
Games and Boolean models
LM Informatics 2017-18, Course 82114 (and 72674)

University of Bologna

Giovanni Rossi
Department of Computer Science and Engineering DISI

University of Bologna, email: roxyjean@gmail.com

25 Sept - 15 Dec, 2017

1 Introduction

� Game theory firstly appears in 1944 with the book Games and Economic
Behavior by von-Neumann and Morgestern [30], almost entirely devoted
to strategic or non-cooperative games, but still also including a model of
cooperative games. Shapley 1953 paper [26] next initiates a systematic
study of cooperative coalitional games, known in discrete mathematics as
pseudo-Boolean (set) functions [8], namely real-valued functions defined
on the Boolean lattice of subsets of a finite set [1]. The first and second
halfs of the course shall be respectively devoted to non-cooperative and
cooperative games. Key concepts associated with these games are the
equilibrium and its generalizations for the former, and the value or solution
for the latter. Strategic equilibria basically are situations where everyone
is playing a best response to his/her opponents, while a value or solution of
coalitional games is, roughly speaking, a worth-sharing criterion specifying
how to reward players with the fruits of their cooperation.

� For a n-set N = {1, . . . , n} of players, a non-cooperative game shall consist
of a finite product space S1×· · ·×Sn of strategies, and n utilities or payoff
functions ui : S1×· · ·×Sn → R measuring how each player i ∈ N evaluates
strategy profiles s = (s1, . . . , sn) ∈ S1×· · ·×Sn. This is the branch of game
theory where the notorius prisoner’s dilemma and Nash equilibrium apply
[19], while a cooperative coalitional game is a set function v : 2N → R,
where 2N = {A : A ⊆ N} is the 2n-set of coalitions A or subsets of N ,
and v(A) is thought of as the worth of cooperation among all (and only)
players i ∈ A (or coalition members) [25].

� Cooperative game theory leads to deal with Boolean models (whence the
name of the course) because coalitional games v are in fact pseudo-Boolean
functions fv : {0, 1}n → R, while (strictly) Boolean functions have form
f : {0, 1}n → {0, 1}. Indeed, power set 2N bijectively corresponds to the
2n-set {0, 1}n of vertices of the n-dimensional unit hypercube [0, 1]n. In
particular, simple coalitional games v : 2N → {0, 1} (or Boolean functions
fv : {0, 1}n → {0, 1}) are defined to satisfy both monotonicity, namely
A ⊇ A⇒ v(A) ≥ v(B) for all A,B ∈ 2N , and v(∅) = 0 = 1− v(N).
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� Although cooperative games thus naturally lead to deal with Boolean mod-
els, which in turn appear in a wide variety of both theoretical and applica-
tive scenarios [8, 11, 12], still Boolean settings also characterize important
strategic environments such as minority games, that formalize interaction
between financial agents in a “buy-or-sell world” and also attract consider-
able attention from the statistical mechanics community [10]. After some
definitions and notations contained in the following section, these lecture
notes begin with the first issue traditionally addressed in non-cooperative
game (and microeconomic [19]) theory, namely how to represent players’
preferences over strategy profiles (these latter initially regarded as generic
alternatives x1, . . . , xm ∈ X), and under what conditions i’s preferences
(i ∈ N) over the finite set or product space S1×· · ·×Sn of strategy profiles
are representable through a utility function ui : S1 × · · · × Sn → R. The
whole course material is then organized as follows:
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2 Preliminaries

� Some sets of numbers [1, pp. 1-8]:

– N = {1, 2, . . .} natural numbers (countably infinite),

– Z = {. . . ,−2,−1, 0, 1, 2, . . .} integer numbers (countably infinite),

– Z+ = {0, 1, 2, . . .} positive integer numbers (countably infinite),

– R real numbers; R+ positive real numbers (uncountable).

� For 1 < n ∈ N and Rn = R× · · · × R︸ ︷︷ ︸
n times

, let r ∈ R, r = (r1, . . . , rn) ∈ Rn

denote respectively a real number and a n-vector of real numbers, where
∈ reads “belongs to” or “is an element of”.

2.1 Sets

� ∅ is the empty set, while |X| denotes the cardinality (or number of ele-
ments) of a set X (hence |∅| = 0).

� For any two sets X,Y the following definitions apply:

– intersection X ∩ Y = {x : x ∈ X and x ∈ Y },
– union X ∪ Y = {x : x ∈ X and/or x ∈ Y },
– difference X\Y = {x : x ∈ X,x /∈ Y },
– inclusion X ⊆ Y means that every x ∈ X also satisfies x ∈ Y (clearly

any set X satisfies X ⊇ ∅),
– symmetric difference X∆Y = (X\Y ) ∪ (Y \X) = (X ∪ Y )\(X ∩ Y ),

– proper inclusion X ⊂ Y ⇔ X ⊆ Y,X 6= Y .

� Clearly Y ⊇ X ⇒
entails

|Y | ≥ |X| as well as Y ⊃ X ⇒ |Y | > |X|.

� For a finite m-set X (i.e. |X| = m), power set 2X = {Y : Y ⊆ X} contains
the 2m subsets of X.

� For the above sets of numbers, R ⊃ Z ⊃ N ⊂ Z+ ⊂ R+, but R 6⊆ Rn.

� Intervals: for any two real numbers a, b ∈ R, with a < b, define

– closed interval [a, b] = {r ∈ R : a ≤ r ≤ b},
– open interval (a, b) = {r ∈ R : a < r < b} = [a, b]\{a, b},
– half-open interval (a, b] = {r ∈ R : a < r ≤ b} = [a, b]\{a} as well as

[a, b) = {r ∈ R : a ≤ r < b} = [a, b]\{b}.

(The closed unit interval [0, 1], as any interval of reals, is uncountable.)

� In the sequel, parenthesis (·, ·) and {·, ·} shall also denote respectively
ordered and unordered pairs, hence for generic indices i, j (and mostly for
i, j ∈ N), there are two ordered pairs (i, j) 6= (j, i) and a single unordered
one {i, j} = {j, i}.
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2.2 Mappings

� Consider two finite sets X = {x1, . . . xm} and Y . A mapping f : X → Y
maps each element x ∈ X into an element f(x) = y ∈ Y .

� The image of f is im(f) = ∪
x∈X

f(x) ⊆ Y .

� The kernel of f is ker(f) = ∪
y∈im(f)

f−1(y), the union involving pair-wise

disjoint subsets of X, i.e. any two of which have empty intersection. Hence
ker(f) = P = {A1, . . . , Ak} is a partition of X, namely an unordered col-
lection of non-empty and pair-wise disjoint subsets of X, called “blocks”,
whose union is X. That is,

– ∅ 6= Al ∈ 2X for 1 ≤ l ≤ k,

– Al ∩Al′ = ∅ for 1 ≤ l < l′ ≤ k,

– A1 ∪ · · · ∪Ak = X.

In particular, ker(f) = P = {A1, . . . , Ak} means that:

(i) k = |im(f)| or im(f) = {y1, . . . , yk}, and

(ii) for each block Al, 1 ≤ l ≤ k of P there is a (distinct) yl ∈ im(f) such
that Al = {x : x ∈ X, f(x) = yl}.

� A mapping f : X → Y is

– surjective if im(f) = Y ,

– injective if its kernel ker(f) = P⊥ = {{x1}, . . . , {xm}} is the finest
or bottom partition P⊥ (of X), consisting of m singletons.

– bijective if it is both injective and surjective, entailing |X| = |Y |.

� As each x ∈ X can be mapped into |Y | distinct y ∈ Y , there are |Y ||X|
mappings f : X → Y , and the mm mappings f : X → X can be grouped
according to their kernel ker(f). Specifically, those m mappings f defined
by f(x) = xk for all x ∈ X, hence obtained by varying k = 1, . . . ,m,
all have the same kernel ker(f) = P> = {X} given by the coarsest or
top partition P> (of X), namely consisting of a single (whole) block. At
the opposite extreme, there are m! bijections f : X → X, i.e. such that
ker(f) = P⊥; they are permutations π : {1, . . . ,m} → {1, . . . ,m} or
elements of the symmetric group Sm described below.

2.3 Posets: subsets and partitions

� As subsets and partitions of a finite set shall appear rather often through-
out the course, it is best to immediately introduce the following basics
concepts, definitions and notations [1, 13]. Let M = {1, . . . ,m}, where
the first m natural numbers are the elements of M and more generally also
represent a labeling of the m elements of a generic set X = {x1, . . . , xm}.

� (2M ,⊇) is a fundamental poset (partially ordered set), and (2M ,∩,∪) is
the Boolean lattice of subsets of M . Apart from proper inclusion ⊃ already
defined, another order relation induced by ⊇ is the covering relation ⊃∗
defined by A ⊃∗ B ⇔ A ⊃ B, |A| = |B|+ 1 (A,B ∈ 2M ).
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� Although intersection ∩ and union ∪ are commonly defined as in Section
2.1, still in terms of lattices they are respectively the meet and join op-
erators. Hence A ∩ B is the largest subset (of M) included in both A,B,
and similarly A ∪B is the smallest subset including both A,B.

� There are
∑

0≤k≤m
(
m
k

)
= 2m = |2M | subsets of M , where the number of

k-subsets is
(
m
k

)
= m!

k!(m−k)! =
(
m

m−k
)
, i.e. equal to the number of m − k-

subsets, while factorial m! is defined by 0! := 1 and m! = m(m− 1)!.

� The set PM of partitions P = {A1, . . . , Ak} of M also is a fundamental
poset (PM ,>), where coarsening relation > (which differs from greater-
or-equal ≥ between real numbers) is definded as follows: for P,Q ∈ PM ,
the former is coarser than the latter (or the latter is finer than the former),
denoted by P > Q, if for each B ∈ Q there is A ∈ P such that A ⊇ B.
Proper coarsening P > Q thus means P > Q,P 6= Q (i.e. there are at
least two blocks B,B′ ∈ Q and a block A ∈ P such that A ⊇ (B ∪ B′)),
while the covering relation >∗ is P >∗ Q⇔ P > Q, |P | = |Q| − 1 (i.e. P
obtains by merging exactly two blocks of Q).

� (PM ,∧,∨) is perhaps the main example of geometric lattice [1]. The meet
∧ stands for “coarsest-finer-than” and similarly the join ∨ for “finest-
coarser-than”. Precisely, for P,Q ∈ PM and any A ∈ P,B ∈ Q such that
∅ 6= A ∩B,

- A ∩B is a block of P ∧Q,

- A ∪B is included in a block of P ∨Q.

The number of partitions of a m-set is the Bell number Bm obeying re-
cursion Bm =

∑
0≤k<m

(
m−1
k

)
Bk, where B0 := 1.

2.4 Formalizing preferences: three ways

� In Section 3, a (rational) preference % over a generic m-set X of alterna-
tives shall be looked at in three different ways:

- as a binary relation or subset R% ⊆ X × X (i.e. R% ∈ 2X×X) of or-
dered pairs of alternatives satisfying certain conditions, namely reflexivity,
transitivity and completeness;

- as an ordered partition P = (A1, . . . , A|P |) of X, where the notation (·, ·)
and {·, ·} for ordered and unordered pairs is extended to partitions, hence
every partition P = {A1, . . . , A|P |} of X as above corresponds to |P |!
distinct ordered partitions P = (A1, . . . , A|P |), each given by a distinct
ordering of the |P | blocks of P .

- as a subgroup of permutations π, which are the m! bijective mappings
π : M → M , i.e. whose kernel is the finest partition of M (see above).
The m!-set Sm = S(M) of permutations is a main example of algebraic
group [17], with identity element id defined by id(i) = i for all i ∈M and
with product “�” defined by (π̂�π̃)(i) = π̂(π̃(i)) for all π̂, π̃ ∈ Sm. It may
be checked that (Sm, id,�) is a group:

- (π̂�π̃) ∈ Sm for all π̂, π̃ ∈ Sm,

- π�(π̂�π̃) = (π�π̂)�π̃ for all π, π̂, π̃ ∈ Sm,
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- id�π = π�id = π for all π ∈ Sm,

- for every π ∈ Sm there is π−1 ∈ Sm such that π�π−1 = π−1
�π = id.

3 Preferences

� In the non-cooperative games to be dealt with, the product space of strat-
egy profiles over which players i ∈ N have preferences in form of a utility
function ui : S1 × · · · × Sn → R is finite, i.e. 1 < |Si| < ∞ (see above).
Accordingly, these preferences are firstly considered for the general case
of a decision maker DM who ranks alternatives x ∈ X = {x1, . . . , xm}.

3.1 Binary relations

� A ranking of the m alternatives x1, . . . , xm ∈ X shall be formalized as
rational preference binary relation R%, or more simply %, where xi % xj
reads “xi is weakly preferred to xj” (or “xi is at least as good as xj”).

� A binary relation R on X is any subset R ⊆ X × X (or R ∈ 2X×X) of
ordered pairs of alternatives, hence (xi, xj) 6= (xj , xi) (see above). For
rational preference binary relations R% or % defined below, (xi, xj) ∈ R%

shall mean xi % xj . For 1 ≤ i, j ≤ m, product X×X contains m2 ordered
pairs, out of which m have form (xi, xi), 1 ≤ i ≤ m while 2

(
m
2

)
= m(m−1)

are (proper) ordered pairs (xi, xj), i 6= j.

� A binary relation R on a set X is:

+ reflexive if (x, x) ∈ R for all x ∈ X,

– symmetric if (x′, x) ∈ R⇒ (x, x′) ∈ R for all x, x′ ∈ X,

+ transitive if (x′′, x′) ∈ R 3 (x′, x)⇒ (x′′, x) ∈ R
for all x, x′, x′′ ∈ X,

+ complete if (x, x′) ∈ R or (x′, x) ∈ R or both for all x, x′ ∈ X,

– antisymmetric if (x′, x) ∈ R and (x, x′) ∈ R⇒ x = x′

for all x, x′ ∈ X,

– asymmetric if (x′, x) ∈ R⇒ (x, x′) ∈ Rc for all x, x′ ∈ X,x 6= x′,

– irreflexive if (x, x) ∈ Rc for all x ∈ X.

� Reflexive, symmetric and transitive binary relations are known as equiv-
alence relations E ⊂ X × X; they correspond bijectively to partitions
P = {A1, . . . , A|P |} of X, as each block A ∈ P is an equivalence class,
namely a maximal (in terms of inclusion ⊇) subset A ∈ 2X satisfying
(xi, xj), (xj , xi) ∈ E for all xi, xj ∈ A. In computer science, an apart-
ness relation is a symmetric and irreflexive binary relation with the addi-
tional condition that if two elements are apart, then any other element is
apart from at least one of them. Apartness relations are the complement
Ec = (X ×X)\E of equivalence relations E .

� Another main example of a binary relations comes from posets (2M ,⊇)
and (PM ,>) above. Specifically, binary relation R⊇ ⊂ 2M × 2M (on 2M )
defined by R⊇ = {(A,B) : A,B ∈ 2M , A ⊇ B} is reflexive, transitive,
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antisymmetric and asymmetric. The same applies to binary relation
R> ⊂ PM ×PM (on PM ) defined by R> = {(P,Q) : P,Q ∈ PM , P > Q}.

� A binary relation R on a m-set X can be represented as a Boolean matrix
MR ∈ {0, 1}m×m whose entries are:

MR
i,j =

{
1 if (xi, xj) ∈ R
0 if (xi, xj) 6∈ R

for 1 ≤ i, j ≤ m,

where i is the row and j is the column. Evidently, if R = E is an equiva-
lence relation, then the associated Boolean matrix ME is symmetric.

� Exercise 1: For N = {1, 2, 3}, determine the {0, 1}8×8 matrix represent-
ing binary relation R⊇ ⊂ 2N×2N described above, indexing rows/columns
1 ≤ i, j ≤ 8 by subsets A,B ∈ 2N in a way such that if A ⊃ B then i < j.

3.2 Rational preferences

� In game (and microeconomic [19]) theory, the concern is with rational
preferences % (on a m-set X of alternatives), namely reflexive, transitive
and complete binary relations R% ⊆ X×X, with xi % xj ⇔ (xi, xj) ∈ R%.

� It is useful to split a rational preference % in its strong preference � and
indifference ∼ parts. That is to say, for all xi, xj ∈ X such that xi % xj ,

– if xj 6% xi, then there is strong preference: xi � xj ,
– if xj % xi, then there is indifference xi ∼ xj .

