTMRCAi, asymp-
totes to two in Kingman’s coalescent, whereas it continues to in-
crease with N in the BSC.

Fig. 3. The distribution of pair coalescence times (proportional to hetero-
zygosity) in a model of rapidly adapting populations. After rescaling time by
σ2=2D, curves for different N and s collapse onto a single master curve. This
collapse shows that σ2=2D∝D−1

3ðlog  ~NÞ13 is the timescale of coalescence. After
a delay, Tdelay ≈ σ2=2D, T2 is exponentially distributed, which is apparent
from the Inset showing the cumulative distribution PðT2 >TÞ. An exponential
exp½−2TD=σ2� is indicated as a black dashed line. Different line styles corre-
spond to s= 0:01 (solid), s= 0:001 (dashed), and s= 0:0001 (dotted), whereas
the mutation rate is μ= 1. For each parameter combination, random pairs
are sampled at 10,000 time points 2s−2=3 generations apart. Fig. S1 shows the
corresponding distributions of T3 and T4.

Fig. 4. SFS of (derived) neutral alleles in rapidly adapting populations is
nonmonotonic, with peaks at low frequencies and near fixation. The as-
ymptotic behavior of the SFS at low and high derived frequencies is shown as
dashed black lines. The solid black line is the SFS of the BSC simulated using
Eqs. 7 and 8 with N= 100; 000 averaged over 10,000 runs. Line styles and
parameters are as in Fig. 3.
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Analysis. The simulation results presented above show that ge-
nealogies arising in our model are distinct from those genealo-
gies expected in Kingman’s coalescent and display a number of
features reminiscent of the BSC. We will now describe how this
coalescent process emerges from the dynamics of the model.
Individuals in our model have a heritable fitness that determines

the distribution of the number of immediate offspring. Although fit
individuals have, on average, more offspring than less-fit individ-
uals, the fitness differences in the population are small, and the
offspring distribution across the population is narrow. However,
fitness is heritable, and fit individuals can have a very large number
of distant greatt-grandchildren.Hence, the distribution of offspring
after t generations, Pðn; tÞ, will be dominated by fit individuals and
can have a very long tail. Conversely, the present-day population
has fewer and fewer ancestors as we trace its lineages back in time.
At TMRCA generations in the past, there is exactly one individual
that is the ancestor to the entire population. Ancestors of the
MRCAare also common ancestors (CAs) of the entire population,
albeit not the most recent one. Fig. 5 shows that MRCAs and CAs
tend to come from the high fitness tail of the population. MRCAs
tend to be fitter than CAs, because they are conditioned on giving
rise to at least two lineages that persist to the present.
The offspring distribution, Pðn; tÞ, changes slowly from the

initial narrow distribution to a broad distribution with a power
law at intermediate times (34). The broad distribution at in-
termediate times is at the heart of the correspondence of gene-
alogies in models of adapting populations and the BSC.
The BSC assumes that all individuals are exchangeable and

that, in every coalescent event, a randomly chosen set of lineages
merges into one. Each possible merger event has a specific rate
associated with it, and the rate at which k individuals merge into
one CA is qk =T−1

2 ðk− 1Þ−1 (16) (the general expression for the
rates is given below in Eq. 7). In contrast, in the neutral co-
alescent, higher-order coalescence is very rare, ∝N−ðk−1Þ. We will
present the basic properties of the BSC briefly in the discussion.
To appreciate how these coalescence rates can emerge from

a model with selection, consider the number of individuals ni that
descend from an individual i that lived t generations in the past.
The probability that k individuals sampled randomly from the
population have a CA t in the past is then given by (Eq. 3)

QkðtÞ=
*XN

i=1

 
niP
jnj

!k+
; [3]

where the average h:i is over all ni. QkðtÞ is dominated by ni >> k,
and therefore, sampling with replacement in Eq. 3 is an accurate

approximation. Using the identity ΓðkÞC−k =
R z
0 dz  z

k−1e−zC and
assuming that t is small enough that the different ni values are
still approximately independent, we can express Qk as

