
Tuple-based Coordination with TuCSoN
Distributed Systems / Technologies

Sistemi Distribuiti / Tecnologie

Stefano Mariani Andrea Omicini
s.mariani@unibo.it andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2017/2018

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 1 / 65

Outline

1 TuCSoN Basics

2 TuCSoN Advanced

3 TuCSoN Extensions

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 2 / 65

Disclaimer

Disclaimer

most of the following slides are adapted from the official TuCSoN
guide

the TuCSoN guide is available at
http://www.slideshare.net/andreaomicini/

the-tucson-coordination-model-technology-a-guide

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 3 / 65

http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide
http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide

TuCSoN Basics

Next in Line. . .

1 TuCSoN Basics

2 TuCSoN Advanced

3 TuCSoN Extensions

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 4 / 65

TuCSoN Basics Model

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 5 / 65

TuCSoN Basics Model

Tuple Centres Spread over the Network (TuCSoN)

TuCSoN model [Omicini and Zambonelli, 1999]

TuCSoN is a model for the coordination of distributed processes, as well
as of autonomous agents

References

main page http://tucson.unibo.it/

Bitbucket http://bitbucket.org/smariani/tucson/

FaceBook http://www.facebook.com/TuCSoNCoordinationTechnology

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 6 / 65

http://tucson.unibo.it/
http://bitbucket.org/smariani/tucson/
http://www.facebook.com/TuCSoNCoordinationTechnology

TuCSoN Basics Model

Basic Entities

TuCSoN agents are the coordinables

ReSpecT tuple centres are the coordination media
[Omicini and Denti, 2001]

TuCSoN nodes represent the basic topological abstraction, which
host the tuple centres

agents, tuple centres, and nodes have unique identities within a
TuCSoN system

System view

Roughly speaking, a TuCSoN system is a collection of agents and tuple
centres working together in a (possibly) distributed set of nodes

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 7 / 65

TuCSoN Basics Model

Basic Interaction

since agents are pro-active entities whereas tuple centres are (mostly)
reactive, the coordinables need coordination operations in order to act
over the coordination media

such operations are built out of the TuCSoN coordination language,
defined by the collection of TuCSoN coordination primitives that
agents can use to interact — by exchanging tuples

tuple centres provide the shared space for tuple-based communication
(tuple space), along with the programmable behaviour space for
tuple-based coordination (specification space)

System view

Roughly speaking, a TuCSoN system is a collection of agents and tuple
centres coordinating in a (possibly) distributed set of nodes

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 8 / 65

TuCSoN Basics Naming

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 9 / 65

TuCSoN Basics Naming

Nodes

each node within a TuCSoN system is univocally identified by the pair
< NetworkId ,PortNo >, where

NetworkId is the IP number of the device hosting the node
PortNo is the port number where the TuCSoN coordination service
listens incoming requests

correspondingly, the abstract syntax of TuCSoN nodes identifiers
hosted by a networked device netid on port portno is

netid : portno

e.g. localhost : 20504

! actually, this is also the concrete syntax used by TuCSoN to parse
nodes ID

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 10 / 65

TuCSoN Basics Naming

Tuple Centres

an admissible name for a tuple centre is any Prolog-like, first-order
logic ground term [Lloyd, 1984]

each tuple centre is uniquely identified by its admissible name
associated to the node identifier

hence the TuCSoN full name of a tuple centre tname on a node
netid : portno is

tname @ netid : portno

e.g. default @ localhost : 20504

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 11 / 65

TuCSoN Basics Naming

Agents

an admissible name for an agent is any Prolog-like, first-order logic
ground term, too

when it enters a TuCSoN system, an agent is assigned a universally
unique identifier (UUID)

UUID http://docs.oracle.com/javase/8/docs/api/java/util/UUID.html

if an agent aname is assigned UUID uuid , its full name is

aname : uuid

e.g. stefano : 4baad505-ad2f-4ac4-b30b-bc3705a2c87a

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 12 / 65

http://docs.oracle.com/javase/8/docs/api/java/util/UUID.html

TuCSoN Basics Language

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 13 / 65

TuCSoN Basics Language

Coordination Language

the TuCSoN coordination language allows agents to interact with
tuple centres by executing coordination operations

