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In sexual populations, selection operates neither on the whole
genome, which is repeatedly taken apart and reassembled by
recombination, nor on individual alleles that are tightly linked to
the chromosomal neighborhood. The resulting interference be-
tween linked alleles reduces the efficiency of selection and distorts
patterns of genetic diversity. Inference of evolutionary history
from diversity shaped by linked selection requires an understand-
ing of these patterns. Here, we present a simple but powerful
scaling analysis identifying the unit of selection as the genomic
“linkage block” with a characteristic length, ξb, determined in
a self-consistent manner by the condition that the rate of recom-
bination within the block is comparable to the fitness differences
between different alleles of the block. We find that an asexual
model with the strength of selection tuned to that of the linkage
block provides an excellent description of genetic diversity and the
site frequency spectra compared with computer simulations. This
linkage block approximation is accurate for the entire spectrum of
strength of selection and is particularly powerful in scenarios with
many weakly selected loci. The latter limit allows us to character-
ize coalescence, genetic diversity, and the speed of adaptation in
the infinitesimal model of quantitative genetics.
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In asexual populations, different genomes compete for survival,
and the fate of most new mutations depends more on the total

fitness of the genome they reside in than on their own contri-
bution to fitness. As a result, beneficial mutations on one genetic
background can be lost to competition with other backgrounds,
an effect known as “clonal interference” (1–3); likewise, dele-
terious mutations in very fit genomes can fix. This interference is
reduced by recombination and disappears when recombination is
rapid enough such that selection can act independently on dif-
ferent loci. Many eukaryotes recombine their genetic material by
crossing-over of homologous chromosomes. As a result, distant
loci evolve independently but nearby tightly linked loci remain
coupled. Such interference, known as Hill–Robertson inter-
ference, reduces the efficacy of selection (4, 5) and reduces levels
of neutral variation. Neutral diversity is indeed correlated with
local recombination rates in several species, suggesting that
linked selection is an important evolutionary force (6, 7). One
typically distinguishes background selection against deleterious
mutations (8, 9) from sweeping beneficial mutations, which lead
to hitchhiking (10, 11). Both of these processes reduce diversity
at linked loci and probably contribute to the observed correlation
(12). Another piece of evidence for the importance of linked
selection comes from the weak correlation between levels of
genetic diversity and the population size (13). Whereas classic
neutral models predict that diversity should increase linearly with
the population size (14), in models dominated by selection, the
diversity depends only weakly on the population size (3). Hence,
linked selection could explain this “paradox of variation” (15).
From the perspective of a neutral allele, any random associ-

ation with genetic backgrounds of different fitness results in
fluctuations of its allele frequency. To distinguish this source of
stochasticity from genetic drift, Gillespie (11) coined the term

“genetic draft.” Whereas genetic draft is understood well when
caused by strongly selected mutations whose dynamics are de-
terministic at high frequencies (5, 16, 17), the cumulative effect
of many weak effect mutations has mainly been addressed using
simulations (18, 19). Many populations harbor substantial heri-
table phenotypic variation, which, in an unknown way, depends
on a large number of polymorphisms in the genome. The ma-
jority of these polymorphisms are likely to have small effects on
phenotypes and fitness. Collectively, they can still dominate phe-
notypic variation (20) and possibly fitness variation. This limit is
known as the infinitesimal model in quantitative genetics. Quan-
titative genetics, however, typically ignores linkage between loci
and the maintenance of genetic diversity (21, 22).
Here, we characterize the structure of genealogies, genetic

diversity, and the rate of adaptation in sexual populations in the
limit of numerous weakly selected alleles. We build on recent
progress in our understanding of genealogies in adapting asexual
populations (23–25), and we will first review these results briefly.
We will then present a scaling argument that reduces the prob-
lem of coalescence within a sexually reproducing population to
an asexual population with suitably scaled parameters. This
correspondence allows us to predict levels of genetic diversity,
coalescence time scales, and site frequency spectra. Our results
hold regardless of whether the polymorphisms originated as
weakly deleterious or beneficial mutations, and thus cover weak
effect background selection as well as adaptation. We confirm
the validity of the mapping to the asexual model by comparing its
predictions with numerical simulations of evolving sexual pop-
ulations. We use this approximation to demonstrate that in the
limit of numerous weakly selected mutations, the rate of adap-
tation scales as the square root of recombination rate.