� For any rational preference %, alternatives x ∈ X can be labeled with
naturals 1, . . . ,m ∈ N in some (i.e. at least one) way such that xi % xi+1

for 1 ≤ i < m. Then, the Boolean matrix MR% ∈ {0, 1}m×m representing
R% has all 1s on and above (or to the right of) the main diagonal, while all
remaining 1s (if any) identify squares along the main diagonal. Formally,
after suitably labeling alternatives with the first m naturals as above, the
generic rational preference may be listed as follows:

x1 ∼ · · · ∼ xn1
� xn1+1 ∼ · · · ∼ xn2

� · · · ∼ · · · � xm−k ∼ · · · ∼ xm,

where m− k = nk−1 + 1. In other terms, ∆n
l := nl − nl−1 for 1 < l ≤ k,

and n0 := 0 as well as nk := n =
∑

1≤l≤k ∆n
l .

� Rational preferences % thus correspond bijectively to ordered partitions
P% = (A1, . . . , Ak), with A1 = {x : x & x′ for all x′ ∈ X}, i.e. the
first block contains all ∆n

1 optimal alternatives. Then in general the l-th
block Al, 1 < l < k contains all ∆n

l alternatives x such that x′ � x � x′′

for all x′ ∈ Al′ , l
′ < l and all x′′ ∈ Al′′ , l

′′ > l, while the last block
Ak = {x : x′ % x for all x′ ∈ X} contains all ∆n

k worst alternatives.

� Coming to the last representation of rational preferences %, consider the

subset S%m ⊆ Sm of %-admissible permutations whose elements are those
π ∈ Sm (see above) such that if xi � xj , then π(i) < π(j). Since alter-
natives are firstly labeled in any way satisfying xi % xi+1, 1 ≤ i < m,
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the identity id(i) = i is an element of this subset, i.e. id ∈ S%m. In fact,

(S%m, id,�) is a subgroup of the symmetric group (Sm, id,�), meaning that

the conditions on pages 6-7 remain valid if Sm is replaced with S%m. With

the above notation, |S%m| =
∏

1≤l≤k ∆l
n!.

� Exercise 2:

1. Show that for any rational preference % on m-set X, with corre-
sponding binary relation R% ⊆ X ×X, the following bounds apply:(
m+1

2

)
≤ |R%| ≤ m2. What rational preferences attain these bounds?

2. Discuss the following statement: an equivalence relation with a num-
ber of equivalence classes > 1 cannot be a rational preference relation.

3. For a rational preference % on m-set X corrseponding to ordered
partition P% = (A1, . . . , Ak) (of X), determine both:

(i) the number |R%| =
∑

1≤i,j≤mM
R%

ij of 1s in the Boolean matrix

MR% ∈ {0, 1}m×m (representing binary relation R% ⊆ X ×X),

(ii) the number |S%m| of %-admissible permutations.

4. If the Boolean m×m matrix representing a rational preference over
m alternatives is symmetric, then how many of its entries equal 0?

5. Can an equivalence relation be complete? Discuss.

6. For X = {x1, . . . , xm}, define f : X → X by f(xk) = xm−k+1

(1 ≤ k ≤ m). Identify ker(f). For the bynary relation

Rf = {(xk, f(xk)) : 1 ≤ k ≤ m} ⊂ X ×X,

count the number of 1s in Boolean matrix MRf ∈ {0, 1}m×m. Is Rf

reflexive and/or complete and/or transitive? Identify a (⊇-)minimal
rational preference R%∗ satisfying R%∗ ⊇ R. How many 1s are in

Boolean matrix MR%∗

? (Assume m is even.)

3.3 Preference aggregation

� How to aggregate n rational preferences %i, i ∈ N = {1, . . . , n} on a m-
set X = {x1, . . . , xm} of alternatives is an issue with a long history in
social choice theory, and more recently also attracting attention from the
artificial intelligence AI community. When X = ×i∈NSi is the product
space of strategy profiles (hence m =

∏
i∈N |Si|), common interest games

are those where there is a strategy profile x∗ ∈ X such that x∗ %i x for all
x ∈ X and all i ∈ N . Additionally, in pure common interest games there
is a permutation π∗ ∈ Sm such that for all i ∈ N and all xl, xk ∈ X, if
xl �i xk, then π∗(l) < π∗(k) [9].

� These (possibly pure) common interest games clearly constitute only a
small class of games, where strategic interaction basically has to deal
(only) with coordination. On the other hand, most non-cooperative games
shall be characterized by some degree of conflict (and this is especially true
for constant-sum games, see below). Then, a well-known criterion for se-
lecting a subset of “socially optimal” strategy profiles/alternatives x ∈ X
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is Pareto optimality. For any x, x′ ∈ X, define x to Pareto-dominate x′,
denoted by x �∗ x′, as follows:

x �∗ x′ ⇔
{

x %i x′ for all i ∈ N (weak preference),
x �j x′ for at least one j ∈ N (strong preference).

The non-empty subset ∅ 6= X∗PO ⊆ X of Pareto-optimal/efficient strategy
profiles/alternatives consists of all Pareto-undominated ones [19], namely

X∗PO = {x : x′ 6�∗ x for all x′ ∈ X}

(where x′ 6�∗ x means x′ does not Pareto-dominate x.)

� Exercise 3: For player set N and product space of strategy profiles
×i∈NSi = X = {x1, . . . , xm} as above, let each i ∈ N have rational pref-
erences %i on X corresponding to ordered partition P%i = (Ai1, . . . , A

i
ki

)

of X. What is the necessary and sufficient condition that (P%i)i∈N must
satisfy in order for this to be a common interest game?

3.4 Utility representation

� Function u : X → R is said to represent rational preference % and to be
a utility function if u(x) ≥ u(x′)⇔ x % x′ for all x, x′ ∈ X.

� If u represents %, then % may also be represented by any monotone trans-
formation u′ of u, i.e. u′(x) = f(u(x)) for all x ∈ X, with f : R → R
satisfying α, β ∈ R, α < β ⇒ f(α) < f(β).

� Properties of utility functions that are invariant under such monotone
transformations are called ordinal, while cardinal ones are not preserved
under the same transformations.

� Exercise 4: Show that any rational preference % over a finite set of
alternatives can be represented by a utility function.

4 Discrete probability

� In non-cooperative game theory players are generally conceived to choose
random (or “mixed”) strategies, meaning that every i ∈ N plays according

to a discrete probability distribution σi over Si = {s1
i , . . . , s

|Si|
i }. That is,

σi : Si → [0, 1] with
∑
si∈Si σi(si) = 1.

� In other terms, when choosing a random strategy σi each player i ∈ N
selects a point σi ∈ ∆Si in the |Si| − 1-dimensional unit simplex ∆Si =

=

{(
σi(s

1
i ), . . . , σi(s

|Si|
i )

)
: σi(s

k
i ) ≥ 0 for 1 ≤ k ≤ |Si|,

∑
si∈Si

σi(si) = 1

}

or convex set of probability distributions over Si, meaning that
(ασi + (1− α)σ′i) ∈ ∆Si for all α ∈ [0, 1] and all σi, σ

′
i ∈ ∆Si .
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� In this view, non-random (or “pure”) strategies are simply random ones
where the whole (unit) probability mass is concentrated on a unique ex-
treme point ε ∈ ex(∆Si) of the simplex. There are |Si| extreme points
ε1, . . . , ε|Si| ∈ {0, 1}|Si| of ∆Si , each being a Boolean |Si|-vector with a
unique 1 and |Si|−1 entries equal to 0. Thus εk is the degenerate probabil-

ity distribution εk = σ̄ki defined by σ̄ki (sli) =

{
0 if k 6= l
1 if k = l

(1 ≤ k ≤ |Si|).

4.1 Discrete random variables: lotteries

� A discrete random variable (with finite support) consists of a set of real
numbers, i.e. X = {x1, . . . , xm} ⊂ R, and a probability distribution over
X, i.e. p = (p1, . . . , pm) ∈ ∆X . Here X contains m atomic mutually
exclusive events, and ∆X ⊂ Rm+ is the m − 1-dimensional unit simplex
whose extreme points are indexed by the elements in X; in other terms,
pk = p(xk) ≥ 0 is the probability that real quantity or atomic event xk
realizes, with

∑
1≤k≤m pk = 1.

� If real numbers x1, . . . , xm ∈ X ∈ Rm are interpreted as money values that
the DM may receive, then probability distributions p ∈ ∆X are commonly
referred to as “lotteries”. The theory of decision under uncertainty initi-
ates with the problem of rakning lotteries. For example, any p, q ∈ ∆X

may be ranked simply according to their expected value Ex(p), Ex(q), i.e.

p % q ⇔ Ex(p) =
∑

1≤k≤m

pkxk ≥
∑

1≤k≤m

qkxk = Ex(q).

Note that the resulting preference (binary relation) % (on ∆X) is rational.

4.2 Probabilities as set functions

� Conceptually, probabilities are associated with events or subsets A ∈ 2X of
atomic mutually exclusive events x ∈ X. In fact, a probability distribution
is a set function p : 2X → [0, 1] satisfying p(A)+p(B) = p(A∩B)+p(A∪B)
for all A,B ∈ 2X , as well as p(∅) = 0 = 1 − p(X). Also, p(A), A ∈ 2X is
thought of as the probability that the realized atomic event x shall satisfy
x ∈ A. Then, a main theorem [1, p. 190] on valuations of distributive
lattices (such as Boolean lattice (2X ,∩,∪)) entails p(A) =

∑
x∈A p({x})

for all events A ∈ 2X .

� Both in decision theory and in cooperative game theory, a central issue
is how to map generic monotone set functions v : 2X → R+, namely
such that A ⊇ B ⇒ v(A) ≥ v(B) for all A,B ∈ 2X , into set functions
φ(v) : 2X → R+ satisfying φ(v)(A) =

∑
x∈A φ(v)({x}) for all A ∈ 2X .

In particular, in decision theory v is a (discrete) fuzzy measure, meaning
v(∅) = 0 = 1− v(N) as above, and the concern is with the possibly empty
convex set C(v) containing those probabilities φ(v) = p ∈ ∆X such that
p(A) ≥ v(A) for all A ∈ 2X (with equality for A = X). Analogously
(for X = N), in cooperative game theory (see above) C(v) is the core of
coalitional game v, where this latter is monotone and satisfies v(∅) = 0
but may take any value v(N) on the grand coalition N . The core C(v) is
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a set-valued solution/value concept for coalitional games v, while point-
valued ones associate with every v a single φ(v) (such that for all A ∈ 2X

φ(v)(A) =
∑
x∈A φ(v)({x}).

� These topics will be addressed in the sequel, when dealing with the dis-
crete Choquet integral with respect to fuzzy measures (in decision the-
ory), and with solutions/values of coalitional games (in the second half
of the course). For now, consider at glance the game where every player
i ∈ N = {1, . . . , n} votes on a bill to pass or not, and if the number of
those who vote it to pass is greater or equal to bn2 c+1, then the bill passes,
while if that number is strictly smaller than bn2 c + 1, then the bill does
not pass. In other terms, all coalitions of n

2 + 1 (for n even) or n+1
2 (for

n odd) are minimal winning ones, while any of their proper subcoalitions
is loosing. This is the voting majority game, a well-known member of the
family of simple games, which are those monotone v : 2N → {0, 1} such
that v(∅) = 0 = 1− v(N).

� The voting majority game is evidently symmetric, in that players/voters
all have equal unit weight. Voting quota games v : 2N → {0, 1} are
simple games where, more generally, there are n + 1 weights, denoted by
ω0, ω1, . . . , ωn ∈ R++, which identify as winning those coalitions A ∈ 2N

such that
∑
i∈A ωi ≥ ω0, i.e. v(A) = 1, and as loosing ones those A ∈ 2N

such that
∑
i∈A ωi < ω0, i.e. v(A) = 0. Hence in the voting majority case

ωi = 1 for all i ∈ N , while ω0 = bn2 c+ 1.

� A swing for a player i ∈ N in a simple game v is a winning coalition A∪ i
such that A is loosing. In other terms, if v(A∪i)−v(A) = 1, then A∪i is a
swing for i. The Banzhaf value [5, 25] φBa(v) = (φBa1 (v), . . . , φBan (v)) of a
simple (voting quota) game v obtains by assigning to each i = 1, . . . , n the
ratio of the total number of i’s swings to the maximum possible number
2n−1 of such swings, that is

φBai (v) =
∑

A⊆N\i

v(A ∪ i)− v(A)

2n−1
.

When v is the majority voting game, φBai (v) =
(n−1

n
2

)
2n−1 if n is even, while

φBai (v) =
(

n−1
n−1
2

)
2n−1 if n is odd.

� Chow parameters problem: given power indices φ∗1, . . . , φ
∗
n > 0, determine

n+1 weights ω0, ω1, . . . , ωn such that the corresponding voting quota game
v has Banzhaf value φBa(v) as close as possible to φ∗ [11, 12].

� Exercise 5:

1. Consider voting quota game v : 2N → {0, 1} with weights ω0 = 0.4
as well as ωi = 0.i for i ∈ N , and player set N = {1, 2, 3, 4}.
- Compute the Banzhaf value φBa(v) = (φBa1 (v), . . . , φBa4 (v)).

- Identify the set of minimal winning coalitions.

- Identify the set of maximal loosing coalitions.
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2. Consider a voting quota game v : 2N → {0, 1} with weights ω0 = 90
as well as ωi = 1 for i ∈ N , and player set N = {1, . . . , 100}.
- Compute the Banzhaf value φBa(v) = (φBa1 (v), . . . , φBa100(v)).

- Identify the set of minimal winning coalitions.

- Identify the set of maximal loosing coalitions.

3. Consider simple game v : 2N → {0, 1} with player set N = {1, . . . , 4}
and minimal winning coalitions {1, 4}, {2, 3}, {2, 4} and {3, 4}.
- Identify the set of maximal loosing coalitions.

- Compute the Banzhaf value φBa(v) = (φBa1 (v), . . . , φBa4 (v)).

- Identify weights ω0, ω1, . . . , ω4 such that the resulting voting quota
game has Banzhaf value equal to φBa(v).

4.3 Expected utility

� The expected utility theory provides a main result for the representation
of preferences % over lotteries p, q ∈ ∆X as described in Section 4.1. That
is, X = {x1, . . . , xm} ∈ Rm is a set of money values [19, p. 171].

� Preference % (over ∆X) is continuous if for any p, p′, q ∈ ∆m, both the
following sets are closed:

{α ∈ [0, 1] : αp+ (1− α)p′ & q} and {α ∈ [0, 1] : q & αp+ (1− α)p′}.

� Preference % satisfies the independence axiom if for any p, p′, q ∈ ∆m and
for all α ∈ [0, 1],

p & p′ ⇔ αp+ (1− α)q & αp′ + (1− α)q.

� Theorem (von Neumann and Morgestern 1944 [30]): if pference % is con-
tinuous and satisfies the independence axiom, then there exists a util-
ity over money values u : X → R such that % is represented by a
Eu : ∆X → R with the following expected utility form:

Eu(p) =
∑

1≤k≤m

pku(xk) for all p ∈ ∆X .

� Corollary: Eu : ∆X → R has the expected utility form if and only if it is
linear, meaning

Eu(α1p
1 + . . .+ αkp

k) =
∑

1≤l≤k

αlEu(pl)

for all convex combinations of any p1, . . . , pk ∈ ∆X (i.e. α1, . . . , αk ∈ R+

satisfy
∑

1≤l≤k αl = 1, and ∆X is convex precisely because any convex
combination of probabilities is a probability).

� If Eu : ∆X → R has the expected utility form and represents preference
%, then any further Eu′ : ∆X → R representing % has form Eu′(p) =
βEu(p) + γ (for all p ∈ ∆X) for some β ∈ R++, γ ∈ R.
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� In choice experiments, the independence axiom is violated, two main ex-
amples being Allais [19, p. 179] and Ellsberg paradoxes (see below).

� Finally, if u : R→ R is concave/linear/convex, then the DM is said to be
risk-averse/neutral/lover [19].

