
Journal of Statistical Mechanics:
Theory and Experiment

     

PAPER

Mathematical modeling of escape of HIV from
cytotoxic T lymphocyte responses
To cite this article: Vitaly V Ganusov et al J. Stat. Mech. (2013) P01010

 

View the article online for updates and enhancements.

Related content
Rational design of vaccine targets and
strategies for HIV: a crossroad of statistical
physics, biology, and medicine
Arup K Chakraborty and John P Barton

-

The quantitative theory of within-host viral
evolution
Igor M Rouzine and Leor S Weinberger

-

A stochastic spatial model of HIV
dynamics with an asymmetric battle
between the virus and the immune system
Hai Lin and J W Shuai

-

Recent citations
Clonal interference can cause wavelet-like
oscillations of multilocus linkage
disequilibrium
Victor Garcia et al

-

Modeling the immune response to HIV
infection
Jessica M. Conway and Ruy M. Ribeiro

-

Tracking HIV-1 recombination to resolve
its contribution to HIV-1 evolution in
natural infection
Hongshuo Song et al

-

This content was downloaded from IP address 131.152.211.99 on 17/09/2019 at 10:35

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/141494588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/1742-5468/2013/01/P01010
http://iopscience.iop.org/article/10.1088/1361-6633/aa574a
http://iopscience.iop.org/article/10.1088/1361-6633/aa574a
http://iopscience.iop.org/article/10.1088/1361-6633/aa574a
http://iopscience.iop.org/article/10.1088/1742-5468/2013/01/P01009
http://iopscience.iop.org/article/10.1088/1742-5468/2013/01/P01009
http://iopscience.iop.org/article/10.1088/1367-2630/12/4/043051
http://iopscience.iop.org/article/10.1088/1367-2630/12/4/043051
http://iopscience.iop.org/article/10.1088/1367-2630/12/4/043051
http://dx.doi.org/10.1098/rsif.2017.0921
http://dx.doi.org/10.1098/rsif.2017.0921
http://dx.doi.org/10.1098/rsif.2017.0921
http://dx.doi.org/10.1016/j.coisb.2018.10.006
http://dx.doi.org/10.1016/j.coisb.2018.10.006
http://dx.doi.org/10.1038/s41467-018-04217-5
http://dx.doi.org/10.1038/s41467-018-04217-5
http://dx.doi.org/10.1038/s41467-018-04217-5
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/867702723/Middle/IOPP/IOPs-Mid-JSMTE-pdf/IOPs-Mid-JSMTE-pdf.jpg/1?


J.S
tat. M

ech.(2013)
P

01010

ournal of Statistical Mechanics:J Theory and Experiment

Mathematical modeling of escape of
HIV from cytotoxic T lymphocyte
responses

Vitaly V Ganusov1,4, Richard A Neher2,4 and
Alan S Perelson3

1 Department of Microbiology, University of Tennessee, Knoxville, TN 37996,
USA
2 Max-Planck-Institute for Developmental Biology, D-72070 Tübingen,
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Abstract. Human immunodeficiency virus (HIV-1 or simply HIV) induces a
persistent infection, which in the absence of treatment leads to AIDS and death in
almost all infected individuals. HIV infection elicits a vigorous immune response
starting about 2–3 weeks postinfection that can lower the amount of virus in
the body, but which cannot eradicate the virus. How HIV establishes a chronic
infection in the face of a strong immune response remains poorly understood. It
has been shown that HIV is able to rapidly change its proteins via mutation to
evade recognition by virus-specific cytotoxic T lymphocytes (CTLs). Typically, an
HIV-infected patient will generate 4–12 CTL responses specific for parts of viral
proteins called epitopes. Such CTL responses lead to strong selective pressure to
change the viral sequences encoding these epitopes so as to avoid CTL recognition.
Indeed, the viral population ‘escapes’ from about half of the CTL responses by
mutation in the first year. Here we review experimental data on HIV evolution
in response to CTL pressure, mathematical models developed to explain this
evolution, and highlight problems associated with the data and previous modeling
efforts. We show that estimates of the strength of the epitope-specific CTL
response depend on the method used to fit models to experimental data and on
the assumptions made regarding how mutants are generated during infection. We
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illustrate that allowing CTL responses to decay over time may improve the model
fit to experimental data and provides higher estimates of the killing efficacy of
HIV-specific CTLs. We also propose a novel method for simultaneously estimating
the killing efficacy of multiple CTL populations specific for different epitopes of
HIV using stochastic simulations. Lastly, we show that current estimates of the
efficacy at which HIV-specific CTLs clear virus-infected cells can be improved by
more frequent sampling of viral sequences and by combining data on sequence
evolution with experimentally measured CTL dynamics.

Keywords: dynamics (theory), models for evolution (theory), computational
biology
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1. Introduction

Viruses replicate within cells. In order for the immune system to recognize that a
cell is infected, fragments of viral proteins or peptides, typically 8–10 amino acids in
length, called epitopes, are presented on the surface of infected cells bound to major
histocompatibility complex (MHC) class I molecules [51, 35]. These complexes of viral
peptides and MHC-I molecules are then recognized by cytotoxic T lymphocytes (CTLs)
and this recognition leads to the death of virus-infected cells [2].

Because CTLs can recognize and kill virus-infected cells, they play an important role
in the control of many viral infections. However, many viruses, including cytomegalovirus
and HIV, persist, developing into chronic infections despite very strong virus-specific CTL
responses [49, 34]. Viruses have evolved different strategies to avoid recognition by CTL,
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including downregulation of MHC-I molecules [52, 3] and the generation of mutants that
are not recognized by CTLs, a process called ‘escape’. Some of these mutations affect
binding of viral peptides to MHC-I molecules and other mutations affect the ability of
CTLs to recognize the peptide–MHC complex [22]. Mutations at several different sites
within and sometimes outside the epitope sequence can lead to viral escape [1, 12, 22,
43]. As a result, viral mutants that are not recognized by epitope-specific CTLs have a
selective advantage and accumulate in the population over time [34].

