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Kurzfassung
Binäre Tropfenkollisionen spielen eine wichtige Rolle in der Natur und in vielen technischen

Sprayanwendungen. Die Modellierung der Kollisionsausgänge, nämlich Bouncing, Coalescence,
Tropfenzerfall nach vorläufiger Verschmelzung und Spatter (auch „Shattering “ und „Splashing“
genannt), bildet die Grundlage für die Untersuchung der Zerstäubungsprozesse auf größeren
Skalen. Das Ziel dieser Arbeit richtet sich auf die Entwicklung von numerischen Methoden,
welche für die Prädiktion der Kollisionsausgänge eingesetzt werden, sowie die numerische
Untersuchung derjenigen Phänomena in binären Tropfenkollisionen, welche die Kollisionsaus-
gänge entscheidend beeinflussen. Für die numerischen Simulationen wird der Inhouse-Code
Free Surface 3D (FS3D), der auf der Volume-of-Fluid (VOF) Methode basiert, eingesetzt. Die
numerischen Untersuchungen beschränken sich auf zentrale Kollisionen.

Spatter tritt bei Tropfenkollisionen mit hoher Kollisionsenergie auf, wobei eine dünne Prall-
lamelle entsteht und in standardmäßigen Simulationen unphysikalisch zerfällt. Um Spat-
ter simulieren zu können, wird ein verbesserter Lamellenstabilisierungsalgorithmus entwick-
elt und ausführlich validiert. Mit einem geeignet eingebrachten Verrauschen des Anfangs-
geschwindigkeitsfeldes wird die Instabilität am Rand des Stoßkomplexes ausgelöst und Spat-
ter in der Simulation erfolgreich reproduziert. Die Simulationsergebnisse stimmen sehr gut mit
den Experimenten überein. Basierend auf den Simulationsergebnissen wird die Entwicklung der
Randinstabilität als eine Verstärkung eines Signals durch ein Signalverstärkungssystem, das in
drei seriell verbundene Subsysteme unterteilt wird, betrachtet. Dabei wird festgestellt, dass die
Entwicklung der Randinstabilität in der linearen Phase der Randinstabilität durch die Rayleigh-
Plateau Instabilitätstheorie vorhergesagt werden kann. Der Einfluss der Tropfenviskosität wird
numerisch untersucht und es wird gezeigt, dass der Kollisionsausgang zu Spatter neigt, wenn
die Tropfenviskosität verkleinert wird. Diese Abhängigkeit nimmt während der Abnahme der
Tropfenviskosität ab. Die Tropfenviskosität beeinflusst die Entwicklung der Randinstabilität vor
allem, indem die Basisgeometrie des Randes verändert wird. Eine erfolgreiche Aufklärung des
Mechanismus der Randinstabilität bildet den Grundstein für die Vorhersage des Eintritts von
Spatter und die Vorhersage des Größenspektrums der sekundären Tropfen, die bei Spatter
entstehen. Die Untersuchung des Mechanismus der Randinstabilität im Kontext von binärer
Tropfenkollisionen hat eine generelle Bedeutung, weil der Ausstoß von Sekundärtropfen von
einem instabilen Rand beim Aufprall eines Tropfens auf eine feste Wand oder auf einen Flüs-
sigkeitsfilm ebenfalls auftritt.

Binäre Tropfenkollisionen führen bei relativ kleinen Weberzahlen entweder zu Bouncing oder
zu Coalescence als Kollisionsausgang. Die Simulationen von Bouncing und Coalescence wer-
den durch die Umschaltung der Randbedingungen an der Aufprallwand erfolgreich durchge-
führt. Die Simulationsergebnisse stimmen mit den Experimenten gut überein. Allerdings sind
diese Simulationen nicht prädiktiv, weil der Kollisionsausgang vorgegeben werden muss. Die
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Schwierigkeit der Prädiktion des Kollisionsausgangs Bouncing vs. Coalescence liegt darin, dass
der dünne Gasfilm zwischen den kollidierenden Tropfen nicht aufgelöst werden kann und ein
physikalisch sinnvolles Koaleszenzkriterium in der numerischen Methode fehlt. Um die prädik-
tive Simulation zu ermöglichen, wird ein Multiskalen-Simulationskonzept erarbeitet. Neben
dem Hauptlöser FS3D, der die Strömung auf der makroskopischen Skala löst, besteht das
Multiskalen-Simulationskonzept aus drei Anteilen: (1) Ein Subgridskalen(SGS)-Model wird
integriert in den Hauptlöser FS3D. (2) Coalescence wird numerisch unterdrückt, bevor ein
geeignetes Koaleszenzkriterium möglicherweise erfüllt ist. (3) Ein numerisches Koaleszenzkri-
terium wird angewandt.

Basierend auf der Lubrikationstheorie wird das SGS-Model hergeleitet, wobei der Effekt
verdünnter Strömung mit berücksichtigt wird. Das SGS-Model wird in FS3D implementiert
und ausführlich validiert. Zur Kopplung des SGS-Models wird der Druck im Gasfilm, der
durch das SGS-Model gelöst wird, als Druckrandbedingung auf der Aufprallebene aufgeprägt.
Wird die erste Schneidung der PLIC-Flächen mit der Kollisionsebene als Koaleszenzkriterium
angewendet, können die Simulationsergebnisse sowohl Bouncing als auch Coalescence sein.
Allerdings ist der Kollisionsausgang abhängig von der Gitterauflösung. Wird als Koaleszenzkri-
terium eine Gasfilmdicke von null im Rahmen der im Algorithmus verwendeten Toleranzen
angewendet, führen die Simulationen ausschließlich zu Bouncing. Es wird gezeigt, dass auch
weitere mögliche Korrekturen der Geschwindigkeiten, die für den Transport der Flüssigkeit-
sphase eingesetzt werden, nicht ausreichen, den Übergang zwischen Bouncing und Coalescence
vorherzusagen. Als Ausblick wird angedeutet, wie in zukünftigen Forschungsarbeiten z.B. mit
Hilfe der volumengemittelten Volume-of-Fluid (VA-VOF) Methode, die den Geschwindigkeit-
sunterschied innerhalb einer Rechenzelle berücksichtigt, die Genauigkeit des Transports der
Flüssigkeitsphase erhöht werden kann.

Mit Hilfe der Multiskalen-Simulation wird qualitativ gezeigt, dass der Kollisionsausgang bei
hoher Verdünnung in der Gasphase zu Coalescence neigt.



Abstract
Binary droplet collision plays an important role in nature and in many technical processes

involving sprays. The modeling of the collision outcomes, namely bouncing, coalescence,
separation after temporary coalescence, and spatter (also called ‘shattering’ and ‘splashing’),
establishes the basis for the investigation of the atomization processes on larger length scales.
The aim of this thesis is to develop numerical methods that are employed in the prediction of
the collision outcomes and the numerical investigation of the phenomena in binary droplet col-
lisions which affect the collision outcomes. The in-house code Free Surface 3D (FS3D), which
is based on the Volume of Fluid (VOF) method, is employed for the numerical simulations. The
numerical investigations are restricted to head-on collisions.

Spatter occurs at high energetic collisions, resulting in a thin liquid lamella that ruptures
artificially in standard numerical simulations. In order to simulate spatter, an improved lamella
stabilization algorithm has been developed and extensively validated. By means of properly
chosen white noise disturbances of the initial velocity field, the instability of the rim of the
collision complex is triggered and the spatter is successfully reproduced in the simulations. Very
good agreements between the simulation results and the experiments are achieved. Based on
the simulation results, the development of the rim instability is considered as an amplification of
disturbances via a signal amplification system that is subdivided into three sequential connected
subsystems. It is confirmed that the development of the rim instability in the linear phase of
the instability can be predicted by the Rayleigh-Plateau instability theory. The influence of the
droplet viscosity is studied numerically and it is shown that the collision outcome tends to be
spatter when the droplet viscosity is reduced. This dependency decreases with the decrease
of the droplet viscosity. The droplet viscosity influences the development of the rim instability
mainly through varying the geometrical evolution of the rim. A successful elucidation of the
mechanism of rim instability builds the foundation for the prediction of the occurrence of spatter
and the prediction of the size distribution of the secondary droplets arising in spatter. The
investigation of the mechanism of the rim instability in the context of binary droplet collisions
is of general importance because the ejection of secondary droplets from an unstable rim also
emerges in collisions of a droplet on a solid substrate or on a liquid film.

Binary droplet collisions result in bouncing or coalescence at relatively small Weber numbers.
The simulations of bouncing and coalescence have been successfully conducted by switching the
boundary conditions on the collision plane. The simulation results are in good agreement with
corresponding experiments. However, the simulations are not predictive because the collision
outcome must be specified in advance. The difficulty of the prediction of bouncing versus coa-
lescence lies in the fact that the thin gas film between the colliding droplets cannot be resolved
in feasible simulations and that a physically meaningful coalescence criterion is missing in the
numerical method. In order to facilitate the predictive simulation, a multi-scale simulation con-
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cept has been developed. In addition to the main solver FS3D, which solves the flow on the
macroscopic scale, the multi-scale simulation concept consists of three parts: (1) A sub-grid-
scale (SGS) model is integrated within the main solver FS3D. (2) Coalescence is numerically
suppressed before a suitable coalescence criterion is contingently satisfied. (3) A numerical
coalescence criterion is applied.

Based on the lubrication theory, the SGS model is derived which accounts for the rarefied flow
effect. The SGS model is implemented in FS3D and extensively validated. For the integration
of the SGS model, the pressure in the gas film, which is solved by the SGS model, applies as
a pressure boundary condition on the collision plane. Employing the first intersection of PLIC-
surfaces with the collision plane as coalescence criterion, the collision outcome in the simulation
can be both bouncing and coalescence. The predicted collision outcome, however, depends on
the grid resolution. Employing zero gas film thickness (in algorithm tolerance) as coalescence
criterion, the simulations result only in bouncing. It is shown that various possible corrections of
the velocity field, which decides the transport of the liquid phase, have not led to a meaningful
prediction of the transition between coalescence and bouncing. Further developments, e.g.
the volume-averaged Volume of Fluid (VA-VOF) method, which takes into account the velocity
difference within a computational cell, shall be implemented in future work to increase the
accuracy of the transport of the fluid phase.

By means of the multi-scale simulation it is qualitatively shown that the collision outcome
tends to be coalescence at higher rarefaction in the gas phase.
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1 Introduction

1.1 Motivation

Droplet collisions are very common phenomena observed in nature: some people even enjoy
staring at the splash of droplets resulting from heavy rains hitting the ground, lost in thought.
The earliest study of droplet collisions dates back to Lord Rayleigh [48] who noted that small
rain droplets bounce upon collision with a pool of water rather than dive into it directly. The
majority of early works on the collision of two droplets dating from the 1960’s focused on water
droplets essentially due to droplet growth relating to precipitation. Gunn [21] pointed out that
binary collisions of water droplets result in four typical types of outcome: (I) bouncing, (II)
coalescence, (III) drop disruption after coalescence, (IV) drop spatter; see Figure 1.1 for a first
impression. He also noted that approximately seven collisions occur for every kilometer of free
fall in typical heavy rain, which is frequent enough to influence the size of rain droplets.

In technical applications, droplet collision is an elementary process in the liquid atomization
processes that convert bulk fluid into a spray composed of a dispersion of small droplets. An
example of a spray is shown in Figure 1.2. Fluid atomization processes and sprays are of impor-
tance in many industrial processes, for example in fuel injection in internal combustions, spray
painting, food processing, pharmaceuticals, environmental protection, and many others. The
main purpose of the atomization process is to increase the contact area between the gas phase
and the liquid phase. An increase in the gas-liquid contact area in a spray augments momen-
tum, heat, and mass-transfer between the gas phase and the liquid phase as well as the related
chemical processes like the combustion of fuel droplets. Apart from the primary atomization,
in which the supplied liquid is demolished into a cloud of droplets, the collision of the disinte-

Figure 1.1.: Water droplet collisions imaged by Gunn [21]. From left to right: bouncing, coales-
cence, disruption after coalescence and drop spatter.
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Figure 1.2.: Diesel spray imaged by Wang et al. [67]

grated droplets also affects the droplet size spectrum in a spray through the different collision
outcomes.

It is difficult to investigate the whole spay process by means of Direct Numerical Simulations
(DNS), which resolve all the relevant length scales and time scales of a physical problem, due
to the large span of the length scale: for example in typical diesel combustion engines, the
droplet size is in the region of 1− 10µm while the length of the injected fuel spray is 2− 3 cm
[4]. Generally, computational models for simulating sprays are based on Sub-Grid-Scale(SGS)
models which include the averaged effect of the unsolved scales. The large-scale behavior of the
spray is then described by reduced mathematical models, rather than detailed solution of the
Navier-Stokes equations [44]. An accurate prediction of the characteristics of a spray requires
that the SGS model accounts for the effect of droplet collisions in terms of the collision outcomes
due to the collective effect on the flow property. The derivation of models for determining the
collision outcomes is usually based on experimental observations and measurements, which are
restricted by the spatial and temporal resolutions of the obtained photographs recording the
collision process of two droplets. In principle, Direct Numerical Simulations of the collision pro-
cess can provide information that is not accessible by experimental measurements, for example
the detailed local flow properties within a droplet, which facilitates the modeling of the colli-
sion rules. As long as the numerical simulation is able to reproduce the collision process, more
strictly saying predictively, spectacular phenomena like the spatter of droplets can be studied by
means of numerical ‘experiments’.

1.2 Fundamentals of binary droplet collisions

The collision of two droplets, say, the binary droplet collision, is a very complex phenomenon
in practice. The participating droplets may have different sizes and/or different materials which
are miscible or immiscible. The possible complex rheological behavior of the liquid material
makes the study of the collision process even more difficult. In real systems far away from
thermodynamic equilibrium like within diesel combustion chambers, the Marangoni-effect, i.e.
the variation of the surface tension along the droplet surface, the evaporation and burning of
the droplets would also affect the collision process significantly. Looking beyond all of these
complexities, the study in this work is restricted to the collision of two Newtonian droplets of
the same size and the same material under isothermal conditions without chemical reactions.
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In the simplified collision system consisting of two identical droplets and environmental gas,
which is schematically described in Figure 1.3, the dimensional analysis yields that the collision
process is determined by the following five dimensionless parameters [38]:

• Weber number

We=
ρl U

2
r D0

σ
(1.1)

• Reynolds number

Re=
ρl Ur D0

ηl
(1.2)

• Density ratio

ψ=
ρl

ρg
(1.3)

• Viscosity ratio

ϕ =
ηl

ηg
(1.4)

• Impact parameter

X =
B
D0

(1.5)

with the parameters in the collision system listed as follows:

ρl density of the liquid phase, kg ·m3

ρg density of the gas phase, kg ·m3

ηl dynamic viscosity of the liquid phase, Pa · s
ηg dynamic viscosity of the gas phase, Pa · s
U0 relative velocity of the droplets, m/s

D0 initial diameter of the droplets, m

σ surface tension, N ·m
B offset of the collision, m

The Weber number describes the relative importance of the droplets’ inertia compared to
the surface tension and the Reynolds number describes the relative importance of the droplets’
inertia compared to the viscous effect. The impact parameter is a measure of the offset of a
collision. A collision is called a head-on collision if the impact parameter is zero.

Depending on the system parameters, several different collision outcomes can occur. The
typical collision processes are illustrated in Figure 1.4. Following the convention in previous
studies [45] [16], the collision outcomes are summarized in the collision diagram, see Figure
1.5. Note that the collision diagram in Figure 1.5 is a qualitative description and will differ with
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Figure 1.3.: Collision of two identical droplets.

Figure 1.4.: Typical collision processes imaged by Jiang et al. [25] (first to fifth column) and by
Roth et al. [56] (sixth column). From left to right: coalescence (sector I), bouncing
(sector II), coalescence (sector III), near head-on separation (sector IV), off-center
separation (sector V) and spatter (sector VI).
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Figure 1.5.: Collision diagram.

different Re, ψ and ϕ, since each boundary curve between two sectors of different collision
outcomes, without considering other effects, is described as

X = X (We, Re,ψ,ϕ). (1.6)

The Reynolds number in equation (1.6) can be substituted by the Ohnesorge number defined
as

Oh=
ηl

p

D0 ·ρl ·σ
=
p

We
Re

. (1.7)

The advantage of using the Ohnesorge number instead of Reynolds number is that the collision
outcome is then only dependent on We and X , as long as the materials in the collision system
and the droplet size are fixed. Another dimensionless parameter used for the description of the
temporal evolution of a collision process is the dimensionless time defined as

t∗ = t · Ur/D0. (1.8)

The time instant when the distance between the sphere center of the droplets is D0, i.e. when
the droplets are just touching each other, is defined as t∗ = 0.

1.2.1 Phenomenological description and literature review

Most studies of binary droplet collisions have been driven by the prediction of the collision
outcome due to its important applications in the study of systems on larger length scales. The
literature review is subdivided according to the transitions between the collision outcomes,
along with the description of the significant phenomena related to the collision process in each
sector in the collision diagram. Sectors I to VI refer to the sectors I to VI in the collision diagram
in the present thesis.
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Transition between coalescence and bouncing

In relatively low Weber number regime (sector I, II and III), the collision outcome undergoes a
non-monotonic coalescence-bouncing-coalescence transition. In sector I, the droplets approach
each other with very small inertia and coalesce into a single larger droplet. The droplets move
so slowly that the gas phase hardly resists the approach of the droplets and the coalescence
will occur as long as the distance between the colliding surfaces gets so small that the force
of attraction between the molecules of the two droplets, i.e. the Van der Waals force, becomes
dominant. The critical distance for the onset of the Van der Waals force is in the order of 10 nm
[32]. In sector II, the droplets collide with higher inertia resulting in a high pressure in the
gas phase between the colliding droplets due to the viscous resistance against the drainage of
the gas film. The high pressure in the gas phase prevents a further approach of the droplets.
As a result, the liquid in the droplets flows outward near the collision plane and the colliding
surfaces are enlarged, forming a gas layer in-between. In the next stage, the droplets recede due
to the surface tension force and bounce apart from each other without material exchange. If the
inertia is further elevated, the colliding surfaces will approach each other more closely. When
the local gas layer thickness is small enough for the Van der Waals force to become effective, the
droplets coalesce (in sector III). For a simplification of the discussion, the gas phase between
the colliding droplets at very low Weber number regime (in sector I) is also called a gas layer,
though its resisting effect is almost nil. Based on this phenomenological description, it is the
competition between the resisting effect of the gas layer and the intermolecular forces that
ultimately determines whether the droplets merge into a single droplet or bounce apart. This
phenomenological description is partly based on the work of Zhang and Law [71].