� Exercise 6: let X = N10 = {1, 2, . . . , 9, 10} be a set of money values, with
utility function u(n) = lnn, 1 ≤ n ≤ 10. Consider two lotteries p, q ∈ ∆X

defined as follows: p(n) = 8−n
28 if 1 ≤ n ≤ 7 and p(n) = 0 if 7 < n ≤ 10,

while q(n) = 7−n
21 if n ≤ 6 and q(n) = 0 if 6 < n ≤ 10. Compute the

vN-M expected utility of the two lotteries, i.e. Eu(p) and Eu(q).

4.4 Ellsberg paradox

� Ellsberg paradox is designed to show that the independence axiom is vio-
lated. The DM does not rank lotteries but actions, defined as follows.

� Consider a set Ω = {ω1, . . . , ωk} (k > 1) of states of nature and a set
A = {a1, . . . , am},m > 1 of available actions, where the utility function
has form u : Ω× A→ R+.

� In the vN-M expected utility model, given some subjective belief or prob-
ability p : 2Ω → [0, 1] over states ω ∈ Ω = {ω1, . . . , ωn} (that is to say,
p(X) =

∑
ω∈X p({ω}) for all X ∈ 2Ω, see above), actions a, a′ ∈ A shall

be ranked according to their scored expected utility:

Eua(p) =
∑

1≤l≤k

p({ωl})u(ωl, a) as well as a & a′ ⇔ Eua(p) ≥ Eua′(p).

� Ellsberg paradox (1961): a ball is drawn at random from an urn containing
90 balls, 30 red R and each other ball either black B or yellow Y, while
there are the following four actions/alternatives a1 − a4:

a1 : receive 100 if the ball is R,

a2 : receive 100 if the ball is B,

a3 : receive 100 if the ball is R or Y,

a4 : receive 100 if the ball is B or Y.

In experiments, a1 � a2 and a4 � a3 (strong preferences).

� a DM choosing in line with the expected utility theory has some subjec-
tive probability p = (p0, p1, p2, . . . p60) where pk is the probability that
the number of black balls is k. Then, each a ∈ {a1, a2, a3, a4} yields util-
ity ua(R), ua(B), ua(Y ) depending on whether the ball, drawn randomly
(with uniform distribution), is R or B or Y.

� For any such a subjective probability p, choosing a1 � a2 as well as a4 � a3

is inconsistent with the expected utility model in that:

(1) Eua1(p) = u(100) 1
3 + u(0) 2

3 ,

(2) Eua2(p) = u(100)
(∑

0≤k≤60 pk
k
90

)
+ u(0)

(
1
3 +

∑
0≤k≤60 pk

60−k
90

)
;
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(1&2) a1 � a2 or Eua1(p) > Eua2(p)⇒

⇒ u(100)− u(0)

3
>
u(100)− u(0)

90

∑
0≤k≤60

pkk

(subtract u(0) from both sides), thus 30 >
∑

0≤k≤60 pkk, i.e. the
expected number of B balls in the urn (according to subjective p) is
stricly smaller than 30;

(3) Eua3(p) = u(100)
(

1
3 +

∑
0≤k≤60 pk

60−k
90

)
+ u(0)

(∑
0≤k≤60 pk

k
90

)
,

(4) Eua4(p) = u(100) 2
3 + u(0) 1

3 ;

(3&4) aa � a3 or Eua4(p) > Eua3(p)⇒

⇒ u(100)− u(0)

3
<
u(100)− u(0)

90

∑
0≤k≤60

pkk

(subtract u(100) from both sides), thus 30 <
∑

0≤k≤60 pkk, i.e. the
expected number of B balls in the urn (according to the same p) is
stricly greater than 30.

� Of course, there is no such a probability p (i.e. satisfying both the above
strict inequalities), entailing that the expected utility theory cannot ex-
plain these (empirically observed) choices.

5 Strategies

� In simultaneous-move games all players move only once, simultaneously,
hence choosing a strategy is the same as choosing a move. This is no
longer true in multistage games, where choosing a strategy means choosing
a sequence of (conditional) moves. Although the non-cooperative games
to be dealt with shall be in simultaneous-move form, still multistage games
are briefly described below in order to formally define strategies in a most
general setting, namely where players have either perfect or else incomplete
information, this latter being commonly modeled by means of partitions.

5.1 Information in multistage games

� As the name clearly suggests, multistage games are played in discrete
time t = 0, 1, . . . , T , as t = 0 is the starting point or root of the game
tree (defined hereafter), where some (at last one, and possibly all) players
move; next, depending on previous moves, at each t ≥ 1 a node is reached,
corresponding either to a moment where at least one player has to move,
or else to an end of the game or leaf. The concern here is only with games
where T <∞ (for any leaf).

� Multistage games are thus commonly represented by a rooted and directed
(game) tree T = (V, E),V = {v0, v1, . . . , v|V|−1}, E ⊆ V × V, namely a
cycle-free graph whose edges (v, v′) ∈ E are ordered pairs of vertices or
nodes (i.e. (v, v′) 6= (v′, v); also, (v, v) /∈ E for all v ∈ V). Game tree T
is rooted at v0 (denoting the start) and at each node either some player
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moves or else the game ends (i.e. in a leaf). Visually, the root may be
placed on top so that a game course is a descending path to some leaf. In
this view, existence of an edge (v, v′) ∈ E, with v′ immediately below v,
means that node v′ is reachable from node v through precisely one move
choice by those players who move at v (again, the number of nodes is finite,
and in particular 5 ≤ |V| <∞, as there must be at least two players, each
with minimally two actions).

� Let VL be the vertex subset containing all leaves (hence in simultaneous-
move games V\VL = {v0}). Denote by Vi ⊆

(
V\VL

)
the subset of nodes

where each player i ∈ N moves. Also, for every v ∈ Vi, let Avi be the
set of moves available to i at v, with Ai = ∪

v∈Vi

Avi containing all moves

available to i (i.e. independently from nodes v ∈ Vi).

� Under perfect information, this notation enables to formally define a strat-
egy si, for a player i ∈ N , as any mapping si : Vi → Ai satisfying
si(v) ∈ Avi for every v ∈ Vi. In words, a strategy si specifies an admissi-
ble move for i at each node (that may be reached) where i has to move.
Denote by Si the set of all such strategies si available to i ∈ N .

� As already mentioned, information is modeled by means of partitions.
Specically, for every i ∈ N , denote by Pi ⊂ PVi the set of partitions
P = {B1, . . . , Bk} of Vi satisfying, for any two nodes v, v′ ∈ Vi,

if Avi 6= Av
′

i , then {v, v′} 6⊆ B for all B ∈ P .

In words, if at nodes v, v′ ∈ Vi the sets Avi ,Av
′

i of moves available to
i are different, then v and v′ must be apart in all P ∈ Pi. The finest
partition P⊥ ∈ Pi (consisting of |Vi| singletons, see above) clearly satisfies
this condition, and in fact corresponds precisely to the case where i has
perfect information.

� A player i endowed with incomplete information cannot distinguish be-
tween certain nodes v, v′ ∈ Vi with same available moves Avi = Av′i (as
otherwise i could of course distinguish between v and v′). This is for-
malized by endowing i with a partition P = {B1, . . . , Bk} ∈ Pi such that
P > P⊥, i.e. strictly coarser (see Section 2.3) than the finest one. Blocks
B1, . . . , Bk of P are information sets. Then, a strategy si with incomplete
information P must be constant on each information set, i.e. si : P → Ai.
That is, in addition to the definition with perfect information, si must
also satisfy: P 3 B ⊇ {v, v′} ⇒ si(v) = si(v

′).

� Players’ preferences are defined over the set VL of leaves, where these latter
correspond bijectively to strategy profiles s = (s1, . . . , sn) ∈ S1× · · ·×Sn.
Hence ui : ×j∈NSj → R for every i ∈ N and non-cooperative games Γ are
traditionally denoted by triples Γ = (N, S, u), with u : S→ Rn.

5.2 Dominated and dominant strategies

� A central issue in non-cooperative game theory is how to figure what
strategy profiles are more likely to prevail in a given strategic interaction.
This leads to investigate not only the equilibrium conditions (identifying
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those profiles from which no player has an incentive to unilaterally deviate,
see below), but also whether certain strategies (and thus certain profiles)
have a chance to be rationally played or not.

� In game Γ = (N, S, u), for each i ∈ N consider the set

S−i = ×
j∈N\i

Sj = S1 × · · · × Si−1 × Si+1 × · · · × Sn

of n − 1-tuples of strategies for players j ∈ N\i, with generic element
s−i = (s1, . . . , si−1, si+1, . . . , sn) ∈ S−i.

� Strategy si ∈ Si is weakly dominated if there is a ŝi ∈ Si\si such that

ui(ŝi, s−i)− ui(si, s−i) ≥ 0 for all s−i ∈ S−i,

with strict inequality for at least one s−i ∈ S−i. Then, ŝi weakly dominates
si. Here (ŝi, s−i), (si, s−i) ∈ Si × S−i are the two strategy profiles where
all players j ∈ N\i choose n − 1-profile s−i ∈ S−i in both, while i ∈ N
chooses respectively strategies ŝi, si ∈ Si.

� Similarly, ŝi is said to strongly dominate si if the inequality is strict for
all s−i ∈ S−i. A strategy strongly dominating all others is said to be
dominant. Clearly if there is a dominant strategy it is unique.

5.3 Deletion of dominated strategies

� Dominated strategies are unlikely to be chosen by rational players, en-
abling to conceive an iterated process where at each step some strongly
dominated strategy, for some player, is deleted, until residual strongly
dominated strategies no longer exist, for no player. When a strategy
ŝi ∈ Si of a player i ∈ N is deleted in any given game Γ = (N,×j∈NSj , u),
the number of correspondigly deleted strategy profiles from the whole set
×j∈NSj clearly is |S−i| =

∏
j∈N\i |Sj |. The resulting sequence of games is

Γt = (N,×j∈NStj , u), t = 0, 1, . . . with Γ = Γ0 = (N,×j∈NS0
j , u).

� The removal of all strategies, i.e. across all players, that are strongly
dominated in the original game Γ0 relies only on rationality, as nobody
rational chooses a strongly dominated strategy, independently from other
players’ rationality (in turn) and payoffs. However, any further deletion of
strongly dominated strategies requires both that each player has complete
knowledge of the game, and that this individual complete knowledge also is
common knowledge (i.e. everyone knows that everyone knows) [19]. After
deleting any strongly dominated strategy further strategies may become
strongly dominated (and thus deleted) simply because the smaller the
number

∣∣St−i∣∣ of n − 1-tuples of strategies for other players j ∈ N\i,
the more likely that any (residual) strategy si ∈ Sti becomes strongly
dominated, in that it remains a viable response to only those n− 1-tuples
s−i ∈ St−i.

� The order in which strongly dominated strategies are deleted is irrele-
vant. Conversely, if weakly (rather than strongly) dominated strategies
are deleted, then the order of deletion does affect the final outcome, as
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Table 1: Deleting weakly dominated strategies

(ui(ai, aj), uj(ai, aj)) aj = L aj = R
ai = U (5, 1) (4, 0)
ai = M (6, 0) (3, 1)
ai = D (6, 4) (4, 4)

shown in Table 1. For player i, both U and M are weakly dominated
by D; if U is deleted first, then L has to be deleted, and finally M as
well, so that (D,R) remains the only surviving outcome; conversely, if M
is deleted first, then R has to be deleted, and finally U as well, so that
(D,L) is the only residual outcome.

5.4 Equilibrium

� Given any game Γ = (N,×j∈NSj , u), for the case of non-random (or pure)
strategies an equilibrium is a strategy profile s∗ = (s∗1, . . . , s

∗
n) ∈ ×j∈NSj

from which no player has an incentive to unilaterally deviate, hence where

ui(s
∗) ≥ ui(si, s∗−i) for all si ∈ Si and all i ∈ N .

� Another way to define equilibria is in terms of best responses as follows.
For every i ∈ N , define the best response mapping BRi : S−i → 2Si by

BRi(ŝ−i) = {ŝi : ui(ŝi, ŝ−i) ≥ ui(si, ŝ−i) for all si ∈ Si}.

As {ui(si, ŝ−i) : si ∈ Si} ∈ R|Si| is a finite set of real numbers, its maxi-
mum exists for any ŝ−i ∈ S−i, hence BRi(ŝ−i) 6= ∅. Then, strategy profile
s∗ = (s∗1, . . . , s

∗
n) ∈ ×j∈NSj is an equilibrium if at s∗ every i is playing a

best response, i.e. s∗i ∈ BRi(s∗−i) for all i ∈ N .

� The set of these equilibria s∗ for a generic game Γ may be empty but may
also consist of several strategy profiles, and such a (possible) multiplicity
leads to investigate alternative equilibrium refinement criteria [19].

� The popular prisoner’s dilemma is a simple non-cooperative game with
only two players, each with the same two strategies, and still where there
exists a unique equilibrium which, in particular, is Pareto-dominated (see
above). For both players i and j, strategy C (confess) strongly dominates
strategy NC (non-confess), as shown in Table 2. After deleting strongly

Table 2: Prisoner’s dilemma payoff matrix (−1 = 1 year in jail)

(ui(ai, aj), uj(ai, aj)) aj = NC aj = C
ai = NC (−2,−2) (−10,−1)
ai = C (−1,−10) (−5,−5)

dominated strategies, the only surviving outcome is C,C, which is thus an
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equilibrium in dominant strategies. However, C,C also is strongly Pareto-
dominated, as with NC,NC both players receive a strictly greater payoff :

ui(NC,NC) = uj(NC,NC) = −2 > −5 = ui(C,C) = uj(C,C).

6 Random strategies

� As already mentioned, the expected utility theory in Section 4.3 was con-
ceived to deal with non-cooperative games where players i may choose
each a probability distribution over strategy set Si. Traditionally, these
probability distributions are called mixed strategies, while pure ones are
those si ∈ Si just considered. Here, every si shall be regarded as the prob-
ability distribution fully concentrated on a single extreme of the |Si| − 1-
dimensional unit simplex ∆Si defined in Section 4, i.e. ∆Si =

=

{(
σi(s

1
i ), . . . , σi(s

|Si|
i )

)
: σi(s

k
i ) ≥ 0 for 1 ≤ k ≤ |Si|,

∑
si∈Si

σi(si) = 1

}
.

There are |Si| extreme points ε1, . . . , ε|Si| ∈ {0, 1}|Si| of ∆Si , each being a
Boolean |Si|-vector with a unique 1 and |Si|−1 entries equal to 0. Thus εk

is the probability distribution εk = σ̄ki defined by σ̄ki (sli) =

{
0 if k 6= l
1 if k = l

(1 ≤ k ≤ |Si|). Equivalently, {ε1, . . . , ε|Si|} is the canonical basis of R|Si|
(with axes indexed by strategies si ∈ Si), and ∆Si = co.hu({ε1, . . . , ε|Si|})
is the convex hull of these extreme points.

� A random strategy σi ∈ ∆Si is a point in this simplex, and σki = σi(s
k
i )

is the probability (or frequency in repeated games) by which i ∈ N plays
according to (non-random) strategy ski ∈ Si, 1 ≤ k ≤ |Si| (when adopting
random strategy σi). On the other hand, probability distributions over the
product space ×j∈NSj of strategy profiles are points in the |×j∈N Sj |−1-
dimensional unit simplex, denoted by ∆×S , whose elements p ∈ ∆×S are
those functions p : ×j∈NSj → [0, 1] satisfying∑

s∈×j∈NSj

p(s) = 1, where s = (s1, . . . , sn).

� Note that ∆×S 6= ×j∈N∆Sj and players choose their random strategies
independently. Thus any profile σ = (σ1, . . . , σn) ∈ ×j∈N∆Sj of random

strategies chosen by the n players induces probability distribution pσ ∈ ∆×S
over non-random strategy profiles s = (s1, . . . , sn) ∈ ×j∈NSj defined by

pσ(s) = pσ(s1, . . . , sn) =
∏
j∈N

σj(sj).

� For given pσ ∈ ∆×S , each player i ∈ N may be seen as facing a lottery or
random variable taking each utility value ui(s), s = (s1, . . . , sn) ∈ ×j∈NSj
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with probability pσ(s). Hence at any profile σ = (σ1, . . . , σn) ∈ ×j∈N∆Sj
of random strategies i’s expected utility is

Eui(σ) =
∑

s∈×j∈NSj

pσ(s)ui(s) =
∑

s∈×j∈NSj

∏
j∈N

σj(sj)

ui(s).