TuCSoN provides coordinables with coordination primitives, allowing
agents to read, write, consume tuples in tuple spaces

coordination operations are built out of coordination primitives and of
the communication languages:

the tuple language
the tuple template language

! in the following, whenever unspecified, we assume that Tuple belongs
to the tuple language, and TupleTemplate belongs to the tuple
template language

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 14 / 65

TuCSoN Basics Language

Tuple & Tuple Template Languages

given that the TuCSoN coordination medium is the logic-based
ReSpecT tuple centre, both the tuple and the tuple template
languages are logic-based, too

more precisely

any first-order logic Prolog atom is an admissible TuCSoN tuple. . .
. . . and an admissible TuCSoN tuple template

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 15 / 65

TuCSoN Basics Language

Coordination Operations

any TuCSoN coordination operation is invoked by a source agent on a
target tuple centre, which is in charge of its execution

any TuCSoN operation has two phases

invocation — the request from the source agent to the target tuple
centre, carrying all the information about the invocation

completion — the response from the target tuple centre back to the
source agent, including all the information about the
operation execution by the tuple centre

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 16 / 65

TuCSoN Basics Language

Abstract Syntax

the abstract syntax of a coordination operation op invoked on a
target tuple centre tcid is

tcid ? op

where tcid is the tuple centre full name

given the structure of the full name of a tuple centre, the general
abstract syntax of a TuCSoN coordination operation is

tname @ netid : portno ? op

e.g. default @ localhost : 20504 ? out(t(hi))

! actually, this is also the concrete syntax used by TuCSoN to parse
coordination operations, even inside ReSpecT reactions

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 17 / 65

TuCSoN Basics Primitives

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 18 / 65

TuCSoN Basics Primitives

Coordination Primitives

The TuCSoN coordination language provides the following 9 basic
coordination primitives to build coordination operations

out to put a tuple in the target tuple centre

rd, rdp to read a tuple matching a given tuple template in the target
tuple centre

in, inp to withdraw a tuple matching a given tuple template from
the target tuple centre

no, nop to check absence of tuples matching a given tuple template
in the target tuple centre

get to read all the tuples in the target tuple centre

set to overwrite the set of tuples in the target tuple centre

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 19 / 65

TuCSoN Basics Architecture

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 20 / 65

TuCSoN Basics Architecture

Node

TuCSoN node

A TuCSoN node is characterised by the networked device hosting the
service and by the network port where the TuCSoN service listens to
incoming requests

Multiple nodes on a single device

Many TuCSoN nodes can run on the same networked device, as long as
each one is listening on a different port

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 21 / 65

TuCSoN Basics Architecture

Default Node

Default port

The default port number of TuCSoN is 20504

so an agent can invoke operations of the form

tname @ netid ? op

without specifying the node port number portno—if the agents
intends to invoke operation op on the tuple centre tname of the
default node netid : 20504, hosted by the networked device netid

any other port can be used for a TuCSoN node listening service—we
will see how to change it in a few slides

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 22 / 65

TuCSoN Basics Architecture

Default Tuple Centre

Default tuple centre

Every TuCSoN node defines a default tuple centre, which responds to any
operation invocation received by the node that do not specify the target
tuple centre

default

The default tuple centre of any TuCSoN node is named default

as a result, agents can invoke operations of the form

@ netid : portno ? op

without specifying the tuple centre name tname , thus meaning
default as the tuple centre name

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 23 / 65

TuCSoN Basics Architecture

Defaults

by combining the notions of default node and default tuple centre,
the following invocations are also admissible for any TuCSoN agent
running on a device netid:

: portno ? op

invoking operation op on the default tuple centre of node
netid : portno

tname ? op

invoking operation op on the tname tuple centre of default node
netid : 20504

op

invoking operation op on the default tuple centre of default node
netid : 20504

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 24 / 65

TuCSoN Basics Middleware

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 25 / 65

TuCSoN Basics Middleware

Technology Requirements

TuCSoN is a Java-based middleware (Java 7 is enough)