Significance

Many populations are genetically diverse, and genomes of
individuals can differ at millions of loci, some of which affect
the fitness of the organism. Although recombination will sep-
arate distant loci rapidly, nearby loci are inherited together and
stay linked for long times. Selected alleles at linked loci in-
fluence each other’s dynamics in complex ways that are poorly
understood. We present an analysis of the coupled histories of
linked loci subject to selection and recombination and make
predictions for the resulting genetic diversity. We show that
simple patterns emerge from the collective effect of many loci
and that these patterns can be used to infer evolutionary
parameters from sequence data.
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Results
In asexual populations, all loci share the same genealogical his-
tory and the fate of a lineage depends on the fitness of the entire
genome. If fitness depends on a large number of polymorphic
loci with comparable effects, the fitness distribution in the pop-
ulation will be roughly Gaussian and the fittest individuals are
xc ≈ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logNσ

p
ahead of the fitness mean, where σ2 is the total

fitness variance in the population (2, 26, 27). In large asexual
populations, only individuals in the high fitness nose have an
appreciable chance to contribute to future generations. It will take
those individuals roughly σ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logNσ

p
generations to dominate

the population. Hence, the probability that two randomly chosen
individuals had a common ancestor σ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logNσ

p
generations ago

is of order 1 (i.e., their ancestral lineages have likely coalesced). A
more thorough analysis of coalescence in adapting asexual pop-
ulations can be found in studies by Neher and Hallatschek (23)
and by Desai et al. (24). In small populations with Nσ � 1, co-
alescence is dominated by neutral processes (nonheritable fluc-
tuations in offspring number known as genetic drift). The average
number of generations back to the most recent common ances-
tor of any pair of extant genomes, also known as the pair coa-
lescence time, is given by:

hT2i≈
�
N Nσ � 1
cσ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logNσ

p
Nσ � 1 ; [1]

where c is a constant of order 1 that captures deviations from
Gaussianity that depend on details of the model. For the infin-
itesimal model studied here, c=

ffiffiffiffiffi
12

p
(23).

In an attempt to extend applicability of the neutral coalescent,
one sometimes defines an effective population size, Ne, equal to
hT2i regardless of whether coalescence is neutral or not (28). By
definition, a neutral model with Ne = hT2i predicts the same levels
of genetic diversity, but the statistical properties of the genealogies
dominated by selection are quite different and cannot be papered
over simply by redefining the population size. We will therefore
avoid the term Ne and stick to hT2i. For the approximately neutral
case, Nσ � 1, the coalescent tree is of the Kingman type (14). As
Nσ increases, coalescence is more and more driven by the ampli-
fication of fit genomes, which generates a very skewed offspring
number distribution over time scales of order σ−1. As a result, the
genealogies resemble the Bolthausen–Sznitman coalescent (BSC)
(25, 29) with very different statistical properties. Two representa-
tive coalescent trees sampled from asexual populations, one neu-
tral and one rapidly adapting, are shown in Fig. 1A.

Sexual Populations and Recombination. In contrast to asexual
evolution, recombination decouples different loci in sexual pop-
ulations: the further apart, the more rapidly. The typical length
of the segment that is not disrupted decreases with time as

ξðtÞ= L
1+Lρt

≈
1
ρt
; [2]

where ρ is the cross-over rate and L is the length of the chro-
mosome. The second approximation is justified whenever ξ � L.
If polymorphisms affecting fitness are spread evenly across the
genome and are dense (the infinitesimal model), we expect that
different segregating haplotypes in a region of length ξðtÞ harbor
fitness variation proportional to the segment length

σ2ξ =
ξðtÞ
L

σ2: [3]

This fitness variance shrinks with time as the block length decreases.
Although initial fitness differences between blocks are large, they
are chopped into smaller blocks so rapidly that selection has no
time to amplify the fittest of these early large blocks. However, the
rate at which blocks are chopped up decreases as they get shorter,

and, at some point, the rate of chopping them up is outweighed by
the amplification of the fittest blocks by selection. The latter
happens when fitness differences between haplotypes of this
block are comparable to the recombination rate. More precisely,
the relevant block length is the length that survives over the time
scale of coalescence ξb = ξðhT2iÞ. In large enough populations,
the time scale of coalescence itself is determined by these fitness
differences via Eq. 1. In contrast to asexual populations, only
the fitness variance, σ2b, within the linkage block of length ξb is
relevant, rather than the total variance σ2 (Fig. 1B). Using
hT2i= cσ−1b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logNσb

p
in Eq. 2, we find

ξb =
σb

cρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logNσb

p : [4]