Zhang and Law [71] pointed out that before the possible coalescence of the droplets, the dis-
tance of the colliding surfaces must necessarily pass through a region where it is comparable
with the mean free path of the gas molecules. Aiming at the prediction of the non-monotonic
coalescence-bouncing-coalescence transition for head-on collisions and assuming Poiseuille flow
between two expanding flattened interfaces in the gas film, Zhang et al. [71] established an an-
alytical model that accounts for the motion and deformation of the droplets and the interaction
between the droplets and gas. The resisting effect of the gas layer acts in the form of a pressure
force acting on the droplet’s surface. The pressure in the gas layer is derived based on the gas
drainage, the rarefaction effect and the Van der Waals force. This model is able to predict the
non-monotonic coalescence-bouncing-coalescence transition, though the accuracy of the predic-
tion of the critical Weber numbers especially between the sector II and III needs to be further
improved. Estrade and Biscos [15] conducted an experimental investigation of binary collision
of ethanol droplets and developed a theoretical model for predicting the critical Weber number
between sector II and III which derivation is based on the energy conservation. However, the
influence of the gas phase is not included in their model, although it plays an important role in
the transition between coalescence and bouncing: Qian and Law [45] observed that the sector
II (bouncing) expands with increasing ambient pressure.
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Numerical simulation results concerning the transition between coalescence and bouncing
are rare. Most numerical studies focused on the reproduction of the collision process with pre-
scribed collision outcome and/or detailed description of the flow field, see [38, 36, 37, 41, 40].
The difficulty for a predictive simulation in terms of the collision outcome is that the gas layer
becomes so thin that it cannot be resolved by feasible simulations. Trying to tackle this problem,
Mason et al. [33] conducted a multi-scale simulation: the macro-scale simulation is conducted
by means of the Volume of Fluid (VOF) method, while the flow in the gas layer is modeled
by means of the classical lubrication theory. A critical gas layer thickness of 40 nm is used as
a coalescence criterion. The simulation can reproduce the coalescence process well, while the
transition between coalescence and bouncing is not mentioned. Murad and Law [35] conducted
molecular simulations yielding both bouncing and coalescence predictively. The droplet diam-
eter in the simulation is restricted to a few nanometers which is much too small compared to
the typical droplet sizes in technical applications. Resolving the droplet collision process with
molecular simulations in technical applications is not realistic, since within one cubic centimeter
air under standard conditions there are already roughly 1019 molecules, the solution of which
is far beyond the capability of modern high-performance computing technology.

Transition between coalescence and separation

In near head-on collisions in sector III and IV, the coalesced collision complex expands first out-
wards after the onset of the coalescence and then retracts due to the surface tension force tem-
porarily forming a cigar-like shape. The cigar-like shape collision complex breaks into two main
droplets with contingent secondary droplets at relatively high inertia of the colliding droplets
(sector IV). At relatively smaller Weber numbers in sector III, the collision complex stays as a
single droplet after an oscillation, through which a part of the kinetic energy is dissipated. At
relatively high inertia and high impact parameter in sector V, the collision complex falls apart
after the collision complex is elongated due to the inertia and centrifugal force.

Many previous studies have been devoted to modeling the boundary curves between sector
III and IV and between III and V. Ashgriz and Poo [5] developed correlations for the boundary
curves III-IV and III-IV based on the inviscid assumption. Qian and Law [45] showed that the
critical Weber number between the sector III and IV is linearly dependent on the Ohnesorge
number in case of head-on collisions. Jiang et al. [25] proposed a model for the boundary
curve III-V which accounts for the viscous effect. Sommerfeld et al. [62] developed a composite
universal model which is an extension and combination of the model of Ashgriz and Poo [5]
and the model of Jiang et al. [25]. This model is able to predict the boundary curves III-
IV and III-V in a large span of viscosity variation. Planchette et al. [42] deduced the critical
velocity distinguishing coalescence and separation in head-on collisions based on an energy
balance of the expansion phase and the retracting phase of the collision process combined with
a Rayleigh-like fragmentation criterion.

The numerical studies have been able to reproduce the boundary curves between coalescence
and separation. Rieber and Frohn [52] predict the boundary curves by means of a Volume of
Fluid (VOF) code called Free Surface 3D, which is also applied in the numerical studies in this
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work. These curves are in good agreement with corresponding experiments of Brenn and Frohn
[11] and Ashgriz and Poo [5]. Pan and Suga [41] reproduced the collision outcomes in section
III, IV and V by means of the Level-Set method, which locates the interfacial position by means
of transporting a signed distance function, without giving the collision outcome in advance.
Saroka et al. [57], using the VOF method, found that the boundary between sector III and IV
in case of head-on collision depends on Reynolds number and the dependence decreases with
increasing Reynolds number. One issue arising in the simulation is that the liquid lamella of
the collision complex, which emerges in the middle of the collision complex in the expanding
phase after coalescence of the colliding droplets at relatively high Weber numbers, ruptures in
the numerical simulations [41, 37, 17, 18]. The rupture of the liquid lamella deteriorates the
accuracy while predicting the collision outcomes. Focke and Bothe [17] and Focke and Bothe
[18] dealt with this problem by correcting the computation of the surface tension force in the
lamella region. The advantage of using numerical methods in order to study the transition
between coalescence and separation is that it is very easy to separately modify each of the
parameters in the collision system, which facilitates a comprehensive and systematic study of
the dependency of the boundary curves on the system parameters and the validation of the
above mentioned theoretical models predicting the boundary curves III-IV and III-V.

Spatter in sector VI

Spatter is a significantly different phenomenon emerging at collisions with large kinetic en-
ergy. Roth et al. [56] conducted experimental studies on head-on binary collisions of iso-
propanol droplets at Weber numbers ranging from 1030 to 2876. Their results show that with
increasing Weber number, the rim of the collision complex becomes increasingly unstable. If
the Weber number is high enough, secondary droplets are spattered out from the rim of the
collision complex. They also conducted numerical simulations but only qualitatively and at rel-
atively low Weber numbers due to the high requirement on the computational effort resulting
from high collision energies. Despite the lower Weber number in their numerical simulations,
the instability of the rim is too strong compared to the experimental results. Pan et al. [39]
conducted an experimental study of head-on binary droplet collisions at Weber numbers up to
about 5000. They presented clear images for the deformation history of water collision com-
plexes. Their results show that the instability of the rim of the water collision complex emerges
at much smaller Weber numbers compared to iso-propanol droplets. Kuan et al. [27] conducted
a numerical study of head-on collisions of water droplets at high Weber numbers, employing a
parallel, adaptive interface tracking method, and compared their results with the experimental
work of Pan et al. [39]. Their simulations capture the unstable rim of the collision complex
and show good agreement with corresponding experimental results of Pan et al. [39] up to
We = 442. However, their comparisons of the collision complex shapes for We > 442 are ei-
ther incomplete regarding the length of the physical simulation time or do not show a good
agreement.

Understanding the spatter phenomenon, especially the mechanism of the rim instability of the
collision complex, is not only a scientific desire but also a precondition for predicting the bound-
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ary curve between the section V and VI. It is even more desirable to predict the size spectrum of
secondary droplets ejected from the unstable rim due to its important role in determining the
characteristics of a spray. Moreover, the study of the mechanism of the rim instability is of more
general importance, since a similar phenomenon of spattering of secondary droplets from an
unstable rim emerges also in collisions of a droplet on a solid substrate or on a liquid film.

1.3 Organization of the thesis

The present thesis originates within the framework of the Transregio-75 (TRR-75) of the Ger-
man Research Foundation (DFG) “Droplet Dynamics Under Extreme Ambient Conditions”. The
driving force of this thesis is the realization of the prediction of the collision outcome in terms
of bouncing versus coalescence and in terms of the onset of spatter as well as the prediction of
the size spectrum of the secondary droplets resulting from the spatter phenomenon.

In order to seek the final goal, namely the prediction of the collision outcomes, the following
sub-goals have been set:

• Explanation of the rim instability that is present on the spatter phenomenon due to its
importance in the onset of spatter and in the size spectrum of the secondary droplets.

• Development of numerical methods that enable the reproduction of the spatter phe-
nomenon.

• Development of numerical methods that enable the reproduction of the bouncing and
coalescence phenomena, at first with prescribed collision outcome.

• Acquisition of the flow properties in the gas flow between the colliding droplets before
possible coalescence.

• Development of a SGS model that solves the flow in the gas layer and that is integrated
into the main solver FS3D.

• Numerical simulation by means of the integrated SGS model and the corresponding as-
sessment in terms of the capability of predicting bouncing versus coalescence.

The developments and the numerical investigations are restricted to the head-on collisions.
The structure of this work is as follows. In Chapter 2, the governing equations of two-phase
incompressible flows are presented. Two most important interfacial instabilities and the con-
tinuum hypothesis as well as its transition to the rarefaction effect are addressed. The basic
numerical methods used in this work are introduced in Chapter 3. The models for the compu-
tation of the surface tension force are discussed in terms of their advantages and limitations.
Chapter 4 describes the problem of the artificial interaction while computing the surface ten-
sion force of a thin lamella, which can be either a liquid lamella in high energetic collisions or
a gas film at lower collision energy, and delivers numerical methods that deal with this prob-
lem. In Chapter 5, the spatter phenomenon is in depth investigated based on the numerical
results. One highlight is the rigorous theoretical/computational confirmation of the mechanism

1.3. Organization of the thesis 9



of the rim instability in the context of binary droplet collisions. In Chapter 6, the results of
a 2D simulation with very high grid resolution focusing on the flow in the gas layer between
the colliding droplets are presented. The derivation, implementation and validation of a SGS
model, which solves the flow in the gas layer, are presented in Chapter 7. Preliminary results
on predictive simulations by means of multi-scale simulations are discussed. At the end of this
thesis, a summary and an outlook are given.
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2 Mathematical Modeling of Two-Phase
Fluid Systems

In continuum mechanics, a two-phase fluid system is characterized by an interface separating
two immiscible substances. Due to the jump of material properties over the interface, the differ-
ential equations describing the two-phase fluid system differ from those for a single phase flow.
These equations are given first in this chapter. Then, two kinds of interfacial instabilities are
introduced, which serve as a basis for further investigation of the instabilities occurring in the
context of binary droplet collisions. At the end of this chapter, the continuum hypothesis and its
transition to the rarefaction effect are addressed.

2.1 Governing equations in incompressible two-phase fluid systems

We consider a material control volume V (t) moving with the flow, see Figure 2.1. The control
volume possesses a normal vector n pointing outwards and contains two phases separated by a
free interface Γ (t). The two phases are denoted by Ω+(t) and Ω−(t) and the normal vector of
the interface nΓ points to Ω+(t). Furthermore, the intersection of Γ (t) with the surface of V (t)
is bounded by a curve C(t) with a normal vector N pointing outwards and lying tangential to
Γ (t).

Assuming no-slip condition between the tangential velocity components at the interface, i.e.

u+tan = u−tan = uΓ tan, (2.1)

the conservation equation for an extensive quantity Φ with density φ is given as [9]:

d
d t

∫

V (t)

φdV =−
∫

∂ V (t)

jmol · ndA+

∫

V (t)

PdV

−
∫

C(t)

jmol
Γ ·Nds+

∫

V (t)∩Γ (t)

PΓ dA.

(2.2)

The density φ can be either a scalar or a vector. The first term on the right-hand side of equation
(2.2) describes the change of φ through transport. Since V (t) is a material control volume,
only diffusive (molecular) transport comes into play. The third term describes the change of
φ by surface diffusion through the curve C(t). The second and the fourth terms are volume-
specific and surface-specific source terms, respectively. Given φ, P, PΓ , jmol and jmol

Γ properly,
the conservation equations for mass and momentum can be derived.

11



Figure 2.1.: Description of a two-phase fluid system.

2.1.1 Mass conservation

Mass is an extensive quantity with ρ denoting its density. We assume that the interface does
not carry mass, hence jmol

Γ = 0. With φ = ρ, jmol = 0, P = 0 and PΓ = 0, the mass conservation
equations are given as

∂ ρ

∂ t
+∇ · (ρu) = 0 in Ω+ ∪Ω−, (2.3)

[[ρ(u− uΓ )]] · nΓ = 0 at Γ (t), (2.4)

where uΓ denotes the interface velocity and u the velocity in the bulk. The notation [[·]] denotes
the jump of a quantity across the interface, which is defined as

[[Ψ]](x) = lim
h→0+

(Ψ(x+ hnΓ (x))−Ψ(x− hnΓ (x))). (2.5)

For incompressible fluids of constant density without phase change, equations (2.3) and (2.4)
can be further reduced to

∇ · u= 0 in Ω+ ∪Ω−, (2.6)

u+ · nΓ = uΓ · nΓ = u− · nΓ at Γ (t). (2.7)

The equation (2.6) is the corresponding volume conservation equation for incompressible
flow. The equation (2.7) describes that the velocity component perpendicular to the interface is
continuous. With the assumption (2.1), the jump condition of the velocity field is summarized
as

[[u]] = 0 at Γ (t). (2.8)
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2.1.2 Transport equation of the phase indicator

We define a phase indicator χ with value 1 in Ω+ and 0 in Ω−. Then the local density and
dynamic viscosity are given as

ρ = χρ+ + (1−χ)ρ−, (2.9)

η= χη+ + (1−χ)η−. (2.10)

For incompressible fluids of constant density without phase change, the transport equation of
the phase indicator is given as

∂ χ

∂ t
+∇ · (χu) = 0 in Ω+ ∪Ω−. (2.11)

The transport equation (2.11) is the central equation solved in the VOF method, which details
are described in Chapter 3.

2.1.3 Momentum conservation

Given φ = ρu, jmol = S− pI, jmol
Γ = σ(I− nΓ ⊗ nΓ ), P = ρf, PΓ = 0 for incompressible flows

without phase change [51], the momentum conservation equations are written as

∂

∂ t
(ρu) +∇ · (ρu⊗ u) =∇ · T+ρf in Ω+ ∪Ω−, (2.12)

[[− T]] · nΓ = σκnΓ at Γ (t), (2.13)

whereσ is the surface tension assumed to be constant, κ is the interface curvature, and f denotes
the body force. For Newtonian fluids, the stress tensor T is given as

T= −pI+ S, (2.14)

with S= η(∇u+(∇u)T) in incompressible flow. The momentum equations (2.12) for Newtonian
fluids are called the Navier-Stokes equations, which are valid in both phases.

For a two-phase fluid system at rest, i.e. a static droplet or bubble in a surrounding fluid, the
momentum jump condition can be further reduced to the Young-Laplace equation, giving the
Laplace pressure jump across the interface:

∆p = σ(
1
R1
+

1
R2
), (2.15)

where R1 and R2 are the curvature radii of the interface.
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Figure 2.2.: Breakup of a water jet due to the capillary effect [66].

2.1.4 Differential equations governing the flow in two-phase fluid systems

Since the surface tension force only acts at the interface, the momentum jump condition
can be added to the momentum conservation equation as a singular interface term by using a
δ-function yielding the one-field formulation of the Navier-Stokes equations. The differential
equations governing the hydrodynamics of incompressible two-phase flows, including the one-
field formulation of the Navier-Stokes equations, are summarized below:

∇ · u= 0, (2.16)
∂ ρ

∂ t
+∇ · (ρu) = 0, (2.17)

∂

∂ t
(ρu) +∇ · (ρu⊗ u) = −∇p+∇ · S+ρf+σκnΓδ. (2.18)

2.2 Interfacial instabilities

In two-phase incompressible flows, the interface between the two phases is unstable in cer-
tain conditions, meaning that a small disturbance on the interface will be magnified by the
fluid system. Two kinds of interfacial instabilities are addressed in this section, namely the
Plateau-Rayleigh (PR) instability and the Rayleigh-Taylor (RT) instability, which are the candi-
date theories for the explanation of the rim instability emerging in spatter phenomenon that
will be discussed in Chapter 5.

2.2.1 Plateau-Rayleigh instability

A straight free liquid jet in a gaseous surrounding is unstable due to the capillary effect and
breaks into a chain of small droplets; see Figure 2.2 for an example. This kind of instability is
referred to as the Plateau-Rayleigh (PR) instability.

This phenomenon has been explained analytically by Lord Rayleigh [46], assuming an inviscid
liquid. The instability of the jet begins with a tiny perturbation that is in form of, e.g. , surface
displacement, pressure or velocity fluctuations in the fluid system. The disturbances in the axial
direction of the jet are magnified with wave numbers less than a cut-off wave number kc, and are
decaying otherwise. The wave number with the maximum growth rate decides the number and
the size of the resultant droplets. In order to go into more detail, we consider a harmonic axial
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Figure 2.3.: Schematic representation of an unstable jet.

disturbance on a straight fluid jet with initial radius r0 and an infinite length (see Figure 2.3)
and conduct a dimensional analysis of the Navier-Stokes equations. The disturbance is described
by wavelength λ, frequency ω̄, and amplitude a. According to Ashgriz and Nasser [4], the
characteristic length and the characteristic time of the problem are λ and 1/ω̄, respectively. The
characteristic fluid velocity due to the interface motion is estimated as U ≈ aω̄. Therefore, the
time derivative term, the convective term and the Laplacian term of the Navier-Stokes equations
are estimated as ρ∂ u/∂ t ∼ ρUω̄∼ ρaω̄2,∇·(ρu⊗u)∼ ρU2/λ∼ ρa2ω̄2/λ, η∆u∼ ηU/λ2 ∼
ηaω̄/λ2, accordingly. Comparing the time derivative and the convective term shows that the
non-linear convective term can be neglected if a � λ. The Reynolds number is given as Re =
ρUλ/η≈ ρaλω̄/η. Comparing the time derivative and the viscous term shows that the viscous
term can be neglected when ρλ2ω̄/η= Reλ/a� 1.