QkðtÞ≈ N
ΓðkÞ

Z∞
0

dz zk−1he−zniN−1�nke−zn�

≈−
N

ΓðkÞ
Z∞
0

dz zk−1e−NΦzðtÞð−1Þk∂kzΦzðtÞ; [4]

where we introduced the Laplace transform 1−ΦzðtÞ=P
ne

−zn Pðn; tÞ and assumed N  Φ2
z ðtÞ � 1. In SI Appendix, we

show that ΦðtÞ∼ z
σ2
2Dt for t>Tdelay = σ2=2D. For a limited interval

after t >Tdelay, we find that the probability that k individuals have
a CA increases with rate

qk =
2D
σ2

1
k− 1

[5]

per unit time. More general coalescence rates can be calculated
analogously (SI Appendix). Before Tdelay, the rate of coalescence
is very low. This result is in agreement with Fig. 3, where we
found that little coalescence happened early, whereas coales-
cence times are exponentially distributed after that time, with
characteristic time Tc ≈ σ2=2D for t >Tdelay. The relative rates
of mergers of two, three, etc. are consistent with the BSC,
explaining our observations for the frequency spectrum and the
time to the MRCA.
The branching process approximation used to derive the result

in Eq. 5 is valid only for short times but nevertheless, gives us the
relative rates of multiple mergers after coalescence begins. For
subsequent deeper coalescent events, the relevant lineages are
already at the tip of the fitness distribution, and this process
repeats itself without the delay. In fact, after this delay, all
remaining lineages are in a narrow region at the tip of the fitness
distribution. The situation now resembles the situation of co-
alescence in FKPP waves: The fitness of the lineages is roughly
equal, but lineages have to stay ahead of a fitness cutoff to sur-
vive. We can, therefore, use the phenomenological theory of
genealogies in FKPP waves from ref. 36, which confirms the
above result for the coalescent timescale (SI Appendix). In SI
Appendix, we present an additional argument based on tuned
models introduced in ref. 26.

A B

Fig. 5. A shows the distribution of the log-fitness of
all CAs and all MRCAs compared with the average
distribution, cðxÞ, of log-fitness in the population
(described in the text). These distributions were
measured in forward simulations with μ= 1; s= 0:01,
and N= 106. (B) SFS of derived neutral alleles in
a background selection scenario with deleterious
mutations of effect s. As the ratio μ=s is varied while
keeping σ2 = μs= 0:01 constant, the SFS interpolates
between the expectation for the Kingman’s co-
alescent and the BSC (N= 104).
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To corroborate our analysis, we performed additional simu-
lations that allow us to measure the Laplace transform of the
distribution of pair coalescent times for very large populations.
These simulations show that the pair coalescent time is, indeed,
exponential with characteristic time σ2=2D after a delay of the
same length (Fig. S4). The algorithm used is similar in spirit to
the algorithm by Brunet et al. (18) (SI Appendix).
Strictly speaking, the analogy to an exchangeable coalescent

model like the BSC requires that different coalescence events
that one lineage undergoes be independent. For this finding to
be true, individuals descending from a lineage have to distribute
evenly across the fitness distribution cðxÞ between coalescence
events, which requires a time Teq ≈Tc. Hence, we should not
expect a clean convergence to the BSC. Nevertheless, we find it
to be a very good model for the observed genealogies after ac-
counting for the delay. The underlying reason is that local equil-
ibration in the region where the ancestral lineages are is fast
ðt≈D−1=3Þ. This region, however, undergoes fluctuations on the
timescale Teq that modulate the overall rate of coalescence but
do not significantly affect the local dynamics. For waves of FKPP
type that describe the spread of individuals in space, Teq � Tc in
large populations (18).