Linkage disequilibrium (LD) should decay over this length scale.
Substituting ξb into Eq. 3 yields

σb =
σ2

Lρ  c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logNσb

p   and  ξb =
σ2

2Lρ2  c logNσb
: [5]

Hence, the time scales of coalescence and neutral diversity are
given by the inverse of the fitness variance per map length R=Lρ
with a logarithmic correction (see also refs. 9, 30 for the case
of strongly selected mutations). To arrive at this result, we
have assumed that Nσb � 1. If this condition is not satisfied,
local coalescence will be approximately neutral. In this case,
hT2i=N and the LD extends over ξb ∼ ðNρÞ−1 nucleotides. Em-
pirically, we observe a smooth and rapid cross-over between

B

A

Fig. 1. Coalescence in neutral and adapting populations. (A) Typical co-
alescent tree from neutral (Left) and adapting (Right) asexual populations. In
adapting populations, coalescent trees branch asymmetrically and contain
approximate multiple mergers. (B) Illustration of asexual blocks in sexual
populations. The sketch depicts a representative chromosome at the bottom
with polymorphisms indicated as balls. Different loci within segments shorter
than ξb share most of their genealogical history, (i.e., have trees similar to the
one indicated in the center of the segment where TMRCA is the time to the
most recent common ancestor). Coalescence within this segment of length ξb
is either neutral or driven by the fitness differences between different hap-
lotypes spanning these segments. (Inset) Fitness distribution of these haplo-
type blocks is indicated. Distant parts of the chromosome are in linkage
equilibrium, and the tree changes as one moves along the chromosome. The
succession of changing trees is the ancestral recombination graph.
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these two regimes (below and Fig. 2). The condition for draft
dominance, Nσb � 1, is more stringent in sexual populations
than in asexual populations, in which it isNσ � 1. In other words,
recombination reduces interference and results in drift-dominated
coalescence over a larger parameter range.
We predict now that the results for genetic diversity in the

asexual coalescent apply with σ2b as the local fitness variance and
that linkage disequilibrium between common loci extends over
a distance ξb. We will validate these predictions by forward
simulations of different population models.

Constant Selection in the Infinitesimal Model. We first consider a
model of a population whose fitness variance is set by external
(environmental) factors in which the selected trait depends on
many weak effect polymorphisms and de novo mutations (Materials
and Methods). This model might be a first approximation to
scenarios where selection pressures are dictated by a changing
environment, an evolving immune system, or a breeder who im-
poses a constant artificial selection. We simulate our population
using a discrete generation model with an approximately constant
population size and a finite number of sites in the genome as
implemented in FFPopSim (31) (Materials and Methods). We track
the genealogy of a locus in the center of the chromosome, which
allows us to study properties of representative coalescent trees.
After allowing the population to equilibrate, we sample the

evolving population in roughly hT2i intervals and measure T2,
the site frequency spectrum (SFS), and the LD between poly-
morphisms at intermediate frequencies ð½0:1; 0:9�Þ. We perform
these simulations for many combinations of parameters. For
each combination, we calculate σb according to Eq. 5. Fig. 2
shows that the average pair coalescence time hT2i approaches N
for Nσb → 0 and that it is proportional to σ−1b (with logarithmic
corrections) for Nσb � 1 as predicted.
In addition to a reduction in genetic diversity, we predict that

the local genealogies will resemble samples from the BSC rather
than the Kingman coalescent whenever Nσb � 1. Fig. 3 shows a
collection of SFSs colored by the Nσb. With increasing Nσb, the
SFS smoothly interpolates between the expectations for the
Kingman coalescent and the BSC. As soon as the SFS starts de-
viating from the prediction of the Kingman coalescent, Tajima’s D
turns negative. For large Nσb, we find a nonmonotonic SFS with
a steep divergence f ðνÞ∼ ν−2 characteristic of the BSC.
Another important feature of diversity in sexual populations is

the genomic distance across which loci share much of their ge-
nealogy. This can be quantified by measuring the correlations
between loci (LD) at different distances. In order for our picture
to be consistent, the extent of LD should be approximately equal

to ξb = ðρhT2iÞ−1. We measured LD as r2ðdÞ for different dis-
tances d and plot it against d=ξb (Fig. 4). As predicted, LD decays
over the length ξb = ðρhT2iÞ−1.
Frequent Small Effect Mutations. In the model studied above, fit-
ness variance was set by external factors. We now consider a
model where the fitness variance and diversity are set by a bal-
ance between frequent novel mutations of small effect and the
removal of variation by selection (i.e., fixation or loss of alleles).
This type of model has been studied for asexual populations (26,
32). Using these results, we expect that the fitness variance
within a block of length ξb is given by