TuCSoN is also Prolog-based: it is based on the tuProlog Java-based
technology for

first-order logic tuples
primitives & identifiers parsing
ReSpecT specification language & virtual machine

! last digits in TuCSoN version number (TuCSoN-1.12.0.0301) are for
the tuProlog version, hence tuProlog version 3.0.1 now

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 26 / 65

TuCSoN Basics Middleware

Java & Prolog Agents

TuCSoN middleware provides

Java API for using TuCSoN coordination services from Java programs

package alice.tucson.api.*

Prolog API for using TuCSoN coordination services from tuProlog
programs

alice.tucson.api.Tucson2PLibrary enables
tuProlog agents to use TuCSoN primitives
use directive
:-load library(’path-to-Tucson2PLibrary’) to
load the library, where path-to-Tucson2PLibrary is a
string atom representing the path to the
Tucson2PLibrary

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 27 / 65

TuCSoN Basics Middleware

Service

given any networked device running a Java VM, a TuCSoN node can
be started to provide TuCSoN coordination services

java -cp libs/tucson.jar:libs/2p.jar alice.tucson.service.TucsonNodeService

-portno 20505

the node service is in charge of

listening to incoming operation invocations
dispatching them to the target tuple centre
returning the operations completion to the source agent

Let’s try!

1 open a console, position yourself into the folder where tucson and 2p

jars are, then type the command above—on Windows, replace “:”
with “;”

2 try to launch another TuCSoN node on a different portno

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 28 / 65

TuCSoN Basics CLI

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 29 / 65

TuCSoN Basics CLI

Command Line Interpreter (CLI) I

shell interface for humans
java -cp libs/tucson.jar:libs/2p.jar

alice.tucson.service.tools.CommandLineInterpreter

-netid localhost -portno 20505 -aid myCLI

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 30 / 65

TuCSoN Basics CLI

Command Line Interpreter (CLI) II

CLI Syntax

〈TucsonOp〉 ::= 〈TcName〉 @ 〈IpAddress〉 : 〈PortNo〉 ? 〈Op〉
〈TcName〉 ::= Prolog ground term
〈IpAddress〉 ::= localhost | IP address
〈PortNo〉 ::= port number
〈Op〉 ::= out(T) | in(TT) | rd(TT) | no(TT) |inp(TT) | rdp(TT) | nop(TT) |

get() | set([T1,...,Tn]) |
out all(TL) | in all(TT,TL) | rd all(TT,TL) | no all(TT,TL) |
uin(TT) | urd(TT) | uno(TT) | uinp(TT) | urdp(TT) | unop(TT) |
out s(E,G,R) | in s(ET,GT,RT) | rd s(ET,GT,RT) | no s(ET,GT,RT) |
inp s(ET,GT,RT) | rdp s(ET,GT,RT) | nop s(ET,GT,RT) |
get s() | set s([(E1,G1,R1),...,(En,Gn,Rn)])

T,T1,...,Tn ::= tuple (Prolog term)
TT ::= tuple template (Prolog term)
TL ::= list of tuples (Prolog list of terms)
E,E1,...,En ::= ReSpecT event
G,G1,...,Gn ::= ReSpecT guard predicate
R,R1,...,Rn ::= ReSpecT reaction body
ET ::= ReSpecT event template
GT ::= ReSpecT guard template
RT ::= ReSpecT reaction body template

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 31 / 65

TuCSoN Basics CLI

TuCSoN CLI: Experiments

1 launch a local TuCSoN Node
java -cp libs/tucson.jar:libs/2p.jar alice.tucson.service.TucsonNodeService

2 launch the CLI on that node
java -cp libs/tucson.jar:libs/2p.jar

alice.tucson.service.tools.CommandLineInterpreter

3 experiment with the semantics of basic TuCSoN primitives

rd vs. in
rd/in vs. rdp/inp
rd vs. no

4 experiment with Linda-like coordination by working with multiple
CLIs

5 experiment with TuCSoN distribution by working with multiple nodes
(and possibly multiple CLIs)

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 32 / 65

TuCSoN Basics Java APIs

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 33 / 65

TuCSoN Basics Java APIs

External APIs

To enable a Java application to use the TuCSoN technology, do the
following

1 build a TucsonAgentId to be identified by the TuCSoN system

2 get a TuCSoN ACC to enable interaction with the TuCSoN system

3 define the tuple centre target of your coordination operations

4 build a tuple using the communication language

5 perform the coordination operation using a coordination primitive

6 check requested operation success

7 get requested operation result

Let’s try!