Neglecting the viscous effect and linearizing the Navier-Stokes equations written in cylindrical
coordinates, the growth rate of a small-amplitude harmonic disturbance is given as (for detailed
derivation see [4] or the original work [46])

ω2 =
σk
ρr2

0

(1− k2r2
0)

I1(kr0)
I0(kr0)

, (2.19)

where ω = ωr + iωi is the growth rate, k is the wave number, In are modified Bessel functions
of the first kind. If the real part of the growth rate ωr is positive, the disturbance grows expo-
nentially in time. In the parentheses in equation (2.19), k2r2

0 comes from the jet axial curvature
and ‘1’ from the jet sectional curvature which represents the capillary pinching. Since the ra-
tio of the modified Bessel functions I1/I0 is positive for all conditions, the jet is unstable if the
capillary pinching is dominant:

1> k2r2
0 , (2.20)

or equivalently:

λ > 2πr0. (2.21)

The cut-off wave number for the instability is therefore given as kc = 1/r0.The spectrum of
the growth rate for an inviscid jet is plotted in Figure 2.4. The fastest growing perturbation
dominating the jet evolution occurs at kr0 = 0.697, which can be used to estimate the break
length of the fluid jet and, furthermore, the size of the generated droplets.
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Figure 2.4.: Non-dimensional growth rate of instabilities on inviscid and viscous jets with respect
to the wave number.

Weber [68] and Chandrasekhar [12] extended Rayleigh’s inviscid theory concerning viscosity
effect. The corresponding characteristic equation for the perturbation spectrum is given as

ω2 +
2ηk2

ρI0(kr0)

�

I ′1(kr0)−
2kl

k2 + l2

I1(kr0)
I1(l r0)

I ′1(l r0)
�

ω

=
σk
ρr2

0

(1− k2r2
0)

I1(kr0)
I0(kr0)

l2 − k2

l2 + k2
,

(2.22)

where l2 = k2 + ρω/η. For η = 0, this expression reduces to equation (2.19). The influence
of viscosity on the growth rate is shown in Figure 2.4 regarding Ohnesorge numbers defined
as Oh = η/pr0ρσ. One sees that the maximum growth rate and the dominant wavenumber
decrease with increasing viscosity, while the cut-off wave number remains kc = 1/r0.

2.2.2 Rayleigh-Taylor instability

The Rayleigh-Taylor (RT) instability is an instability of interface between two fluids with dif-
ferent densities. It occurs when the lighter fluid supports the heavier fluid under gravity or
equivalently, under an acceleration of the fluid system in the direction towards the denser fluid.
Figure 2.5, obtained from own numerical simulations, illustrates the development of the RT
instability under gravity.

The classical modeling of the Rayleigh-Taylor instability given by Taylor [63] assumes two
inviscid fluids with density ρ1 and ρ2 originally at rest with ρ1 > ρ2. The gravitational field g
points to the lighter fluid. Derived on the basis of potential theory, the growth rate of a small
harmonic perturbation at the interface is given as

ω(k) =
p

kgA , (2.23)
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Figure 2.5.: Development of the Rayleigh-Taylor instability under gravity.

where A= (ρ1 −ρ2)/(ρ1 +ρ2). With A> 0, the instability exists for every positive wavenumber
k. For large wave numbers, it is natural to expect that the surface tension force will stabilize
the instability, which is indeed the case. According to Bellman et al. [6], who extended the RT
instability theory concerning the effect of the surface tension force, the interface perturbation is
dampened for

k <

√

√(ρ1 −ρ2)g
σ

. (2.24)

The fastest growth rate is given as

ωmax =

√

√ 2A

3
p

3σ
g
Æ

(ρ1 −ρ2)g, (2.25)

occurring at wavenumber

k =
1
p

3σ

Æ

(ρ1 −ρ2)g. (2.26)

2.3 Continuum mechanics and rarefied gas flow regimes

It is well known that gas is composed of discrete molecules or atoms on the microscopic scale.
If the length scale of a given volume is large enough, the average property of the gas is not
influenced by the concrete number of molecules in this volume. For example, there exist 3×1010

molecules in 10−9 cm3 air under standard temperature and pressure conditions ensuring the
average sense of the gas property [60]. On the basis of this conception, continuum mechanics
assumes that the substance of the object completely fills the space it occupies and the property
at a point is continuous (even twice continuously differentiable) function of coordinates and
time allowing the description of the motion of the continuum by partial differential equations.
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We introduce the Knudsen number for the gas medium defined as

Kn=
λ

L
, (2.27)

where λ is the mean free path of the gas and L is the characteristic length scale of the flow.
The continuum hypothesis is valid for very small Knudsen numbers, i.e. Kn� 1. For a gas flow
with the mean free path of the gas comparable to the characteristic length scale of the flow, i.e.
Kn > 0.01, the flow is regarded as rarefied. According to the rarefaction degree, the rarefied
gas flow can be divided into three regimes [65]:

0.01<Kn< 0.1 Slip flow regime,

0.1<Kn< 10 Transitional regime,

Kn> 10 Free molecular regime.

In the free molecular regime, the collisions between molecules and the collision of the molecules
with the surface of a body have to be taken into account, which makes the problem more
complicated and put it beyond the scope of the present work. In the slip flow regime, the
continuum hypothesis can still be used; but it is necessary to introduce some modifications to
the boundary conditions. For particular cases, it is also possible to extend the method used in
the slip flow regime to the transitional regime. This issue will be further addressed in Chapter
7.
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3 Numerical Methods

3.1 Finite Volume discretization

The numerical simulations in this thesis are performed with the Computational Fluid Dynamic
(CFD) program Free Surface 3D (FS3D), which was originally developed at the ITLR (University
of Stuttgart) [51] and has been extended both at the ITLR and in the Mathematical Modeling
and Analysis (MMA) group of Technische Universität Darmstadt. FS3D is based on the Finite
Volume (FV) method. The basic concept of the Finite Volume method is described by dealing
with the conservation equation for an extensive quantity Φ with density φ in a fixed control
volume:

d
d t

∫

V

φdV =

∫

V

PdV +

∫

S

F · ndS, (3.1)

where P and F summarize all the source terms and the fluxes, respectively. Discretizing the
domain into finite control volumes in cuboidal form, applying the above equation for each
control volume Ω with surfaces l = 1, ..., 6 and integrating over time step δt = tn+1 − tn yield

∫

Ω

φ(tn+1)dV −
∫

Ω

φ(tn)dV =

∫

Ω

tn+1
∫

tn

Pd tdV +
l=6
∑

l=1

∫

Sl

tn+1
∫

tn

Fd t · nl dS. (3.2)

Approximation of the spatial average values by the values of the center of the control volumes
or by the values of the center of the cell faces constructs the foundation of the Finite Volume
method. For unsteady problems, the time averaged values are approximated by the values at
the new or the last time step.

In FS3D, a cuboidal box serving as the computational domain is discretized into cuboidal
cells. Specifically within this work, the edge lengths of the computational cells are restricted
to be equidistant. Two layers of dummy cells are settled around the domain, which are used
to employ the boundary conditions as suggested by Blazek [7]. The variables are arranged in
a staggered way according to the MAC scheme [23], whereby the pressure and other scalar
variables like the volume fraction are stored in cell centers and the velocity components are
stored at cell faces separately. This staggered grid arrangement prevents an oscillating pressure
field [58].
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Figure 3.1.: Schematic description of the PLIC algorithm. Left: Reconstruction of the Interface.
Right: Computation of the flux through cell faces. The volumes in the dark area are
the advected volumes of fluid in one time step. The velocities in x-direction at cell
faces are positive in this example.

3.2 Volume of Fluid method

Within this thesis, the Volume of Fluid method, originally developed by Hirt and Nichols [23],
is employed for locating and tracking the interface position. In the VOF method, the transport
equation

∂ χ

∂ t
+∇ · (χu) = 0 (3.3)

is solved for the phase indicator χ, which has the value one in the liquid phase and zero other-
wise. Integrating the phase indicator function over the volume of a computational cell and then
dividing the integral by the cell volume gives the volume fraction of the liquid phase in finite
volume discretizations. The volume fraction is denoted by f and has the value







1− ε < f ≤ 1 in the liquid phase,
0≤ f < ε in the gas phase,
ε≤ f ≤ 1− ε in cells containing interface,

(3.4)

where the numerical threshold ε is set to 10−6 in FS3D.
The transport equation (3.3) is solved by means of the Piecewise Linear Interface

(Re-)Construction (PLIC) algorithm [50]. First, the interface is reconstructed by fulfilling two
conditions simultaneously:

1. The interface is locally approximated by a plane possessing a normal vector n given as

n = −
∇ f
‖ ∇ f ‖

. (3.5)
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For computing ∇ f , the components of ∇ f are evaluated at cell faces by central differenc-
ing. The obtained values are then averaged to obtain∇ f located at cell vertices. Averaging
∇ f located at all vertices of one cell yields an approximation of ∇ f which is located at the
cell center. In total, a 27 (33) cells stencil is used for computing ∇ f , so as for computing
n.

2. The approximated interface and the wetted cell faces enclose the volume f∆x∆y∆z.

The reconstructed interface is exemplarily shown in Figure 3.1. Instead of solving the volume
transport equation (3.3) directly, this advection equation is split into three one-dimensional
transport equations that are solved successively. Furthermore, the volume transport equation
is complemented with a divergence corrector, which ensures that the cells in the interior of the
liquid phase are not confused with interface cells. The flux of the liquid phase through cell faces
for one time step, e.g. in x-direction, is then the volume of the liquid phase located in the volume
uδt∆y∆z; see Figure 3.1 for a schematic description in 2D. The procedure of the computation
of the volume flux in each direction is the same; the sequence of computing the three split
equations is symmetric between two subsequent time steps, which guarantees a second-order
procedure. After one of the three one-dimensional transports, the f -values could be larger than
one or smaller than zero in badly conditioned cells. The f -values are restricted between zero
and one through a post-correction. For more details, we refer to [51].

Having the updated volume fraction in each cell, the local material properties can be approx-
imated:

ρ = f ρL + (1− f )ρG, (3.6)

η= f ηL + (1− f )ηG, (3.7)

where the subscripts L and G denote the liquid phase and the gas phase, respectively. With given
volume fractions, the so-called height function can be computed, which describes the distance
of the interface to a given reference surface. The height function h can be written based on an
elementary volume between the interface and a projected area serving as reference:

h= lim
dA→0

∫∫

hdA

dA
, (3.8)

where
∫∫

hdA is the volume of fluid between the interface and the projected area dA. It is
possible to find the height function in three space directions. Taking z direction for example,
one can approximate

∫∫

hdA by summing up the volume fractions in a cell column having the
bottom area ∆x ·∆y:

V =
n
∑

k=1

( f (k) ·∆z(k)) ·∆x ·∆y, (3.9)
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where k indicates the cell and runs from the cell lying on the reference surface to the cell
containing only gas phase in z direction. The height function can then be computed:

h=
V

∆x ·∆y
=

n
∑

k=1

f (k) ·∆z(k). (3.10)

The equation (3.10) computes the height function based on the liquid phase and the reference
surface must be within the liquid phase. Reversing the f -values, the height function with respect
to a reference surface that is located in the gas phase can be computed with equation (3.10) as
well.

3.3 Modeling of the surface tension force

In order to employ the one-field formulation of the Navier-Stokes equations, the surface ten-
sion force fΓ has to be approximated. In the context of the Volume of Fluid method, the following
approximations are performed:

δ ≈ ‖ ∇ f̃ ‖, (3.11)

ñ ≈−
∇ f̃

‖ ∇ f̃ ‖
, (3.12)

κ≈∇ · (−ñ), (3.13)

yielding the Continuum-Surface-Force (CSF) model [10] for computing the surface tension
force:

fΓ = σκδn ≈ σκ∇ f̃ . (3.14)

The surface normal ñ and the delta function δ are computed on the basis of a smoothed
volume fraction field f̃ . The smoothing is conducted by means of a second-order B-Spline
function. As a result, the surface tension force is computed not only on the interface but in a
small region around the interface, acting as a volumetric force.

The CSF model suffers from the well-known parasitic currents: the velocity field around the
interface oscillates unphysically. As a result, a spherical droplet with zero initial kinetic energy in
resting environment, which is expected to be silent, will oscillate and move in an unpredictable
way [2]. The parasitic currents can be significantly suppressed by discretizing∇ f instead of∇ f̃
in the same manner as discretizing the pressure gradient∇p, since the surface tension force can
then be balanced by the pressure jump due to the compatible discretization [8]. This balanced
version of the discretization of ∇ f leads to the balanced-CSF model for computing the surface
tension force.

Aside from the discretization of ∇ f , it is necessary to compute the interface curvature accu-
rately in the balanced-CSF model. The well-known variants of the balanced-CSF model are from
Renardy and Renardy [49], Francois et al. [20] and Popinet [43], whereby the main difference
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n

Figure 3.2.: Left: Computation of the interface curvature by means of height functions in direc-
tion of the maximum component of the interface normal. Right: A fragment of two
approaching droplets as an example scenario.

lies in the estimation of the interface curvature. Renardy and Renardy [49] estimate the in-
terface curvature through computing the curvature of a fitted paraboloid obtained on the basis
of volume conservation. Francois et al. [20] estimate the interface curvature based on height
functions constructed in a fixed region around the interface cells. In this thesis, the implementa-
tion of Popinet [43] is adopted. The algorithm estimates the interface curvature through three
hierarchical methods. The interface curvature is preferably computed by means of height func-
tions constructed in cell columns that align with the direction of the maximum component of
the interface normal; see a 2D example in Figure 3.2. The curvature in 2D can be determined
by means of the height functions:

κ=
hx x

(1+ h2
x)(3/2)

. (3.15)

If not all necessary height functions for computing the surface curvature can be found, the
construction of the height function is conducted in the other space directions. In case the com-
putation of the surface curvature by means of height functions is not possible, the computation
is conducted with a fallback strategy, namely paraboloid fitting of the interface by means of
height functions found in all the three space directions. If this is still not possible, the fitting is
conducted by means of the barycenters of the PLIC surfaces. The fitting in the fallback strategies
is conducted in a 27 (33, and 32 in 2D) cells stencil. The total algorithm is rather sophisticated
and the details can be found in the original work of Popinet [43].

It should be noted that in the cell columns where the volume fractions are summed for the
computation of the height functions, an empty cell and a full cell must be identified, since the
summation of the volume fractions is conducted between them. This leads to a limitation of the
application of the implemented balanced-CSF method especially in simulating binary droplet
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Figure 3.3.: Unphysical interface oscillation near contact area in a binary droplet collision. Three
symmetry planes are employed in the simulation.

collisions, as the construction of a proper height function is not possible when a change in
topology, e.g. the coalescence of droplets, is supposed to occur. Take the contact area schemati-
cally shown in Figure 3.2 (right) for example, a necessary empty cell for constructing the height
function in direction perpendicular to the collision plane cannot be found; in tangential direc-
tion, a full cell can not be found. For this scenario, the fallback strategies will be employed in
the simulation; however, only unpredictable results will be obtained, since no meaningful fitting
is possible for computing the interface curvature in a 32 cells stencil in this 2D scenario. In Fig-
ure 3.3, a simulation result of a binary droplet collision shows an unphysical oscillation of the
interface due to the failure while computing the interface curvature in the contact area. Another
limitation of the balanced-CSF model is that it requires higher grid resolution for computing the
curvature of sub-structures such as the rim of the collision complex, which is very thin at the
early stage of a high energetic collision. The disadvantages of the balanced-CSF model restrict
its use for certain scenario.

Another model for computing the surface tension force is the CSS model [28] which computes
the surface tension force as

fΓ =∇ · T , (3.16)

with

T = σ ‖ ∇ f̃ ‖ (I − ñ ⊗ ñ). (3.17)

The CSS model is a conservative model since it is written as a divergence of a tensor of
second-order. The CSS model suffers from parasitic currents as well; however, it does not have
the problems of the balanced-CSF model described above. In addition, the parasitic currents
have relatively less effect at highly dynamic process, which extends the area of applicability of
the CSS model. The comparison between the CSS model and the balanced-CSF model is sum-
marized in Table 3.1. In this thesis, the decision of employing the CSS model, the balanced-CSF
model or, if needed, a combination of the two models is made based on the advantages and the
limitations of the two models in concrete application scenarios. Without explicit indication in
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advantages limitations

CSS model 1. stable for small sub-structure

2. stable with topology change

3. less problematic in highly dy-
namic processes, since the par-
asitic currents are small com-
pared to the velocity field near
the interface

1. parasitic currents

balanced-CSF
model

1. much smaller parasitic cur-
rents

1. high grid resolution required for
small sub-structures

2. unstable with topology change

Table 3.1.: Comparison between the CSS model and the balanced-CSF model.

this thesis, the CSS model is employed. The unbalanced CSF model is not used in this thesis.

3.4 Time discretization

The time discretization is conducted by means of a first-order explicit Euler scheme, where
the key semi-discrete equations are given as:

∇ · un+1 =0, (3.18)

ρn+1un+1 −ρnun

δt
=−∇ · [(ρu⊗ u)]n

+
ρn+1

ρ( f n+1)
[−∇pn+1 +∇ · S(µn+1,un) + f n+1], (3.19)

ρn+1 −ρn

δt
=−∇ · (ρu)n. (3.20)

The density ρ( f n+1), the viscosity µn+1 and the body force f n+1 in equation (3.19) are com-
puted using the volume fraction at tn+1, which is updated by the VOF method. The semi-discrete
momentum equation (3.19) can be rewritten for the velocity at the new time as:

un+1 = ũ−
δt

ρ( f n+1)
∇pn+1, (3.21)
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with

ũ=
1
ρn+1

[ρnun −δt∇ · [(ρu⊗ u)]n]+

δt
ρ( f n+1)

[∇ · S(µn+1,un) + f n+1].
(3.22)

The provisional velocity ũ is updated by the convective and the non-convective acceleration
that correspond to the first and second term on the right-hand side of equation (3.22), respec-
tively. The convective acceleration and the mass conservation equation (3.20) are computed
simultaneously, whereby an operator split procedure and a divergence corrector are employed.
Inserting equation (3.21) together with the updated velocity field ũ in equation (3.18) yields
the discrete pressure-Poisson equation:

∇ · [
1

ρ( f n+1)
∇pn+1] =

∇ · ũ
δt

. (3.23)

Complemented by homogeneous Neumann conditions or Dirichlet conditions, the pressure-
Poisson equation is solved by means of a multigrid equation solver. The computation of the
velocity field un+1 is then finished with equation (3.21).