σ2b ≈
ξbμ

�
s2
�

2
hT2i: [6]

Here, μ is the mutation rate and hs2i is the second moment of the
distribution of mutational effects. Note than in this infinitesimal
limit, it is irrelevant whether mutations are deleterious or bene-
ficial; only the second moment of the fitness effect distribution
is important. The quantity D= ξbμhs2i=2 is the “diffusion” con-
stant of haplotype fitness in the absence of selection. Eq. 6
implies that fitness variation accumulates over the time it takes
a few lineages to dominate the population, which is approximately
given by half the pair coalescence time (23). Substituting Eq. 2
with t= hT2i into Eq. 6, we find

σ2b =
μ
�
s2
�

2ρ
: [7]

Remarkably, the fitness variance of the effectively asexual blocks
is simply the ratio of the variance injection per nucleotide, μhs2i,
and the cross-over rate (at least when Nσb � 1). The coalescence
time cancels. We therefore find for hT2i

hT2i≈
8<
:

N N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μhs2iρ−1

p
� 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ logNσb
μhs2i

q
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μhs2iρ−1

p
� 1

; [8]

where c is again a constant of order 1. In the limit where co-
alescence is driven by selection, the total rate of adaptation is

σ2 ≈ cL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρμhs2ilogNσb

q
: [9]

These results apply to steadily adapting populations (i.e., sce-
narios where beneficial mutations dominate), populations suf-
fering from a mutational meltdown, or populations where the
two processes balance. We simulate the lattermost using a model
with recurrent mutations such that the population settles into
a dynamic equilibrium where the fixation of beneficial mutations
is roughly canceled out by that of deleterious mutations (33).
The predictions for neutral diversity, LD, and the SFS match the
simulation results very well. Fig. S1 shows plots analogous to
Figs. 2–4. The prediction for the total fitness variance, Eq. 9, is
compared with the simulation results in Fig. 5. We investigated
additional models to demonstrate the robustness of the con-
clusions regarding model assumptions and simulation method.
Fig. S2 shows neutral diversity, LD, and SFS for a model in
which unique beneficial mutations are injected at sites that be-
come monomorphic. Fig. S3 shows results for a bona fide infinite
sites model of chromosomes that accumulate beneficial or del-
eterious mutations. In all these cases, the observed diversity
agrees well with Eq. 8 and the SFS shows the expected cross-over
from the Kingman to the BSC predictions as Nσb increases.

Loosely Linked Loci. Our analysis has focused on the effect of
fitness variation in short effectively asexual blocks. As discussed
above, the total strength of selection σ can be much larger than the

Fig. 2. Coalescence in sexual populations. The figure shows the average
pair coalescence time hT2i relative to the neutral expectation as a func-
tion of Nσb determined using Eq. 5. For Nσb � 1, hT2i≈N, whereas hT2i=
cσ−1b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logNσb

p
otherwise.
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fitness differences within effectively asexual blocks σb. However,
a particular locus only remains linked to distant polymorphisms
for a short time, and the contribution of these distant loci averages
out. For our focus on the effect of tightly linked loci to be valid,
the integral contribution of such loosely linked loci to drift and
draft should be small compared with the effect of fitness variation
σb within the segment. Loosely linked loci are amenable to a
perturbative analysis known as quasilinkage equilibrium (34, 35).
In the study by Neher and Shraiman (35), it is shown that the
stochastic dynamics of the allele frequency νi at locus i due to
loosely linked loci is described by the following Langevin equation:

d
dt
νiðtÞ= νið1− νiÞ si + 2μð1− 2νiÞ+

X
i≠j

DijðtÞsj + ηiðtÞ; [10]

where DijðtÞ is the LD between loci i and j, sj is the fitness effect
of the derived allele at locus j, and ηi is random noise with
autocorrelation function hηiðtÞηiðt′Þi=N−1δðt− t′Þ, representing
genetic drift. If the two loci are loosely linked (i.e., the cross-
over rate cij between them is much larger than the effect of
selection on either of them), Dij is also a fluctuating quantity.
The autocorrelation function of Dij is (35)