Launch Java class HelloWorld in package ds.lab.tucson.helloWorld

java -cp libs/tucson.jar:libs/2p.jar:bin/ ds.lab.tucson.helloWorld.HelloWorld

and check out code comments

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 34 / 65

TuCSoN Basics Java APIs

Extension APIs

To create a TuCSoN agent, do the following

1 extend alice.tucson.api.TucsonAgent base class

2 choose one of the given constructors

3 override the main() method with your agent business logic

4 get your ACC from the super-class

5 do what you want to do following steps 3 − 7 from previous slide

6 instantiate your agent and start its execution cycle (main()) by using
method go()

Let’s try!

Launch Java class HelloWorldAgent in package
ds.lab.tucson.helloWorld

java -cp libs/tucson.jar:libs/2p.jar:bin/
ds.lab.tucson.helloWorld.HelloWorldAgent

and check out code comments

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 35 / 65

TuCSoN Basics Java APIs

TuCSoN Experiments II I

Package ds.lab.tucson.*

1 launch a local TuCSoN node
java -cp libs/tucson.jar:libs/2p.jar alice.tucson.service.TucsonNodeService

2 .helloWorld package
java -cp libs/tucson.jar:libs/2p.jar:bin/

ds.lab.tucson.helloWorld.HelloWorld

java -cp libs/tucson.jar:libs/2p.jar:bin/
ds.lab.tucson.helloWorld.HelloWorldAgent

3 .messagePassing package
java -cp libs/tucson.jar:libs/2p.jar:bin/

ds.lab.tucson.messagePassing.ReceiverAgent

java -cp libs/tucson.jar:libs/2p.jar:bin/
ds.lab.tucson.messagePassing.SenderAgent

4 .rpc package
java -cp libs/tucson.jar:libs/2p.jar:bin/

ds.lab.tucson.rpc.CalleeAgent

java -cp libs/tucson.jar:libs/2p.jar:bin/
ds.lab.tucson.rpc.CallerAgent

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 36 / 65

TuCSoN Basics Java APIs

TuCSoN Experiments II II

5 launch two local TuCSoN nodes on ports 20504 and 20505

6 .masterWorkers package
java -cp libs/tucson.jar:libs/2p.jar:bin/

ds.lab.tucson.masterWorkers.MasterAgent

java -cp libs/tucson.jar:libs/2p.jar:bin/
ds.lab.tucson.masterWorkers.WorkerAgent

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 37 / 65

TuCSoN Advanced

Next in Line. . .

1 TuCSoN Basics

2 TuCSoN Advanced

3 TuCSoN Extensions

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 38 / 65

TuCSoN Advanced Bulk Primitives

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 39 / 65

TuCSoN Advanced Bulk Primitives

Bulk Primitives: The Idea

bulk coordination primitives provide significant efficiency gains for
that class of coordination problems involving the management of
multiple tuples using a single coordination operation [Rowstron, 1996]

briefly, instead of returning one single tuple, bulk operations return
the whole set of matching tuples

in case no matching tuples are found, they successfully complete
anyway, returning an empty list of tuples (so, bulk primitives always
succeed)

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 40 / 65

TuCSoN Advanced Bulk Primitives

Bulk Primitives in TuCSoN

The TuCSoN coordination language provides the following 4 bulk
coordination primitives:

out all(Tuples) inserts in the target tuple space the given (Prolog) list
of logic tuples

rd all(Template) attempts to read from the target tuple space all the
tuples matching the given template, returning them as a list
(possibly empty)

in all(Template) attempts to withdraw from the target tuple space all
the tuples matching the given template, returning them as a
list (possibly empty)

no all(Template) tests the target tuple space for absence of any tuple
matching the given template, returning the empty list in case
of success and the whole set of matching tuples in case of
failure

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 41 / 65

TuCSoN Advanced Bulk Primitives

Bulk Primitives: CLI Experiments I

Try bulk primitives vs. corresponding Linda primitives

e.g., synchronise with M processes out of a pool of N (with M < N)
in the most effective way;

e.g., compute multiplicity of tuples or count how many tuples satisfy
a given template;

e.g., can any master-workers architecture benefit from these new
primitives?