Strategy profiles s, s′ ∈ ×j∈NSj are ranked accoring to ui(s) Q ui(s
′),

while random strategy profiles σ, σ′ ∈ ×j∈N∆Sj are ranked according to

Eui(σ) Q Eui(σ
′) [19, pp. 167-182, 232].

6.1 Dominance

� Random strategy σi ∈ ∆Si is (strongly) dominated by σ̂i ∈ ∆Si\σi if
Eui(σ̂i, σ−i)−Eui(σi, σ−i) > 0 for all n−1-tuples σ−i of random strategies
for players j ∈ N\i, i.e. σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) ∈ ×j∈N\i∆Sj .
This means that Eui(σ̂i, σ−i)− Eui(σi, σ−i) =

=
∑

(s1,...,sn)∈×j∈NSj

 ∏
j∈N\i

σj(sj)

(σ̂i(si)− σi(si))
ui(s1, . . . , sn) > 0

is strictly positive for all σ−i ∈ ×
j∈N\i

∆Sj , which is the case if and only if

Eui(σ̂i, s−i)− Eui(σi, s−i) =
∑
si∈Si

(
σ̂i(si)− σi(si)

)
ui(si, s−i) > 0

for all s−i ∈ S−i. The reason is that every ŝ−i ∈ S−i has associated the
n− 1-tuple of extreme points σ̂−i ∈ ×j∈N\iex(∆Sj ) defined by σ̂j(ŝj) = 1
for all j ∈ N\i (where ex(∆) is the set of extreme points of ∆). In
other terms, Eui(σi, s−i) is i’s expected utility when all j ∈ N\i do not
randomize according to s−i, while i’s random strategy is σi.

� If s̃i ∈ Si is a strongly dominated (non-random) strategy, then any random
strategy σi ∈ ∆Si placing strictly positive probability σi(s̃i) > 0 on s̃i also
is strongly dominated. To see this, let ŝi ∈ Si\s̃i be any strategy strongly
dominating s̃i, and denote by σi ∈ ∆Si any random strategy such that
σi(si) > 0. Define σ′i ∈ ∆Si\σi by

σ′i(si) = σi(si) for all si ∈ Si\{s̃i, ŝi},
σ′i(s̃i) = 0,

σ′i(ŝi) = σi(s̃i) + σi(ŝi).

Then, Eui(σ
′
i, s−i)− Eui(σi, s−i) =

=
[
σi(s̃i) + σi(ŝi)

]
ui(ŝi, s−i)− σi(s̃i)ui(s̃i, s−i)− σi(ŝi)ui(s̃i, s−i) =

=
[
σi(s̃i) + σi(ŝi)

][
ui(ŝi, s−i)− ui(s̃i, s−i)

]
> 0.

20



6.2 Best responses

� Random strategy σi ∈ ∆Si is a best response to σ−i ∈ ×j∈N\i∆Sj if

Eui(σi, σ−i) ≥ Eui(σ′i, σ−i) for all σ′i ∈ ∆Si .

� Let P(∆Si) = {Y : Y ⊆ ∆Si} contain all subsets of simplex ∆Si . Then,
BRi : ×j∈N\i∆Sj → P(∆Si) is the (random strategy) best response map-
ping (for i ∈ N), defined for all σ−i ∈ ×j∈N\i∆Sj by

BRi(σ−i) = {σi : σi ∈ ∆Si , Eui(σi, σ−i) ≥ Eui(σ′i, σ−i) for all σ′i ∈ ∆Si} .

� To see the form of BRi, which in turn entails ∅ 6= BRi(σ−i) ∈ P(∆Si) for
all σ−i ∈ ×j∈N\i∆Sj , note that Eui(σi, σ−i) =

=
∑

(s1,...,sn)∈×j∈NSj

σi(si)
 ∏
j∈N\i

σj(sj)

ui(s1, . . . , sn) =

=
∑
si∈Si

σi(si)

 ∑
s−i∈S−i

 ∏
j∈N\i

σj(sj)

ui(si, s−i)

 =

=
∑
si∈Si

σi(si)Eui(si, σ−i),

where Eui(si, σ−i) is i’s expected utility when all j ∈ N\i randomize
according to σ−i while i plays si with probability 1. Thus geometrically

Eui(σi, σ−i) =
∑
si∈Si

σi(si)Eui(si, σ−i) = 〈σi(·), Eui(·, σ−i)〉

is the scalar product of σi(·) ∈ ∆Si ⊂ R|Si|+ and Eui(·, σ−i) ∈ R|Si|. This
means that the set of best responses to any σi is the convex hull of a
non-empty, possibly singleton subset of ex(∆Si), i.e. BRi(σ−i) = ∆S∗i ,

S∗i = S∗i (σ−i) = {si : si ∈ Si, Eui(si, σ−i) ≥ Eui(s′i, σ−i) for all s′i ∈ Si}

being the non-empty, possibly singleton subset of strategies si ∈ Si where
Eui(si, σ−i) attains its maximum (over its |Si|, at most, distinct values),
while ∆S∗i is the |S∗i | − 1-dimensional unit simplex whose extreme points
are indexed by strategies si ∈ S∗i .

6.3 Equilibrium

� Random strategy profile σ∗ = (σ∗1 , . . . , σ
∗
n) ∈ ×j∈N∆Sj is a (Nash) equi-

librium if, again, no player has an incentive to unilaterally deviate, i.e.

Eui(σ
∗) = Eui(σ

∗
i , σ
∗
−i) ≥ Eui(σi, σ∗−i) for all σi ∈ ∆Si and all i ∈ N .

� In terms of best responses, random strategies σ∗1 , . . . , σ
∗
n must satisfy

σ∗i ∈ BRi(σ∗−i) for all i ∈ N .
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Accordingly, consider the (whole) best response correspondence
BR : ×i∈N∆Si → ×i∈NP(∆Si) defined by

BR(σ1, . . . , σn) = ×i∈NBRi(σ1, . . . , σi−1, σi+1, . . . , σn)

for all σ = (σ1, . . . , σn) ∈ ×i∈N∆Si .

� In view of Kakutani fixed point theorem for upper hemicontinuous corre-
spondences [19, pp. 950,953], [6, pp. 88-90], best response correspondence
BR has a (i.e. at least one) fixed point σ∗, namely such that σ∗ ∈ BR(σ∗),
which is precisely the above condition σ∗i ∈ BRi(σ∗−i), i ∈ N identifying
σ∗ as an equilibrium.

� Hence the set of random strategy equilibria of any game is non-empty, and
clearly includes the set of non-random strategy equilibria (if any).

6.4 Exercises

� Exercise 7: For player set N = {1, . . . , 100} with binary strategy sets
Si = {0, 1} for all i ∈ N , every strategy profile (s1, . . . , sn) = s (n = 100)
is an element of {0, 1}n, i.e. a vertex of the n-dimensional unit hypercube
[0, 1]n. For all players i ∈ N , define utilities

ui : {0, 1}n →
{

1

2n
,

1

2(n− 1)
, . . . ,

1

2[n− (n− 2)]
,

1

2

}
,

at any strategy profile s = (si, s−i) ∈ {0, 1}n, by:

ui(si, s−i) =
1

2
∑
j∈N sj

if si = 1, while

ui(si, s−i) =
1

2(n−
∑
j∈N sj)

if si = 0.

1. Are there dominated/dominant strategies? If yes, then show how
si = 1 dominates si = 0 or the opposite. If no, then show that
neither si = 1 nor si = 0 are dominated. Are there Pareto-dominated
strategy profiles? If yes, then provide one Pareto-dominated strategy
profile. If no, then show that any strategy profile cannot be Pareto-
dominated.

2. Are there pure-strategy equilibria s = (s1, ...., sn) ∈ {0, 1}n? If yes,
then provide one equilibrium. If no, then show that at any strategy
profile some player may profitably deviate.

3. Verify whether the profile (σ∗1 , . . . , σ
∗
n) ∈ ×i∈N∆Si of random strate-

gies where each player i ∈ N plays both si = 1 and si = 0 with equal
probability σ∗i (0) = 1

2 = σ∗i (1) is an equilibrium or not.

4. Is this a (possibly pure) common interest game? Is it a constant-sum
game (i.e.

∑
i∈N ui(s) = const)?

� Exercise 8: For the two-player constant-sum game with N = {1, 2} and
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S1 = {1, 2, 3, 4, . . . , 50} as well as S2 = {51, 52, 53, 54, . . . 100}, while utili-
ties are

u1(s1, s2) = 1 if s1 + s2 is odd,

u1(s1, s2) = 0 if s1 + s2 is even,

u2(s1, s2) = 1− u1(s1, s2).

(a) Identify the set of pure strategy equilibria.
(b) Identify the set of mixed strategy equilibria.

� Exercise 9: Consider the following 3× 3 two-player constant-sum game
where players are A and B while strategy sets are SA = SB = {0, 1, 2},
with payoffs

Table 3: Payoff matrix 3× 3 game

uA, uB 0 1 2
0 1/2, 1/2 1, 0 0, 1
1 1, 0 0, 1 1, 0
2 0, 1 1, 0 0, 1

1. What strategies are dominated (either weakly or strongly)?

2. Determine the two best response correspondences in pure strategies.

3. Determine the set of pure-strategy equilibria.

4. Determine the set of mixed-strategy equilibria.

� Exercise 10: Consider the 2x2 game, i.e. with two players i, j each with
two strategies Si = {0, 1} = Sj , where payoffs are as follows.

Table 4: Payoff matrix 2× 2 game

ui, uj 0 1
0 0, 0 7, 2
1 2, 7 6, 6

Determine all equilibria, both with random and non-random strategies,
and check whether they are pair-wise comparable in terms of Pareto-
dominance (using the expected utility criterion for random strategy equi-
libria, if any).

� Exercise 11: As in Exercise 7, let N = {1, . . . , 100} and Si = {0, 1} for
all i ∈ N . For every s ∈ {0, 1}100, define payoffs by

if
∑
i∈N

si ∈ {2k : 0 ≤ k ≤ 50}, then ui(s) =

{
1 if i ∈ {2k : 1 ≤ k ≤ 50},
0 if i /∈ {2k : 1 ≤ k ≤ 50};
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if
∑
i∈N

si /∈ {2k : 0 ≤ k ≤ 50}, then ui(s) =

{
0 if i ∈ {2k : 1 ≤ k ≤ 50},
1 if i /∈ {2k : 1 ≤ k ≤ 50}.

Is this a constant-sum game?

Is this a (possibly pure) common interest game?

Are there dominated strategies?

Are there Pareto-dominated strategy profiles?

Is there any equilibrium with non-random strategies?

Can you find an equilibrium with random strategies?

Are there equilibria where some players randomize while some other do
not?

7 Strong equilibrium

� In non-cooperative game theory, much attention has been devoted to
methods for strengthening the above standard equilibrium conditions. As
already mentioned, when the idea is to select a sufficiently smaller proper
subset of a whole large set of multiple equilibria, then the concern is with
equilibrium refinements. One way to strengthen the equlibrium conditions
is by requiring that not only single players but also coalitions have no in-
centive to (unilaterally but coalitionally) deviate. This approach leads to
define strong equilibria as follows. Firstly focus on the case of non-random
strategies, which shall be considered again when dealing with potential and
congestion games in the sequel.

� Denoting by 2N = {A : A ⊆ N} the (power) set of all 2n coalitions, for
every A ∈ 2N let SA = ×

i∈A
Si and SAc = ×

j∈Ac
Sj , where Ac = N\A is the

complement of A 6= ∅ (in 2N ).

� A strong equilibrium [2] is any strategy profile s ∈ ×j∈NSj from which no
coalition has an incentive to deviate, meaning that for all A ∈ 2N there is
no coalitional deviation ŝA ∈ SA\sA such that

ui(ŝA, sAc) > ui(sA, sAc) = ui(s) for all coalition members i ∈ A.

� Hence s ∈ ×j∈NSj is a strong equilibrium if for all A ∈ 2N and all ŝA ∈ SA
inequality ui(ŝA, sAc) ≤ ui(sA, sAc) = ui(s) holds for some i ∈ A.

� In words, s ∈ S is a strong equilibrium if for no coalition ∅ 6= A ∈ 2N is
there a choice ŝA ∈ SA\sA such that at (ŝA, sAc) ∈ S all coalition members
get a utility strictly greater than at s = (sA, sAc).

� Clearly the set of (non-random strategy) strong equilibria is a subset of
the set of (non-random strategy) equilibria, and thus may well be empty.
In fact, even the set of random strategy strong equilibria can be empty.

� For ∅ 6= A ∈ 2N , let ∆SA = ×i∈A∆Si and ∆SAc = ×j∈Ac∆Sj . Then,
σ ∈ ×j∈N∆Sj is a random strategy strong equilibria if for for no coalition A
there exists a deviation σ′A 6= σA such that Eui(σ

′
A, σAc) > Eui(σA, σAc)

for all coalition members i ∈ A, where (σA, σAc) = σ.
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� Exercise 12: Is it true that any common interest game has a strong
equilibrium (with non-random strategies)? Discuss. And may a (non-
random) strategy profile be both: (i) a strong equilibrium, and (ii) Pareto-
dominated? Discuss.

8 Potential games

� For the remaining part of the course devoted to non-cooperative games,
strategies shall only be non-random ones, as attention turns on a class
of games with non-empty set of equilibria defined in terms of potential
functions [20] as follows.

� Γ = (N,×j∈NSj , u) is a potential game if it admits a potential function,
namely a P : ×j∈NSj → R such that for each player i ∈ N , for all pairs
si, s

′
i ∈ Si of strategies for i, and for all n−1-tuples s−i ∈ S−i of strategies

for players j ∈ N\i, if ui(si, s−i) 6= ui(s
′
i, s−i), then

[P(si, s−i)−P(s′i, s−i)][ui(si, s−i)− ui(s′i, s−i)] > 0.

� In words, for any strategy profile and unilateral deviation from it, the
potential varies in the same way (i.e. positive or negative) as the deviator’s
utility. When it exists, P is said to be an ordinal potential for Γ.

� Let w = (w1, . . . , wn) ∈ Rn++ be a vector of strictly positive weights as-
sociated with players. A w-potential is an ordinal potential P satisfying:
for each player i ∈ N , for all pairs si, s

′
i ∈ Si of strategies for i, and for all

n− 1-tuples s−i ∈ S−i of strategies for players j ∈ N\i,

wi
[
P(si, s−i)−P(s′i, s−i)

]
= ui(si, s−i)− ui(s′i, s−i).

A w-potential with wi = 1 for all i ∈ N is an exact potential.

� A potential game Γ = (N,×j∈NSj , u) with potential P has the same non-
empty set of equilibria as game ΓP = (N,×j∈NSj , uP), where utilities
are defined by uPi (s) = P(s) for all i ∈ N and all s ∈ ×j∈NSj . In fact,
equilibria s∗ of Γ are (by definition) local maximizers of potential P, where
“locality” is in terms of the following notion of neighborhood

N (s) = ∪
i∈N
{ŝ : ŝ = (ŝi, s−i), ŝi ∈ Si} ⊂ ×j∈NSj

of strategy profiles s ∈ ×j∈NSj . Hence the set of equilibria is

{s∗ : s∗ ∈ ×j∈NSj ,P(s∗) ≥ P(s) for all s ∈ N (s∗)} .

� In particular, P surely has at least one global maximizer strategy profile
s∗, i.e. such that P(s∗) ≥ P(s) for all s ∈ ×j∈NSj , and thus potential
maximization provides an equilibrium refinement criterion (see above).

� A path in ×j∈NSj is a (finite) sequence s0, s1, . . . , st, . . . , sT ∈ ×j∈NSj of
distinct strategy profiles such that st ∈ N (st−1) for all 0 < t ≤ T . (Recall
that this is the traditional definition of path in graph theory, namely for
the simple graph G = (×j∈NSj , E) on strategy profiles as vertices, and
with edge set E = {{s, s′} : s′ ∈ N (s)}.)
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� Hence a path is a sequence of unilateral deviations by single players, i.e.
for each 0 < t ≤ T there is some i ∈ N such that st = (sti, s

t−1
−i ), although

clearly any fixed player i ∈ N may well be the (unique) deviator at several
nodes st1 , st2 , . . . , sTi .