Due to the explicit time discretization, the time step is limited according to the following three
criteria to ensure a stable numerical scheme [52] :

Courant-Friedrichs-Lewy condition:

δt ≤
∆x

max{|u|, |v |, |w|}
(3.24)

Constraint due to surface tension force:

δt ≤

√

√(ρl +ρG)(∆x)3

4πσ
(3.25)

Constraint due to fluid viscosity:

δt ≤
(∆x)2

2max{ηL
ρL

, ηL
ρL
}

(3.26)

The constraints due to surface tension force and due to fluid viscosity are constant during a
simulation. Noticing equation (3.24), the time step in simulations can be dynamically controlled
by limiting the maximum allowable Courant-number:

C =
max{|u|, |v |, |w|} ·δt

∆x
. (3.27)
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Figure 3.4.: Typical setup for head-on collisions of two identical droplets by means of three sym-
metry planes.

3.5 Typical setup for head-on collisions of two identical droplets

The typical setup for head-on collisions of two identical droplets, which are the main object
of this study, is described in this section. The simulation is initialized with a quarter of a droplet
lying on two symmetry planes. The droplet collides with an initial velocity towards a symmetry
plane, which is equivalent to the head-on collision of two identical droplets, see Figure 3.4. The
cuboidal domain is decomposed into equidistant cuboidal cells. On the symmetry planes the
slip conditions are prescribed; the homogeneous Neumann boundary conditions for the velocity
and zero pressure are prescribed on all the other boundary planes (outer boundaries).

The setup described in this section serves as a template, from which the setups of almost all
of the simulations conducted in this work are derived.

3.6 Computation of the energy contributions

For an isolated fluid system without gravity, the total amount of the kinetic energy KE plus the
surface energy SE is decreasing with the dissipation rate ΦE. The different contributions can be
calculated based on the local flow field. The local kinetic energy in a computational cell is given
as

ke =

∫

Cell

1
2
ρ||u||2dV ≈

1
2
ρ||u||2∆x∆y∆z, (3.28)
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where the averaged square of the absolute value of the velocity is computed on the basis of
assuming a linear velocity profile within a cell, which ensures a second order accuracy. The
local kinetic energy is then given as

ke =
1
6
ρ(u2

i− 1
2 , j,k
+ u2

i+ 1
2 , j,k
+ ui− 1

2 , j,k · ui+ 1
2 , j,k+

v 2
i, j− 1

2 ,k
+ v 2

i, j+ 1
2 ,k
+ vi, j− 1

2 ,k · vi, j+ 1
2 ,k+

w2
i, j,k− 1

2
+w2

i, j,k+ 1
2
+wi, j,k− 1

2
·wi, j,k+ 1

2
)∆x∆y∆z,

(3.29)

where i, j and k denote the index of cells and ±1
2 denote the cell faces. A graphic example for

the notations is found in Figure 3.6.
The surface energy within a cell is given as

se = σA= σ

∫

Cell

||∇ f ||dV ≈ σ||∇ f ||∆x∆y∆z, (3.30)

where A is the surface area of the interface. ∇ f is computed by means of a 27 cells stencil, as
it is described in section 3.2. The values of ke and se are summed up over all the computational
cells to obtain KE and SE, respectively.

Alternatively, the interface area can also be computed by adding the areas of all PLIC-surfaces.
Rieber [51] states that computing the surface area by means of summing ‖ ∇ f ‖ (as suggested
in equation (3.30)) is a better choice, because it corresponds closely to the discretization of the
surface tension force. This statement is verified through a simulation, whereby a quarter of a
droplet lying at the intersection of three symmetry planes is initialized with an initial velocity.
After dissipation of the kinetic energy, the droplet is expected to retain its original form, i.e.
original surface area. The comparison between the surface area evolutions computed by means
of the two above mentioned methods does support the statement made by Rieber [51]; see
Figure 3.5. However, the deviation between the two profiles shown in Figure 3.5 is not very
large, especially when the oscillation is still relatively strong.

The dissipation rate for a cell is given as

φe = 2η

∫

Cell

D : D dV ≈ 2ηD : D∆x∆y∆z, (3.31)

where D = 1
2(∇u+∇uT ) is the deformation tensor of the flow field. The scalar product A : B

between tensors is defined as A : B =
∑

i, j ai, j bi, j. For computing the local energy dissipation,
the velocity gradients have to be evaluated. Taking the velocity component u as an example, the
velocity gradients are given using central differencing:

∂ u
∂ x
=

ui+ 1
2 , j,k − ui− 1

2 , j,k

∆x
, (3.32)

∂ u
∂ y
=

ui− 1
2 , j+1,k + ui+ 1

2 , j+1,k − ui− 1
2 , j−1,k − ui+ 1

2 , j−1,k

4∆y
, (3.33)

∂ u
∂ z
=

ui− 1
2 , j,k+1 + ui+ 1

2 , j,k+1 − ui− 1
2 , j,k−1 − ui+ 1

2 , j,k−1

4∆z
. (3.34)
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Figure 3.5.: Comparison between the surface area evolutions computed by means of ‖ ∇ f ‖ (de-
noted in the Figure by CSF due to their similar discretization) and PLIC-surfaces. The
balanced-CSF model is employed in the simulation. The surface area is normalized
by the original surface area given analytically. The time is normalized by the time
when the droplet finishes the first oscillation in the sense that the solid line reaches
its minimum. The setup of the simulation is listed in Table C.1 in appendix C.
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Figure 3.6.: Computation of ∂ u
∂ y by means of a 3 cells stencil. The velocities are interpolated from

cell faces to the cell centers. The differencing is then conducted over 2∆y .
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It should be noted that the computation of ∂ u
∂ y and ∂ u

∂ z is conducted in a 3 cells stencil, see the
schematic illustration in Figure 3.6. The dissipated energy can be computed by summing the
local dissipation rate over all cells and integrating the obtained total dissipation rate ΦE over
time.
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4 Lamella Stabilization
In direct numerical simulations of binary droplet collisions using the VOF method, a fluid

lamella arises and ruptures during a droplet collision process under certain conditions, which
leads to an unphysical topology change and thus strong deviation of the collision complex shape
in the successive deformation process. This Lamella can be a liquid lamella in droplet collisions
at high Weber numbers (We > 100) and a gas lamella (the gas lamella is also referred to as the
gas layer or gas film in this thesis) in droplet collisions at low Weber numbers (We = O(1) ∼
O(10)), the context of which will be described in detail in this chapter.

4.1 Stabilization of a liquid lamella

Head-on collisions of two identical droplets at high Weber numbers lead to the formation
of an extremely thin liquid lamella, which artificially ruptures in numerical simulations even
at relatively fine grid resolutions. The rupture of the thin lamella leads to a deviation of the
collision complex shape as illustrated exemplarily by Figure 4.1. Similar lamella ruptures are
also noted in many other numerical works [41, 37, 17, 16]. In experimental studies of binary
droplet collisions, this kind of lamella rupture is not observed even when the Weber number is
increased to We = 2876 [56], which confirms that the mentioned rupture of a liquid lamella is
artificial and must be prevented in numerical studies for capturing sound physics.

According to the work of Focke and Bothe [17] and Focke [16] in particular, the interaction
while computing the surface tension forces of both sides of the liquid lamella leads to the ar-
tificial lamella rupture. With respect to the CSS model in FS3D, the surface tension force is
computed from the divergence of the surface stress tensor, which is computed from a smoothed
volume fraction field f̃ . Both the smoothing of the volume fraction and the calculation of the
divergence of the surface stress tensor are carried out in stencils of 27 cells (33 cells). Altogether
the surface tension force in each cell containing a surface is affected by volume fractions in a
stencil of 125 cells (53 cells) [17]. When the lamella is resolved by fewer than four cells, the

Figure 4.1.: Lamella rupture (left) vs. stabilized lamella (right). Reproduced from [30] with per-
mission.
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block of 125 cells contains interface cells from the opposite side of the lamella, which causes an
unphysical interaction that leads to the lamella rupture.

In addition, the surface reconstruction is affected by the artificial interface interaction as well.
The surface reconstruction is unambiguously determined by the f -field and the surface normal
computed by equation (3.5). The computation of the surface normal is conducted in a stencil
of 27 cells. If this contains additional interface cells from the opposite side of the lamella, the
computation of the surface normal is affected and, hence, the surface reconstruction as well.

Both the problem in computing the surface tension force and the problem with the surface
reconstruction can be prevented by identifying the lamella region and then treating the cells of
the opposite side of the lamella as ‘fully wetted’. Focke and Bothe [17] implemented the lamella
stabilization method for head-on collisions of two identical droplets based on the collision of a
droplet on a symmetry plane, which is equivalent to the head-on droplet collision. The boundary
conditions of a symmetry plane are incorporated using two layers of dummy cells adjacent to
the computational domain [7]. Focke and Bothe [17] sort out the lamella region from the rim
region of the collision complex by detecting the direct neighboring cells of an interface cell (we
denote it here as a ‘target’ cell) in the first layer of the computational grid on the symmetry
plane. If not every direct neighboring cell contains liquid, the target cell is defined as ‘rim’.
Target cells whose neighboring cells are all also interface cells, are defined as ‘lamella’. The
volume fraction is then set to f = 1 in the dummy cells in the lamella region, thereby avoiding
the above-mentioned unphysical interaction. It turns out that, in this way, the lamella is well
stabilized. However, the rim region is not optimally identified since only the direct neighboring
cells of a target cell are detected, which may lead to the confusion of the rim region with the
lamella region.

In order to correctly identify the rim region, some modifications are introduced to the work
of Focke and Bothe [17]. The implementation of this modified lamella stabilization method is
based on a collision complex on a symmetry plane as well. The procedure is as follows (see
Figure 4.2 for a schematic diagram):

1. The region is denoted as ‘empty’ if the volume fraction in the first layer of computational
cells of this region equals 0 ( f (i, j, 1) = 0). The region is denoted as ‘full’ if the volume
fraction in both the first and second layer equals 1 ( f (i, j, 1) = 1 and f (i, j, 2) = 1).

2. The algorithm detects all the neighboring cells of the remaining cells in the first layer as
follows: if one of the volume fractions f (i+3, j, 1), f (i+3, j+3, 1), f (i, j+3, 1), f (i−3, j+
3, 1), f (i−3, j, 1), f (i−3, j−3, 1), f (i, j−3, 1), f (i+3, j−3, 1) equals 0, the region is denoted
as ‘rim’; the remaining region is set to ‘lamella’. The detection distance ‘3’ is chosen, since it
is large enough to avoid the confusion of the rim region with the lamella region addressed
above and small enough to avoid reaching the neighboring finger-structures in spatter
phenomenon while detecting.

3. The volume fractions of dummy cells in the lamella region are set to 1 and are mirrored in
the remaining regions.
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Figure 4.2.: Schematic of lamella stabilization. Reproduced from [30] with permission.

4. The surface tension force, the gradient of f and, hence, the surface normal due to equation
(3.5) are computed from this modified f -field.

5. The modification of the f -field in dummy cells is discarded.

To summarize, the stabilization algorithm for the liquid lamella corrects the computation
of the surface tension force and the reconstruction of the PLIC-surfaces for the stabilization
of the liquid lamella by modifying the f -values in dummy cells temporarily. Meanwhile, the
computation of ∇ f so as the computation of ‖ ∇ f ‖ are also corrected. In addition, the lamella
stabilization of Focke and Bothe [17] keeps the f -value in the lamella from falling below 10−6

during the transport of the f -field. Focke and Bothe [18] extended the work of Focke and Bothe
[17] for simulating off-center droplet collision without a symmetry plane by adding liquid into
the lamella to stabilize the lamella. In contrast, no mass needs to be added in the present work
in order to keep the lamella from rupturing.

4.1.1 Validation

In order to validate the new implementation of the lamella stabilization, the numerical results
are compared with the experimental work of Roth et al. [55]. The fluid is iso-propanol. Figure
4.3 shows that the shapes of the collision complex resulting from the simulation and from the
experiment are in good agreement. The slight corrugation at the rim of the collision complex at
the later stage of the deformation (around 400µs) is also predicted by the simulation.

The developments of the collision complex diameter D for two cases with different Weber
numbers We = 268 and We = 518 are presented in Figure 4.4. In the simulations, D is defined
as the average diameter on the collision plane and is computed based on the barycenter of
the PLIC-surfaces; in the experiment, the measurement of D is indicated in the experimental
part of Figure 4.3 (denoted there as d). The diameter of the collision complex and the time
are presented in a dimensionless form defined by D∗ = D/D0 and t∗ = t · Ur/D0, respectively.
In the case of We = 268 (the same case as presented in Figure 4.3), the development of D
predicted by the simulation is in very good agreement with the experimental results. In the case
of We= 518, the curves for the diameter of the collision complex converge with increasing grid
resolution. However, the limit curve lies above the corresponding experimental results. This
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Figure 4.3.: Comparison of the predicted shapes of the collision complex (right) with the experi-
mental results (left) of Roth et al. [55]. The two columns of the collision complexes
in the experiment result from double exposure. See Roth et al. [55] for more de-
tails about the experimental setups. The Weber number and Reynolds number are
We = 268, Re = 426. The setup of the simulation is listed in Table C.2 in appendix
C. Post-processing is done by means of the open source ray tracer program POV-Ray
(http://www.povray.org). Reproduced from [30] with permission.

deviation is attributed to both the numerical and experimental inaccuracies. In the experiment,
errors arise and are accumulated measuring the droplets’ material and kinetic parameters. For
example, assuming that the velocity in the experiment might be smaller than measured, an
additional simulation with a smaller Weber number (We = 448, the relative velocity is 7%
smaller than the original) is performed, which achieves a very good accordance. In total, these
comparisons show the ability of the lamella stabilization method in predicting the development
of the collision complex.

4.1.2 Lamella stabilization in terms of the balanced-CSF model

In the lamella region that is not well resolved, as it is exemplarily shown in Figure 4.2, it
is not possible to compute the interface curvature in a meaningful way with the algorithm of
the balanced-CSF model described in Chapter 3, since neither meaningful height functions nor
meaningful fittings can be found. As a result, the surface tension force cannot be computed
correctly in the lamella region and the lamella collapses. In order to compute the interface
curvature in the lamella region accurately though meaningful height functions, it is necessary to
find a full cell and an empty cell in a cell column that aligns with the direction of the maximum
component of the surface normal. By using the lamella stabilization algorithm, the absent
full cells in the lamella region can be artificially guaranteed for computing accurate interface
curvatures and thus the lamella can be stabilized. In spite of its functionality, the balanced-CSF
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Figure 4.4.: Comparison of the predicted diameter of the collision complex with experimental
results. The case We= 268 is the same case as presented in Figure 4.3. The Reynolds
number of the case We = 518 is Re = 600. The Reynolds number of the case We =
448 is Re= 558. The setups of the corresponding simulations are listed in Tables C.2,
C.3 and C.4 in appendix C. Reproduced from [30] with permission.

model is not used together with the stabilization algorithm within this thesis, since it cannot
deal with the topology change at binary droplet collisions in the contact area. Although it is
possible to switch the model for computing the surface tension force after a topology change
from the CSS model to the balanced CSF model, the complexity is not compensated because
parasitic currents do not play an important role in droplet collisions at high Weber numbers.

4.1.3 Correction of the computation of the surface energy

The lamella stabilization algorithm corrects the computation of ‖ ∇ f ‖ for an under-resolved
lamella and therefore also corrects the computation of the surface energy in the domain com-
puted by means of summing ‖ ∇ f ‖ (CSF-like approach). Nonetheless, one further step of
correction has to be taken for a valid computation of the integral surface energy by means of
the CSF-like approach, i.e. by equation (3.30). This correction is conducted by extending the
region for summing ‖ ∇ f ‖ from the domain to the layer of dummy cells adjacent to the symme-
try plane based on the fact that the value of ‖ ∇ f ‖ is not zero in dummy cells when the lamella
is under-resolved, as it is exemplarily shown in Figure 4.5. This correction is only employed in
the identified lamella region.

The diagram in Figure 4.6 shows the corrected surface energy evolution of a droplet collision
process compared to the uncorrected one. The collision process can be roughly divided into
an expanding phase, when the surface energy increases due to the expansion of the collision
complex and a receding phase, when the surface energy decreases due to the retraction of the
collision complex. At around t∗ = 4, the deviation between the original result and the corrected
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Figure 4.5.: A fragment of an under-resolved lamella which is ideally planar. The volume frac-
tions are constant in tangential direction. The cell width is 1. (a) f -values are set to
1 by the lamella stabilization algorithm in dummy cells. (b) summing ‖ ∇ f ‖ in the
extended region yields the surface area exactly.

one begins to become more obvious, since the lamella is then increasingly under-resolved. At
around t∗ = 14.8 the deviation vanishes since the lamella vanishes due to the retraction of
the collision complex. The curve representing the energy evolution computed by summing the
area of the PLIC-surfaces provides an additional evidence for the necessity of correcting the
computation of the surface energy conducted by means of summing ‖ ∇ f ‖.

4.2 Stabilization of a gas lamella

Similar to the liquid lamella of a collision complex, a gas lamella between two liquid-gas inter-
faces also ruptures in VOF-simulations conducted with the CSS model as long as the interfaces
from both sides of the gas lamella are located in a 53 cells stencil due to the artificial interaction
while computing the surface tension force. In binary droplet collisions, this kind of gas lamella
rupture always leads to coalescence of droplets. We consider two droplets as numerically coa-
lesced if the liquid phase allows to connect the droplet centers without leaving the liquid. In
the low Weber number regime (We = O(1) ∼ O(10)), binary droplet collisions result in either
coalescence or bouncing due to the presence of the gas layer between the colliding droplets. In
standard VOF simulations conducted with feasible resolutions, the thickness of the gas layer is
on the sub-grid scale. Thus, the simulations cannot reproduce bouncing due to the unphysical
gas lamella rupture.

Making use of the symmetry plane in the context of head-on binary droplet collisions, the gas
lamella can be simply stabilized by setting the volume fractions in dummy cells to zero while
computing the surface tension force, as it is schematically shown in Figure 4.7. In this way,
the computation of the surface tension force of one droplet is not affected by the other one
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Figure 4.6.: Surface energy evolution computed by means of the CSF-like approach with and
without correction and by means of summing the area of the PLIC-surfaces in a
binary droplet collision process run with We = 416, Re = 530. The setup of the
simulation is listed in appendix C.5. The surface energy is normalized with the initial
surface energy. The time is normalized with D0/Ur .