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 42 / 65

TuCSoN Advanced Bulk Primitives

Bulk Primitives: CLI Experiments II

“Master-Workers” example: let’s try!

package ds.lab.tucson.masterWorkers.bulk

launch two local TuCSoN nodes on ports 20504 and 20505
java -cp libs/tucson.jar:libs/2p.jar

alice.tucson.service.TucsonNodeService -portno 20504

java -cp libs/tucson.jar:libs/2p.jar
alice.tucson.service.TucsonNodeService -portno 20505

ds.lab.tucson.masterWorkers.bulk package
java -cp libs/tucson.jar:libs/2p.jar:bin/

ds.lab.tucson.masterWorkers.bulk.MasterAgent

java -cp libs/tucson.jar:libs/2p.jar:bin/
ds.lab.tucson.masterWorkers.bulk.WorkerAgent

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 43 / 65

TuCSoN Advanced Coordinative Computation

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 44 / 65

TuCSoN Advanced Coordinative Computation

The spawn Primitive I

In order to enable TuCSoN agents to delegate complex computational
activities related to coordination to the coordination medium itself,
TuCSoN provides the spawn primitive—similar to Linda eval

Semantics

spawn activates a concurrent computational activity – actually, either
a Java thread or a tuProlog engine – to be carried out asynchronously
w.r.t. the caller—either an agent or the tuple centre itself

the execution of the spawn is local to the tuple space where it is
invoked, and so are their results

correspondingly, the code (either Java or tuProlog) of the spawned
computation must be local to the same node hosting the “spawning”
tuple centre (no “code on demand”)
also, the code can execute (a subset of) TuCSoN coordination
primitives, but only on the same spawning tuple centre

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 45 / 65

TuCSoN Advanced Coordinative Computation

The spawn Primitive II

General syntax

spawn has basically two parameters

activity — a ground Prolog atom containing either the tuProlog
theory along with the goal to be solved – e.g.,
solve(’path/to/Prolog/Theory.pl’, yourGoal) –
or the Java class to be executed—e.g.,
exec(’list.of.packages.YourClass.class’)

tuple centre — a ground Prolog term identifying the target tuple
centre that should execute the spawn

from tuProlog, the two parameters are just the end of the story. . .

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 46 / 65

TuCSoN Advanced Coordinative Computation

The spawn Primitive III

Java syntax

. . . a third parameter is instead necessary when spawning from
TuCSoN Java agent (homogeneously with other TuCSoN primitives)

it could be either

listener — a listener TucsonOperationCompletionListener
in case of an asynchronous call of spawn

timeout — an integer value in milliseconds determining the
maximum waiting time for the agent in case of a
synchronous call of spawn—notice its execution is still a
separate, concurrent computation

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 47 / 65

TuCSoN Advanced Coordinative Computation

spawn primitive: CLI Experiments I

Try to spawn a Java program as a concurrent activity to be carried out by
the coordination medium:

e.g., coordinate 2 CLIs through the outcome of an expensive
computation—or an expensive iteration over tuples in the space

e.g., again, can any master-workers architecture benefit from this new
primitives?