Discussion
We have shown that, in a simple model of adapting populations,
the observed genealogies are inconsistent with the standard neu-
tral coalescent. Instead, genealogical trees are characterized by
long terminal branches and almost simultaneous coalescence of
multiple lineages. At branching events deep in the tree, one
commonly observes that almost all individuals of the population
descend from one branch, whereas very few descend from the
other branches. Such skewed branching is unlikely in standard
neutral coalescent models, regardless of the history of the effective
population size. One consequence of these uneven branching ra-
tios is a nonmonotonic SFS of derived neutral alleles. Compared
with the Kingman’s coalescent, the low-frequency part of the SFS
is much steeper, whereas the high-frequency part shows a charac-
teristic upturn (Fig. 4).
A given pair of lineages is unlikely to coalesce in the bulk of the

fitness distribution. Typically, both lineages move into the high-
fitness tip of the population distribution before they coalesce
as illustrated in Fig. 2. These dynamics result in long terminal
branches and a distribution of heterozygosities peaked at in-
termediate values. After this delay, the typical time to coalescence
is again on the order of the time that it takes the fittest individuals
to dominate the population (Fig. 3). In panmictic populations, this
time depends on the logarithm of the population size, and in our
model, it is proportional to ðlog  ~NÞ13.
We argue that the exponential amplification of fit lineages is

responsible for these observations and that coalescence in such
rapidly adapting populations is generically described by a modi-
fied BSC (16, 17). The BSC is a special case of the large class of
Λ-coalescent processes (15). Given the distribution pðf Þ of the
fraction f of the population that descends from a single in-
dividual in the previous generation, the rate at which k of b lin-
eages merges is given by

λb;k =
Z

df pðf Þf kð1− f Þb−k: [6]

The BSC corresponds to pðf Þ∼ f−2 for large f, in which case Eq.
6 reduces to

λb;k =
1
Tc

ðk− 2Þ!ðb− kÞ!
ðb− 1Þ! [7]

or Eq. 5 for the special case b= k. The total rate at which co-
alescence events happen in a sample of k lineages is, therefore

λb =
X
k

�
b
k

�
  λb;k =

b− 1
Tc

[8]

in contrast to the neutral coalescent, where λb ∝ bðb− 1Þ. A co-
alescence event reduces the number of surviving lineages on
average by log  b, and therefore, the average rate at which the
number of lineages decreases is ≈T−1

c b  log  b. The typical time
needed to reach the CA of a sample of size n is ≈Tc   log  log  n, in
contrast to 2Tc in Kingman’s coalescent. The BSC occupies a spe-
cial intermediate position between Kingman’s coalescent, where
only pairwise mergers are allowed, and a star coalescent, where
all lineages coalesce simultaneously. Star-like genealogies are
expected in rapidly expanding populations or a region fully
linked to a recent rapid hard sweep (37). In the BSC, multiple
mergers (subsets of lineages with star-like trees) are frequent,
but at the same time, there are many mergers at different depths
in the tree. In fact, the BSC is the α= 1 case of the one-param-
eter family of β-coalescents with parameter 0< α< 2, whereas
the case α→ 2 corresponds to the Kingman’s coalescent. A more
in-depth discussion is in the recent review by Berestycki (16).
The BSC is easily implemented as a computer simulation by
drawing an exponentially distributed random number with mean
λ−1b to determine the time of the next event. The type of event is
then chosen with probabilities proportional to λb;k.
The models of adaptation that we have studied have a narrow

offspring distribution. Nevertheless, the exponential amplification
of fit genotypes over many generations gives rise to a distribution
of clone sizes with the required asymptotic behavior. The impor-
tant lineages are those lineages that run ahead of the distribution,
expand faster, and take over a significant fraction of the population
(36). Over even longer times, the fitness of ancestors and descend-
ants decorrelates. This gradual decorrelation allows us to approxi-
mate the genealogies with the abstract BSC, which assumes that
there are no correlations in offspring number across generations.
Conventionally, an increased variance in offspring number is

accounted for by defining an effective population size.With a clone
size distribution pðf Þ∼ f−2, however, the variance diverges with the
population size (34). Similar effects arise in other models with very
skewed offspring distribution (38). As a consequence, the geneal-
ogies are dominated by rare anomalously large clones and de-
scribed by the BSC rather than Kingman’s coalescent. The rate of
coalescence is not set byN−1 but by the rate at which clones expand
and collapse. We would like to stress that evolutionary dynamics
thereby remain highly stochastic, even in very large populations.
Analogous behavior has recently been observed in models of
individuals invading uninhabited territory (FKPP type waves) (18)
and ensembles of supercritical branching processes (39).
The BSC is not only a good model for genealogies of adapting