Escape of HIV from CTL responses has been documented from months to years after
infection [8, 26, 20, 34, 1, 12, 22] and escape from T cell immunity may potentially drive
disease progression [40]. Also escape from CTL responses may influence the efficacy of
vaccines that aim at stimulating T cell responses. Thus, understanding the contribution
of different factors to the rate and timing of viral escape from CTL responses may help
in designing better HIV vaccines.

A number of mathematical models have been developed to describe the kinetics of
viral escape from T cell immunity. Here we review some of these models, show novel
model developments, and discuss directions of future research.

2. Modeling viral escape from a single CTL response

During acute HIV infection there are several HIV-specific CTL responses (on average
around 7 [48, 20]), each recognizing a different viral epitope. As the virus can escape from
these responses, escapes do not generally occur at the same time; some escapes occur very
early in infection and some late [16]. Initial models of viral escape only examined virus
evolution in response to a single CTL response [13, 4, 15] and we will discuss these first.

2.1. Mathematical model

To describe virus escape from a single CTL response we start with the standard model for
virus dynamics in which virus infects target cells, i.e., cells susceptible to infection, and
infected cells produce virus (figure 1). The model is formulated as a system of ordinary
differential equations

dT

dt
= λ− dT − βT (Vw + Vm), (1)

dIw
dt

= (1− µ)βTVw − (δ + k)Iw, (2)

dIm
dt

= µβTVw + βTVm − δIm, (3)

dVw

dt
= pwIw − cVVw, (4)

dVm

dt
= pmIm − cVVm, (5)

where T is the density of uninfected target cells, produced at rate λ and dying at per capita
rate d. Infection is assumed to occur via a mass-action like term with rate constant β. Cells
can be infected with either wild-type (the infecting strain) virus, Vw, or escape mutant
virus, Vm leading to the generation of infected cells, Iw and Im, respectively. Infected cells

doi:10.1088/1742-5468/2013/01/P01010 3

http://dx.doi.org/10.1088/1742-5468/2013/01/P01010


J.S
tat. M

ech.(2013)
P

01010

Escape in acute and chronic HIV infection

Figure 1. Schematic illustration of the model of virus dynamics and escape from
a CTL response. Symbols are defined in the text.

Table 1. Parameters determining the dynamics of HIV as estimated in previous
studies. Here, assuming infection by wild type virus, the viral increase rate is
the rate at which HIV RNA accumulates in the blood during first weeks of
infection, where r = βλpw/(cVd) (see equation (2)). There are no direct estimates
of virus infectivity β but its value can be adjusted to satisfy the condition
r − δ ≈ 1 day−1 observed during acute infection. Estimates of the effective
population size, which in the case of HIV infection is the number of virally infected
cells, vary dramatically depending on the study. The rate of virus production by
infected cells is p = Nδ. Not all virions produced by infected cells are infectious;
the ratio of infectious to noninfectious HIV is on the order of 10−2–10−4 [21, 23,
42].

Quantity Symbol Value References

Average mutation rate µ 2× 10−5/base/gen [32]
Net viral increase rate r–δ 0.9–1.3 day−1 [45]
Free virus decay rate cV 23 day−1 [44]
Infected cell death rate δ 1–2 day−1 [41, 7]
Virus production per cell
(burst size)

N 5× 104 [9]

Effective population size Ne 103–107 [41, 30, 5]
Virus infectivity β Varies —

are assumed to die at rate δ per cell due to viral cytopathogenic effects, and at rate k
per cell due to killing by CTLs. Since the escape variant is not recognized by CTLs, the
term proportional to k is absent in the Im equation. When an infecting virus is reverse
transcribed, errors in copying occur at the mutation rate µ. We neglect back mutation
from mutant to wild type, but this could easily be added to the model. The constants pw

and pm are the rates of virus production by cells that are infected with the wild type and
escape viruses, respectively, and cV is the clearance rate of free viral particles. Typical
parameter values in simulations are given in table 1.

doi:10.1088/1742-5468/2013/01/P01010 4
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In this model we made several simplifying assumptions. We assumed that the wild
type and escape viruses differ only in the rate of virus production; generally pw ≥ pm (but
see [20]). It is also possible that mutations that lead to escape from the CTL response also
affect viral infectivity, β, especially if they occur in the envelope, reverse transcriptase
or integrase-coding regions of the viral genome. Because viral particles are short lived
in vivo [41, 44, 53], a quasi-steady state is rapidly established in which the density of
viral particles is proportional to the density of virus-infected cells, Vw = Iwpw/cV and
Vm = Impm/cV. Then by substituting r = pwβT/cV, c = 1 − pm/pw, w = Iw, m = Im, we
arrive at a simpler model for the dynamics of the density of wild type and mutant viruses:

dw(t)

dt
= (1− µ)rw(t)− (δ + k)w(t), (6)

dm(t)

dt
= r(1− c)m(t) + µrw(t)− δm(t), (7)

where r and r(1−c) are the replication rates of the wild type and the mutant, respectively;
c is the cost of the escape mutation, defined as a selection coefficient [24, 33]. To analyze
this model, it is useful to rewrite equations (6) and (7) in terms of the dynamics of the
ratio of the mutant to the wild-type density, z(t) = m(t)/w(t)

dz(t)

dt
=

dm(t)

dt

1

w(t)
− z(t)

w(t)

dz(t)

dt
= µr + z(t) (k − r(c− µ)) . (8)

Assuming a constant replication rate, r, and CTL killing rate, k, equation (8) can be solved
analytically, where the ratio, z(t), increases exponentially with the rate ε = k−r(c−µ) ≈
k − cr (when µ� c), which we call escape rate, i.e.,

z(t) = z0e
εt +

µr

ε

(
eεt − 1

)
, (9)

where z0 is the ratio at t = 0. In the examples we give below, the initial time, t = 0, is the
time when patients are first identified as being HIV infected and are enrolled in a clinical
study. This time of enrollment is likely to be several weeks after initial infection [17, 18].
Similarly, the onset of CTL selection tends to be a few weeks after infection [17, 18].
Equation (9) is only valid after the CTL selection has started and one has to allow for
the uncertainty of t = 0 relative to the onset of selection by adjusting z0.