�
DijðtÞDij

�
t′
��

=
νið1− νiÞνj

�
1− νj

�
e−cijjt−t′j

2Ncij
: [11]

Given this autocorrelation, we can now integrate over fluctua-
tions due to genetic drift and loosely linked selected loci to
obtain a renormalized diffusion coefficient (a reduced Ne).
Reproducing equation 44 of ref. 35, we have

N
Ne

= 1+
1
2

X
i≠j

νj
�
1− νj

� s2j
c2ij
: [12]

This result is similar to results in other studies (9, 30, 36) in that
it shows that the level of drift is increased by a factor that
depends on the square of the ratio of selection and linkage,
averaged over the genome.
If we now consider the integral effect of all loci further away

than ξ, it is always dominated by the closest loci, so that
N=Ne − 1∼ ðσ=RÞ2ðξ=LÞ−1 (obtained as a continuumapproximation

to the sum in Eq. 12, R= ρL). Hence, provided that ξ=L> ðσ=RÞ2,
a condition that obtains when fitness variation at distant loci is
sufficiently small or the loci are sufficiently distant, their effect can
be accounted for by a simple rescaling of the effective population
size (17); this is the “weak draft” regime. Note, however, that the
recombination rate between distant loci is ultimately limited by the
outcrossing rate and that distant loci can have substantial effects in
facultatively sexual populations (17, 37).
The negligible effect of loosely linked loci is a consequence of

two types of averaging that are apparent in Eq. 11. First, the
associations between these distant loci are transient and average
out over time. This manifests itself in the decay time of c−1ij in
Eq. 11. Second, different individuals carry different alleles at
these distant loci; hence, their fitness effect is averaged over
different descendents. As a consequence, the autocorrelation in
Eq. 11 is proportional to ðNcijÞ−1 . Together, these two averages
result in the 1=c2ij contribution of loosely linked loci.
For the more tightly linked loci (i.e., ξ< ξp = ðσ=RÞ2L), the

behavior crosses over to the “strong draft” regime. This cross-
over length scale ξp is controlled entirely by the “local” quanti-
ties: the recombination rate per base pair ρ and the local fitness
variance density. Furthermore, ξp is generally larger than ξb, with
ξp=ξb ∼ logðNσbÞ. This ratio corresponds to the reduction in the
block size during the span of time between local selection effects
first coming into play and the coalescence time. In the limit of
logðNσbÞ � 1, recombination events within the ξp block must be
reckoned with, but for more realistic population sizes, we have
shown above that focusing on the ξb-sized asexual segment
captures the effects of strong draft quite well.

Length Distribution of Segments Identical by Descent. The structure
of genealogies has implications for the length ℓ of segments
identical by descent (IBD) in pairs of individuals. Their distri-
bution, pðℓÞ, is directly related to the distribution of pair co-
alescence times, qðT2Þ, via the relation pðℓÞ∼ R

dT2qðT2Þe−ρℓT2 .
In neutrally evolving populations of constant size, pair coa-
lescence times are exponentially distributed with mean hT2i=N.
Consequently, the length of IBD segments is distributed as
pðℓÞ∼ 1=ð1+ ρℓ hT2iÞ and has a long, slowly decaying tail. If
Nσb � 1, coalescence is accelerated on average but predomi-
nantly happens after lineages have reached the upper tail of the
fitness distribution of different alleles of a linkage block. Hence,
the distribution of pair coalescence times is peaked athT2irather

Fig. 3. SFSs, normalized by Θ= 2Nμ, for a large number of parameter
combinations. Color indicates the value of Nσb. For large Nσb, the SFSs dis-
play the nonmonotonicity characteristic of the BSC (dashed line), whereas
the SFSs are described well by the prediction from Kingman’s coalescent
(solid line) if Nσb � 1. The BSC curve serves as a guide to the eye because its
normalization depends on Nσb.