.

Figure 4.7.: Stabilization of a gas lamella through a modification of volume fraction in dummy
cells on the symmetry plane. Left: symmetry condition. Right: stabilization of the
gas lamella.

and the gas layer is therefore prevented from rupture. By means of this lamella stabilization
algorithm through modification of the boundary condition of the volume fractions, the bouncing
phenomenon can be reproduced in simulations. However, the coalescence of droplets is then
not possible, since the two droplets do not affect each other at all. In fact, more physics, i.e.
the molecular forces as well as the rarefied flow effect have to be involved for modeling the
coalescence process, as it is discussed in the introduction. Despite the lack of additional physics
in the numerical modeling on the microscopic scale, a prescribed collision outcome ‘bouncing’
or ‘coalescence’ can be simulated by using standard and/or modified boundary conditions of the
f -field. The simulation methods and corresponding results are described in the following.
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Imposed bouncing

The gas lamella stabilization can be applied to both the CSS model and the balanced-CSF
model, in order to impose bouncing. It has been described in Chapter 3.3 that the height
function cannot be found in direction perpendicular to the collision plane near the impact in
head-on droplet collisions due to the lack of necessary empty cells. This problem is however
not present in imposed bouncing, since the the lacking empty cells near the impact can then be
found in dummy cells while applying the gas lamella stabilization. In all simulations of imposed
bouncing in this work, the balanced CSF model is employed to reduce the parasitic currents
that have a prominent effect at low Weber numbers. The comparison between simulation result
and experiment conducted by Pan et. al [40] shows that the evolution of the collision complex
shapes with the outcome bouncing can be well predicted by the simulation; see Figure 4.8.

Coalescence

In experiments, the coalescence of the colliding droplets (especially in sector III of the colli-
sion diagram) does not occur immediately when the droplets are supposed to get in touch (at
t∗ = 0) due to the presence of the gas layer. Instead, the coalescence is delayed to a later time
after significant deformation of the droplets. It has been suggested by Pan et al. [40] that the
abrupt smoothing of the cuspy contour of the collision complex indicates the occurrence of co-
alescence. Based on this approach, Pan et al. [40] studied the coalescence process by removing
the interface that is modeled by the Front Tracking method at a prescribed time obtained from
the experimental observation. In their experimental results shown in Figure 4.9, the coalescence
instant is identified to be between t = 0.366 ms and t = 0.370 ms. Using the interpolated value
t = 0.368 ms as the time of coalescence, the macroscopic phenomena of the collision process
are well reproduced in their simulations. In order to simulate the coalescence phenomenon, the
idea of specifying coalescence at a prescribed time is followed. The simulation is started with
the balanced-CSF method due to its advantage in reducing the parasitic currents. Meanwhile,
the gas lamella is stabilized. At the time of coalescence, the lamella stabilization is discarded by
switching the boundary condition of the volume fractions in dummy cells to standard boundary
condition at a symmetry plane. Meanwhile, the method for computing the surface tension force
is switched to the CSS model due to its ability to deal with the expected topology change causing
coalescence. The simulation of coalescence is conducted by using the above-described methods.
The comparison with the corresponding experiment yields again very good agreement on the
macroscopic scale, as shown in Figure 4.9.

4.2.1 Dependence on the grid resolution

In order to illustrate the dependence of the simulations of bouncing and coalescence on the
grid resolution, the evolution of the collision complex diameter defined as the maximum radial
extension is plotted in Figure 4.10 for three different resolutions. It is obvious that the results
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Figure 4.8.: Evolution of collision complex shapes in bouncing phenomenon. Experimental re-
sults are obtained from Pan et al. [40]. We = 9.33, Re = 110.36. The initial droplet
diameter is resolved by 64 cells. Detailed numerical setups are listed in Table C.6 in
appendix C.
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Figure 4.9.: Evolution of collision complex shapes in coalescence phenomenon. Experimental
results are obtained from Pan et al. [40]. We = 13.63, Re = 134.24. The initial
droplet diameter is resolved by 64 cells. Detailed numerical setups are listed in Table
C.7 in appendix C.
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Figure 4.10.: Evolution of the collision complex diameter for three different meshes. (a) Bounc-
ing. (b) Coalescence.

of both bouncing and coalescence are not dependent on the mesh sizes, more precisely, in the
macroscopic sense. In the microscopic sense, especially in the sense of the thickness of the
entrapped gas layer, however, the deviations of the results obtained from different resolutions
are very large, as it is shown in Figure 4.11. This dependence of the gas layer thickness on
the grid resolution is not a surprise, because even the finest grid cannot resolve this extremely
small length scale. Modeling the flow in the gas layer facilitates more detailed simulation of the
collision process. The flow in the gas layer can be modeled by means of a SGS model that will
be introduced in Chapter 7.

4.2.2 Correction of the computation of the surface energy with a present under-resolved
gas lamella

Reversing the volume fractions in Figure 4.5a, it is easy to perceive that the computation of
the surface energy by means of the CSF-like approach also needs to be corrected in case a gas
lamella is under-resolved. The correction is exactly the same as in the case of a liquid lamella,
namely extending the region for summing ‖ ∇ f ‖ to the layer of dummy cells adjacent to the
domain, with the precondition that the gas lamella is stabilized. The corrected surface energy
evolution of the simulation of bouncing (same case as shown in Figure 4.8) and the uncorrected
one are shown in Figure 4.12a. The surface energy computed by means of PLIC-surfaces, also
shown in Figure 4.12a, confirms that without a correction, a part of the energy get lost.

In the case of coalescence, the correction of the surface energy computed by means of the
CSF-like approach is valid before the coalescence occurs, which is confirmed by the surface
energy computed by means of PLIC-surfaces; see Figure 4.12b obtained for the same case as
shown in Figure 4.9. Right after the instant of coalescence, the gas lamella stabilization is
discarded in order to enable coalescence in the simulation and ‖ ∇ f ‖ is then not computed
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Figure 4.11.: Half of the interface thicknesses computed by means of summing the inversed f -
field in cell columns perpendicular to the collision plane. (a) evaluated at t =
0.84 ms for the case of bouncing. M1 corresponds to a cell width of∆x = 10.46µm
(b) evaluated at t = 0.368 ms for the case of coalescence. M1 corresponds to a cell
width of∆x = 10.60µm.

validly near the symmetry plane, as it is exemplarily shown in Figure 4.13. As a result, a
correction of the computation of the surface energy is not possible anymore. The false ‖ ∇ f ‖
values in the gas lamella region also result in a sudden drop of the surface energy computed
by standard computation. One may have the idea that ‖ ∇ f ‖ should still be computed based
on the modified f -field in dummy cells. But this is only valid temporarily. The gas film will
collapse due to the interaction of the computation of the surface tension force after a short
time and the modification of the f -field for the correction of the computation of the surface
energy does not make sense anymore. Therefore, the computation of the surface energy after
coalescence by means of summing ‖ ∇ f ‖ is not valid. As a fallback strategy, the surface energy
after coalescence can be computed by means of summing the area of PLIC-surfaces.
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Figure 4.12.: Surface energy evolution computed by means of the CSF-like approach with and
without correction and by means of summing the area of PLIC-surfaces. The sur-
face energy is normalized with the initial surface energy. The time is normalized
with D0/Ur . (a) imposed bouncing, conducted with mesh M2. (b) prescribed coa-
lescence, conducted with mesh M2.
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Figure 4.13.: A fragment of an under-resolved lamella which is ideally planar. The volume frac-
tions correspond to the inversed f -values of the example shown in Figure 4.5 and
are constant in tangential direction. The cell width is 1. (a) summing the gradi-
ents of f in the extended region yields the surface area exactly. (b) Discarding the
gas lamella stabilization yields reduced values of ‖ ∇ f ‖ in the lamella region. The
surface area cannot be computed correctly by means of the CSF-like approach.
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5 Numerical Simulations of Spatter
Phenomenon and the Mechanism of the
Rim Instability

In this chapter, a domain adjustment technique developed for the simulation of the spatter
phenomenon is first described. The numerical setups of the simulations and the results of pre-
liminary investigations, which are essential to reach a good agreement between simulations and
experiments, are detailed. Next, the simulation results are compared to corresponding experi-
mental work of Pan et al. [39]. Then, the mechanism of the instability growing on the rim of
the collision complex, which is called the rim instability for short, is discussed and the effect of
the liquid viscosity on the rim instability is studied. In all the simulations in this chapter, the
lamella stabilization algorithm is employed for the stabilization of the liquid lamella.

5.1 Domain adjustment

The numerical simulation of binary droplet collisions at high Weber numbers requires a high
gird resolution, meaning large computational effort, due to the large deformation of the colli-
sion complex. Based on the assumption that the gas phase in the computational domain does
not affect the collision dynamics significantly at high Weber numbers, a domain adjustment is
employed to reduce the computational effort. This technique is based on the work of Focke [16].
The procedure to implement this technique is described below (see the schematic in Figure 5.1):

1. The computation is started in an initial computational domain.

2. The computation is stopped before the collision complex reaches the boundary of the com-
putational domain. The computational data are saved in restart-files for each CPU.

3. The computational domain is reinitialized by enlarging the domain in the direction in
which the collision complex is extending, and shrinking the domain in the direction in
which the collision complex is receding.

4. Only the computational data in the overlap region of the old and new computational do-
mains are loaded. The velocities in the non-overlapping domain are set to zero. The
relative grid resolution is kept unchanged. Then the computation is restarted without
additional modification. Solving the pressure Poisson equation and conducting velocity
correction as in a normal time step without domain adjustment ensures a divergence-free
velocity field after the domain change.
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Figure 5.1.: Domain adjustment. Reproduced from [30] with permission.

Using this technique, either the number of necessary CPUs can be reduced or the computa-
tional resolution can be enlarged. The surface energy at the time t∗ = 10 normalized with initial
surface energy obtained with and without this domain adjustment technique for the aforemen-
tioned case We = 518 (Mesh: 384× 384× 128) in Chapter 4 is 6.463 and 6.469, respectively.
The deviation is very small, which reveals that the domain adjustment technique is usable in the
simulation of binary droplet collisions at high Weber numbers.

5.2 Numerical setups for water droplet collisions

In this section, the setups for the simulations of water droplet collisions are detailed, the re-
sults of which are compared to experiments in section 5.3.1. The material properties of the
air/water system are: ηL = 1.000 × 10−3 N s/m2, ρL = 1000 kg/m3, ηG = 1.8 × 10−5 Ns/m2,
ρG = 1.2 kg/m3, σ = 72.0× 10−3 N/m. In all simulations at least one symmetry plane, namely
the collision plane, is used, since the implementation of the lamella stabilization is based on
this symmetry plane as described in Chapter 4. In the case of We = 1520, owing to the ex-
tremely high collision energy, two additional symmetry planes are employed to increase the
computational resolution with restricted number of CPUs. The slip conditions are prescribed on
the symmetry planes; the homogeneous Neumann boundary condition for the velocity and zero
pressure are prescribed on all the other boundary planes. The simulations are started at t∗ = 0
when the distance between the centers of the initial spherical droplets is D0. The parameters
of the cases of water droplet collisions which are discussed in this chapter with corresponding
setups are summarized in Table 5.1.

The time step is restricted dynamically by the Courant-Friedrichs-Lewy (CFL) condition. The
maximum allowed Courant number is set to 0.05 which means:

∆t ≤
0.05∆x
|umax|

. (5.1)

A very small Courant number is selected to ensure a high temporal resolution which avoids
oscillation in the velocity field observed at larger Courant numbers. The stability conditions
related to the capillary wave and the fluid viscosity are also fulfilled at this small time step.

In all the simulations of droplet collisions a small quantity of air is enclosed in the collision
complex. Simulating collision between droplets of high and low viscosity, Focke et al. [19] also
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N We Re D0 Initial Domain Initial
(mm) Domain(mm3) Adjustment Grid

1 442.3 6207.3 1.21 5× 5× 1.25 yes 512× 512× 128
2 805.2 6370.0 0.7 3× 3× 0.75 yes 512× 512× 128
3 1520 8750.0 0.7 1.5× 1.5× 0.75 no 1024× 1024× 512

Table 5.1.: Setups of conducted simulations. Reproduced from [30] with permission.

observed the entrainment of air and argued that the entrainment is attributed to the failure of
the interface reconstruction when the approaching interfaces of the colliding droplets appear
in one cell. A test simulation replacing the entrainment of air with water has been conducted.
The evolution of the collision complex does not show any significant deviation compared to
the corresponding results with entrainment of air. Hence, the decision was made to keep the
entrainment of air untouched.

5.2.1 Role of imposed disturbances

In order to obtain physically reasonable numerical results in simulating the spatter phe-
nomenon at droplet impact on a fluid film, Rieber et al. [53] imposed an artificial disturbance to
the initial velocity field of the droplet and fluid film with a Gaussian distribution. The standard
deviation of the Gaussian distribution is selected up to half of the initial velocity of the droplets.
Analogously, a random noise is added to the initial velocity field:

u = u0 + ũ, (5.2)

where ũ is the added velocity which is distributed over the whole computational domain ac-
cording to the Gaussian distribution. The standard deviation of the Gaussian distribution for
each component of ũ is denoted as ∆U , which is normalized with the relative velocity of the
colliding droplets Ur . Based on the case of We = 442.3, we first examine the influence of the
disturbance strength and the time when the disturbance is exerted. The shapes of the collision
complex at t∗ = 12.72 with different ∆U imposed at t∗ = 0 are presented in Figure 5.2. As ex-
pected, the deformation of the collision complex becomes more violent when ∆U is increased.
The shapes of the collision complex at t∗ = 12.72 with ∆U = 1% imposed at different times are
presented in Figure 5.3. One observes that the deformation of the collision complex which is
disturbed very early after the collision (t∗ = 0.1) is most violent. If the disturbance is exerted
after t∗ = 0.1, the influence of the disturbance tends to vanish with increasing disturbance time,
again as to be expected.

All the simulations presented in section 5.3.1 are conducted both with and without distur-
bances to further investigate the influence of the disturbance on the collision dynamics. The
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Figure 5.2.: Collision complex at t∗ = 12.72 resulting from disturbance imposed at t∗ = 0 with
different∆U . Reproduced from [30] with permission.

Figure 5.3.: Collision complex at t∗ = 12.72 resulting from disturbance imposed at different
times t∗dist with∆U = 1%. Reproduced from [30] with permission.

disturbances are exerted at t∗ = 0, which corresponds to the reality that at the beginning of
the collision an initial disturbance of the colliding droplets and a disturbance of the surround-
ings exist. The disturbance strength ∆U = 1% is selected for the three cases of water droplet
collisions that are to be compared to experiments, and also for the simulations conducted with
varied droplet viscosities described in section 5.6.

5.3 Simulation results for water droplet collisions and quantification of the rim
development

5.3.1 Comparison with experiments

We compare the numerical results with the experimental work of Pan et al. [39]. The com-
parison of the evolution of the droplet complex for the case of a relatively low Weber number
(We= 442.3) is presented in Figure 5.4. The deformation history of the droplet complex that re-
sults from simulation without an initial disturbance (subfigure b) can be described as follows: A
fluid sheet is formed in the middle of the collision complex after the coalescence of the droplets
(not shown in the images). This fluid sheet is radially extended within the collision plane and
forms a toroidal rim at the edge. At about the maximum diameter of the collision complex
(t∗ = 6.23), an obvious corrugation of the rim is observed. The corrugation is then magni-
fied and evolves to finger-like structures, which grow at the receding stage of the deformation.
Compared to the experimental results, the appearance of the corrugation and the evolution of
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Figure 5.4.: Photographs and visualized simulation results of the head-on collision of water
droplets with We = 442.3, Re = 6207.3. (a) experimental result of Pan et al. [39].
(b ) simulation results without initial disturbance. (c) simulation result with an initial
disturbance of ∆U = 1%. The post-processing in the simulations is conducted with
POV-Ray (http://www.povray.org). Reproduced from [30] with permission.

the fingers are delayed so that no secondary droplets are detached from the rim of the collision
complex. The evolution of the collision complex that results from the simulation with an ini-
tial disturbance is quite synchronized with the experimental results and yields detachment of
secondary droplets, which corresponds well with the experimental results. The development of
fingers in the simulation with an initial disturbance is not regular due to the stochastic nature
of the Gaussian distribution of the initial disturbance.

Figure 5.5 presents the results for a higher Weber number (We = 805.2). In this case the
detachment of secondary droplets starts before the maximum diameter is reached in the simula-
tions both with and without an initial white noise. However, even in the simulation without an
initial disturbance, the secondary droplets are detached earlier than in the experimental results.
A possible explanation for the reason of this deviation will be given in the following section. In
the visualizations of the numerical part in Figure 5.5, some secondary droplets at the periphery
of the domain are much brighter, since these droplets flying out of the computational domain
cannot be correctly captured by used Post-processing program POV-Ray. It should be noted that
the grid resolution is not supposed to be the reason of the relatively poor agreement between
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Figure 5.5.: Photographs and visualized simulation results of the head-on collision of water
droplets with We = 805.2, Re = 6370. (a) experimental result of Pan et al. [39].
(b ) simulation results without initial disturbance. (c) simulation result with an initial
disturbance of ∆U = 1%. The post-processing in the simulations is conducted with
POV-Ray (http://www.povray.org). Reproduced from [30] with permission.

the simulations and the experiment in terms of the time when the secondary droplets are splat-
tered. Simulations of the same case with We = 805.2 conducted at ITLR of Stuttgart University
with doubled grid resolution do not show significant differences; see Figure A.1 in appendix A.

Figure 5.6 presents the results for a much higher Weber number (We = 1520). The de-
tachment of secondary droplets from the rim at the very early stage of the deformation called
‘prompt splashing’ [39] is reproduced in the simulation with an initial disturbance (subfigure c),
which corresponds well with the experimental results. The results without an initial disturbance
(subfigure b) yield no secondary droplets until t∗ = 1.05. Due to the restriction of the computa-
tional resource, the simulation is only conducted until t∗ = 1.05. Kuan et al. [27] concluded on
the basis of their numerical observations that at this extremely high Weber number the whole
toroidal rim will be separated from the sheet and will then break up into secondary droplets. In
contrast, the simulation results obtained within this work show that the rim is still connected to
the sheet and the secondary droplets are splattered out from the rim. Kuan et al. [27] reached
their conclusion probably because the lamella was not stabilized, which typically leads to a

50 5. Numerical Simulations of Spatter Phenomenon and the Mechanism of the Rim Instability



Figure 5.6.: Photographs and visualized simulation results of the head-on collision of water
droplets with We = 1520, Re = 8750. (a) experimental result of Pan et al. [39].
(b ) simulation results without initial disturbance. (c) simulation result with an initial
disturbance of ∆U = 1%. The post-processing in the simulations is conducted with
POV-Ray (http://www.povray.org). Reproduced from [30] with permission.

non-physical lamella rupture at the joint between the lamella and the sheet and therefore the
separation of the rim from the sheet.