The dynamics of the ratio in equation (9) is described by three parameters but only
two parameters can in general be estimated from the available viral sequence data [15, 16].
Therefore, two limiting cases of the general model can be found. If the rate of mutation
is small and the escape variant is initially present at a non-negligible frequency, so that
z0 > 0, then the generation of escape variants by mutation may be neglected, and the
frequency of the escape variant in the viral population is given by the logistic equation

f(t) =
f0

f0 + (1− f0)e−εt
, (10)

where f0 = z0/(1 + z0) is the initial frequency of the escape variant in the population.
Alternatively, if the initially escape variant is not present and is generated by mutation
from the wild type (i.e., µ > 0 and z0 = 0) then the frequency of the escape variant in the
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population is given by

f(t) =
z(t)

1 + z(t)
=

f0

f0 + (1− f0)e−εt
×
(
1− e−εt

)
, (11)

where now f0 = µr/ε. It should be noted that at large times (tε � 1), the dynamics
predicted by equations (11) and (10) are identical. In a later section we discuss the
situation where the escape variant is generated stochastically by mutation. By fitting
equation (11) or (10) to experimental data, rates of viral escape ε from a given CTL
response can be estimated. In many previous studies, the logistic equation (equation (10))
that assumes that both wild type and escape variant were present at t = 0, has been
used [4, 15, 20, 16].

The basic model assumes that the rate of viral escape from a given CTL response is
constant over time, which in general implies a constant rate of CTL-mediated killing of
infected cells (determined by the parameter k). Biologically, however, immune-mediated
selective pressure is likely to change over time, for example, because of a change in the
magnitude of the epitope-specific CD8 + T cell responses [20]. If the CTL killing efficacy,
and as result the escape rate, changes exponentially over time, e.g., ε(t) = ε0e

−at, the
change in the frequency of the mutant virus in the population over time can be obtained
analytically by solving equation (8)

z(t) =

(
z0e

ε0
a +

µ

a

[
φ
(ε0

a

)
− φ

(
ε0e
−at

a

)])
exp

(
−ε0e

−at

a

)
, (12)

f(t) =
z(t)

1 + z(t)
, (13)

where φ(x) = −
∫∞

x e−tt−1 dt. As before to reduce the number of parameters in the model
we can assume that either the escape variant is present at t = 0 (z0 > 0 and µ = 0) or is
generated by mutation (z0 = 0 and µ > 0).

2.2. Data and estimating model parameters

Evasion of the CTL response by HIV occurs as the virus mutates epitopes that are
recognized by virus-specific CTLs. This escape process can be studied by monitoring the
sequence composition of the viral population during infection. Over the past few years,
detection of viral escape mutations has been improved in two major ways. First, HIV
RNA isolated from peripheral blood is diluted to the point that a single RNA molecule is
expected to be present in a given sample. Then the RNA is reverse transcribed, amplified,
and sequenced, resulting in the sequence for a given virus being obtained (so-called single
genome amplification and sequencing, SGA/S). When multiple viruses are sequenced by
SGA/S (in general about 10–20 per time point), the sequences are compared at sites coding
for a CTL epitope and changes in the percentage of the wild-type/transmitted sequence
in the population are followed over time ([20], figure 2(A)). Second, deep sequencing can
be done, in which a relatively short RNA region (about 150–300 nucleotides) is sequenced
in the population [14]. Although deep sequencing only allows one to follow changes in
a small region in the viral genome, many more sequences can be obtained than in the
SGA/S protocol (from 102 to 104).

doi:10.1088/1742-5468/2013/01/P01010 6
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Figure 2. Schematic representation of experimental data on HIV escape from
CTL responses (panel (A)) and fits of the mathematical model to such data
(panels (B) and (C)). In panel (A), a small number of sequences covering either
the 3′ or 5′ half of the HIV genome has been obtained at five different time
points. Escape mutations are indicated as colored dots. Typical sequence sample
sizes range between 10 and 20. In panels (B) and (C) we show the fits of
the mathematical model (equation (10)) to experimental data using nonlinear
least squares (panel (B)) or likelihood (panel (C)) methods. We estimate two
parameters: the rate of escape, ε, and the initial frequency of the escape variant
in the population, f0. The estimated escape rate obtained by both methods is
shown in table 2.

doi:10.1088/1742-5468/2013/01/P01010 7
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Table 2. Estimates of the rate at which HIV escapes from CTL responses specific
to different viral epitopes. We fit a mathematical model (equation (10)) of HIV
escape from a CTL response specific to a single viral epitope using nonlinear least
squares (NLS) or maximum likelihood (equation (16)). The epitope is given in
the first column and the estimated escape rate, ε, in the subsequent columns.
To investigate the influence of interference between escapes at different epitopes
we performed stochastic multi-locus simulations and determined the escape rates
that maximize the likelihood of observing the data averaged over several runs
of the stochastic simulation (see main text). In these simulations, we assumed
that CTL responses started 30 days before the first patient sample was obtained;
the estimated escape rates for early escapes are higher if this delay is shorter.
The estimated rates are given in the column labeled ‘multiple epitopes’. The
estimated escape rates can depend strongly on the model and method. One has
to strike a delicate balance between a too complicated model whose parameters
cannot be determined due to insufficient data, and a too restrictive model with
a well-defined optimal solution that is nevertheless inaccurate since the model
was inappropriate. The rather flexible model used in [16] with two parameters
per epitope results in large confidence intervals for estimated rates of viral escape
(e.g., see [16]).