asexual populations, but also, it applies to populations under pu-
rifying selection in which Muller’s ratchet clicks often. The stan-
dard model for the distortion of genealogies by purifying selection
assumes that deleterious mutations are rapidly purged and co-
alescence is neutral in the mutation-free class with a reduced
population size Ne−μ=s, where μ is the deleterious mutation rate
and s is the effect size of deleterious mutations (4). More elabo-
rate analysis based on a fitness class coalescent explicitly tracks
lineages through the population and calculates the contribution
to coalescence before lineages reach the mutation-free class (5).
However, this standard model of purifying selection only applies
if the mutation-free class is large and Muller’s ratchet does not
operate, which requires Nse−μ=s � 1 (40–42). Fig. 5B shows the
SFS of derived neutral alleles for different ratios μ=s. For small
μ=s, the SFS is similar to the SFS of Kingman’s coalescent with
a reduced time to coalescence, in accordance with the back-
ground selection theory. However, as soon as the ratchet starts to
click frequently, the SFS develops the nonmonotonicity charac-
teristic of the BSC.
If the ratchet is clicking fast, the fitness distribution in the

population resembles the distribution of traveling wave models,
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but selection on fitness variation cannot keep up with the influx
of deleterious mutations. Similarly, populations in a steady bal-
ance between deleterious and beneficial mutations (43) have
genealogies as found here for rapidly adapting populations. The
reason for the qualitative difference in the ratchet regime is the
fact that the nose of the wave is not steady but constantly turning
over. Different lineages are struggling to get ahead of everybody
else and in the frame of reference of the population (that is,
relative to mean fitness), exponentially amplified. In contrast,
dynamics of lineages in the mutation-free class are neutral if
Muller’s ratchet does not operate.
In SI Appendix, we show that the argument that gave rise to the

particular coalescence rates inEq. 5 can be extended to a large class
of models that are controlled by a small and fluctuating population
of highly fit individuals.We argue that the BSC generically emerges
as a consequence of the exponential amplification of the clones
descending from these highly fit individuals together with the
seeding of novel lineages. The latter could happen by lucky diffu-
sion to highfitness (ourmodel), large-effect beneficialmutations, or
lucky outcrossing. After some time, the distribution of lineage size
follows a power lawwith an exponent close to−2 (23, 34, 44). Given
an effective offspring distribution of this shape, theBSC follows (18,
39). In ref. 45, the authors study a model where the mutation rate is
much smaller than the typical effect sizes of mutations. They show
that, also in this case, the genealogies are well-approximated by the
BSC after a delay (ref. 45; see also Figs. S5 and S6). Whether the
BSC also describes genealogies in scenarios where fitness is in-
creased in rather large increments (compared with the population
diversity) (46, 47) remains an interesting topic for future work.

The compatibility of a sample with the neutral coalescent
model is typically assessed using statistics such as Tajima’s D
(48). Tajima’s D compares the average number of pairwise dif-
ferences with the total number of segregating sites in the sample.
In the case of the BSC, the average pairwise diversity is pro-
portional to hT2i, whereas the total number of segregating sites is
proportional to hT2in=log  n (compared with hT2ilog  n for the
Kingman’s coalescent). This tremendous excess of segregating
sites is a consequence of the very steep SFS at small frequencies
and results in D∝ − logðnÞ.

Sexual populations and recurrent selective sweeps at linked loci
can also give rise to multiple mergers in the genealogies (9).
However, recombination and sexual reproduction will reduce the
effects of linked selection and decouple the genealogies of dif-
ferent loci. Hence, we expect that the coalescent behavior crosses
over to Kingman’s coalescent as the recombination rate increa-
ses—at least in models of panmictic populations. This crossover
is observed in models of facultatively sexual populations (34).
Given the apparent universality of the BSC in spatially expand-

ing populations and panmictic adapting populations, it should be
included as a prior in popular population genetic and phylogenetic
inference programs such as BEAST (49).