Fig. 4. Correlation length along the genome. The figure shows LD, quan-
tified as average r2, between pairs of loci at different distances (the curves
are normalized to their value at zero distance). The x axis shows the distance
between loci d rescaled by ξb determined using Eq. 2, with t equal to the
measured pair coalescence time. After this rescaling, the distance depen-
dence of all simulations follows approximately the same master curve, which
shows that LD extends for ≈ ξb.
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than being exponential (compare with figure 3 of ref. 23). This
shift in the distribution of T2 with relatively rare very recent
coalescence has the consequence that pðℓÞ∼ e−ρℓhT2i is approxi-
mately exponential. Long IBD segments are therefore much
less likely than in the neutral case with the same hT2i.
Discussion
In most sexual populations, the histories of different chromo-
somes or loci far apart on a chromosome are weakly correlated.
Nearby loci, however, are more tightly linked, which results in
correlated histories and LD. Because the density of heterozygous
sites is π = 2μ hT2i and the length scale of LD is ξb = ðρ hT2iÞ−1,
the typical number of SNPs in one linkage block is n≈ μ=ρ. If n is
much larger than 1, and a sizeable fraction of those SNPs affect
fitness, different haplotypes segregating within such a block will
display a broad distribution in local fitness with a variance that
we have denoted by σ2b. Neutral alleles linked to haplotypes
drawn from this distribution will be affected by linked selection.
This, in turn, results in genealogies different from standard neutral
models but similar to the BSC characteristic of rapidly adapting
asexual populations (23, 38).
In regions of high recombination in obligately outcrossing

species, the number of polymorphisms per linkage block, n, is of
order 1 and linked selection will mainly result from the occa-
sional strong selective sweep (39). However, recombination rates
vary by orders of magnitude across the genome (40), and n � 1
in low recombination regions. In those regions, the cumulative
effect of many weakly selected polymorphisms is expected to be
important. This holds in particular for species that outcross
rarely, such as many plants, nematodes, yeasts, and viruses (41–
44). This type of linked selection will overwhelm genetic drift if
Nσb > 1. The fitness variance per block is given by σ2b = hs2i πξb,
where hs2i is the second moment of the effect distribution of
polymorphisms. Hence, we require N2 hs2i> ðπξbÞ−1 = n−1. Pro-
vided n is large enough, even nominally neutral ðNs< 1Þ poly-
morphisms collectively dominate the dynamics of haplotypes of
length ξb. In this infinitesimal limit, the nature of linked selection
is irrelevant and our results apply to any mix of deleterious and
beneficial mutations as long as the effects of individual mutations
are weak and their number is large.

Relation to Previous Work. Most previous work on genetic draft
and selective interference considered mutations with strong

effects that behave deterministically at high frequencies, whereas
we focus on weak effect mutations. Reduction of genetic di-
versity by sweeping beneficial mutations was first discussed by
Maynard Smith (10) (also refs. 11, 45–47). In these models, ge-
netic diversity is determined by the typical waiting time between
two successive selective sweeps close enough to affect a given
locus. Similarly, deleterious mutations reduce diversity at linked
sites. Assuming that mutations have a large detrimental effect on
fitness and happen with rate μ per site, it was shown (9, 36) that
the reduction of genetic diversity is a function of μ=ρ. As in our
analysis here, the strongest effect on genetic diversity comes
from tightly linked loci. Our analysis of loosely linked loci is
similar to the work by Santiago and Caballero (30). The latter,
however, breaks down at tight linkage, and the cross-over to the
asexual behavior is essential for a consistent description in the
limit of many weakly selected loci. This limit has mainly been
studied using computer simulations (18, 19, 48), and few ana-
lytical results are available.
Weissman and Barton (17) investigated the rate of adaptation

and its effect on diversity using scaling arguments similar to the
one presented here. In their model, adaptation is driven by in-
dividual selective sweeps. The duration of a sweep explicitly sets
the time scale hT2i on which coalescence happens. In this model,
the speed of adaptation is proportional to the map length. In
contrast, our model assumes many weak effect mutations, and
the time scale of coalescence is set by σb, which is self-consis-
tently determined and itself depends on model parameters, such
as ρ and μhs2i. We can recover their result for the rate of adap-
tation by setting hT2i∼ s−1 and ξb ∼ s=ρ. With these assumptions,
we obtain σ2 ∼Lρs instead of Eq. 9. The model used by Weissman
and Barton (17) applies to a limit where, at most, one strongly
selected and sweeping mutation falls into one linkage block. The
basic properties of genealogies and SFSs are expected to be
qualitatively similar in the limit of one sweep per block. If the
contribution from weak mutations is negligible while sweeps are
common, the coalescence properties will be dominated by sweeps
at different distances. This limit has been studied by Durrett and
Schweinsberg (49) and also results in a multiple merger coalescent.
Other types of models are appropriate if the rate of out-