Single epitope Multiple epitopes

Epitope ε, day−1 (NLS) ε, day−1 (likelihood) ε, day−1 (likelihood)

Pol80 0.02 0.01 0.05
Rev49 0.01 0.02 0.03
Vif113 0.04 0.01 0.02
Gag389 0.17 0.17 0.15
Nef185 0.22 0.14 0.18

An example, taken from [20], of such time course data of HIV immune escape is shown
in figure 2. The figure shows a schematic of the sequenced genomes and the frequencies
of escape mutations estimated as the fraction of times a mutation is observed in the
sample. Since samples are small (about 10–20 sequences each), the frequency estimates
come with substantial uncertainty. Using data of this kind, we would like to infer escape
rates associated with CTL responses specific to different HIV epitopes using the models
discussed above.

Previously, data on viral escape have been analyzed by assuming that some mutants
are present at time t = 0, using a logistic equation [13, 4, 15] and fitting the model to the
data using nonlinear least squares, leaving f0 completely unconstrained. This yields results
as shown in figure 2(B). Although this method often provides a reasonable description of
the data it does not weight the different data points according to the uncertainty associated
with them. Although weighted least squares can take this uncertainty into account, we
propose here to use a more direct approach based on calculating the likelihood of the
data given our model. Similar methods have been developed in the context of evolution
experiments and the evolution of cancer [25]. The likelihood of sampling a certain number
of mutants at different time points, given a particular escape rate, ε, and the initial mutant
frequency, f0, is derived as follows.

doi:10.1088/1742-5468/2013/01/P01010 8
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Finding k mutations in a sample of size n when the true frequency is f(t) has the
binomial probability(n

k

)
f(t)k(1− f(t))n−k. (14)

The data set in general contains several samples of different sizes, ni, sampled at different
times ti. Given a frequency trajectory, f(t), such a data set therefore has the likelihood

L =
∏

i

(
ni

ki

)
f(ti)

ki(1− f(ti))
ni−ki . (15)

Our model parameterizes the frequency trajectory of individual escapes with the
escape rate ε, and the initial frequency f0. Ignoring all terms that do not depend on
ε or f0, we obtain up to a constant

L = logL =
∑

i

[ki ln(f(ti)) + (ni − ki) ln(1− f(ti))] . (16)

By maximizing this log likelihood we obtain maximum likelihood estimates of the
parameters f0 and ε. The confidence interval of this estimator can be obtained by
calculating the curvature of the likelihood surface or by bootstrapping the data using
a binomial distribution [16]. Furthermore, to constrain some of the parameters of the
model (e.g., the initial frequency of the escape variant, see below) we can use a prior
favoring some values over other.

We applied both nonlinear least squares and likelihood methods to the data shown
in figure 2 on escape of HIV from five different CTL responses in patient CH40 [20, 16].
While both methods allow a reasonable description of the data, the estimates of the escape
rate from a given CTL response obtained by the two methods are often different (table 2).
For example, for viral escape from the Rev49-specific CTL response, likelihood predicts
more rapid escape than the nonlinear least-squares method. In part, this arises because of
the oscillations in the measured frequency of the mutant sequence in the viral population,
which initially increased, then decreased, and then increased again. A similar argument
applies to the data on escape from the Pol80-specific CTL response.

There are two problems with some of the model fits. First, some of the fits predict a
very high mutant frequency at time t = 0 (e.g., for Pol80 f0 ≈ 0.2), which is inconsistent
with the experimental data. Second, the confidence intervals on the estimated escape rates
are very large (results not shown and [16]). The underlying reason for the latter ambiguity
is that, without sufficient data, the initial mutant frequency and escape rate are correlated,
and in general larger initial frequencies lead to lower escape rates. To reliably estimate
two parameters, we have to have at least two measurements where the mutant frequency
is between 10 and 90% (and the data needs to be consistent with logistic growth; more
on that below).

To circumvent both of these problems, one might be inclined to constrain f0 to be less
than a prescribed cut-off (e.g., f0 < 10−4). Doing so reduces the variability of the fits and
generally results in larger estimates of the escape rates (figure 3(A) and table 3). At the
same time, the fits of the model to data on late escapes get substantially worse as early
data points are not described by the model. These inferior fits point toward the inadequacy
of the model. One potential explanation for this discrepancy between data and the model

doi:10.1088/1742-5468/2013/01/P01010 9
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Figure 3. Impact of constraining the initial mutant frequency, f0, on the kinetics
of viral escape. In panel (A) we show fits of the model (equation (10)) to the
sequence data obtained assuming that the initial frequency of escape variant
is lower than fc = 10−4. The fit is done by adding an extra penalizing term
10105(f0−fc) to the log likelihood (equation (16)). The constraint leads to much
higher estimates of the escape rate (table 3) but a poor description of the data.
In panel (B), in addition to the constraint to the initial mutant frequency, we
allow the escape rate to decline over the course of infection (equation (13)). This
extension improves the fit of the constrained model to data for 3 out 5 epitopes
(table 3).

is that the escape rate may be changing over the course of infection [15]. Indeed, over
time the magnitude of the CTL response may decrease, leading to a decreased selection
pressure on the virus, and as a result, a slower rate of escape later in infection. Indeed,
allowing the escape rate to change over the course of infection leads to a significantly better
description of the data, at least for some escapes (figure 3(B) and table 3). Another feature
that is missing from the model is the simultaneous escape from multiple epitopes, which
we discuss at greater length below.

In summary, the model for viral escape from a single CTL response can be used
to estimate CTL-mediated pressure on the wild-type transmitted virus using different
statistical methods. If enough data is available for a reliable estimate of ε and f0 and the
model predictions are compatible with the observed data, direct estimation by fitting a
logistic involves the smallest number of assumptions. The estimated escape rate might still
be an underestimate due to variable selection strength, and the escape rate estimated using
equation (11) or (10) should be treated as the average escape rate in the observed time
period [15, 16]. With limited data, more robust estimates can be obtained by constraining
the initial frequency of escape mutants at the first time point, but its validity rests on
additional data on the time when the CTL response to a given epitope is generated.