� For 0 < t ≤ T , let it ∈ N be the deviator at t. An improvement path is
a path where uit(s

t) > uit(s
t−1) for all 0 < t ≤ T . In particular, along a

best-response improvement path

stit ∈ BRi(s
t−1
−it ) for all 0 < t ≤ T .

� A game is said to have the finite improvement property if every improve-
ment path is finite, and potential games do have this property.

� Exercise 13: Consider the game with two players i and j whose strategy
sets are Si = {a,m, b} and Sj = {s, c, d}. Payoffs are as follows.

Table 5: Payoff matrix

ui(·, ·), uj(·, ·) s c d
a 4, 6 8, 2 4, 1
m 8, 4 2, 4 1, 2
b 7, 4 1, 1 0, 2

1. What strategies are dominated (either strongly or weakly)?

2. Determine the two best response correspondences.

3. Is (m, s) a (pure-strategy) equilibrium?

4. Determine the set of mixed-strategy equilibria.

5. Is there a finite improvement path? Is there an infinite one?

6. What strategy profiles are pareto-efficient/optimal?

9 Congestion games

� Congestion games are characterized by a set M = {a1, . . . , am} of facilities

and by strategy sets Si ⊂ 2M (or Si ∈ 22M

) for players i ∈ N consisting
of families of subsets of facilities (where 2M = {A : A ⊆ M} is the power
set of all subsets of facilities, see above). The name of these games comes
from thinking of M as the edge set of a given graph G = (V,E), E = M ,
which in turn represents a transportation network. If each player i ∈ N
has to go from some origin vertex vi ∈ V to some destination one v′i ∈ V ,
then the set Si of strategies consists of all (edge sets of) existing paths in
G connecting vi to v′i. Finally, for each n-tuble of chosen paths, each i’s
payoff depends on the congestion encountered along i’s (chosen) path.

� A congestion game form F = (N,M,×j∈NSj) identifies a whole class of
congestion games, each obtained by specifying players’ payoffs. Following
[18], these payoffs are denoted by πi : ×j∈NSj → R (i ∈ N).
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� Every strategy profile s = {s1, . . . , sn} ∈ ×j∈NSj identifies congestion
vector c(s) = (ca1(s), . . . , cam(s)) ∈ Zm+ defined by

cak(s) = |{i ∈ N : ak ∈ si}| for 1 ≤ k ≤ m.

� The game is said to be monotone when each facility ak ∈M has an asso-
ciated utility function uak : Z+ → R satisfying uak(l) < uak(l′) whenever
l > l′ (formalizing that utility decreases as congestion increases) and each
i ∈ N gets a payoff

πi(s) =
∑
ak∈si

uak(cak(s))

given by the sum over chosen facilities ak ∈ si of the corresponding utility.

� A congestion game form (and thus any game derived from it) is symmetric
when the strategy set is the same across players: S1 = · · · = Sn [18]. When
strategies are paths in a transportation network, symmetry corresponds
to the case where all players share the same origin and destination.

� An exact potential P : S→ R for these games is

P(s) =
∑
ak∈M

cak
(s)∑

l=1

uak(l), (1)

as for all players i ∈ N and strategy profiles s = (si, s−i) ∈ Si × S−i, any
unilateral deviation s′i ∈ Si\si results in variation P(si, s−i)−P(s′i, s−i) =

=
∑

a∈si\s′i

ua(ca(si, s−i))−
∑

a′∈s′i\si

ua′(ca′(s
′
i, s−i)) =

= πi(si, s−i)− πi(s′i, s−i).

� Congestion games Γ being potential games, the set NE(Γ) 6= ∅ of their
equilibria is non-empty. In fact, under quite mild conditions the subset
SE(Γ) ⊆ NE(Γ) of strong equilibria of these games is non-empty as well.

� Theorem [18, Section 2]: if |si| = 1 for all si ∈ Si and all i ∈ N (i.e.
if all players only have singleton strategies), then SE(Γ) = NE(Γ) (this
obtains by showing that NE(Γ) ⊆ SE(Γ)).

� For the general case of non-singleton strategies, a fundamental condition is
the (non)-existence of bad configurations: union ∪j∈NSj of all n strategy
sets displays a bad configuration if there are two facilities a, a′ ∈ M and
three strategies s, s′, s′′ ∈ ∪j∈NSj such that a ∈ s 63 a′ and a 6∈ s′ 3 a′
while a, a′ ∈ s′′ (this indeed may be regarded as an acyclity condition
for deviations of non-singleton coalitions, to be compared with the finite
improvement property of all potential games).

� [18, Section 4, Theorem 4.1] For any symmetric congestion game form
F = (N,M,×j∈NSj), if union ∪j∈NSj displays no bad configuration, then
SE(Γ) = NE(Γ) for all monotone congestion games Γ derived from F .
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� Exercise 14: Consider game Γ = (N,×j∈NSj , u) where the strategy set
of every player i ∈ N = {1, . . . , n} is the 2n−1-set of coalitions where i is
included, i.e. Si = 2Ni := {A : A ⊆ N,A 3 i}. Utilities ui : ×j∈NSj → R
are:

ui(s) =
|Ai|

|{j : Aj = Ai}|

for all s = (s1, . . . , sn) = (A1, . . . , An) ∈ 2N1 ×· · ·×2Nn and all i ∈ N . This
is the ratio of the number |Ai| of players in the coalition Ai = si chosen
by i, divided by the number |{j : Aj = Ai}| ∈ {1, 2, . . . , |Ai| − 1, |Ai|} of
players who choose the same coalition Ai, including i.

1. Are there weakly dominated strategies? Are there dominant strate-
gies? Is this a common interest game?

2. Is this a potential and, in particular, a monotone and/or symmetric
congestion game with facilities corresponding to non-empty coalitions
∅ 6= A ∈ 2N?

3. Starting from strategy profile s defined by si = N for all i ∈ N ,
complete a best-response improvement path (see above). Does the
path end at a strong equilibrium?

4. Compute the difference between the values of the exact potential at
the end of the path and at s.

5. Consider profile s∗ where s∗i =

{
{1, . . . , i, i+ 2, . . . , n} if i < n,

{2, 3, . . . , n} if i = n.
Is

s∗ an equilibrium? Is it different from the end of the best-response
improvement path determined above?

6. Evaluate maxs∈S
∑
i∈N ui(s). At what profiles s ∈ ×j∈NSj is this

maximum attained?

7. Consider profile σ∗ = (σ∗1 , . . . , σ
∗
n) ∈ ×j∈N∆Sj of random strategies

where the probability σ∗j (A) = pa that every player j ∈ N chooses

coalition/strategy A ∈ 2Nj depends only on |A| = a ∈ {1, . . . , n} and

is the same for all players j. Hence
∑

1≤a≤n
(
n−1
a−1

)
pa = 1. Verify

whether
1− (1− pa)a

pa
=

1− (1− pa+1)a+1

pa+1

satisfies the equilibrium condition or not. Can you determine a ran-
dom strategy equilibrium for n = 2?

� Exercise 15: Consider game Γ = (N,×j∈NSj , u) where the strategy set
of every player i ∈ N = {1, . . . , n} consists of the Bn partitions of N , i.e.
Si = PN (see above). Let si = {A1, . . . , A|si|} ∈ PN denote the generic
strategy of any player i. Utilities ui : ×j∈NSj → R are:

ui(s) =
∑
A∈si

|A|
|{j : A ∈ sj}|

,

namely the sum over the blocks A ∈ si of the chosen partition of the ratio
of their size |A| to the number of players (including i) who have chosen a
partition one of whose block is A.

28



1. Are there weakly dominated strategies? Are there dominant strate-
gies? Is this a common interest game?

2. Is this a potential and, in particular, a monotone and/or symmetric
congestion game?

3. Starting from strategy profile s defined by si = {N} = P> for all
i ∈ N , complete a best-response improvement path. Does the path
end at a strong equilibrium?

4. Compute the difference between the values of the exact potential at
the end of the path and at s.

5. Consider profile s∗ where every i chooses the partition s∗i = {N\i, }
where i is a singleton and all other n−1 players are in a unique block.
Is s∗ an equilibrium? Is it different from the end of the best-response
improvement path determined above?

6. Evaluate maxs∈S
∑
i∈N ui(s). At what profiles s ∈ ×j∈NSj is this

maximum attained?

� Exercise 16: Consider game Γ = (N,×j∈NSj , u) where the strategy set
Si = Sn of every player i ∈ N = {1, . . . , n} is the symmetric group of the
n! permutations si : {1, . . . , n} → {1, . . . , n}. Denote by si(j) the position
where j ∈ N is mapped by the permutation/strategy si of i. Utilities
ui : ×j∈NSj → R are:

ui(s) =
∑

1≤k≤n

1

|{j : sj(k) = si(k)}|
,

i.e. the sum over all players k of 1 divided by the number of those who
choose a permutation mapping k into the si(k)-th position, including i.

1. Are there weakly dominated strategies? Are there dominant strate-
gies? Is this a common interest game?

2. Is this a potential and, in particular, a monotone and/or symmetric
congestion game with facilities corresponding to the n2 ordered pairs
(i, j), 1 ≤ i, j ≤ n?

3. Starting from strategy profile s defined by si = id for all i ∈ N ,
where id(k) = k, complete a best-response improvement path. Does
the path end at a strong equilibrium?

4. Compute the difference between the values of the exact potential at
the end of the path and at s.

5. Consider profile s∗ where every i chooses the permutation

s∗i (k) =

{
k − i+ 1 if k ≥ i,

n+ k − i+ 1 if k < i.

Is s∗ an equilibrium? Is it different from the end of the best-response
improvement path determined above?

6. Evaluate maxs∈S
∑
i∈N ui(s). At what profiles s ∈ ×j∈NSj is this

maximum attained?
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10 Choquet expected utility theory

� With the Choquet expected utility theory the focus turns on set functions,
namely taking real values on the Boolean lattice (2Ω,∩,∪) of subsets of a
finite set Ω = {ω1, . . . , ωm}, here consisting of states of nature. In fact,
while cooperative coalitional games are real-valued functions defined on
coalitions or subsets of a finite player set, in decision under uncertainty
set functions are (discrete) fuzzy measures/probabilities taking [0-1]-values
on events or subsets A = {ωi1 , . . . , ωi|A|} ∈ 2Ω of atomic and mutually

exclusive events ω ∈ Ω. Thus a fuzzy probability is any η : 2Ω → [0, 1]
satisfying the general requirements η(∅) = 1 − η(Ω) and monotonicity:
A ⊇ B ⇒ η(A) ≥ η(B) for all events A,B ∈ 2Ω.

� Recall that a (traditional) probability p : 2Ω → [0, 1] is defined to satisfy
p(∅) = 0 = 1− p(Ω) and

p(A) + p(B) = p(A ∪B) + p(A ∩B) for all A,B ∈ 2Ω.

Then, a general result concerning valuations and atoms of distributive lat-
tices (such as (2Ω,∪,∩)) detailed in the sequel entails p(A) =

∑
i∈A p({i})

for all A ⊆ Ω. Hence geometrically p ∈ ∆m ⊂ Rm+ . On the other hand, a

fuzzy probability η geometrically may be seen as η ∈ [0, 1]2
m

.

� A decision maker with utility u : Ω × A → R+, where A is a set of
available actions, in the vN-M expected utility model has subjective belief
or (traditional) probability p, and thus ranks actions a, a′ ∈ A according
to their scored expected utility, i.e. a % a′ whenever

Ep[u(·, a)] =
∑
ω∈Ω

p({ω})u(ω, a) ≥
∑
ω∈Ω

p({ω})u(ω, a′) = Ep[u(·, a′)]

(see Ellsberg paradox above).

� The issue thus is how to rank actions when in subjective beliefs traditional
probabilities p ∈ ∆m are replaced with fuzzy ones η ∈ [0, 1]2

m

. This is
an aggregation problem: for every action a ∈ A, the aim is to aggregate
the m values u(ω1, a), . . . , u(ωm, a) ∈ R+ taken by random variable u(·, a)
into a unique one Eη[u(·, a)]. In this view, aggregation Ep[u(·, a)] through
traditional probabilities p corresponds to weighted averaging.

� Choquet (discrete) integration ECη works as follows: for every action a ∈ A
relabel states according to (·) : {1, . . . ,m} → {1, . . . ,m} in non-decreasing
order, meaning u(ω(1), a) ≤ · · · ≤ u(ω(m), a), and slso set u(ω(0), a) := 0
and/or η({ω(m+1), . . . , ω(m)}) = η({∅}) = 0; then,

ECη [u(·, a)] =
∑

1≤i≤m

[
u(ω(i), a)− u(ω(i−1), a)

]
η({ω(i), ω(i+1), . . . , ω(m)}) =

=
∑

1≤i≤m

u(ω(i), a)
[
η({ω(i), ω(i+1), . . . , ω(m)})− η({ω(i+1), . . . , ω(m)})

]
.
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� The discrete Choquet integral ECη is also sometimes regarded as an ex-
tension of η from the set {0, 1}m of vertices of the m-dimensional unit
hypercube [0, 1]m to the whole m-cube, as

ECη [χA] = η(A) for every

χA = (χA(ω1), . . . , χA(ωm)) ∈ {0, 1}m,

χA(ωi) =

{
1 if ωi ∈ A,

0 if ωi ∈ Ac = Ω\A,

and thus ECη [x] for x = (x1, . . . , xm) ∈ [0, 1]m is the extension of η from
{0, 1}m to [0, 1]m.

� Exercise 17: For A = {a, a′} and Ω = {ω1, . . . , ω4}, with

η(A) =

(∑
ωi∈A i

)2
100

for all A ∈ 2Ω,

and u(ωi, a) = i as well as u(ωi, a
′) = 5 − i for i = 1, . . . , 4, determine

ECη [u(·, a)] and ECη [u(·, a′)].

11 Cooperative games

� In most general terms, cooperative games may be defined to be functions
taking real values on a poset (partially ordered set), which in turn is
grounded on a player set. Although in the 70s attention has also been
placed on cooperative games with a continuum of players [4], still the
concern commonly is with a finite player set N = {1, . . . , n}.

� Cooperative games are mostly intended to be coalitional games, namely
set functions v : 2N → R, where subsets A ∈ 2N are coalitions [25, 26].

� In 1963, a further type of cooperative games was introduced, involving
partitions P = {A1, . . . , A|P |} of N or coalition structures. Specifically,
games in partition function form are functions taking real values on pairs
(A,P ) such that A ∈ 2N and P ∈ PN is a partition of N (see above) such
that A ∈ P . These pairs (A,P ) are sometimes referred to as embedded
coalitions or embedded subsets [15, 16].

� In 1990, a third type of cooperative games was introduced and named
global games [14]. These are simply real-valued partition functions.

� The idea behind coalitional games v is that the worth v(A) of coalitions
A ∈ 2N quantifies the worth of cooperation among all anly coalition mem-
bers i ∈ A. However, such a worth cooperation within coalitions might
also depend on the response of non-members j ∈ Ac = N\A. In this view,
games in partition function form formalize the idea that alternative such
responses correspond to alternative partitions of Ac, hence the worth of
cooperation within A may take up to B|Ac| distinct values, where Bn is
the number of partitions of a n-set. Finally, global games are meant to
model cooperation over global issues such as global warming, where every
partition P of players has an associated worth to be interpreted as the
utility level common to all players attained when the whole cooperation
takes the form of P , with blocks corresponding to international ageements.
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11.1 Posets

� Any set X 3 x, y, z, . . . endowed with a binary order relation > satisfying

1. x > x for all x ∈ X (reflexivity),

2. x > y and y > z entail x > z for all x, y, z ∈ X (transitivity),

3. x > y and y > x entail x = y (antisymmetry),

is partially ordered, i.e. a poset. Here > denotes the generic order rela-
tion. In the sequel, the concern shall be mainly with inclusion ⊇ as the
order relation, while maintaing > as the coarsening order relation between
partitions P,Q ∈ PN introduced in Section 2.3. (see also [13, Chapters 1,
2], [1, Chapter 2], [29, Chapter 1]).

� Grounded on N = {1, . . . , n}, the posets (X,>) to be dealt with are finite,
i.e. |X| <∞, and also have a bottom element x⊥ ∈ X, i.e. x > x⊥ for all
x ∈ X, as well as a top element x> ∈ X, i.e. x> > x for all x ∈ X.