5.3.2 Quantification of the rim development

A comprehensive quantification of the rim development is conducted for the case We= 442.3,
which is in best agreement with the experiment. In the following, for simplification, the length
is rescaled by the initial droplet radius and the velocity by the initial velocity of one droplet
(half the relative droplet velocity). The superscript ∗ that represents the dimensionless time
is dropped. We extract the radius of the collision complex on the collision plane based on
isosurfaces of f = 0.5 and compute the amplitude am of instability mode m by conducting Fast-
Fourier-Transformation (FFT). The amplitudes and the corresponding curve of the frontier of the
collision complex for the case We = 442.3 without imposed initial disturbance at t = 3.82 are
shown in Figure 5.7 (a) and (b). One observes that m = 4 dominates the rim instability, which
corresponds to the anisotropic Cartesian grid arrangement. Furthermore, all the other strong
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peaks correspond to the higher harmonics of the mode m= 4. The amplitudes of modes m= 4n,
on one hand, occur in form of the rim instability. On the other hand, they occur systematically
due to the grid structure and, hence, cannot be suppressed. This is a possible explanation why
in the case We= 805.2 without imposed disturbance, the rim instability is already stronger than
in the corresponding experiment.

In order to include the randomness of the disturbance, the same simulation is repeated 10
times with different disturbance of same strength (∆U = 1%). Then, the averaged spectral
diagrams for the radius of the collision complex are computed. To minimize the unwanted effect
of the grid anisotropy and its harmonics (exemplarily shown in Figure 5.7 (c)), the amplitudes
of modes m = 4n are replaced by interpolated amplitude values of the neighboring modes
(exemplarily shown in Figure 5.7 (d)). The averaged spectral diagrams for a large time span
are shown in Figure 5.8. One observes that during the time evolution the region of the largest
amplitudes is first shifted to larger modes and then moves slightly backwards.

The mean rim radius r0 is computed based on the case We = 442.3 without an initial distur-
bance and serves as the average value for the corresponding 10 repeated simulations. The rim
radius r0 is computed implicitly, based on the rim volume given as

Vrim = 2πRcπr2
0 , (5.3)

where Vrim = Vcell
∑

rim f (x , y, z). The rim region, over which the summation is computed, is
determined from the location of the minimum interface height normal to the collision plane,
which always appears adjacent to the rim and separates the rim from the lamella. In (5.3),
Rc = R0 − r0 is the radius of the rim centerline and R0 is the amplitude of the 0th mode of the
FFT analysis. The rim radius is plotted in Figure 5.9. The evolution of the rim radius can be
fitted best by a power law according to

r0 = 0.073 t 0.569. (5.4)

The radius of the collision complex on the collision plane R(t), the rim velocity Ṙ(t) and rim
acceleration R̈(t) are also computed for the case We = 442.3 without an initial disturbance:
R(t) is computed as the average value of PLIC-surface center positions; Ṙ(t) and R̈(t) are then
derived from R(t) by forward differencing. While computing the time difference, R(t) and
Ṙ(t) are locally smoothed by least-squares fitting to eliminate high-frequency oscillations. The
evolution of R(t), Ṙ(t) and R̈(t) and the corresponding smoothed lines are shown in Figure
5.10. The curves start at t = 0.01 to avoid the singularity at t = 0. Surprisingly, one observes
an oscillation in the development of the rim acceleration, and the acceleration is even positive
for quite a long period, which is in contradiction to the common opinion that the rim only
decelerates [26]. The acceleration field computed by means of DNS, shown exemplarily in
Figure 5.10 (d) for t = 0.07, confirms that the frontier of the collision complex on the collision
plane is located in the region of positive acceleration. According to Kim et al. [26], the rim
is decelerated due to its radial expansion. In the specific case of binary droplet collisions at
early time, the surface force pulls the interface outwards on the collision plane (see Figure 5.10
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Figure 5.7.: (a) Extracted curve of the frontier of the collision complex on the collision plane
for the case We = 442.3 without imposed noise at t = 3.82. (b ) Corresponding
amplitudes. (c) Averaged amplitudes of 10 repeated simulations with imposed dis-
turbance of the same strength (∆U = 1%) also at t = 3.82. (d ) The amplitudes
of modes m = 4n in (c) are replaced with interpolated values of the neighboring
modes. Reproduced from [30] with permission.
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Figure 5.8.: Averaged amplitudes of 10 numerical experiments (black solid line) and amplitudes
predicted by PR theory (red dot-dash line). Reproduced from [30] with permission.
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[30] with permission.

(d) for the local geometry) after droplets coalescence and before the fluid sheet is ejected on
the collision plane. This force contributes to the positive acceleration. After the toroidal rim is
formed, it oscillates essentially like an oscillating fluid cylinder. According to Rayleigh [47], the
angular frequency of a fluid cylinder for mode m can be estimated as

ωm =
√

√

(m3 −m)
σ

ρr3
0

. (5.5)

From Figure 5.10 (c), the oscillation period is extracted as the time difference between the
first two minima, resulting in a value of 0.147. Applying equation (5.5), the corresponding cal-
culated oscillation period for mode m = 2 is 0.145. This very good agreement of the oscillation
period confirms that the rim oscillates and that this oscillation is governed by equation (5.5).

5.4 Division of the collision process

In binary droplet collisions at high Weber numbers, the rim of the collision complex is un-
stable. It grows and forms finger-like structures and, finally, possibly ejects secondary droplets.
Based on the quantifications and analysis described in the above section, we can consider the
whole unstable collision process as a system that magnifies an initial signal, which is a white
noise signal in the simulations. In the conducted simulations, it is assumed that 10 simulations
with different initial disturbances of the same strength are enough to compensate the random-
ness in individual simulations. This system can be roughly subdivided into three sequential
connected subsystems corresponding to three phases in terms of the geometrical characteristics
of the rim; see also the schematic illustration in Figure 5.11:

• Initial phase (Subsystem I): the period between the contact of the droplets and the emerg-
ing of the toroidal rim. This subsystem magnifies an initial signal, which outcome is then
transmitted to subsystem II.
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Figure 5.10.: (a) Evolution of the radius of the collision complex. (b ) Evolution of the rim veloc-
ity. (c) Evolution of the rim acceleration. (d ) Acceleration field by means of DNS
at t = 0.07; the symmetry plane corresponds to the collision plane. The interface
represented by the black curve separates the liquid phase on the left from the gas
phase on the right. Reproduced from [30] with permission.
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Figure 5.11.: Subdivision of the collision process into three sequential connected signal amplifi-
cation systems (indicated as I, II and III) based on the geometrical characteristics of
the rim.

• Linear phase (Subsystem II): In this period, a toroidal rim forms and gradually grows to
fingers. This period ends when a neck forms on the finger. The signals in the initial and
linear phase can be characterized by the FFT analysis presented in the previous section.

• Nonlinear phase (Subsystem III): This period begins with the formation of the neck and
continues to the end of the collision process. The signal magnified by the subsystem II is
further magnified, resulting in fingering and possible detachment of secondary droplets.
In this phase, the outcome can be characterized by the number of fingers and the size spec-
trum of the secondary droplets, although a clear quantification is until now not possible
due to the complex geometry and topology of the collision complex in this phase.

In the numerical simulations, the three phases are distinguished according to whether the
toroidal rim and the neck on the finger can be identified by the quantification algorithms de-
scribed in section 5.3.2.

5.5 The rim instability

The ejection of secondary droplets results from the unstable development of the rim of the
collision complex formed on the collision plane. Aside from head-on binary droplet collisions,
this unstable rim is observed in the impact of a droplet on a solid substrate [34, 29, 64, 54] and
the impact of a droplet on a thin film of the same fluid [13, 70]. From previous studies, the
reason of the rim instability was mainly explained by: (1) the Plateau-Rayleigh (PR) instability
theory in which a cylindrical fluid jet breaks into droplets due to capillary effects [46, 56, 53,
70]; (2) the Rayleigh-Taylor (RT) theory in which the rim corrugation is magnified by the rim
deceleration [63, 3, 26, 34]. Which mechanism is the main cause of the rim instability is still
under debate. The head-on collision of two identical droplets is the best scenario for studying the
rim instability since: (1) compared to the other two mentioned scenarios, the rim is symmetric
with respect to the collision plane; (2) the impact of contact angle dynamics is not present. Until
now, the rim instability in binary droplet collisions has rarely been studied. In this section, we
examine the two mentioned instability patterns based on the quantifications obtained for the
case of We= 442.3.
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The formation of the toroidal rim finishes at around t = 0.25, indicating the end of the initial
unstable phase. The importance of the RT theory is examined within the initial unstable phase
due to the high deceleration of the rim frontier in this phase. The PR instability theory is
verified in the linear unstable phase from t = 0.25 to t = 5.09, when a toroidal rim is present.
The instability in the nonlinear phase is discussed based on the pressure field and velocity field
later on.

5.5.1 Initial unstable phase: RT instability?

In the classic RT theory [63], a decelerating flat interface that moves in the direction from
a dense fluid to a less dense fluid is unstable, as it is described in Chapter 2.2. Kim et al.
[26] extended the RT theory for studying the rim instability of a droplet spreading on a solid
substrate to cylindrical coordinates. In fact, their model is more suitable for studying the rim
instability in binary droplet collisions where the effect of contact angle, which is not included
in their model, is not present. The derivation of the model of Kim et al. [26] starts with the
spectral decomposition of the radius of the collision complex according to

R̄(φ, t) = R0(t) +
N
∑

m=1

am(t) cos (mφ), (5.6)

where φ is the angle and am the amplitude of mode m. Below, we employ R(t) given in Figure
5.10 instead of R0(t) since the latter is only computed for certain times by FFT analysis in post-
processing. It is not at the disposal for all time steps. The difference between R(t) and R0(t) is
small.

The derivation ends with solving a second-order linear differential equation for the amplitude
of mode m [26]:

äm +α(t)ȧm + β(t)am = 0, (5.7)

where α and β are given as

α(t) = 2
Ṙ(t)
R(t)

, (5.8)

β(t) =
(m+ 1)
R(t)3

[
m(m− 1)

We
+ R(t)2R̈(t)]. (5.9)

Here We is 1/8 of the Weber number that is defined for binary droplet collisions. Equation
(5.7) is solved numerically by means of a first-order explicit Euler scheme.

We insert R(t), Ṙ(t) and R̈(t) into equations (5.8) and (5.9) and evaluate the perturbation
growth from t = 0.13 to t = 0.25, using amplitudes at t = 0.13 computed by FFT analysis to
serve as initial value a(0). The other initial value ȧ(0) is set to 0. The evaluation is not started
at an earlier time for two reasons: (1) the FFT analysis at an earlier time was not reliable due
to the restriction of grid resolution for small R; (2) the acceleration at early time is positive
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Figure 5.12.: The evolution of amplitudes from t = 0.13 to t = 0.25 obtained from FFT analysis
and the prediction with RT theory. Reproduced from [30] with permission.

over a large time span, which according to RT theory [63] decreases the rim instability. The
diagrams in Figure 5.12 show that the amplitudes with small modes are magnified by the rim
deceleration, which is in agreement with the FFT analysis. However, the amplitude growth
computed by Rayleigh-Taylor theory is rather small compared to the amplitude growth obtained
from FFT analysis of the numerical results. Similar statements are also given by Agbaglah and
Deegan [1].

5.5.2 Linear unstable phase: PR instability?

The toroidal rim is present between t = 0.25 and t = 5.09 in all of the 10 conducted sim-
ulations, allowing us to examine the PR theory in this linear phase. The same PR expression
derived by Zhang et al. [70] is employed for the prediction of the amplitude evolution of mode
m. The mathematical model is briefly described below, further details can be found in [70].

The spectral decomposition of the local rim radius is written as

r(φ, t) = r0(t) + ε(φ, t) = r0(t) +
N
∑

m=1

am(t) cos (mφ), (5.10)

where ε is a small perturbation of r0. The growth rate Sm of the mth mode is implicitly computed
on a cylinder of constant radius via

2x2(x2 + y2)
I ′1(x)

I0(x)
[1−

2x y
x2 + y2

I1(x)
I1(y)

I ′1(y)

I ′1(x)
]− x4 + y4 =

ρσr0

η2

x I1(x)
I0(x)

(1− x2), (5.11)

where x = kmr0, km = m/Rc is the wavenumber of the mth mode, y2 = x2 + ρSmr2
0/η, and In

are modified Bessel functions of the first kind. We introduce εm = am(t) cos (mφ). Including the
growth and the expansion of the rim, the time evolution of the perturbation is given by

d lnεm(t)
d t

= −
s
2
+ Sm, (5.12)
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Figure 5.13.: Theoretical maximum amplitude (red cross) and the maximum amplitude in the
simulation (black circle) vs time. Reproduced from [30] with permission.

where s is the stretch rate due to the expansion of the rim given by s = Ṙc/Rc. Equation (5.12)
can then be integrated in time to obtain

ln
εm(t)
εm(0)

= −
1
2

ln
Rc(t)
Rc(0)

+

t
∫

0

Smd t ′. (5.13)

Using initial perturbation am(0), the amplitude of the mth mode at t is given as

am(t) = am(0)

√

√

√Rc(0)
Rc(t)

exp
�

t
∫

0

Sm(m/Rc(t
′), r0(t

′))d t ′
�

. (5.14)

We insert the amplitudes at t = 0.25 (shown in Figure 5.8 (a)) as initial conditions in equa-
tion (5.14) and compute the amplitude evolution, which is compared with FFT analysis of the
numerical results in Figure 5.8. Both the region of the maximum amplitudes and the amplitude
scale in this region are predicted very well over quite a long time span, which strongly indicates
that the evolution of the rim instability is dominated by the PR instability pattern in the linear
phase. The variation of the region of maximum amplitudes is simply due to both the different
initial amplitudes of mode m and their different amplification histories.

The theoretical peak amplitude value and the peak amplitude value obtained in the simu-
lations are computed by fitting the corresponding spectral diagram to a Gaussian distribution
and compared in Figure 5.13. It turns out that the peak amplitude is somewhat higher in the
theoretical prediction. The overestimation factor computed on the basis of data shown in Figure
5.13 is 1.23± 0.06.

5.5.3 The nonlinear unstable phase

A more detailed interface evolution history for the case of We = 442.3 with an initial distur-
bance of ∆U = 1% is shown in Figure 5.14. In these images, the phenomena in the nonlinear
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unstable phase, i.e. the growth of fingers and the detachment of secondary droplets, are illus-
trated more clearly. In order to gain more insights into the flow in the collision complex, the
pressure field and the velocity field for a truncated area (originally in the black box) of Figure
5.14 are presented in Figure 5.15.

A negative pressure region located at the joint of the sheet and the rim is observed in all of
the presented pictures; in the same region the velocity is high. It seems that the fluid is drawn
into the rim by the negative pressure region at least at the later stage of the deformation. The
velocity fields show that the flow in the circumferential direction occurs only inside the rim (not
considering the gas flow).

In the later phase of collision (nonlinear phase regarding the rim instability), it is impossible
to predict the strength of the rim instability by means of the PR instability theory as described
in section 5.5.2 due to the large deformations. Despite this, instability patterns similar to the
PR instability pattern are observed. Comparing the pressure field at t∗ = 5.09 and at t∗ = 6.36,
the high pressure within the rim fraction between the middle finger and the right finger forces
the fluid to flow out of the contracted rim fraction, which results in a rim fraction with a smaller
diameter and even higher pressure within this rim fraction. The higher pressure in return forces
more fluid to flow out of this rim fraction resulting in capillary pinching, which represents locally
an unstable process similar to the PR instability pattern. This instability expels liquid out of the
rim constantly and leads to the growth of the right finger and merging of the middle finger and
the left finger. At t∗ = 8.9, the high pressure in the neck of the right finger forces the fluid to
flow out of the neck constantly, which is also similar to the PR instability pattern, leading to a
detachment of the secondary droplet at t∗ = 9.67.

5.6 Influence of liquid viscosity

With the toolkit described in previous sections, we go forward to investigate the influence
of the liquid viscosity on the collision process, above all, on the rim instability in the linear
phase. Again, it is based on the most reliable case of We= 442.3. In the simulations, four other
viscosities are employed resulting in Reynolds number 620.73, 3103.7, 31037 and 62073, along
with the original water viscosity corresponding to Re = 6207.3 serving as a reference. All the
other setups are untouched. A comparison between the reference case of Re = 6207.3 and a
case with increased viscosity (Re = 620.73) and a case with a reduced viscosity (Re = 62073)
is illustrated in Figure 5.16. It is obvious, that the higher viscosity suppresses the rim instability
to a large amount, while the lower viscosity seemingly does not have a great impact on the rim
instability, although the secondary droplets detach somewhat earlier.

5.6.1 Evolution of the rim geometry depending on viscosity

Neglecting the attached liquid film and assuming a circular section, the rim geometry is un-
ambiguously determined by the evolution of the rim circumference C(t) = 2πRc(t) and the
evolution of the rim radius r0(t), which are plotted in Figure 5.17 and 5.18, respectively. It
should be noted that the evaluation starts at t = 0.38 other than t = 0.25 as it is described in
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Figure 5.14.: Top view of interface evolution in the case We = 442.3 with initial disturbance of
∆U = 1%. The same simulation as shown in Figure 5.4 (c).
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Figure 5.15.: Pressure field and velocity field of case We = 442.3 with initial disturbance of
∆U = 1%. The same simulation as shown in Figure 5.4 (c).