With these caveats in mind, the estimates nevertheless suggest that virus-infected cells
are killed by the virus-specific CTL responses with rates ranging from 0.01 to 0.4 day−1 [4,
16, 14], and if the escape rate changes with the time since infection for a given epitope,
killing rates could be even higher (table 3). Given that HIV-infected cells have a death
rate of ∼1 day−1 [41], this work suggests that CTL responses contribute substantially to
the control of HIV, at least during acute infection.

doi:10.1088/1742-5468/2013/01/P01010 10
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Table 3. Estimates of the escape rate in the model where the initial frequency of
the escape variant is constrained to be lower than fc = 10−4. In the first column
we list the epitopes in which escape occurs. In the second column we list estimates
of the escape rate assuming a constant escape rate and using equations (10) and
(16) with a penalizing term 10105(f0−fc) added to the log likelihood. Model fits
are shown in figure 3(A). In the third and fourth columns we list estimates of
the initial escape rate and the rate of decline of the escape rate assuming that
the escape rate declines over time using equations (13) and (16). Fits are shown
in figure 3(B). For the three epitopes indicated by ∗ allowing the escape rate
to change over time significantly improved the quality of the model fit to data
(likelihood ratio test, p < 0.0001).

Model Constant ε Decreasing ε

Epitope ε, day−1 ε0 day−1 a, day−1

Pol80∗ 0.06 2.55 0.09
Rev49 0.05 0.07 0.01
Vif113∗ 0.03 0.76 0.02
Gag389 0.27 0.53 0.04
Nef185∗ 0.51 1.04 0.08

2.3. Effects of sampling depth and frequency on fitting performance

To perform a more systematic analysis of the fidelity of the different fitting methods,
we simulated escape trajectories using the computational model for escape dynamics
introduced below. From this simulated data, we can produce a series of samples of different
size and mutant frequency and try to reconstruct the parameters that were used in the
simulation. The question we address here is: if we want to improve estimates of the escape
rate, how should the data collection be improved?

Figures 4(A) and (B) show two runs of the simulation with shallow and infrequent
(A) and deep and frequent sampling (B). Deep sampling will be readily achieved in
forthcoming experiments since new sequencing technologies allow deep sampling at low
cost. The frequency of sampling, however, will likely remain limited. Panel (C) shows how
well the escape rate of epitope 4 can be reconstructed from sample series of different depth
and frequency. The fitting procedure that attempts to determine both f0 and ε is rather
noisy and biased for small and infrequent sampling. Both deep and frequent sampling
allows one to overcome this problem. On the other hand, the method that only fits the
escape rate and assumes that variants are present at a small frequency, f0, when selection
starts, consistently underestimates the escape rate, but does not fluctuate much. We will
see below that this underestimate is a consequence of delayed escape due to interference
between different epitopes.

In order to estimate the escape rate and the initial frequency reliably, we need to
sample a trajectory at least twice at intermediate frequency. This can be achieved both
by deep or frequent sampling. We would like to caution, however, that low frequencies are
very susceptible to fluctuations and rare variants found in a deep sequencing experiment
should not be assumed to follow a deterministic trajectory.
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Figure 4. Influence of sampling frequency and sampling depth on fidelity of
estimates of the escape rate. Panels (A) and (B) show mutation frequencies
in population samples for infrequent shallow sampling (n = 10, (A)), and more
frequent deep sampling (n= 200, (B)). The actual mutation frequencies are shown
as dashed lines, the sample frequencies are indicated by symbols, while the fitted
trajectories as solid lines. Obviously, more frequent and deeper sampling will
improve the estimates of the escape rate. This is quantified in panel (C). It shows
the mean estimate of the escape rate of epitope 4 (cyan lines in panels (A) and
(B)) and its standard deviation as a function of sampling depth for different
sampling frequencies. The estimates are shown relative to the true value of the
simulated escape rate, hence a systematic deviation from one represents a bias.
The dashed lines show the results of fitting only the escape rate, ε, while fixing
f0 = 10−4. Those fits show a systematic bias toward lower estimates, but have
small variance and are insensitive to sample depth or frequency. The solid lines
correspond to estimates where both ε and f0 were fitted, while constraining f0

to be smaller than 10−4. These fits show much larger variance and a strong bias
at small sampling frequencies, but are unbiased at frequent and deep sampling.

3. Modeling viral escape from multiple CTL responses

While the model of viral escape from a single CTL response gives a general idea of the rates
involved in CTL escape, it is not a priori obvious whether ignoring the simultaneous escape
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of other epitopes is justified. Different epitopes are encoded by the same viral genome
and as such are not independent. The analysis of multiple simultaneous CTL escapes
is complicated by the large number of possible combinations of epitopes. In the next
section, we formulate a model for multiple simultaneous escapes as well as for mutation
and recombination that give rise to novel combinations of epitopes.

3.1. Mathematical model

We assume that there are in total n CTL responses that control viral growth and,
potentially, the virus can escape from all n responses. A CTL response that recognizes the
ith epitope of the virus kills virus-infected cells at rate ki, and escaping from the ith CTL
response leads to a viral replicative fitness cost ci. We denote a viral genome by a vector
i = (i1, i2, . . . , in) with ij = 0 if there is no mutation in the jth CTL epitope and ij = 1 if
there is a mutation leading to escape from the jth CTL response. The death rate of an
escape variant due to the remaining CTL responses is then simply

∑n
j=1kj(1− ij), where

k1, k2, . . . , kn are the death rates of infected cells due to killing by the jth CTL response.
Note that we have assumed that killing of infected cells by different CTL responses is
additive. Extending models for viral escape with other mechanisms of CTL killing is an
important area for future research.