� For all x, y ∈ X, the corresponding interval or segment [24] is the subset
[x, y] = {z : x 6 z 6 y} ⊆ X (hence if x 6 y, then [x, y] 6= ∅ while
[y, x] = ∅).

� A chain is a subset K ⊂ X any two of whose elements are comparable, i.e.
for all x, y ∈ K, either [x, y] 6= ∅ or else [y, x] 6= ∅ hold.

� Dually, an antichain is a subset AK ⊂ X any two of its elements are
uncomparable, i.e. for all x, y ∈ AK, both [x, y] = ∅ and [y, x] = ∅ hold.

� The length of a chain K = {x0, x1, . . . , xk} is |K| − 1 = k.

� The covering relation, denoted by >∗, is defined as follows:

x >∗ y ⇔ [y, x] = {x, y} for any x, y ∈ X.

� For z > y, a zy-chain Kzy∗ = {y = x0, x1, . . . , xk = z} is said to be maximal
if xl >

∗ xl−1 for all 0 < l ≤ k.

� If for any y, z ∈ X all maximal z − y-chains have the same length, then
poset (X,>) is said to satisfy the Jordan-Dedekind JD condition, in which
case for every element x ∈ X the length of any maximal x − x⊥-chain is
the rank of x. Formally, for any poset (X,>) with bottom element x⊥
and satisfying the JD condition, the rank function r : X → Z+ is defined
recursively by

1. r(x⊥) = 0,

2. x >∗ y ⇒ r(x) = r(y) + 1.

Thus the rank measures the height of elements (in the Hasse diagram [1]).
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11.2 Maximal chains of subsets and permutations

� For maximal chains KN∅∗ = {∅ = A0, A1, . . . , An = N} of subsets, the
covering relation clearly is

Ak ⊃∗ Ak−1 ⇔ Ak ⊃ Ak−1, |Ak| − 1 = |Ak−1| (0 < k ≤ n).

� The cardinality of subsets is precisely their rank: |Ak| = k = r(Ak),
0 ≤ k ≤ n. Hence the poset (2N ,⊇) of coalitions has n+ 1 levels, and

|{A : r(A) = k}| =
(
n

k

)
=

(
n

n− k

)
= |{A : r(A) = n−k}| for 0 ≤ k ≤ n.

� Maximal N∅-chains KN∅∗ of subsets correspond bijectively to permutations
π : {1, . . . , n} → {1, . . . , n}, with π(i) denoting the position where i ∈ N
is mapped by π ∈ Sn (see Section 2.4). The bijection π ↔ KN∅∗π between
permutations π ∈ Sn and maximal chains KN∅∗π = {Aπ0 , Aπ1 , . . . , Aπn} is

Aπk = {i : π(i) ≤ k} for 0 ≤ k ≤ n.

� For every subset A ∈ 2N , there are |A|!(n − |A|)! = n!/
(
n
|A|
)

maximal

chains KN∅∗ “meeting” A, i.e. such that A ∈ KN∅∗ . Similarly for every
A,A′ ∈ 2N where A′ ⊃∗ A, there are |A|!(n − |A| − 1)! maximal chains
KN∅∗ meeting both A,A′, i.e. such that A,A′ ∈ KN∅∗ .

11.3 Boolean and geometric lattices

� Given a (finite) poset (X,>), if for every subset {x1, . . . , xk} = Y ⊆ X
there exist:

1. the greatest lower bound or infimum inf Y =
∧
Y = y ∈ X, namely

(a) y 6 x1, . . . , xk, and

(b) y > y′ for all y′ ∈ X satisfying y′ 6 x1, . . . , xk;

2. the least upper bound or supremum sup Y =
∨
Y = y ∈ X, namely

(a) y > x1, . . . , xk, and

(b) y 6 y′′ for all y′′ ∈ X satisfying y′′ > x1, . . . , xk;

then
∧
Y and

∨
Y are unique for every Y ⊆ X and (X = L,∧,∨) is

a complete lattice, where ∧ and ∨ are the meet and join (operators),
respectively. The bottom and top elements x⊥ and x> clearly are

x⊥ =
∧
X = inf X and x> =

∨
X = sup X.

� A (complete) lattice (L,∧,∨) is distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

for all x, y, z ∈ L.
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� The set LA ⊂ L of atoms of a lattice (L,∧,∨) with rank function

r : L→ Z+ is LA = {x : x >∗ x⊥} = {x : r(x) = 1},

namely the set of elements covering the bottom.

� The set LJ of join-irreducible elements of a lattice (L,∧,∨) is

LJ = {x : x = y ∨ z ⇒ x = y or x = z or both}.

� A lattice (L,∧,∨) is atomic if every element is a join of atoms, i.e. for all
x ∈ L there are a1, . . . , ak ∈ LA such that x = a1∨· · ·∨ak. If L is atomic,
then LJ \LA = {x⊥}.

� For x ∈ L and y1, . . . , yk ∈ LJ , join-decomposition x = y1 ∨ · · · ∨ yk is
irredundant if

x > y1 ∨ · · · ∨ yl−1 ∨ yl+1 ∨ · · · ∨ yk for all 1 ≤ l ≤ k,

and redundant otherwise.

� A lattice (L,∧,∨) is complemented if for every element x ∈ L there is some
(i.e. at least one) element x′ ∈ X such that x ∧ x′ = x⊥ and x ∨ x′ = x>.

� Coalitional games v : 2N → R thus are lattice functions, as (2N ,∩,∪)
is the Boolean lattice of subsets of N , which is distributive, atomic and
complemented. The set of atoms {{1}, . . . , {n}} consists of the n sin-
gletons {i}, i ∈ N and every A ∈ 2N has the unique join-decomposition
A = ∪i∈A{i}, i.e. A = {i1, . . . , i|A|} = {i1} ∪ · · · ∪ {i|A|}, which is clearly
irredundant. Every A ∈ 2N also has the unique complement Ac = N\A,
as A ∩Ac = ∅ and A ∪Ac = N .

� Global games h : PN → R are lattice functions defined on the geometric
lattice (PN ,∧,∨) of partitions ofN . A (finite) lattice (L,∧,∨) is geometric
[1, p. 52] if

(a) it is atomic (or a point lattice), and

(b) for any two elements x, y ∈ L such that x >∗ y,

there is an atom (or point) a ∈ LA such that y 6> a

satisfying x = y ∨ a.

The atoms are those partition with n−1 blocks, namely n−2 singletons and
one pair. Let N2 = {{i, j} : 1 ≤ i < j ≤ n} be the

(
n
2

)
-set of (onordered)

pairs of players, and denote by [ij] the atom whose non-singleton block
is {i, j} ∈ N2. Thus PN has

(
n
2

)
atoms. As for join-decompositions

of any partition P = {A1, . . . , A|P |}, the unique maximal and generally
redundant one evidently is

P = ∨
[ij]6P

[ij] = ∨
A∈P

∨
{i,j}⊆A

[ij],

while any minimal or irredundant one requires |A|−1 (distinct) atoms for
each bloch A ∈ P , and∑

A∈P
(|A| − 1) = n− |P | = r(P ) is the rank of partitions.
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The number of maximal chains of partitions is(
n

2

)(
n− 1

2

)
· · ·
(

3

2

)(
2

2

)
︸ ︷︷ ︸

n−1 times

=
n!(n− 1)!

2n−1
.

Partitions P 6= P⊥, P
> have several complements which also are generally

comparable in terms of coarsening >. To see this, consider a co-atom (or
dual atom) P = {A,Ac}, ∅ ⊂ A ⊂ N . Any of the |A|(n − |A|) atoms
[ij] such that i ∈ A, j ∈ Ac is a complement of P , but complements also
are those partitions with n− k blocks, k ≤ min{|A|, n− |A|}, of the form
[i1j1]∨· · ·∨ [ik, jk] where i1, . . . , ik ∈ A and j1, . . . , jk ∈ Ac are all distinct.

And of course [i1j1] ∨ · · · ∨ [ik, jk] > [i1j1] ∨ · · · ∨ [ik−1, jk−1].

Hence there are (>)-comparable complements for all co-atoms {A,Ac}
such that min{|A|, n − |A|} > 1. On the other hand, every atom [ij] has
2n−2 distinct complements, but any two of them are uncomparable. In
fact, all complemets of a partition have the same rank (and thus are pair-
wise uncomparable) if and only if the partition is a modular element of
PN , namely with a number of non-singleton blocks ≤ 1. Thus there are
2n − n modular partitions: P⊥ and P> together with all those

PA⊥ := {A, {i1}, . . . , {in−|A|}} where 1 < |A| < n, {i1, . . . , in−|A|} = Ac.

11.4 Möbius function

� The incidence algebra [1, p. 138], [24, p. 344], [29, p. 149]) of a (locally)
finite poset (X,>) consists of those functions f : X × X → R defined
over ordered pairs of poset elements satisfying x 66 y ⇒ f(x, y) = 0 and
equipped with

1. usual multiplication by scalars α ∈ R and sum

(f + f ′)(x, y) = f(x, y) + f ′(x, y),

2. product h = f · f ′ given by convolution:

h(x, y) =
∑

x6z6y

f(x, z)f ′(z, y),

3. the identity element or Kronecker delta

δ(x, y) =

{
1 if x = y,

0 otherwise.

� Two fundamental elements of the incidence algebra are the zeta function
ζ, defined by ζ(x, y) = 1 for all y > x, and its inverse, namely the Möbius
function µ. That is, δ = ζ · µ = µ · ζ or µ = ζ−1, where µ is defined
recursively by

µ(x, y) =

{
1 if x = y,

−
∑
x6z<y µ(x, z) if x < y.
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� In terms of matrices, any element of the incidence algebra corresponds
to a |X| × |X| matrix, with rows giving the first element of the ordered
pair and columns giving the second one. Lattice elements can always be
numbered in such a way that the zeta matrix is upper triangular (i.e. all
elements below the main diagonal are zeros), and thus the Möbius matrix
is the inverse of the zeta matrix.

� Example: for the poset consisting of a chain K = {x0, x1, . . . , xk} the
Möbius function is

µ(x0, x0) = 1,

µ(x0, x1) = −1 and

µ(x0, xl) = 0 for 1 < l ≤ k.

� The Möbius function of (2N ,⊇) is µ(A,B) = (−1)|B\A|.

11.5 Möbius inversion

� Any poset function f : X → R has Möbius inversion µf : X → R given by

µf (x) =
∑

x⊥6y6x

µ(y, x)f(y),

with f and µf linked by the following combinatorial “analog of the fun-
damental theorem of the calculus” [24]

f(x) =
∑

x⊥6y6x

µf (x),

and thus recursively

µf (x) = f(x)−
∑

x⊥6y<x

µf (y).

� For coalitional games or set functions v : 2N → R,

µv(A) =
∑
B⊆A

(−1)|A\B|v(B),

v(A) =
∑
B⊆A

µv(B),

µv(A) = v(A)−
∑
B⊂A

µv(B).

� Sometimes µv(A) is called the Harsanyi (1959) dividend, and interpreted
as the net (possibly negative) added worth of cooperation within coalition
A ∈ 2N with respect to all proper subcoalitions B ⊂ A.

� Exercise 18: Regarding N = {1, . . . , n} as a set of atomic and mutually
exclusive events or states of nature, let η : 2N → [0, 1] be a fuzzy measure
and for any f : N → R+ denote by ECη [f ] the (discrete) Choquet integral
of f with respect to η (over N , see Section 10). Show that

ECη [f ] =
∑
A∈2N

µη(A) min{f(i) : i ∈ A}.

[Firstly check that η(A)−η(A\i) =
∑
B∈2A\2A\i µη(B) for all i ∈ A ∈ 2N .]
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11.6 Vector spaces and bases

� For a finite poset (X >), any function f : X → R is a point in a vector
space f ∈ R|X|.

� For the element δ of the incidence algebra (of X, see above), and for all
x ∈ X, let δ(x, ·) : X → {0, 1}. That is, δ(x, y) = 1 if y = x and δ(x, y) = 0
if y 6= x for all y ∈ X. Then, the |X|-collection {δ(x, ·) : x ∈ X} of poset
functions is the so-called canonical basis of R|X|. In particular, any poset
function f : X → R or f ∈ R|X| can be expressed as a linear combination
of basis elements. The coefficients of the linear combination are precisely
the |X| values taken by f . That is to say, f =

∑
x∈X f(x)δ(x, ·).

� Alternatively, consider the element of the incidence algebra of X given by
the zeta function ζ, and for all x ∈ X let ζ(x, ·) : X → {0, 1}. That is,
ζ(x, y) = 1 if y > x and δ(x, y) = 0 if y 6> x for all y ∈ X. Then, the
|X|-collection {ζ(x, ·) : x ∈ X} of poset functions is again a linear basis
of R|X|. In particular, any poset function f : X → R or f ∈ R|X| can be
expressed as a linear combination of basis elements with coefficients given
by the Möbius inversion µf of f . That is to say, f =

∑
x∈X µ

f (x)ζ(x, ·).

� In fact, from above, for every (real) value f(y), y ∈ X taken by f , it holds

f(y) =
∑
x∈X

µf (x)ζ(x, y) =
∑

x⊥6x6y

µf (x)ζ(x, y).

� In terms of coalitional games v : 2N → R, for every A ∈ 2N the game
ζ(A, ·) : 2N → {0, 1} is the so-called unanimity game (see chapters 2 and
7, photocopies), denoted by uA(·) = ζ(A, ·), hence uA(B) = 1 if A ⊆ B
and uA(B) = 0 if A 6⊆ B (for all A,B ∈ 2N ). Thus, every coalitional game
v may be expressed as linear combination v(·) =

∑
A∈2N uA(·)µv(A), in

that every (real) value v(B), B ∈ 2N taken by v is given by

v(B) =
∑
A∈2N

uA(B)µv(A) =
∑
A⊆B

µv(A).

[Notation:
∑
A⊆B µ

v(A) =
∑
A∈2B µv(A).]

� Finally note that for any poset (X,>) and all elements x ∈ X it holds

µζ(x,·)(y) = δ(x, y) =

{
1 if x = y,

0 otherwise,
as µ · ζ = δ,

and thus for (2N ,⊇) and generic unanimity game uA, A ∈ 2N it holds

µuA(B) =

{
1 if B = A,
0 otherwise.

11.7 Lattice functions

� Real-valued functions f : L→ R defined on a lattice (L,∧,∨) are:

1. bottom-normalized if f(x⊥) = 0,
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2. monotone or order-preserving if
f(x) ≥ f(y) for all x, y ∈ L such that x > y,

3. antitone or order-reversing if
f(x) ≥ f(y) for all x, y ∈ L such that x 6 y,

4. supermodular if f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y) for all x, y ∈ L,

5. submodular if f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y) for all x, y ∈ L,

6. modular or valuations (of X) if they are both supermodular and
submodular, i.e. f(x ∧ y) + f(x ∨ y) = f(x) + f(y) for all x, y ∈ L,

7. totally positive if their Möbius inversion takes only non-negative val-
ues: µf (x) ≥ 0 for all x ∈ L.

11.8 Set functions and Boolean or Pseudo-Boolean func-
tions

� The 2n-set {0, 1}n of vertices of the n-dimensional unit hypercube [0, 1]n

corresponds bijectively to power set 2N , in that characteristic functions
χA : N → {0, 1}, A ∈ 2N are defined by χA(i) = 1 if i ∈ A and χA(i) = 0
if i ∈ Ac.

� For this reason, set functions v : 2N → R are commonly dealt with also in
terms of pseudo-Boolean functions fv : {0, 1}n → R.

� In this view, coalitional games v : 2N → R+ are set functions or, equiv-
alently, pseudo-Boolean functions. In this context, bottom-normalization
v(∅) = 0 = fv(χ∅) is by large and far a universal assumption (quantifying
the idea that the cooperation of no player is worth nothing). Another
standard assumption is monotonicity, i.e. A ∈ 2B ⊆ 2N ⇒ v(A) ≤ v(B),
quantifying the idea that the cooperation within larger coalitions can be
no smaller than the cooperation within larger coalitions.

� Boolean functions f : {0, 1}n → {0, 1} correspond to so-called simple
(coalitional) games w : 2N → {0, 1}, and generally model voting situa-
tions. Unanimity games uA, ∅ 6= A ∈ 2N provide perhaps the most basic
example of simple coalitional games.