5.6. Influence of liquid viscosity 63



(a)

(b)

(c)

Figure 5.16.: Influence of viscosity variation on the rim instability. The Weber number is 442.3
for the three cases. (a) Re = 62073. (b) Re = 6207.3, reference case. (c)
Re = 620.73. The corresponding dimensionless time is from left to right 3.82,
6.36, 8.91 and 11.20. In (a) and (c), the simulations are conducted with the same
initial disturbance, as it is done in the reference case (b).
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Figure 5.17.: Evolution of the rim circumferences. The Reynolds number are 620.73, 3103.7,
6207.3 (reference case), 31037 and 62073. The arrow points to the direction with
increasing Reynolds number.

section 5.3.2, since at t = 0.25 not all the toroidal rims are formed in the five studied cases.
One observes that the rim circumference increases and the rim radius decreases with increasing
Reynolds number. This increment of the rim circumference and decrement of the rim radius
become tiny at high Reynolds numbers.

5.6.2 Input signals and output signals in the linear unstable phase

Knowing the PR instability pattern dominates the rim instability in the linear phase, one
can consider the evolving rim (from t = 0.38 to t = 5.09) as an amplification system that
magnifies an input signal at t = 0.38 and yields an output signal at t = 5.09, as it is described
in section 5.4. The signals are represented by the spectral diagrams shown in Figure 5.19 for
three representative Reynolds numbers. The spectral diagrams are obtained by averaging 10
simulations with different initial disturbances of the same strength, as it is described in section
5.3.2. Since the spectral diagrams are not smooth, the maximum amplitudes and the region
where the maximum amplitudes are located are represented by the (black) crosses in Figure
5.19. The position of the crosses is found as follows: in a first step, the spectrum is smoothed
by applying local averaging over a window of ±5 modes. The resulting curve shows a global
maximum which yields the position of the crosses.

Comparing the input signals in Figure 5.19, the maximum amplitudes resulting from Re =
6207.3 and Re = 62073 are of the same order, while the maximum amplitudes resulting from
Re = 620.73 are significantly smaller. The deviation of the region where the maximum am-
plitudes are located is small in the three cases. Comparing the output signals resulting from
Re = 6207.3 and Re = 62073, the maximum amplitudes are again of the same order, and
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Figure 5.18.: Evolution of the rim radii. The Reynolds number are 620.73, 3103.7, 6207.3 (ref-
erence case), 31037 and 62073. The arrow points to the direction with increasing
Reynolds number.

the deviation of the region where the maximum amplitudes are located is small. In the case of
Re= 620.7, the maximum amplitudes are one order smaller and the region where the maximum
amplitudes are located is significantly shifted to the left.

5.6.3 Growing rim as a signal amplification system

Applying the signals at t = 0.38 as initial conditions, the output signals predicted by the PR
instability theory is shown in Figure 5.19. The maximum amplitudes and the region where the
maximum amplitudes are located are represented by the red crosses in Figure 5.19, which are
also obtained through averaging, as it is done for obtaining the black crosses. One can conclude,
the rim instability can be predicted by the PR-Theory both at high and low Reynolds numbers,
providing additional evidence for the previous statement that the PR-instability dominates the
rim instability in the linear phase. At the low Reynolds number, the amplitudes are a bit under-
estimated due to the larger portion of the inherent disturbance in the simulation. The inherent
disturbance consists of the anisotropic grid arrangement, the parasitic current, the discretization
error and the truncation error, etc.

In the case of collision of water droplets (Re=6307.3), the maximum amplitudes are some-
what underestimated in the theoretical prediction which is in contradiction with the compari-
son shown in Figure 5.8 (d). The prediction shown in Figure 5.8 (d) is based on the signals at
t = 0.25 other than t = 0.38. The difference between the results of the two predictions reveals
that the growth rate between t = 0.25 and t = 0.38 is a bit overestimated. Still, the predictions
starting from t = 0.25 and from t = 0.38 are both very good.
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Figure 5.19.: Input signals at t = 0.38 (on the left) and output signals at t = 5.09 (on the
right) and predicted output signals by the PR theory. The signals obtained from
the evaluation of the DNS results are indicated by the black solid lines, while the
predicted output signals by the red dot-dash lines. (a) Re = 62073. (b) Re =
6207.3, reference. (c) Re = 620.73. The black crosses represent the results from
DNS. The red crosses represent the theoretical predictions.
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Figure 5.20.: Amplification factors of the three signal amplification systems corresponding to
Re = 6207.3 (black line, reference), Re = 62073 (blue line) and Re = 620.73 (red
line). The coordinates of the maximum amplification are (21, 260.2), (22,368.8)
and (14,19.5), respectively.

The signal amplification system can be characterized by the amplification factors of corre-
sponding unstable modes. Applying the same initial values am = 1 for all modes, the magnified
signal outcomes computed by the PR theory are shown in Figure 5.20, which reflects the ampli-
fication property of the three systems. Obviously, higher viscosity has a more significant effect,
reducing the amplification factors and shifting the maximum growing mode to the left.

The liquid viscosity affects the property of the signal amplification system on one hand by
affecting the evolution of the rim of the collision complex, i.e. C(t) and r0(t) shown in Figure
5.17 and 5.18, on the other hand by affecting the growth rate of the instability modes, as
the viscosity appears in the dispersion equation (5.11). The question is then, which effect
is the dominant one. To answer this question, while computing the growth rate of the rim
instability by means of equation (5.11) in the case of the low Reynolds number (Re = 620.73),
the liquid viscosity is substituted by the viscosity of water (that of the reference case Re =
6207.3). The resulting amplification factors and the modes having the maximum amplification
factors obtained from the theoretical prediction do not change much (in the sense that the
amplification factors are still much smaller than the amplification factors at Re= 6207.3, which
corresponds to a water droplet collision, and the mode having the maximum amplification factor
merely shifts), revealing that the viscosity affects the rim instability mainly through varying the
geometrical evolution of the rim on which the instability grows, see Figure 5.21. Note that the
viscosity is only changed while applying the theoretical prediction, in order not to change the
geometrical evolution of the rim in the simulation; if the viscosity would also be changed in the
simulation, the result would be that of the reference case of Re= 6207.3.
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Figure 5.21.: Viscosity effect on the amplification factors of the signal amplification system. The
black line represents the amplification factors of the case Re= 6207.3 (reference).
The red line represents the amplification factors of the case Re= 620.73. The blue
line represents the amplification system of the case Re = 620.73, while the liquid
viscosity is substituted with that of the water viscosity. For the case of Re= 620.73
the coordinate of the maximum amplification shifts from (14,19.5) to (15,47.56)
when the liquid viscosity is reduced by a factor of ten.

Lowering the liquid viscosity does not affect the amplification system much because it does
not affect the geometry evolution of the rim much, as it is shown in Figure 5.17 and Figure 5.18.

5.6.4 Conclusion on the viscosity effect

On the basis of the above observations and analysis, one can conclude that reducing the liq-
uid viscosity will promote the rim instability significantly at relatively low Reynolds numbers,
while this effect becomes insignificant at very high Reynolds numbers. Very high liquid viscos-
ity reduces the number of fingers by shifting the modes having the maximum amplitudes to a
smaller number. When the liquid viscosity is high enough to have a significant effect, it yields
on one hand more silent input signal for the linear phase of the rim instability considered as an
amplification system, one the other hand leads to a linear amplification system with weaker am-
plification ability, resulting finally in much more stable collision processes. High liquid viscosity
suppresses the amplification ability of the linear amplification system mainly through varying
the geometrical evolution of the rim.

In addition, it has been shown that the rim instability can be predicted by the PR instability
theory over a large Reynolds number range, which serves as a further evidence for the statement
that the PR instability pattern is dominant in the linear unstable phase.
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6 Flow in the Gas Layer between the
Colliding Droplets

The flow in the gas layer between the colliding droplets, which is essential for the collision
outcomes in terms of bouncing versus coalescence cannot be resolved by the computational
cells feasible in 3D simulations. In order to gain some insight into the flow in the gas layer,
a simulation in two-dimensions (2D) is conducted, which enables a significant increase of the
grid resolution. Noticing the time step constraint due to viscosity is dependent on the square
of the cell width, see equation (3.26), the grid refinement causes a fast decrease of the time
step making the computation more expensive. In order to obtain an acceptable time step, the
material parameters of the gas are modified to ρg = 0.1 · ρl and µg = 0.1 · µl . The material
of the droplets is tetradecane. Compared to the properties of air, the gas density and the gas
viscosity are significantly increased. As a result, the gas layer resists the approach of the droplets
more strongly and possesses therefore a larger thickness, which further facilitates the numerical
investigation of the flow in the gas layer. The droplet diameter is resolved by 512 cells. The
balanced-CSF model is employed. Detailed setups are found in table C.8 in Appendix C.

The following description is more about the objective observation which serves as basis knowl-
edges of the flow in the gas layer. The simulation results are evaluated for two typical stages in
the collision process, i.e. when the gas layer is just formed with tiny deformations of the droplets
(t = 0.28 ms) and when the gas layer is significantly extended in radial direction (t = 0.32 ms),
see Figure 6.1. At the two evaluated time instants, the thickness of the gas layer is resolved by
at least 16 cells. The arrows in Figure 6.1 indicate the lines along which the results are evalu-
ated. For t = 0.28 ms, the pressure profiles and the velocity profiles are shown in Figure 6.2.
One observes that the pressure is almost constant across the gas layer and there is a pressure
jump across the interface both near the stagnation point and near the edge of the gas layer. The
edge of the gas layer is defined as the position before rapidly enlarging gas layer thickness. The
pressure jump can be attributed to both the surface tension force and the jump of the viscous
force across the interface as it is implied by the momentum jump condition (equation (2.12)).
The velocity ur in the gas layer is much larger than the velocity in the droplet near the interface
indicating the squeezing of the gas out of the gap. Furthermore, the profile of the velocity ur

across the gas layer corresponds nearly to a parabolic curve. The pressure decreases in radial di-
rection. The velocity decreases rapidly beyond around r = 80µm because of the rapid increase
of the gas layer thickness beyond the edge of the gas layer.

The evaluation for the latter instant t = 0.32 ms is shown in Figure 6.3. Here, only the
significant differences compared to the results at earlier time t = 0.28 ms are addressed. First,
the squeezing velocity ur near the stagnation point is much smaller compared to the result at
the earlier time, indicating a trapping of the gas near the stagnation point. This is consistent
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Figure 6.1.: The profiles of the droplet near the gas layer. The dot-dashed lines represent the
symmetry planes. The arrows represent the lines along which the velocity and pres-
sure are evaluated. (a) evaluation at t = 0.28 ms. (b) evaluation at t = 0.32 ms.

.
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with the fact that the gas layer thickness near the stagnation point does not decrease much
compared to the former time instant and is larger than the gas layer thickness at the edge.
Secondly, the velocity profile changes from convex to concave, which reason is attributed to
the reversed sign of the pressure derivative in radial direction at the corresponding position
( dp

d x |x=5.0µm = 1.5 · 104 N/m3 compared to the negative pressure derivative −3.2 · 105 N/m3 at
t = 0.28 ms).
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Figure 6.2.: The pressure and velocity profiles along the arrows indicated in Figure 6.1a. The
dashed lines represent the local interface positions computed by means of the height
function. (a) evaluation near the stagnation point at r = 5.0µm. (b) evaluation at
the edge of the gas layer (r = 49.0µm). (c) evaluation along the symmetry plane.
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Figure 6.3.: The pressure and velocity profiles along the arrows indicated in Figure 6.1b. The
dashed lines represent the local interface positions computed by means of the height
function. (a) evaluation near the stagnation point at r = 5.0µm. (b) evaluation at
the edge of the gas layer (r = 88.0µm). (c) evaluation along the symmetry plane.
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7 Multi-Scale Simulations aiming at
Predictions of the Transition between
Bouncing and Coalescence

It is shown in Chapter 4 that both coalescence and bouncing can be reproduced by a modifi-
cation of the boundary conditions of the f -field for the collision plane in the simulations, which
have not been able to be predictive in terms of whether the collision outcome is bouncing or
coalescence. The flow in the gas layer cannot be resolved by computational cells in DNS in
feasible 3D-simulations. Establishing a SGS model properly, the flow in the gas layer has to be
resolved on a sub-grid scale. With proper coalescence criteria, the simulations should be able to
predict the collision outcome in terms of coalescence versus bouncing. The conceptual design
for facilitating a predictive simulation is summarized as follows:

1. Developing a SGS model that solves the flow in the gas layer and which is integrated into
the main solver FS3D.

2. The coalescence is first suppressed by modifying the boundary condition for the f -field on
the collision plane.

3. At the time when a proper coalescence criterion is fulfilled, the boundary condition is
switched to standard symmetric boundary condition so that coalescence is able to occur.

A simulation is called a multi-scale simulation within this thesis if it is conducted with a SGS
model which solves the flow on the microscopic scale and is integrated into the main solver
FS3D solving the macroscopic process.

In this chapter, the derivation, implementation and validation of the SGS model are first
presented. Then the integration of the SGS model into the main solver FS3D is discussed.
By means of two possible coalescence criteria, the predictions of the collision outcomes are
presented and discussed. At the end, the rarefaction effect is studied qualitatively.

7.1 Derivation of the SGS model starting from the lubrication theory

In binary droplet collisions, a gas layer between the approaching droplets forms which causes
bouncing or delays the possible coalescence. As it has been shown in the 2D simulation in
Chapter 6, the dimension of the gas layer in the radial direction is much larger than in the
axial direction. The flow in such a fluid film can be described by the lubrication theory which
exploits the very small ratio between the film thickness to lateral extension in order to reduce
the Navier-Stokes equations.
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Assuming constant material parameters without considering the body force, the incompress-
ible Navier-Stokes equations for a general fluid film between two planes are written as

ρ(
∂ u
∂ t
+ u
∂ u
∂ x
+ v

∂ u
∂ y
+w

∂ u
∂ z
) = −

∂ p
∂ x
+η(

∂ 2u
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),

ρ(
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+η(
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∂ y2
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(7.1)

along with the equation of continuity, i.e.

∂ u
∂ x
+
∂ v

∂ y
+
∂ w
∂ z
= 0. (7.2)

According to Hamrock et al. [22], the following dimensionless variables can be defined:

x̃ =
x
l0

ỹ =
y
b0

z̃ =
z
h0

t̃ =
t
t0

ũ=
u
u0

ṽ =
v

v0
w̃=

w
w0

p̃ =
h2

0p

ηu0l0

(7.3)

with

l0 characteristic length in x direction, m

b0 characteristic length in y direction, m

h0 characteristic length in z direction, m

t0 characteristic time, s

u0 characteristic velocity in x direction, m/s

v0 characteristic velocity in y direction, m/s

w0 characteristic velocity in z direction, m/s

Employing the dimensionless variables according to equation (7.3), the x-component of equa-
tion (7.1) gives
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.
(7.4)

Equation (7.4) can be reformulated:

Ω
∂ ũ
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+Rex ũ

∂ ũ
∂ x̃
+Rey ṽ
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+Rezw̃
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, (7.5)
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where the modified Reynolds number Rex , Rey , Rez and the squeeze number Ω are defined as

Rex =
ρu0h2

0

ηl0
, (7.6)

Rey =
ρv0h2

0

ηb0
, (7.7)

Rez =
ρw0h0

η
, (7.8)

Ω=
ρh2

0

ηt0
. (7.9)

Due to the equation of continuity (7.2) it is clear that u0/l0 ∼ w0/h0 ∼ v0/b0. Furthermore,
the characteristic time can be estimated based on the approaching movement of the two planes
or t0 ≈ h0/w0. Therefore, Rex , Rey , Rez and Ω are all of order h0/l0 or h0/b0. The first
and second viscous terms of equation (7.5) are of order (h0/l0)2 and (h0/b0)2, respectively.
Neglecting the first- and second-order terms of h0/l0 and h0/b0 in equation (7.5) yields

∂ p(x , y, z)
∂ x

= η
∂ 2u(x , y, z)

∂ z2
(7.10)

in the form containing dimensions. A similar procedure applies to the y- and z-components of
the Navier-Stokes equations (7.1), giving

∂ p(x , y, z)
∂ y

= η
∂ 2v (x , y, z)

∂ z2
, (7.11)

∂ p(x , y, z)
∂ z

= 0. (7.12)

Equation (7.12) describes that the pressure can be assumed to be constant along the thickness
of the fluid film, the validity of which for the gas layer in binary droplet collisions is confirmed
by the 2D simulation described in Chapter 6. The equations (7.10), (7.11) and (7.12) are
reformulated as

∂ p
∂ x
= η

∂ 2u
∂ z2

, (7.13)

∂ p
∂ y
= η

∂ 2v

∂ z2
, (7.14)

with u = u(x , y, z), v = v (x , y, z), p = p(x , y). The following derivations are based on a
coordinate system possessing the x y-plane as a symmetry plane, see Figure 7.1. Integrating
equation (7.13) twice with respect to z and applying the boundary conditions ∂ u

∂ z |z=0 = 0 and
u(x , y, h) = ua, the velocity of the flow in the fluid film in x-direction is given as

u= ua +
z2 − h2

2η
∂ p
∂ x

. (7.15)
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Figure 7.1.: A fluid film between two planes that can move and deform. The local movement
of the upper plate is described by ua = (ua, va, wa). The two planes are symmetric
with respect to the plane x y .

Similarly with ∂ v
∂ z |z=0 = 0 and v (x , y, h) = va, the velocity in y-direction is given as

v = va +
z2 − h2

2η
∂ p
∂ y

. (7.16)

Inserting equations (7.15) and (7.16) into the equation of continuity (7.2) yields
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Integration in z-direction and applying the boundary condition w(x , y, 0) = 0 yields
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Applying the boundary condition w(x , y, h) = wa yields

∂
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. (7.19)
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Figure 7.2.: Relation between the z-component wa of the boundary velocity ua and the resultant
velocity ws of the upper boundary.