Escape from a given CTL response incurs a fitness cost to the virus. Assuming
multiplicative fitness, the fitness of a variant i is

∏
j(1− cjij). Although there is evidence

for compensatory evolution in and around individual epitopes, we do not expect strong
epistasis between mutations in epitopes in different parts of the genome.

Given that most HIV infections start with a single transmitted/founder virus [28],
we need to describe the generation of the escape variants from the founder strain. Even
though the viral population during acute infection may attain a large peak where there
might be around 1010 infected cells, we cannot assume that all possible viral genotypes
are present early on. Because µ3 ≈ 10−14 is so small we do not expect to generate a virus
with more than two mutations in a single generation. Multiple mutations therefore have
to accumulate in the course of infection and the appearance of these multiple mutants is
delayed, as illustrated with simulation data in figure 6. Mutation dynamics therefore has
to be included in the model. Genotype i can arise by mutation with rate µ per epitope if
a cell gets infected with a viral strain lacking one of the mutations in i:

µ
∑
j∈i

V (i \ j) (17)

where i \ j denotes genotype i without mutation j and V (i) is the abundance of virus
with genotype i. We are mainly interested in the generation of escape mutations and will
therefore ignore back mutations. Similarly, we will for now ignore that genotypes are lost
by mutations at all sites that have not yet escaped (this term will be reinstantiated later).
Both of these contributions have negligible effects on the dynamics since they do not
involve genotypes that are favored by selection. Furthermore, back mutations will occur
at a slower rate because escape mutation may occur at several positions in the epitope
(8–10 amino acids) while back mutations have to occur in the same place as the escape
mutation.

In addition to mutation, novel genotypes can also be generated by recombination of
two existing HIV genomes. Diversifying recombination in HIV requires coinfection of a host
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Figure 5. Each HIV particle contains two copies of its RNA genome, from which
one complementary DNA strand is produced and integrated into the host cell
genome. The two RNA strands are combined by template switching of the reverse
transcriptase enzyme, which can happen up to 10 times per replication [31]. The
in vivo recombination rate, however, is limited by the probability that a host
cell is infected by genetically distinct viruses, illustrated on the left. The effective
recombination rate combining these two processes is estimated to be on the order
of 10−5 per nucleotide per generation [37, 6, 27], which implies a coinfection rate
on the order of a few per cent.

Figure 6. Influence of stochastic effects on CTL escapes. The rise of escape
mutations in the stochastic model (dashed lines, 10 realizations) is delayed
relative to the deterministic model (solid lines) at low coinfection rates (left
panel, coinfection rate 0.01). This delay is much shorter at increased coinfection
frequencies (right panel, coinfection rate 0.2), suggesting that the delay is mainly
due to interference between epitopes. The population size is 106.

cell with virions carrying different genomes, which are crossed over by template switching
in subsequent generations [31] (figure 5). The coinfection frequency was estimated to be
on the order of a few per cent or less [37, 6, 27] and is denoted here with the symbol ρ.
We could extend the model to include cells coinfected with different viral genotypes, but
we will simply assume that the fraction of viruses that are heterozygotes (see figure 5)
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with genotypes j and k is proportional to product of the fraction of genotypes j and k in
the total population, i.e., N−2V (j)V (k), where N =

∑
iV (i) is the total number of virus

particles. After infection with such a heterozygote virus, template switching will produce a
chimeric cDNA which is then integrated into the target cell’s genome. Within this model,
cells get infected with the recombinant genotype i at rate

βTρ

N

∑
j,k

C(i|j,k)V (j)V (k) (18)

where C(i|j,k) is the probability of producing genotype i from j,k by template switching.
In this expression, one factor of N got canceled since equation (18) accounts for the total
production of recombinant virus, rather than the fraction of total. The genotypes that
recombine are lost when producing the recombinant genotype, which can be accounted for
by a loss term −βTρV (i). The mutation and recombination terms are easily incorporated
into the equations describing the viral population.

dT

dt
= d(T0 − T )− βT

∑
i

V (i), (19)

dI(i)

dt
= βT

V (i) + µ
∑
j∈i

V (i \ j) +
ρ

N

∑
j,k

C(i|j,k)V (j)V (k)− ρV (i)


− I(i)

(
δ +

n∑
j=1

kj(1− ij)
)
, (20)

dV (i)

dt
= p(i)I(i)− cVV (i) (21)

where I(i) is the abundance of cells infected with strain i. The fitness costs of escape
mutations are hidden in the rate of virus production p(i) = p0

∏
j(1 − cjij). Assuming

the viral population is in a quasi-steady state, we substitute V (i) = p(i)I(i)c−1
V , denote

βTp(i)c−1
V by f(i), and normalize using mi = I(i)/M with M =

∑
jI(j), to obtain

d

dt
mi(t) =

(
f(i)(1− ρ)− δ −

n∑
j=1

kj(1− ij)−
Ṁ

M

)
mi

+ µ
∑
j∈i

fi\jmi\j + ρ
M

NβT

∑
j,k

C(i|j,k)fjmjfkmk. (22)

The term in big parentheses accounts for selection and the loss due to recombination, while
the two terms on the second line account for the gain of genotype i through mutation and
recombination, respectively. In the quasi-steady state, the average clearance of infected
cells ≈δM has to equal the number of new infections, given by the product of the number
of virus particles N , the infectivity β, and the target cell number T . The prefactor of the
recombination term is therefore approximately equal to ρ/δ. Since different viral genotypes
reproduce with different efficiency f(i), the effective mutation and recombination rates at
the level of infected cells have become genotype dependent. However, we will neglect this
strain dependence in the following since it only leads to small changes in the mutational
input and the recombination process. Defining the effective growth rate of a strain as
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εi = fi − δ +
∑n

j=1kj(1 − ij), the average growth rate 〈ε〉 = Ṁ/M , and an effective
recombination rate ρe, we can simplify the above to

d

dt
mi(t) = (εi − 〈ε〉)mi + µ

∑
j∈i

mi\j −
∑
j 6∈i

mi

+ ρe

∑
j,k

C(i|j,k)mjmk −mi

 , (23)

where we have restored the loss µ
∑

j 6∈imi due to mutations at wild-type epitopes.
The three terms account for changes in frequency due to differential replication and

killing, mutation, and recombination, respectively. The mutation and recombination terms
account both for influx and efflux of genotypes. The effective recombination rate should be
thought of as the rate at which novel genotypes are produced from existing genotypes, and
accounts for coinfection, copackaging, and the average relatedness of copacked genomes.
Within our additive model, the growth rate εi is a sum of terms accounting for the fitness
costs of the escape mutations and the avoided killing.