� Exercise: let {A1, . . . , Ak} = AK ⊂ 2N be an antichain of coalitions (or
subsets) and consider the following two simple games:

w+, wmax : 2N → {0, 1} defined by

w+(B) =
∑

1≤l≤k uAl
(B) and wmax(B) = max

1≤l≤k
uAl

(B) for all B ∈ 2N .

Determine their Möbius inversions µw
+

, µw
max

: 2N → Z. Does anything
change in your answer/computation if {A1, . . . , Ak} = K ⊂ 2N is, instead,
a chain?

� For generic (i.e. non-simple) coalitional games v : 2N → R+, apart from
bottom-normalization and monotonicity, further assumptions sometimes
used are:

supermodularity (traditionally called convexity):

v(A ∩B) + v(A ∪B) ≥ v(A) + v(B) for all A,B ∈ 2N , and
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superadditivity: for all A,B ∈ 2N , if A ∩B = ∅, then

v(A ∪B) ≥ v(A) + v(B).

Clearly, the former entails the latter (that is, the latter is a weaker condi-
tion than the former). Also note that total positivity (i.e. µv(A) ≥ 0 for
all A ∈ 2N ) entails both supermodularity and monotonicity.

� Exercise: Show that if v : 2N → R+ is supermodular, then for all (players)
i ∈ N and for all A ⊆ B ⊆ N\i (i.e. i /∈ B) it holds

v(A ∪ i)− v(A) ≤ v(B ∪ i)− v(B).

� Exercise: let N = {1, 2, 3, 4, 5, 6, 7} and consider the symmetric set func-
tion v : 2N :→ Z+ defined by v(A) = |A||A| for all A ∈ 2N . Com-
pute its Möbius inversion µv : 2N → Z+. Recall that 00 = 1 (see
https://www.math.hmc.edu/funfacts/ffiles/10005.3-5.shtml ). Addition-
ally, let , w : 2N → Z+, w(∅) = 0. Determine both w, µw : 2N :→ Z+ such
that v(A) = w(A) for all A ∈ 2N , A 6= ∅.

11.9 Polynomial multilinear extension of set functions

� From exercise 1. p. 34 above, for given fuzzy measure (or normalized
and monotone set function) η, the discrete Choquet integral, regarded as
an operator over the set of all integrands g : N → [0, 1] or equivalently
g ∈ [0, 1]n, may well be regarded as an extension of η from the set {0, 1}n of
vertices (for integrands χA ∈ {0, 1}n, A ∈ 2N ) to the whole n-dimensional
hypercube [0, 1]n (for generic integrands g ∈ [0, 1]n).

� By the way, nobody ever asked how to perform Choquet (discrete) inte-
gration when the integrand also takes negative values.... Such a (discrete)
non-additive integration, i.e. with respect to a fuzzy measure, may be
symmetric (Šipoš integral) or else asymmetric (Choquet integral), see

https://arxiv.org/pdf/0804.1760v1.pdf page 4, where the notation is very
much different from the one adopted here, and where the dual γ∗ of a
fuzzy measure γ mentioned in class is alternatively called “conjugate”,
and denoted by γ.

� A far more important such an extension (i.e. from {0, 1}n to [0, 1]n) of
set functions v : 2N → R, or equivalently of pseudo-Boolean functions
fv : {0, 1}n → R, is the polynomial multilinear one, or MLE for short,

denoted by f̂v : [0, 1]n → R and formalized hereafter.

� The MLE f̂v : [0, 1]n → R of v (or of fv) takes values

f̂v(χB) =
∑
A∈2N

(∏
i∈A

χB(i)

)
µv(A) =

∑
A⊆B

µv(A) = v(B)

on vertices χB ∈ {0, 1}n, B ∈ 2N , and

f̂v(q) =
∑
A∈2N

(∏
i∈A

qi

)
µv(A)
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on any point q = (q1, . . . , qn) ∈ [0, 1]n of the n-hypercube. Conventionally,∏
i∈∅
qi := 1 [8, p. 157], hence f̂v(χ∅) = v(∅). Therefore, f̂v : [0, 1]n → R is

a polynomial multilinear extension of set function v in that:

1. it is a polynomial with n variables q1, . . . , qn,

2. it is linear in each variable (i.e. no variable qi ever appears in form
qki , k > 1),

3. it is an extension of fv from the 2n-set {0, 1}n of vertices of the
n-dimensional unit hypercube [0, 1]n to the whole of it;

4. in particular, the (non-zero) values µv(A), A ∈ 2N taken by Möbius
inversion µv are the coefficients of the polynomial, while its degree is
max{|A| : µv(A) 6= 0}.

� First derivatives: for the MLE f̂v of set functions v, the first (order)

i-th derivative [8, p. 157] of f̂v at q is ∂f̂v

∂qi
(q) = f̂vi (q) =

= f̂v(q1, . . . , qi−1, 1, qi+1, . . . , qn)− f̂v(q1, . . . , qi−1, 0, qi+1, . . . , qn) =

=
∑
A3i

 ∏
j∈A\i

qj

µv(A).

� Although it is not used in the sequel, for the sake of completeness it may
be mentioned that the second order ij-th derivative of f̂v at q is

f̂vij(q) =
∂f̂v

i

∂qj
(q) =

∂f̂v
j

∂qi
(q) = ∂f̂v

∂qi∂qj
(q), see [8, p. 207].

� Note that f̂vi (q) factually is a function of only n − 1 variables, namely
q1, . . . , qi−1, qi+1, . . . , qn. However, it is still to be regarded as a function
of the n variables q1, . . . , qn.

� At vertices χB , B ∈ 2N of [0, 1]n, this f̂vi yields

f̂vi (χB) =
∑
A3i

 ∏
j∈A\i

χB(j)

µv(A).

Therefore, f̂vi (χB) = v(B)− v(B\i) if i ∈ B
and f̂vi (χB) = v(B ∪ i)− v(B) if i /∈ B.

In fact,
∏
j∈A\i χB(j) = 1 if A\i ⊆ B

and
∏
j∈A\i χB(j) = 0 if A\i 6⊆ B.

� For i ∈ N and B ⊆ N\i, difference v(B) − v(B\i) is fundamental in
cooperative (i.e. coalitional) game theory; it is the so-called “marginal
contribution” of player i ∈ B to coalition B ∈ 2N [25]. In particular, such
a marginal contribution equals

∑
A⊆B:A3i µ

v(A).

The same quantity, of course, is
∑
A⊆B µ

v(A ∪ i) for i /∈ B.

� Exercise: let 1
2 =

(
1
2 , . . . ,

1
2

)
∈ [0, 1]n be the center of the n-dimensional

unit hypercube.
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1. Compute (
f̂v1

(
1

2

)
, . . . , f̂vn

(
1

2

))
∈ Rn+

for generic coalitional game v ∈ R2n

. You should (quite easily) obtain

f̂vi

(
1

2

)
=

∑
A⊆N\i

µv(A ∪ i)
2|A|

=

=
∑

A⊆N\i

v(A ∪ i)− v(A)

2n−1
=: φBai (v) for 1 ≤ i ≤ n,

but do display every single step of your computations and carefully
comment them. This is in fact the (i-th component of the) so-called
Banzhaf value of Banzhaf power index [5, 25] of coalitional games,
mostly applying to the case where v is a simple game, that is to say
v : 2N → {0, 1} with v(∅) = 1− v(N) = 0 and

A ⊆ B ∈ 2N ⇒ v(A) ≤ v(B) for all A,B ∈ 2N (monotonicity).

2. Let N = {1, 2, 3, 4} and consider two games v and w defined as
follows:

(a) v is not simple and in particular v(∅) = 0 while

v(A) =
∏
i∈A

i for all ∅ 6= A ∈ 2N ,

(b) w is simple and in particular

w(A) =

{
1 if

∑
i∈A i ≥ 3,

0 if
∑
i∈A i < 3

.

Compute both φBa(v) = (φBa1 (v), φBa2 (v), φBa3 (v), φBa4 (v)) ∈ R4

and φBa(w) = (φBa1 (w), φBa2 (w), φBa3 (w), φBa4 (w)) ∈ R4

12 Solutions of coalitional games

� Conceptually, a solution of cooperative games should quantify the a priori
worth (or value), for each player, of cooperating (i.e. joining the grand
coalition N).

� Formally, the solution or value of a (monotone) coalitional game v assigns
to each player i ∈ N the expectation

Epi [v(A ∪ i)− v(A) : A ⊆ N\i]
of a random variable taking 2n−1 values given by player i’s marginal con-
tributions to coalitions A ⊆ N\i, where pi : 2N\i → [0, 1] is a probability
distribution.

In this view, the Banzhaf value above obtains by means of the simplest
such a probability pi, namely the uniform one:

pi(A) = 21−n = 1
2n−1 for all A ⊆ N\i and for all i ∈ N .
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� Hence a solution φ is a mapping v
φ→ φ(v) associating with every game v

a modular game φ(v), i.e. a valuation of Boolean lattice (2N ,∩,∪). That
is to say, φ(v) : 2N → R+ is a further coalitional game satisfying

φ(v)(A ∩B) + φ(v)(A ∪B) = φ(v)(A) + φ(v)(B)

for all A,B ∈ 2N .

� In view of a fundamental theorem (by Davis-Rota) concerning valuations
of distributive lattices (see [1, Theorem 4.63, p. 190], solutions or values
φ(v) of coalitional games v have Möbius inversion living only on atoms of
(2N ,∩,∪), that is to say

µφ(v)(A) =

{
φ(v)({i}) = φi(v) if |A| = 1, i.e. A = {i} for some i ∈ N ,

0 otherwise.

� Thus geometrically φ : R2n → Rn and φ(v) = (φ1(v), . . . , φn(v)) as well
as φ(v)(A) =

∑
i∈N φi(v). That is, solutions φ map games v ∈ R2n

into

games φ(v) ∈ Rn corresponding to points in a vector subspace Rn of R2n

.

12.1 Axiomatic characterization of solutions

� Solutions φ(v) = (φ1(v), . . . , φn(v)) ∈ Rn of coalitional games v ∈ R2n

are
usually classified in terms of the following axioms:

– linearity (L) for all scalars α ∈ R++ and for any two games v, v′

φ(αv) = αφ(v) and φ(v + v′) = φ(v) + φ(v′),

– dummy (D) for any player i ∈ N , if v(A ∪ i) = v(A) + v({i}) for all
A ⊆ N\i, then i is said to ba a dummy in game v and φi(v) = v({i}),

– symmetry (S) for any two players i, j ∈ N , if v(A ∪ i) = v(A ∪ j) for
all A ⊆ N\{i, j}, then φi(v) = φj(v),

(in photocopies, symmetry is most often stated in terms of permuta-
tions π : {1, . . . , n} → {1, . . . , n}),

– efficiency (E)
∑
i∈N φi(v) = v(N) for all games v.

– Weber (1988) in [25, Chapter 7] (see photocopies), also considers the
monotonicity (or positivity) axiom: φi(v) ≥ 0 for all monotone games
v (v(∅) = 0) and for all players i ∈ N .

� Observations:

1. given that the collection {uA : A ∈ 2N} is a linear basis of the vector
space R2n

of coalitional games, any solution φ : R2n → Rn satisfying
linearity has form

φ(v) =
∑
A∈2N

µv(A)φ(uA), i.e.

φi(v) =
∑
A∈2N

µv(A)φi(uA) for all i ∈ N .
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2. any set function v is a valuation of Boolean lattice (2N ,∩,∪) (i.e.
v(A ∩B) + v(A ∪B) = v(A) + v(B) for all A,B ∈ 2N ) if and only if
v(A ∪ i) = v(A) + v({i}) for all A ⊆ N\i and all i ∈ N (see above);
hence valuations are (all and only) the fixed points of solutions φ
satisfying dummy; that is, φ satisfies dummy ⇔ φi(v) = v({i}) for
all i ∈ N .

12.2 The Shapley value: existence and uniqueness

� Theorem (Shapley (1953) ch. 2 in photocopies): there exists a unique
solution φSh satisfying axioms L, D, S and E.

� Proof (sketch): firslty (from observation 1 above), since φSh satisfies L,
then φShi (v) =

∑
A∈2N µv(A)φShi (uA); hence, it remains to show that for

any element uA of the basis the remaining axioms D, S and E provide
existence and uniqueness; in fact, they yield φShi (uA) = 1

|A| if i ∈ A and

φShj (uA) = 0 if j ∈ Ac for all uA, ∅ 6= A ∈ 2N and all i, j ∈ N , as:

– D entails φj(uA) = 0 for all j ∈ Ac,
– S entails φi(uA) = φi′(uA) for all i, i′ ∈ A,

– E entails
∑
i∈N φ

Sh
i (uA) = uA(N) = 1 =

∑
i∈A φ

Sh
i (uA) =

= |A|φShi (uA) for all i ∈ A⇒
⇒ φShi (uA) = 1

|A| for all i ∈ A and φShj (uA) = 0 for all j ∈ Ac.

� Therefore,

φi(v) =
∑

A⊆N\i

µv(A ∪ i)
|A|+ 1

=
∑

A⊆N\i

|A|!(n− |A| − 1)!

n!
[v(A ∪ i)− v(A)]

for all games v and all players i ∈ N , where n! is the total number of
maximal chains from ∅ to N , while |A|!(n−|A|−1)! is the number of such
maximal chains meeting both A and A ∪ i (see above).

12.3 Integrating MLE first derivatives

� Consider computing∫ (1,...,1)=χN

(0,...,0)=χ∅

f̂vi (q1, . . . , qn)dq1 · · · dqn for every 1 ≤ i ≤ n
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that is, the integral of the i-th derivative f̂vi of the MLE f̂v of v along the
main diagonal of the n-dimensional unit hypercube.∫ χN

χ∅

f̂vi (q1, . . . , qn)dq1 · · · dqn =
∑

A∈2N\2N\i

(∫ 1

0

t|A|−1dt

)
µv(A)

=
∑

A∈2N\2N\i

[
t|A|

|A|

]1

0

µv(A)

=
∑

A∈2N\2N\i

µv(A)

|A|
= φShi (v).

12.4 Random-order and probabilistic solutions

� For every player i ∈ N , consider the set 2N\i of coalitions that do not con-
tain i; then, a probabilistic solution φ is defined by a n-tuple of probability
distributions pi : 2N\i → [0, 1], i ∈ N as follows (see above)

φpii (v) =
∑

A∈2N\i

pi(A)[v(A ∪ i)− v(A)] for every i ∈ N

� Exercise: show that any probabilistic solution satisfies axioms (see above)
L and D; also determine under what conditions (on distributions pi, i ∈ N)
it also satisfies axiom S.

� Consider the set S(N) of all permutations of players, i.e. the symmetric
group of order n! (see [17]); then, a random-order solution φ is defined by
a probability distribution p : S(N)→ [0, 1] as follows:

φpi (v) =
∑

π∈S(N)

p(π)[v({j ∈ N : π(j) ≤ π(i)})− v({j ∈ N : π(j) < π(i)})]

for every i ∈ N .

� Exercise: show that any random-order solution satisfies axioms L, D and
E; also determine under what conditions it also satisfies axiom S.

� Exercise: show that the random-order form of the Shapley value φSh(v)
of coalitional games v obtains by means of the uniform distribution over
permutations of players, i.e. pU : S(N)→ [0, 1] defined by pU (π) = (n!)−1

for all π ∈ S(N).

12.5 Weights and Shapley values

� Consider n strictly positive weights ω1, . . . , ωn ∈ R++. These weights
define the weighted Shapley value φω−Sh(v) ∈ Rn of any game v as follows:

φω−Shi (v) =
∑

A∈2N\i

(
ωi

ωi +
∑
j∈A ωj

)
µv(A ∪ i).
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� That is, for any unanimity game uA, ∅ 6= A ∈ 2N and for all players i ∈ N

φω−Shi (uA) =

{
ωi

/∑
j∈A ωj if i ∈ A,

0 if i ∈ Ac.

� In random-order form, weighted Shapley values are given by φω−Shi (v) =

=
∑

π∈S(N)

pω(π)[v({j ∈ N : π(j) ≤ π(i)})− v({j ∈ N : π(j) < π(i)})],

where probability distribution pω : S(N)→ [0, 1] is

pω(π) =
∏

1≤i≤n

ωπ−1(i)

/ ∑
1≤j≤i

ωπ−1(j)


for all permutations π ∈ S(N), with π−1(i) = i′ denoting the player i′ ∈ N
mapped into position i ∈ N by permutation π.