ACKNOWLEDGMENTS. We thank Boris Shraiman, Aleksandra Walczak,
Michael Desai, Daniel Fisher, Trevor Bedford, andMartin Möhle for discussions.
We also thank Kari Küster for coding some of the simulations used in early
stages of this work and Lukas Geyrhofer for help with tuned models. This
research was supported by the European Research Council Grant Stg-260686
(to R.A.N.).

1. Kingman J (1982) On the genealogy of large populations. J Appl Probab 19A:27–43.
2. Derrida B, Peliti L (1991) Evolution in aflatfitness landscape. Bull Math Biol 53(3):355–382.
3. Nordborg M (1997) Structured coalescent processes on different time scales. Genetics

146(4):1501–1514.
4. Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious muta-

tions on neutral molecular variation. Genetics 134(4):1289–1303.
5. Walczak AM, Nicolaisen LE, Plotkin JB, Desai MM (2012) The structure of genealogies in

the presence of purifying selection: A fitness-class coalescent. Genetics 190(2):753–779.
6. O’Fallon BD, Seger J, Adler FR (2010) A continuous-state coalescent and the impact of

weak selection on the structure of gene genealogies. Mol Biol Evol 27(5):1162–1172.
7. Barton NH, Etheridge AM (2004) The effect of selection on genealogies. Genetics 166

(2):1115–1131.
8. Barton N (1998) The effect of hitch-hiking on neutral genealogies. Genet Res 72(2):

123–133.
9. Durrett R, Schweinsberg J (2005) A coalescent model for the effect of advantageous

mutations on the genealogy of a population. Stochastic Process Appl 115(10):1628–1657.
10. Krone SM, Neuhauser C (1997) Ancestral processes with selection. Theor Popul Biol

51(3):210–237.
11. Bedford T, Cobey S, Pascual M (2011) Strength and tempo of selection revealed in

viral gene genealogies. BMC Evol Biol 11:220.
12. Seger J, et al. (2010) Gene genealogies strongly distorted by weakly interfering mu-

tations in constant environments. Genetics 184(2):529–545.
13. Price MN, Dehal PS, Arkin AP (2009) FastTree: Computing large minimum evolution

trees with profiles instead of a distance matrix. Mol Biol Evol 26(7):1641–1650.
14. Strelkowa N, Lässig M (2012) Clonal interference in the evolution of influenza.

Genetics 192(2):671–682.
15. Pitman J (1999) Coalescents with multiple collisions. Ann Probab 27(4):1870–1902.
16. Berestycki N (2009) Recent progress in coalescent theory. arXiv:math.PR/0909.3985.
17. Bolthausen E, Sznitman A-S (1998) On Ruelle’s probability cascades and an abstract

cavity method. Commun Math Phys 197(2):247–276.
18. Brunet E, Derrida B, Mueller AH, Munier S (2007) Effect of selection on ancestry: An

exactly soluble case and its phenomenological generalization. Phys Rev E Stat Nonlin
Soft Matter Phys 76(4 Pt 1):041104.

19. Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7(4):355–369.
20. Kolmogorov A, Petrovskii I, Piscounov N (1937) Etude de l’equation de la diffusion

avec croissance de la quantite de matiere et son application a un probleme biol-
ogique. Bull Moscow Univ Math Mech 1:1–25.

21. Brunet É, Derrida B (2012) Genealogies in simple models of evolution. arXiv:q-bio.PE.
22. Tsimring LS, Levine H, Kessler DA (1996) RNA virus evolution via a fitness-space model.

Phys Rev Lett 76(23):4440–4443.
23. Desai MM, Fisher DS (2007) Beneficial mutation selection balance and the effect of

linkage on positive selection. Genetics 176(3):1759–1798.
24. Rouzine IM, Wakeley J, Coffin JM (2003) The solitary wave of asexual evolution. Proc

Natl Acad Sci USA 100(2):587–592.
25. Neher RA, Shraiman BI, Fisher DS (2010) Rate of adaptation in large sexual pop-

ulations. Genetics 184(2):467–481.
26. Hallatschek O (2011) The noisy edge of traveling waves. Proc Natl Acad Sci USA 108

(5):1783–1787.