crossing is small compared with the SD in fitness (37, 38, 50) or if
recombination proceeds via horizontal transfer of short pieces of
DNA (37, 51). In these cases, one finds a very strong dependence
of the rate of adaptation on the rate of outcrossing or horizontal
transfer. Rare recombination has the potential to increase fitness
variance dramatically because many loci are in strong LD.
In summary, we have characterized the effect of dense, weakly

selected polymorphisms on genetic diversity, which might be the
source of much of the phenotypic variability we observe (20, 22).
Our analysis provides a consistent genealogical framework for
the infinitesimal model of quantitative genetics. This limit of
weakly selected mutations has so far eluded analytical under-
standing. We derived equations that relate the mutational input
and the rate of recombination to neutral diversity and the site
frequency spectra. Because genetic diversity (neutral or not) is
directly accessible in population resequencing experiments, our
results should be of practical relevance when interpreting such
data. Furthermore, one is often interested in identifying partic-
ular mutations that arose in response to specific environmental
challenges. If successful, those mutations tend to be of large
effect and fall outside the scope of our model. Importantly,
strong adaptations only perturb a fraction of the genome [more
precisely, a segment of length ≈ sðρ logNsÞ−1, where s is the se-
lection coefficient]. Our model provides the background on top
of which such singular adaptations can be sought, and under-
standing the statistical patterns of diversity and linkage within
this null model is essential for reliable inference.

Materials and Methods
We use a model with discrete generations, haploid individuals, an approxi-
mately constant population size, and a finite number of sites in the genome,
as implemented in FFPopSim (31). We simulate a fraction of a chromosome

Fig. 5. Total fitness variation due to frequent weak effect mutations in
a model where deleterious and beneficial mutations balance each other. The
color shows the average number of cross-overs per simulated segment.
There is a residual dependence on ρ due to large corrections to the asymp-
totic behavior.
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of length L, with per site cross-over rate ρ. If ρL � 1, no recombination
happens in most cases. In addition to forward simulation, we track the ge-
nealogy of a central locus, which allows us to measure pair coalescence
times, the TMRCA, and the neutral SFS directly (this functionality is imple-
mented in a more recent release of FFPopSim; http://code.google.com/p/
ffpopsim). For all parameters, we produce equilibrated populations by sim-
ulating for 10 TMRCA. Subsequent measurements of population parameters
start from these equilibrated populations and sample the population
roughly twice every ÆT2æ, as estimated from our theoretical arguments. All
scripts associated with this paper can be obtained from http://git.tuebingen.
mpg.de/reccoal.

Constant Selection. To maintain a constant fitness variance σ2, we rescale the
selection coefficients associated with individual loci of each generation ac-
cordingly. Mutations are introduced into a random individual whenever
a locus becomes monomorphic [i.e., the previously introduced mutation is
lost or has fixed (38)]. This allows us to simulate a large number of sites
efficiently in a limit where the overall mutation rate is small compared with
ÆT2æ. In this way, we keep all L loci polymorphic without using a high mu-
tation rate, which would result in frequent recurrent mutations. We simu-
late a grid of parameters with N taking the values ½1000, 3000, 10000� σ

taking the values ½0:01,0:03,0:1�, and Lρ taking five logarithmically spaced
values between 0:1σ and 1:0σ. For the analysis, simulations were filtered so
that ξb > 30 and ξb < L=3. To prevent invalid logarithms, logðNσbÞ was
replaced by logðNσb + 2Þ in Eq. 5.

Dynamic Balance. In this set of simulations, we simulate a genome consisting
of finite sites in a constant fitness landscape where mutations at each
locus have a small effect s. Mutations are injected at random with rate μ at
each locus. In contrast to the models above, where mutations are injected
only when a locus is monomorphic, we allow recurrent and back muta-
tion to make the dynamic balance state possible. The grid of parameters
used was L∈ ½3000, 10000�, N∈ ½1000, 3000, 10000�, s∈ ½−0:001,− 0:003,− 0:01�,
Lμ∈ ½1,3,10,30�, and Lρ logarithmically spaced between s and 1.0. For the
analysis, simulations were filtered such that ξb > 30, ξb < L=3, and ÆT2æμ< 0:5.
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