� Exercise: check the probabilistic form of φω−Sh : R2n → Rn.

DONE: 22 nov :: TOPIC (2.10) Axiomatic characterization of solutions,
TOPIC (2.11) the Shapley value: existence and uniqueness, TOPIC (2.12) in-
tegrating MLE first derivatives along the main diagonal of the n-hypercube,
TOPIC (2.13) random-order and probabilistic solutions, TOPIC (2.14) weighted
Shapley values in terms of Mobius inversion and in random-order form.

12.6 Core of coalitional games

� The core Core(v) of a coalitional game v is the set of all valuations φ
of Boolean lattice (2N ,∩,∪) satisfying φ(A) ≥ v(A) for all A ∈ 2N and
φ(N) = v(N).

� Hence Core(v) ⊂ Rn is a compact convex polyhedron, possibly empty, of
dimension at most n−1 [28]. (The dimension of a polyhedron is the max-
imum number of its affinely independent points minus one; in general,
see http://math.mit.edu/∼goemans/18433S07/polyhedral.pdf for exam-
ples and other definitions, such as that of facets.)

� The necessary and sufficient conditions (on v) for non-emptiness of the
core, i.e. Core(v) 6= ∅, are known as the Shapley-Bondareva conditions: a
map κ : 2N → [0, 1] is said to be balanced if∑

A∈2N

κ(A)χA = χN ;

then, Core(v) 6= ∅ if and only if for all balanced maps κ it holds∑
A∈2N

κ(A)v(A) ≤ v(N)

(see [27]).

45



� Supermodularity (or convexity) of v is a sufficient (but not necessary)
condition for Core(v) 6= ∅. In this case, the set ex(Core(v)) of extreme
points of the core correspond to those (distinct) valuations

φπ(v) = (φπ1 (v), . . . , φπn(v)) defined each by a permutation π ∈ S(N) as
follows:

φπi (v) = v({j ∈ N : π(j) ≤ π(i)})− v({j ∈ N : π(j) < π(i)})

for all i ∈ N .

� Hence if v is supermodular, then the Shapley value belongs to the core,
i.e. φSh(v) ∈ Core(v), and in particular it obtains as the peculiar convex
combination of all extreme points given by their arithmetic mean (i.e., the
Shapley value is the center of the core).

� Exercise: denote by
∫ C
N
fdη the discrete Choquet integral of f : N → [0, 1]

with respect to a fuzzy measure η : 2N → [0, 1] (see above). Show that if
η is supermodular, then∫ C

N

fdη = min
p∈Core(η)

∫
N

fdp

for any integrand f : N → [0, 1], where
∫
N
fdp denotes the traditional

integral or expectation of f with respect to a (additive) probability p, i.e.∫
N

fdp =
∑
i∈N

f(i)p({i}).

12.7 Cooperation restrictions

� The general idea behind cooperation restrictions relies upon the assump-
tion that there is a set system F ⊂ 2N of feasible coalitions, so that coop-
eration can only occur within coalitions A ∈ F , while unfeasible coalitions
A ∈ Fc = 2N\F cannot form.

� The set system F was firslty modeled by means of some exogenously given
(i.e. generic but fixed) partition P ∈ PN of the player set N . In partic-
ular, such a modeling resulted in two alternative forms of cooperation
restrictions, which are referred to as “type I” and “type II” in the sequel.

� Secondly, cooperation restrictions were modeled by means of a given graph
G = (N,E) with players as vertices, and this provided quite many different
approches to the solution concept of graph-restricted games.

� Afterwards, cooperation restrictions were modeled in alternative ways
(such as combinatorial geometries and/or so-called augmenting systems)
by requiring the set system F of feasible coalitions to satisfy certain con-
ditions rather than others. A general summary can be found in

https://arxiv.org/pdf/1304.1075.pdf, published in 2013, where the refer-
ence list is exhaustive.
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12.7.1 Partition constraints type I

� Let P = {B1, . . . , B|P |} ∈ PN be a partition of N . Aumann and Dréze
(1974) (see [3]) consider the case where the set system of feasible coalitions,
denoted by FP ⊂ 2N , is determined by partition P as follows:

FP = 2B1 ∪ · · · ∪ 2B|P | ,

i.e. only those coalitions A ⊆ B ∈ P included in a block B of P can form.

� The share assigned to each player i ∈ N by the Aumann-Dréze solution
of any game v with coalition structure P , denoted by φAD(v, P ), is

φADi (v, P ) = φShi (vB)

for all i ∈ B and all B ∈ P , where vB : 2N → R+ is the original game v
restricted to power set 2B (or equivalently to block B ∈ P ), and defined
by vB(A) = v(B ∩A) for all A ∈ 2N .

� Exercise: check that

φADi (v, P ) =
∑
B∈P

φShi (vB) for all i ∈ N and all (v, P ) ∈ R2n

× PN .

� Exercise: for any coalitional game v : 2N → R+ and partition (i.e. coali-
tion structure) P = {B1, . . . , B|P |}, consider a (further) restricted game
v/P : 2N → R+ defined by

v/P (A) =
∑
B∈P

v(A ∩B) for all A ∈ 2N .

1. Verify whether v/P may be equivalently defined as follows:

v/P (A) = v(A) for all feasible coalitions A ∈ FP , and

µv/P (A′) = 0 for all unfeasible coalitions A′ ∈ FcP = 2N\FP .

[Hint: use induction on
∑
B∈P |A ∩B| = |A| ≥ 2.]

2. Also verify whether φADi (v, P ) = φShi (v/P ) for all i ∈ N and all

(v, P ) ∈ R2n × PN .

DONE: 22 nov :: TOPIC (2.15) core of coalitional games, supermodularity
(or convexity) and extreme points of the polyhedron, the Shapley value
as a convex combination of extreme points, TOPIC (2.16) cooperation
restrictions in general and partition constraints type I.

12.7.2 Partition constraints type II

� In Owen (1977) (see [22]), a given (i.e. generic but fixed) partition or
coalition structure P = {B1, . . . , B|P |} is intended to model situations
where the family of feasible coalitions, denoted by F∗P ⊂ 2N , is

F∗P =
⋃
B∈P

(
2B ∪ 2P\B

)
,
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that is, the generic feasible coalition A ∈ F∗P obtains as A = Â∪Ã, i.e. the

union of a subset Â ∈ 2B , B ∈ P of some block and the merging Ã ∈ 2P\B

of some (i.e. zero or one or two or more) blocks B′ ∈ P\B. In fact, for
any block B ∈ P , Boolean lattice (2P\B ,∩,∪) has |P | − 1 atoms given by
blocks B′ ∈ P,B′ 6= B. More precisely, any partition P of N identifies the
field of sets 2P (i.e., closed under union, intersection and complementation,
see https://en.wikipedia.org/wiki/Field of sets), and the same applies to
(field of sets) 2P\B for any block B of P .

� In order to consider the associated solution φOw(v, P ) in random-order
form, define SP (N) ⊆ S(N) to be the set of P -admissible permutations
π : {1, . . . , n} → {1, . . . , n} of players, where |SP (N)| = |P |!

∏
B∈P
|B|! since

an admissible permutation π ∈ SP (N) works as follows: it firstly selects
one of the |P |! available orders for blocks B1, . . . , B|P |, and next puts
all members of each block in consecutive positions; in other terms, these
permutations π ∈ SP (N) satisfy the following condition: for all blocks
B ∈ P and for all pairs i, j ∈ B, if π(i) < π(i′) < π(j), then i′ ∈ B.
Hence SP⊥(N) = S(N) while proper inclusion SP (N) ⊂ S(N) holds for
all partitions P such that P> > P > P⊥, i.e. strictly finer than the top
one and stricly coarser than the bottom one.

� The associated solution (in random-order form) thus is φOwi (v, P ) =

=
∑

π∈SP (N)

v({j ∈ N : π(j) ≤ π(i)})− v({j ∈ N : π(j) < π(i)})
|P |!

∏
B∈P
|B|!

for all i ∈ N (and all games v).

� Exercise: for N = {1, 2, 3, 4} and v : 2N → R+ defined by v(A) = (|A|) 1
2

for all A ∈ 2N , consider coalition structure P = 13|24;

1. compute both φAD(v, P ), φOw(v, P ) ∈ R4, i.e. the Aumann-Dréze
and Owen values;

2. for restricted game vF∗P : 2N → R+ defined by vF∗P (A) = v(A) for all

A ∈ F∗P and µ
vF∗

P (A′) = 0 for all A′ ∈ 2N\F∗P , determine vF∗P (A′) for

all A′ ∈ 2N\F∗P , checking whether the Shapley value φSh(vF∗P ) ∈ R4
+

equals the Owen value φOw(v, P ) ∈ R4
+ or not, where

φShi (vF∗P ) =
∑

A∈2N\i

µ
vF∗

P (A ∪ i)
|A|+ 1

for all i ∈ N ;

3. let ωi = i for all i ∈ N and pω : S(N) → [0, 1] be a probability
distribution over the 4! = |S(N)| permutations of players such that
pω(π′) = 0 for all non-P -admissible permutations π′ ∈ S(N)\SP (N),
while for any two P -admissible permutations π, π̂ ∈ SP (P ) it holds

pω(π)

pω(π̂)
=

∏
1≤i≤4

(
ωπ−1(i)

/∑
1≤j≤i ωπ−1(j)

)
∏

1≤i≤4

(
ωπ̂−1(i)

/∑
1≤j≤i ωπ̂−1(j)

) ;
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compute the random-order solution φpω (v) ∈ R4
+ identified by prob-

ability pω, i.e. φpωi (v) =

=
∑

π∈SP (N)

pω(π)[v({j ∈ N : π(j) ≤ π(i)})−v({j ∈ N : π(j) < π(i)})]

for 1 ≤ i ≤ 4;

4. verify whether φSh(vF∗P ) ∈ Core(vF∗P ) and/or

φOw(v, P ) ∈ Core(vF∗P ) and/or φpω (v) ∈ Core(vF∗P ).

12.7.3 Graph-restricted games

� A (coalitional) game with cooperation structure (sometimes also called a
communication situation or conference structure) is a pair (v,G) where v
is a coalitional game and G = (N,E) is a graph with players i ∈ N as
vertices, i.e. E ⊆ N2 := {A : A ∈ 2N , |A| = 2}, hence the edge set E is a
subset of the

(
n
2

)
-set N2 = {{i, j} : 1 ≤ i < j ≤ n} of all (unordered) pairs

{i, j} of players.

� The standard interpretation is that any two players i, j ∈ N can cooperate
only if they are connected through graph G, i.e. only if either {i, j} ∈ E
or else there is a i − j-path Pij ⊆ G, where Pij = (V (Pij), E(Pij)) is a
subgraph (of G) with vertex set V (Pij) = {i = i1, . . . , ik = j} and edge
set E(Pij) = {{il, il+1} : 1 ≤ l < k}.

� Therefore, together with their role in game v (quantified by marginal con-
tributions, see above), players may also be crucial for enabling cooperation
between other players within graph G.

� For every coalition A ∈ 2N , let G(A) = (A,E(A)) ⊆ G be the subgraph
spanned by A, i.e. with vertex set A and edge set

E(A) = {{i, j} : {i, j} ∈ E, {i, j} ⊆ A}

� Also let A/G = {B1, . . . , B|A/G|} denote the partition of A whose blocks
are the vertex sets of the components G(B1), . . . G(B|A/G|) ⊆ G(A) or
maximal connected subgraphs of G(A).

� Define v/G : 2N → R+ by v/G(A) =
∑
B∈A/G v(B) for all A ∈ 2N .

� Exercise: verify that v/G(A) = v(A) for all A ∈ 2N such that |A/G| = 1,
and µv/G(A′) = 0 for all A′ ∈ 2N such that |A′/G| > 1 (in fact, this is
true as shown in [23, Theorem 2, p. 212 and Appendix, pp. 218-219];
however, much shorter proof is again by induction on the number and size
of the components of G(A), i.e. on |A/G| ≥ 2 and

∑
B∈A/G |B| ≥ 2; that

is, firstly consider a pair {i, j} ⊆ N such that {i, j} /∈ E, and then use
induction); can you determine µv/G when G = (N,E) is a 1− n-path, i.e.
E = {{1, 2}, {2, 3}, . . . , {n− 2, n− 1}, {n− 1, n}}?

� In games with cooperation structure (v,G) the family (or set system) FG
of feasible coalitions contains all connected ones, that is to say

FG = {A ∈ 2N : |A/G| = 1}
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� In order to characterize the Myerson solution φMy(v,G) for games v with
cooperation structure G = (N,E), let G\{i, j} = (N,E\{i, j}) denote the
graph obtained from G by deleting edge {i, j}, and consider the following
two axioms:

– fairness F: for all edges {i, j} ∈ E

φi(v,G)− φi(v,G\{i, j}) = φj(v,G)− φj(v,G\{i, j},

– component efficiency CE:
∑
i∈N φi(v,G) = v/G(N).

� Theorem (Myerson (1977), see [21] in photocopies): there exixts a unique
solution of games with cooperation structure that satisfies both F and CE;
it is φMy(v,G) = φSh(v/G).

� Another solution of games with cooperation structure (v,G) is the so-
called position value φPo(v,G), which works as follows (see [7]):

– firstly, game v is turned into “arc game” wv : 2E → R+ defined by

wv(E
′) = v/G

(
∪

{i,j}∈E′
{i, j}

)
for all edge subsets E′ ∈ 2E ;

– secondly, each arc or edge {i, j} ∈ E receives the share ψ{i,j}(wv)
given by Shapley solution of arc game wv, i.e.

ψ{i,j}(wv) = φSh{i,j}(wv)

– finally, each player i ∈ N receives the sum over all edges where i is
one endvertex of one half of such edges’ shares, that is to say

φPoi (v,G) =
∑

j∈N\i:{i,j}∈E

ψ{i,j}(wv)

2
.

� There exists no axiomatic characterization for the position value (when
graph G is generic, i.e. non-cycle-free, see [7, Theorem 3.2, p. 311]).

� Exercise: let graph G = (N,E) have edge set given by

E = {{1, i} : 1 < i ≤ n}, and consider the
(
n−1

2

)
unanimity games u{i,j}

such that 1 < i < j ≤ n; also define coalitional games v, w : 2N → R by

v(A) =
∑

1<i<j≤n

u{i,j}(A) and

w(A) = max
1<i<j≤n

u{i,j}(A) for all A ∈ 2N ;

compute both φMy(v,G), φPo(v,G) ∈ Rn.

� Exercise: let N = {1, 2, 3, 4} and consider the set system F of feasible
coalitions defined by

F = {∅, {2}, {4}, {1, 2}, {2, 4}, {1, 2, 3}, {1, 2, 4}, N}

and coalitional game v : 2N → R, v(∅) = 0 defined by

v(A) =
∏
i∈A

i for all A ∈ 2N , A 6= ∅;
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1. compute the Shapley value φSh(v/F ) ∈ R4 of the restricted game
v/F : 2N → R defined by

v/F (A) = v(A) for all A ∈ F ,

µv/F (A) = 0 for all A ∈ Fc = 2N\F ;

2. identify the set SF (N) ⊂ S(N) of F-admissible permutations
π : {1, 2, 3, 4} → {1, 2, 3, 4} defined by

π ∈ SF (N)⇔ {i : π(i) ≤ k} ∈ F , 1 ≤ k ≤ 4,

and compute the random-order solution φp
F
U (v) ∈ R4 given by

φ
pFU
i (v) =

∑
π∈SF (N)

v({j : π(j) ≤ π(i)})− v({j : π(j) < π(i)})
|SF (N)|

for all i ∈ N (check: φp
F
U (v) = φSh(v/F ) or φp

F
U (v) 6= φSh(v/F )?);

3. identify (and possibly solve) the system of equations with unknown
variables ω1, ω2, ω3, ω4 ∈ R+ such that the weighted Shapley value

φω−Sh(v/F ) ∈ R4 satisfies φω−Sh(v/F ) = φp
F
U (v);

4. noting that for any coalitional game w : 2N → R it holds

µw(A) ≥ 0 for all A ∈ 2N ⇒ w is supermodular,

compare the two cores Core(v) and Core(v/F ).
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