Equation (23) provides a simpler description of the viral population than
equations (19)–(21). The dynamics of the free virus has been slaved to the frequencies of
infected cells and the complex parameters describing virus reproduction and killing have
been subsumed in a simple growth rate. Models of this type have been studied intensively
in population genetics. For a review of theoretical work on the evolution of multi-locus
systems we refer the reader to [36]. da Silva [10] has introduced a similar model and
investigated how different assumptions about mutation rates, coinfection probability, and
CTL killing efficacy influence the number and timing of escapes.

Equation (23) still describes deterministic dynamics. Stochastic effects, however, are
important whenever a particular genotype is present in small numbers. The stochastic
features of the dynamics can be easily incorporated in computer simulations where
each individual can replicate, mutate, and recombine with a certain probability each
time step, see below. Examples of such stochastic simulations are shown in figure 6,
where the frequencies of escape mutations in stochastic simulations are compared to the
deterministic solution of the system. The stochastic trajectories deviate significantly from
the deterministic ones, in particular, when the recombination rate is low.

To appreciate how stochasticity, in combination with selection, and recombination
can affect the viral population dynamics, it is useful to consider the extreme case of
no recombination, i.e., asexual evolution. To produce a genotype with multiple beneficial
mutations, a series of mutations in the same lineage is required since mutations happening
on different genomes cannot be combined in the absence of recombination. Hence the only
mutations that can successfully spread through the population are those that happen on an
already very fit virus and produce new exceptionally fit genomes. All other mutations, even
if beneficial, are lost since they are outcompeted by fitter genotypes—a phenomenon often
called selective interference [19]. Since this seeding of new exceptionally fit genotypes is a
rare process that involves a very small number of viruses, and the existence or absence of
such fit virus determines the future dynamics, the stochasticity of the population dynamics
is important.

A particular escape mutation might have to arise multiple times until it is finally
falls onto a genome that is successful. This interference can substantially delay the
accumulation of mutations, as is apparent in figure 6, which shows that competition
between different mutations can have substantial effects on the allele frequency

doi:10.1088/1742-5468/2013/01/P01010 16

http://dx.doi.org/10.1088/1742-5468/2013/01/P01010


J.S
tat. M

ech.(2013)
P

01010

Escape in acute and chronic HIV infection

trajectories. When such delays are not accounted for, the estimates of escape rates can be
biased, as apparent in figure 4.

At large recombination rates genotypes are constantly taken apart and reassembled
from the existing genetic variation. Escape mutations that happen on different genomes
can be combined by recombination to produce better adapted virus. Hence recombination
accelerates the production of recombinant virus and reduces the fluctuations of allele
frequency trajectories.

The crossover between a more or less asexual population to one that behaves like a
fully sexual one depends on the strength of selection. Selection operates on the fitness of
entire genotypes and changes the genetic composition of the population on time scales that
are inversely proportional to the fitness differences in the population. If this time scale is
much shorter than the inverse recombination rate, recombination has a small impact on
the dynamics. It does, however, occasionally produce new genotypes similar to mutation.
If recombination is faster than selection, genotypes are taken apart and reassembled by
recombination before their frequency is changed substantially by selection. In this case the
frequency of the genotype is the product of the frequencies of the alleles it is composed of.
In other words, recombination decouples different loci along the genome and the dynamics
of allele frequencies at each locus are well described by the single epitope model.

The recombination rate of HIV is such that both of these limits are important in
different phases of the infection. The frequency of recombination between distant parts on
the viral genome (distance l > 1 kb) is limited by the probability of coinfection, which is
estimated to be on the order of a few per cent or less [37, 6, 27]. For loci closer together than
a distance l, the recombination rate will be approximately 10−5×l per generation [37]. The
parameters estimated above suggest that changes in genotype frequencies are much more
rapid than decoupling by recombination, at least during the early part of the infection.
Hence in order to estimate the parameters of the model, we have to take the complex
dynamics of a stochastically evolving population into account. During later stages of the
infection, changes in genotype frequencies are much less rapid, such that distant parts
of the viral genome are essentially decoupled. The effect of selection in partly sexual
populations like HIV has been studied in greater detail in [46, 39, 38].

In essence, the two regimes of high and low recombination differ in what the relevant
dynamical variables are. In the early regime, where selection is strong, fit viral strains
are amplified by selection, while mutation and recombination produce novel strains at
a smaller rate. The relevant quantities are the frequencies of different strains, which
happen to be the variables of our model. Later in infection, however, when recombination
dominates over selection, the frequencies of mutations evolve approximately independently
of each other and genotypes frequencies are slaved to these mutation frequencies [36].

Whether one or the other description is appropriate matters for the interpretation of
the data. The rapid rise of several mutations that occur together as one genotype is most
likely driven by the joint effect of all of these mutations. Estimates of an escape rate from
the slope of the frequency trajectory would therefore correspond to an escape rate of a
genotype rather than an individual mutation. For example, escape of HIV from Gag389-
and Nef185-specific CTL responses occurs within the same time frame and, therefore, our
estimates of viral escape from individual responses (0.17 and 0.14 day−1, respectively)
likely represent simultaneous escape from both responses (≈0.16 day−1, see table 2 and
figure 2(C)).
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Later in the infection, when recombination and selection are of comparable strength,
the trajectory of a particular mutations would reflect selection on this mutation alone,
even if other mutations escape at the same time.