27. Park SC, Krug J (2007) Clonal interference in large populations. Proc Natl Acad Sci USA
104(46):18135–18140.

28. Cohen E, Kessler DA, Levine H (2005) Front propagation up a reaction rate gradient.
Phys Rev E Stat Nonlin Soft Matter Phys 72(6 Pt 2):066126.

29. Good BH, Rouzine IM, Balick DJ, Hallatschek O, Desai MM (2012) Distribution of fixed
beneficial mutations and the rate of adaptation in asexual populations. Proc Natl
Acad Sci USA 109(13):4950–4955.

30. Hermisson J, Redner O, Wagner H, Baake E (2002) Mutation-selection balance:
Ancestry, load, and maximum principle. Theor Popul Biol 62(1):9–46.

31. Rouzine IM, Coffin JM (2007) Highly fit ancestors of a partly sexual haploid
population. Theor Popul Biol 71(2):239–250.

32. Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155(3):
1405–1413.

33. Basdevant A-L, Goldschmidt C (2008) Asymptotics of the allele frequency spectrum
associated with the Bolthausen-Sznitman coalescent. Electron J Probab 13(17):486–512.

34. Neher RA, Shraiman BI (2011) Genetic draft and quasi-neutrality in large facultatively
sexual populations. Genetics 188(4):975–996.

35. Goldschmidt C, Martin JB (2005) Random recursive trees and the Bolthausen-
Sznitman coalescent. Electron J Probab 10(21):718–745.

36. Brunet E, Derrida B, Mueller AH, Munier S (2006) Phenomenological theory giving the
full statistics of the position of fluctuating pulled fronts. Phys Rev E Stat Nonlin Soft
Matter Phys 73(5 Pt 2):056126.

37. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in
stable and exponentially growing populations. Genetics 129(2):555–562.

38. Eldon B, Wakeley J (2006) Coalescent processes when the distribution of offspring
number among individuals is highly skewed. Genetics 172(4):2621–2633.

39. Schweinsberg J (2003) Coalescent processes obtained from supercritical Galton-Wat-
son processes. Stochastic Process Appl 106(1):107–139.

40. StephanW, Chao L, Smale JG (1993) The advance ofMuller’s ratchet in a haploid asexual
population: Approximate solutions based on diffusion theory.Genet Res 61(3):225–231.

41. Jain K (2008) Loss of least-loaded class in asexual populations due to drift and
epistasis. Genetics 179(4):2125–2134.

42. Neher RA, Shraiman BI (2012) Fluctuations of fitness distributions and the rate of
Muller’s ratchet. Genetics 191(4):1283–1293.

43. Goyal S, et al. (2012) Dynamic mutation-selection balance as an evolutionary attrac-
tor. Genetics 191(4):1309–1319.

44. Yule GU (1925) A mathematical theory of evolution, based on the conclusions of
Dr. J. C. Willis, F.R.S. Philos Trans R Soc Lond B Biol Sci 213:21–87.

45. Desai MM, Walczak AM, Fisher DS (2012) Genetic diversity and the structure of ge-
nealogies in rapidly adapting populations. Genetics, 10.1534/genetics.112.147157.

46. Gerrish PJ, Lenski RE (1998) The fate of competing beneficial mutations in an asexual
population. Genetica 102-103(1-6):127–144.

47. Schiffels S, Szöllosi GJ, Mustonen V, Lässig M (2011) Emergent neutrality in adaptive
asexual evolution. Genetics 189(4):1361–1375.

48. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA
polymorphism. Genetics 123(3):585–595.

49. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling
trees. BMC Evol Biol 7:214.

442 | www.pnas.org/cgi/doi/10.1073/pnas.1213113110 Neher and Hallatschek

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213113110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213113110/-/DCSupplemental/pnas.201213113SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213113110/-/DCSupplemental/pnas.201213113SI.pdf?targetid=nameddest=SF6
www.pnas.org/cgi/doi/10.1073/pnas.1213113110