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 48 / 65

TuCSoN Advanced Coordinative Computation

spawn primitive: CLI Experiments II

“Spawned Workers” example: let’s try!

package ds.lab.tucson.masterWorkers.spawn

launch two local TuCSoN nodes on ports 20504 and 20505
java -cp libs/tucson.jar:libs/2p.jar:bin/

alice.tucson.service.TucsonNodeService -portno 20504

java -cp libs/tucson.jar:libs/2p.jar
alice.tucson.service.TucsonNodeService -portno 20505

ds.lab.tucson.masterWorkers.spawn package
java -cp libs/tucson.jar:libs/2p.jar:bin/

ds.lab.tucson.masterWorkers.spawn.MasterAgent

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 49 / 65

TuCSoN Advanced Agent Coordination Contexts (ACC)

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 50 / 65

TuCSoN Advanced Agent Coordination Contexts (ACC)

ACC

An Agent Coordination Context (ACC) [Omicini, 2002] is

a runtime and stateful interface released to an agent to execute
operations on the tuple centres of a specific organisation

a sort of interface provided to an agent by the infrastructure both to
enable and constraint it admissible interactions with the system—thus
other agents and the coordination medium itself

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 51 / 65

TuCSoN Advanced Agent Coordination Contexts (ACC)

Ordinary ACCs

OrdinarySynchACC enables interaction with the ordinary tuple space and
enacts a synchronous behaviour from the agent’s
perspective: whichever the coordination operation invoked
(either suspensive or predicative), the agent blocks waiting
for its completion

OrdinaryAsynchACC enables interaction with the ordinary tuple space
and enacts an asynchronous behaviour from the agent’s
perspective: whichever the coordination operation invoked
(either suspensive or predicative), the agent does not block,
but is instead asynchronously notified upon completion

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 52 / 65

TuCSoN Advanced Agent Coordination Contexts (ACC)

Bulk ACCs

BulkSynchACC enables bulk interaction with the ordinary tuple space and
enacts a synchronous behaviour from the agent’s
perspective: whichever the bulk coordination operation
invoked, the agent blocks waiting for its completion

BulkAsynchACC enables bulk interaction with the ordinary tuple space
and enacts an asynchronous behaviour from the agent’s
perspective: whichever the bulk coordination operation
invoked, the agent does not block, but is instead
asynchronously notified of its completion

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 53 / 65

TuCSoN Advanced Agent Coordination Contexts (ACC)

Overall View over TuCSoN ACCs

Other ACCs exist: some enabling access to the ReSpecT specification
space and others being a convenient combination of previous ones

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 54 / 65

TuCSoN Advanced GUI

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 55 / 65

TuCSoN Advanced GUI

TuCSoN Inspector I

A GUI tool to monitor the TuCSoN coordination space & ReSpecT VM

to launch the Inspector tool
java -cp libs/tucson.jar:libs/2p.jar

alice.tucson.introspection.tools.InspectorGUI

available options are
-aid — the name of the Inspector Agent

-netid — the IP address of the device hosting the TuCSoN Node to be
inspected. . .

-portno — . . . its listening port. . .

-tcname — . . . and the name of the tuple centre to monitor

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 56 / 65

TuCSoN Advanced GUI

TuCSoN Inspector II

What to inspect

In the Sets taba you can choose whether to inspect

Tuple Space — the ordinary tuples space state

Specification Space — the (ReSpecT) specification tuples space state

Pending Ops — the pending TuCSoN operations set, that is the set of the
currently suspended issued operations (waiting for
completion)

ReSpecT Reactions — the triggered (ReSpecT) reactions set, that is the
set of specification tuples (recursively) triggered by the
issued TuCSoN operations

aThe StepMode tab is for debugging of ReSpecT reactions.

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 57 / 65

TuCSoN Extensions

Next in Line. . .

1 TuCSoN Basics

2 TuCSoN Advanced

3 TuCSoN Extensions

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 58 / 65

TuCSoN Extensions TuCSoN4Jade

Focus on. . .