The problem of the accumulation of competing beneficial mutation in large sexual
and asexual population is an active area of research in population genetics [47, 11, 46,
39]. Analytic results have only been obtained for drastically simplified models, which are
not suitable for the inference of model parameters of the sort we are interested in here.
On the other hand, we are typically interested in the evolution of just a few sites, which
can be efficiently simulated.

3.2. Simulation of multiple CTL escapes

We have implemented the simplified model described above as a computer simulation using
a discrete time evolution scheme. The simulation keeps track of the abundance mi of each
of the 2n possible viral genotypes, where n is the number of epitopes. In each generation, mi

is replaced by with mie
ε(i)−〈ε〉, which accounts for selection. To implement recombination,

we calculate the distribution of recombinant genomes resulting from random pairing of
genotypes after selection. It is assumed that all loci reassorted at random, which is justified
if all epitopes are further apart than 1000 bp. A genetic map could be implemented easily.
A fraction, ρ, of the population is replaced by recombinant genomes in each generation.
Similarly, mutations change the genotype distribution by moving µmi\j individuals with
genotype i \ j to genotype mi and vice versa for every possible i and j. To account for the
stochastic nature of viral reproduction, the population is resampled according to a Poisson
distribution after selection, recombination, and mutation. The average population size can
be set at will in this resampling step. Due to recombination, the computational complexity
scales as 3n and a simulation of n = 10 epitopes for 500 days runs for about one second on a
typical 2011 desktop computer. The simulation is built using the general library FFPopSim
for multi-locus evolution. The source code, documentation, and a Python wrapper are
available from http://code.google.com/p/ffpopsim.

3.2.1. Inferring escape rates by multi-locus simulations. Given our model of multi-
epitope viral escape and a simulation to generate trajectories, we can try to infer the
escape rates by adjusting the parameters of the model to maximize the likelihood of the
observed escape trajectories. In the absence of any tested fitting procedure for such a
problem, we simulated the dynamics for a large number of parameters and determined
the likelihood of sampling the observed mutations from the simulation (we tested 21 values
of the escape rates for each epitope, i.e., 215 rate combinations).

In addition to the escape rates of the different epitopes, we introduced an additional
parameter τ that specifies the onset of CTL selection relative to the time of the first
available patient sample. Other parameters such as µ = 2× 10−5 and ρ = 0.01 are taken
from the literature. The population is initialized as a homogeneous population without
any escape mutations τ generations prior to the first sample.

The likelihood of the data given the escape mutant frequencies is calculated using
equation (15). Empirically, we find that there is a single (broad) maximum of the likelihood
surface and that fits are best with CTL selection onset 20–30 days before the first sample.
The values in table 2 correspond to τ = −30. However, we would like to emphasize that the
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agreement between the simulation and the data is never terribly good, which, as discussed
above, is possibly due to changing selection pressure over time.

4. Conclusions and future directions

We have discussed several models of the dynamics of immune escape at single or multiple
loci. We have shown how the model fit depends on the assumptions made by the model.
By applying the inference procedures to simulated data, we investigated how the sampling
depth and sampling frequency affects the fidelity of the estimates.

The models and procedures outlined have a number of shortcomings that need to
be addressed to obtain more meaningful estimates of the parameters governing the co-
evolution of the viral population and the immune system. The models are both too simple
and too complex. On one hand, there is mounting evidence that the models miss several
important aspects of the immune system/virus interaction. On the other hand, the models
already contain too many parameters to allow their robust estimation from the available
data.

It has recently become clear that the adaptive immune system is able to control the
virus by other means than the direct killing of infected cells, for example, by production of
antiviral cytokines and chemokines [16, 29, 50]. Furthermore, the immune system produces
a very dynamic environment for the virus where the selection pressure on different epitopes
is changing. We have generalized the single locus models to allow for exponentially
decaying escape rates, but introducing one additional parameter per locus makes the
fit near degenerate unless a constraint on the initial frequency of the escape mutant is
introduced. We have also ignored the possibility of compensatory mutations, competition
between multiple escape variants at a single epitope, and epistatic interactions between
mutations.

Another potential extension of the model is to allow the processes of mutation and
selection due to escape from CTL responses to start at different times postinfection.
Indeed, mutation from the founder virus starts at the beginning of infection, while
most CTL responses do not arise until 2–4 weeks postinfection [34]. Also, it is not well
understood how multiple CTLs that are specific for different viral epitopes interact to
kill virally infected cells, e.g., whether the death rate of cells expressing different viral
epitopes is the sum of the killing rates due to individual epitope-specific CTL responses.
Recent work has shown that competition between different CTL responses may influence
the timing and speed of viral escape [16].

The analysis of multi-locus data is hampered by the large number of possible
genotypes, which grows exponentially with the number of loci considered. The dynamics
of this genotype distribution is governed by a nonlinear equation and solving the model
involves considerable computational effort, such that one would expect fitting parameters
of the model to be slow and ridden with many suboptimal local minima. The problem,
however, is not as daunting as it seems.

The majority of the possible genotypes will never exist and the population is
always dominated by a small number of genotypes. Furthermore, the escape mutations
accumulate in the inverse order of their escape rates, which implies that early mutations
affect the dynamics of later mutations, but not vice versa.
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Lacking an analytical solution of the multi-locus dynamics, fitting parameters will
require repeated simulation of the population dynamics and comparison of the simulated
trajectories with the data. The underlying dynamics of the population, however, is
stochastic and different runs of a stochastic simulation will result in different outcomes,
such that fitting to a stochastic simulation is ambiguous.

All of these additions will provide interesting future directions, particularly when deep
and dense data are available to constrain the models.
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