1 TuCSoN Basics
Model
Naming
Language
Primitives
Architecture
Middleware
CLI
Java APIs

2 TuCSoN Advanced
Bulk Primitives
Coordinative Computation
Agent Coordination Contexts (ACC)
GUI

3 TuCSoN Extensions
TuCSoN4Jade

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 59 / 65

TuCSoN Extensions TuCSoN4Jade

Jade

Jade is one of the oldest and nowadays most widely used agent
development frameworks [Bellifemine et al., 2007]

Jade can be downloaded freely from http://jade.tilab.com

integrating TuCSoN with Jade essentially means to make
coordination via tuple centres generally available to agent
programmers

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 60 / 65

http://jade.tilab.com

TuCSoN Extensions TuCSoN4Jade

TuCSoN4Jade

TuCSoN4Jade integrate TuCSoN and Jade by implementing
TuCSoN as a Jade service [Omicini et al., 2004]

an example of how to use TuCSoN from Jade is reported in the
TuCSoN main site at
http://apice.unibo.it/xwiki/bin/download/TuCSoN/Documents/

tucson4jadequickguidepdf.pdf

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 61 / 65

http://apice.unibo.it/xwiki/bin/download/TuCSoN/Documents/tucson4jadequickguidepdf.pdf
http://apice.unibo.it/xwiki/bin/download/TuCSoN/Documents/tucson4jadequickguidepdf.pdf

TuCSoN Extensions TuCSoN4Jade

Synchronous vs. Asynchronous Invocation

the BridgeToTucson class is the component mediating all the
interactions between Jade and TuCSoN

in particular, it offers two methods for invoking coordination
operations, one for each invocation semantics Jade agents may
choose [Mariani et al., 2014]:
synchronousInvocation() — lets agents invoke TuCSoN coordination

operations synchronously w.r.t. the caller behaviour. This means
the caller behaviour only is (possibly) suspended – and
automatically resumed – as soon as the requested operation
completes, not the agent as a whole—as in [Omicini et al., 2004].

asynchronousInvocation() — lets clients asynchronously invoke TuCSoN
coordination operations. Regardless of whether the coordination
operation suspends, the agent does not, thus the caller behaviour
continues [Mariani et al., 2014].

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 62 / 65

Bibliography

References I

Bellifemine, F. L., Caire, G., and Greenwood, D. (2007).
Developing Multi-Agent Systems with JADE.
Wiley.

Lloyd, J. W. (1984).
Foundations of Logic Programming.
Springer, 1st edition.

Mariani, S., Omicini, A., and Sangiorgi, L. (2014).
Models of autonomy and coordination: Integrating subjective & objective approaches in
agent development frameworks.
In Braubach, L., Camacho, D., and Venticinque, S., editors, 8th International Symposium
on Intelligent Distributed Computing (IDC 2014), Madrid, Spain.

Omicini, A. (2002).
Towards a notion of agent coordination context.
In Marinescu, D. C. and Lee, C., editors, Process Coordination and Ubiquitous Computing,
chapter 12, pages 187–200. CRC Press, Boca Raton, FL, USA.

Omicini, A. and Denti, E. (2001).
From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294.

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 63 / 65

Bibliography

References II

Omicini, A., Ricci, A., Viroli, M., Cioffi, M., and Rimassa, G. (2004).
Multi-agent infrastructures for objective and subjective coordination.
Applied Artificial Intelligence: An International Journal, 18(9–10):815–831.
Special Issue: Best papers from EUMAS 2003: The 1st European Workshop on
Multi-agent Systems.

Omicini, A. and Zambonelli, F. (1999).
Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251–269.
Special Issue: Coordination Mechanisms for Web Agents.

Rowstron, A. I. T. (1996).
Bulk Primitives in Linda Run-Time Systems.
PhD thesis, The University of York.

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 64 / 65

Tuple-based Coordination with TuCSoN
Distributed Systems / Technologies

Sistemi Distribuiti / Tecnologie

Stefano Mariani Andrea Omicini
s.mariani@unibo.it andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2017/2018

Mariani & Omicini (DISI, Univ. Bologna) T5 – Tuple-based Coordination / TuCSoN A.Y. 2017/2018 65 / 65

	TuCSoN Basics
	Model
	Naming
	Language
	Primitives
	Architecture
	Middleware
	CLI
	Java APIs

	TuCSoN Advanced
	Bulk Primitives
	Coordinative Computation
	Agent Coordination Contexts (ACC)
	GUI

	TuCSoN Extensions
	TuCSoN4Jade