Assuming ‘frozen’ local partial derivatives of h (time-independent ∂ h
∂ x and ∂ h

∂ y ), the velocity wa

of the upper boundary in z-direction is given as (see the schematic in Figure 7.2)

wa = ws + ua
∂ h
∂ x
+ va

∂ h
∂ y

, (7.20)

where ws is the resultant velocity of the upper boundary given as

ws(x , y) =
∂ h
∂ t

. (7.21)

Inserting (7.20) into (7.19) finally yields the lubrication equation:
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. (7.22)

7.1.1 Analytical solutions of two idealized cases

In binary droplet collisions, the gas film between the colliding droplets is on one hand
squeezed out of the gas layer due to the approaching motion of the droplets, on the other
hand dragged by the liquid/gas interfaces moving outwards in the radial direction. The corre-
sponding ‘squeezing effect’ and ‘dragging effect’ are described in detail by means of analytical
solutions of the lubrication equation for two idealized 2D cases. In order to understand the
‘squeezing effect’, we consider the flow between two parallel planes approaching each other
with constant velocity ws; see the schematic in Figure 7.3a. Eliminating the derivatives of
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Figure 7.3.: Schematic description of two idealized cases and analytical solutions. The dot-
dashed lines represent the symmetry planes. The lengths of the planes are 2l. (a)
two parallel planes approach each other. The sign of w(z) is negative. (b) the parallel
planes stretch outwardly in x-direction. The sign of w(z) is positive.

the lubrication equation (7.22) with respect to y and applying the boundary conditions, the
analytical solution for the pressure is given as

p(x) =
3ηws

2h3
(x2 − l2) + p0. (7.23)

Inserting the obtained pressure into equations (7.15) yields

u(x , z) =
3ws(z2 − h2)x

2h3
. (7.24)

Then, the equation of continuity gives
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The solutions are also illustrated in Figure 7.3a. One sees that the ‘squeezing effect’ results
in a higher pressure in the interior of the fluid film and the pressure gradient results in velocity
profiles pointing outwards. The ‘dragging effect’ is described by means of two parallel planes
stretching outwardly with velocity ua(x) = αx , see Figure 7.3b. The analytical solutions are
given as

p(x) =
3ηα
2h2
(x2 − l2) + p0, (7.26)

u(x , z) =αx +
3α(z2 − h2)x

2h2
, (7.27)

w(z) =
αz
2
(1−

z2

h2
). (7.28)
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The solutions are also illustrated in Figure 7.3b. One sees that the ‘dragging effect’ results in
a lower pressure in the interior of the fluid film and the pressure gradient results in velocity
profiles pointing inwards. Especially, the velocity u(x , z) is negative near the x-axis. This is no
surprise due to the volume conservation.

7.1.2 Rarefied lubrication equation

In binary droplet collisions, the critical distance between the colliding droplets is in the order
of 10 nm, as it is mentioned in the introduction. Since the mean free path of gas molecules λ is
about 100 nm [71] under standard ambient conditions, the flow in the gas film must necessarily
go from the continuous flow through the slip flow regime and then into the transitional flow
regime before possible coalescence of droplets or in case the droplets ‘almost’ coalesce.

The derivation of the lubrication equation is valid for continuous flow meaning Kn� 1. In the
slip regime where 0.01 < Kn < 0.1, the continuum models can still be used to investigate the
gas flow with a modified boundary condition which allows a slip at the gas/liquid or gas/solid
interfaces. According to Shukla et al. [61], a relation between slip velocity and shear can be
given as

uslip = λ(
∂ u
∂ z
)wall. (7.29)

In order to investigate the rarefied flow in the transitional region where 0.1 < Kn < 10,
generally one needs to solve the Boltzmann equation [60]. Dongari et al. [14] suggested that
the validity of the continuum models can be extended to the transitional region by applying
second-order slip models, which general form is given as

uslip = C1λ(
∂ u
∂ z
)wall + C2λ

2(
∂ 2u
∂ z2
)wall. (7.30)

Although the validity of the second-order slip models seems to be a consensus, a general
agreement on the values of the coefficients C1 and C2 has not been achieved, see a summary
given by Dongari et al. [14]. In the present thesis, the coefficients of C1 and C2 are calibrated
by means of an analytical solution of a lubricant problem given by Zhang and Law [71]. The
calibration is described later on.

Starting from the lubrication assumption (7.13) and (7.14), the lubrication equation including
the rarefaction effect is derived. The derivation is inspired by the work of Shukla et al. [61].
With the general form of the second-order slip model (7.30), the boundary conditions are given
for the lower surface as

u= (u)1 = ua1 + C1λ(
∂ u
∂ z
)1 + C2λ

2(
∂ 2u
∂ z2
)1, (7.31)

v = (v )1 = va1 + C1λ(
∂ v

∂ z
)1 + C2λ

2(
∂ 2v

∂ z2
)1, (7.32)
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and for the upper surface as

u= (u)2 = ua2 − C1λ(
∂ u
∂ z
)2 − C2λ

2(
∂ 2u
∂ z2
)2, (7.33)

v = (v )2 = va2 − C1λ(
∂ v

∂ z
)2 − C2λ

2(
∂ 2v

∂ z2
)2, (7.34)

where the subscript 1 and 2 denote the gas phase at z = H1 and z = H2 respectively. The
subscript a denotes the gas/liquid or gas/solid interface.

The velocities in z-direction are given as (compare with the schematic illustration in Figure
7.2):

(w)1 = ws1 + (u)1
∂ H1

∂ x
+ (v )1

∂ H1

∂ y
, (7.35)

(w)2 = ws2 + (u)2
∂ H2

∂ x
+ (v )2

∂ H2

∂ y
, (7.36)

where the subscript s denotes the resultant velocity of the gas/liquid or gas/solid interface
towards the gas film.

Integrating equations (7.13), (7.14) over z and applying the boundary conditions (7.31-7.34)
gives the velocity in the gas layer:

u= ua1 + (
C1λ

η
H1 +

C2λ
2

η
+

1
η

z
∫

H1

z′ dz′)
∂ p
∂ x
+ (

ua2 − ua1

F
−

F1

F0

∂ p
∂ x
)(
λ

η
+

1
η

z
∫

H1

dz′), (7.37)

v = va1 + (
C1λ

η
H1 +

C2λ
2

η
+

1
η

z
∫

H1

z′ dz′)
∂ p
∂ y
+ (

va2 − va1

F
−

F1

F0

∂ p
∂ y
)(
λ

η
+

1
η

z
∫

H1

dz′), (7.38)

with

F0 =
2C1λ

η
+

1
η
(H2 −H1), F1 =

C1λ

η
(H1 +H2) +

1
η

H2
∫

H1

z dz. (7.39)

Integrating the equation of continuity with respect to z from z = H1 to z = H2 gives

H2
∫

H1

∂ u
∂ x

dz +

H2
∫

H1

∂ v

∂ y
dz + [w]H2

H1
= 0. (7.40)
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Equation (7.40) is equivalent to

∂

∂ x

H2
∫

H1

udz +
∂

∂ y

H2
∫

H1

v dz − (u)2
∂ H2

∂ x
− (v )2

∂ H2

∂ y
+ (u)1

∂ H1

∂ x
+ (v )1

∂ H1

∂ y
+ [w]H2

H1
= 0. (7.41)

Inserting equations (7.37), (7.38) into (7.41) gives

∂

∂ x
(F2
∂ p
∂ x
) +

∂

∂ y
(F2
∂ p
∂ y
) =H2

�∂ (u)2
∂ x

+
∂ (v )2
∂ y

�

−H1

�∂ (u)1
∂ x

+
∂ (v )1
∂ y

�

−

∂

∂ x

�(ua2 − ua1)F3

F0

�

−
∂

∂ y

�(va2 − va1)F3

F0

�

+ [w]H2
H1

(7.42)

with

F2 =
1
η

H2
∫

H1

z
�

z −
F1

F0

�

dz, F3 =
1
η

H2
∫

H1

z dz. (7.43)

Specifically for the gas film having a symmetry plane x y , applying the boundary conditions
(7.31-7.36) and H2 = −H1 = h, ws2 = −ws1 = ws, ua1 = ua2 = ua and va1 = va2 = va in equation
(7.42) yields the lubrication equation accounting for the rarefied flow effect:

∂

∂ x
(h3 ∂ p
∂ x
) +

∂

∂ y
(h3 ∂ p
∂ y
)+

3C1λ
� ∂

∂ x
(h2 ∂ p
∂ x
) +

∂

∂ y
(h2 ∂ p
∂ y
)
�

+

3C2λ
2
� ∂

∂ x
(h
∂ p
∂ x
) +

∂

∂ y
(h
∂ p
∂ y
)
�

=3η
�

ws +
∂ (hua)
∂ x

+
∂ (hva)
∂ y

�

.

(7.44)

The characteristic length of the rarefied flow in the gas film is 2h, yielding

Kn=
λ

2h
. (7.45)

The rarefied lubrication equation can therefore be rewritten as

∂

∂ x
(h3 ∂ p
∂ x
) +

∂

∂ y
(h3 ∂ p
∂ y
)+

6C1Kn h
� ∂

∂ x
(h2 ∂ p
∂ x
) +

∂

∂ y
(h2 ∂ p
∂ y
)
�

+

12C2Kn2h2
� ∂

∂ x
(h
∂ p
∂ x
) +

∂

∂ y
(h
∂ p
∂ y
)
�

=3η
�

ws +
∂ (hua)
∂ x

+
∂ (hva)
∂ y

�

.

(7.46)

When Kn = 0, the rarefied lubrication equation (7.46) is reduced to the lubrication equation
(7.22) without rarefied flow effect. The unified form (7.46) is implemented in FS3D for solving
the flow in the gas layer in numerical simulations.
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7.1.3 Calibration of the slip coefficients

Based on the Boltzmann equation, allowing the description of the rarefied flow effect over the
entire Knudsen number range, Zhang et al. [71] derived an analytical solution for the lubri-
cant pressure between two parallel cylinder plates approaching each other, where the ‘dragging
effect’ of the boundary is not present. The pressure in the gas layer is given as:

p =
3ηGws

4h3
(r2 − R2)∆−1(Kn). (7.47)

Here, the function ∆(Kn) accounts for the rarefied flow effect and its value can be given for
Kn� 1 as

∆(Kn) = 1+ 6.0966 Kn, Kn� 1, (7.48)

and for Kn≥ 1 as

∆(Kn) = 8.7583 Kn1.1551, Kn≥ 1. (7.49)

Since equation (7.48) is only exact for Kn � 1 and equation (7.49) is exact for Kn ≥ 1, the
function ∆(Kn) from (7.48) is extended up to Kn= 1 by using the expression

∆(Kn) = 1+ 6.0966Kn+ c1Kn2 + c2Kn3. (7.50)

The values of c1 and c2 are chosen such that the values and first-order derivatives of ∆(Kn) in
equations (7.49) and (7.50) are continuous at Kn= 1, resulting in

∆(Kn) =

�

1+ 6.0966Kn+ 0.9650Kn2 + 0.6967Kn3 (Kn< 1)
8.7583Kn1.1551 (Kn≥ 1)

(7.51)

The same formulation of equation (7.47) can be derived (see the derivation in appendix B.1)
from the rarefied lubrication equation (7.46) with

∆(Kn) = 1+ 6C1Kn+ 12C2Kn2. (7.52)

The value of C1 is calibrated by adapting the coefficient of Kn in equation (7.48), resulting in
C1 = 1.0161. The value of C2 is calibrated by ensuring the same value of ∆(Kn) computed by
equation (7.49) and equation (7.52) at Kn= 10, yielding C2 = 0.0527. The comparison between
∆−1(Kn) computed by means of equation (7.51) and equation (7.52) with calibrated coefficients
is displaced in Figure 7.4, which shows overall good agreement. Considering equation (7.47),
the pressure in the gas layer between two approaching parallel cylindrical planes decreases with
increasing rarefaction effect.
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Figure 7.4.:∆−1(Kn) computed by means of equation (7.51), represented by the black solid line
and equation (7.52) with calibrated coefficients, represented by the red dotted line.

7.2 Implementation of the SGS model

7.2.1 Approximation of the quantities related to the interface

As the rarefied lubrication equation (7.46) is used to describe the flow in the gas film on
the sub-grid scale, it is referred to as the sub-grid-scale (SGS) model in this thesis. In order
to solve the SGS model numerically, the quantities h, ua, va, ws on the upper boundary of the
gas layer are approximated based on the quantities obtained from the macroscopic simulation.
It is easy to compute h through height functions, as it has been described in Chapter 3. The
local interface height h with respect to the collision plane designates also where the interface
velocities ua and va are evaluated. The evaluations of ua and va are conducted through a
one-sided approximation:

ua(i, j) = u+a
h− h−

h+ − h−
+ u−a

h+ − h
h+ − h−

, (7.53)

va(i, j) = v+a
h− h−

h+ − h−
+ v−a

h+ − h
h+ − h−

, (7.54)

where u−a and v−a are velocities evaluated at the center of the cell, where the interface designated
by h is located. u+a and v+a are velocities of the neighboring cell centers on the side of the droplet.
u±a and v±a are averaged from the velocities located on cell faces. h± denotes the z-coordinate of
the corresponding cell centers. A schematic illustration is shown in Figure 7.5.
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Figure 7.5.: Schematic illustration of the computation of the interface velocities in horizontal
direction.

The resultant velocity ws is computed by the variation rate of the local interface height within
one time step ∆t:

ws =
∂ h
∂ t
≈
∆h
∆t

. (7.55)

The approximation of the interface velocity, especially ua and va, is directly dependent on
the velocity located at cell faces which are computed in macroscopic simulations. Therefore,
the use of the SGS model is always combined with the employment of the balanced-CSF model
to reduces the effect of the parasitic currents on the approximation accuracy of the interface
velocity.

7.2.2 Equation system

The rarefied lubrication equation (7.46) is solved in a so-called lubrication region, which is
defined as a region where the interface height h is smaller than or equal to a prescribed value
hmax which is always a multiple of the equidistant cell width; see the schematic illustration in
Figure 7.6. In the simulations in this thesis, if no further specification is given, the lubrication
region is defined by prescribing hmax = 1 ·∆x . In this lubrication region, the rarefied lubrica-
tion equation (7.46) is discretized by means of the central differencing scheme (CDS). Outside
the lubrication region, the pressure in the first cell-layer obtained from the DNS, i.e. from the
macroscopic simulation, is used as a boundary condition. Accordingly, the boundary condition
for the pressure is simply

pb = pDNS. (7.56)

The equation system consisting of the rarefied lubrication equation (7.46) and the boundary
condition (7.56) is built up for the whole collision plane, which is in rectangular form, and
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Figure 7.6.: Definition of the lubrication region.

solved by means of Gauss-Seidel iteration for each time step as long as the droplet enters the
lubrication region. It should be noted that the lubrication region evolves due to the deformation
of the colliding droplets.

7.3 Validation of the SGS model

The validity of the SGS model is assessed by means of two scenarios described below. The
rarefaction effect is not considered, since proper analytical solutions and experimental mea-
surements are absent. Nonetheless, when the gas layer thickness is constant, the lubrication
equation with and without rarefaction effect differs only in the expression (7.52), the validity
of which is assessed in Figure 7.4. The rigorous derivation of the rarefied lubrication equation
gives us some confidence about its validity, as long as the SGS model without rarefaction is well
validated.

7.3.1 Validation through the scenario of two approaching solid spheres

When two identical solid spheres move towards each other, a higher pressure compared to
the surrounding is built up within the gas layer between the two solid spheres. Excluding the
rarefied flow effect (Kn = 0), the lubricant pressure can be computed analytically and this is
used to validate the SGS model. Considering the axis-symmetric nature of the scenario and the
absent ‘dragging’ effect in the solid body motion, the lubrication equation is given in cylindrical
coordinates as [71]

∂

∂ r
(h3∂ p
∂ r
) + h3 1

r
∂ p
∂ r
= 3ηws. (7.57)
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For the gas film between the approaching spheres, h can be approximated [59] as h = ws t +
h0+ r2/R, where h0 is the initial distance between the collision plane and the gas/solid interface
at r = 0 and R is the radius of the spheres. Assuming zero ambient pressure, the pressure in the
gas layer is given as

p = −
3ηRws

4h2
. (7.58)

Specifically at r = 0, the pressure depending on time is given as

p(r = 0, t) = −
3ηRws

4(ws t + h0)2
. (7.59)

In the numerical setup, a quarter of a sphere of R = 0.1 m moves with constant velocity
ws = −1 m/s towards the bottom wall, see Figure 7.7a. The initial minimal distance between
the collision plane and the gas/solid interface is 0.01 m. The bottom and the top walls are set
to zero pressure and homogeneous Neumann boundary condition for the velocity. The other
four walls are set to slip boundary conditions. The gas, the viscosity of which is 10−3 Ns/m2,
moves with the same velocity of the solid sphere. The specific setup of the boundary conditions
and zero relative motion between the sphere and the gas phase ensure that the sphere remains
undeformed. In addition, the surface tension coefficient is set to zero to avoid the effect of
parasitic currents. For the computation of the pressure field in the gas layer by means of the
SGS model, this setup is equivalent to a solid sphere approaching its mirror image with constant
velocity. The pressure depending on the evolution of h at r = 0 is computed numerically by
means of the SGS model and compared with the corresponding analytical solution in Figure
7.7b. The computations show a very good agreement for all three used grid resolutions.

7.3.2 Validation through a virtual scenario based on a retracing ellipsoid

In order to account for the ‘dragging’ effect in the validation, a virtual scenario, illustrated in
Figure 7.8, is considered. In the setup, an ellipsoid droplet is initialized described by

x2

(200µm)2
+

y2

(200µm)2
+
(z − 45µm)2

(40µm)2
= 0. (7.60)

Due to the surface tension force, the droplet retracts. Meanwhile, the interface drags the gas
inwards due to the no-slip condition at the gas-liquid interface, which results in a pressure
increase in the gas film between the droplet and the symmetry plane. The pressure field in the
gas film in this case can be solved by means of a DNS. Since the solution of the SGS model
is based on the quantities obtained from the DNS, the best possible result obtained from the
SGS model is not supposed to be more accurate than the DNS result in the same simulation.
Therefore, the DNS result with the finest grid resolution serves as a reference result for the
validation of the SGS model.

The simulations are conducted in a 270×270×90µm3 box with three symmetry planes. The
slip conditions are prescribed on the three symmetry planes. Zero pressure and homogeneous
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Figure 7.7.: (a) Setup of a solid sphere moving towards its mirror image. Domain size is 0.11 m×
0.11 m × 0.22 m. The lubrication region is prescribed by giving hmax = 0.11 m. (b)
Comparison between simulation results with three grid resolutions and the corre-
sponding analytical solution.

Neumann boundary condition for the velocity are prescribed on all the other boundary planes.
The material properties of the virtual system are: ηL = 2.000× 10−3 Ns/m2, ρL = 1000 kg/m3,
ηG = 1.000× 10−3 Ns/m2, ρG = 1.0 kg/m3, σ = 20.0× 10−3 N/m. The mean free path of the
gas phase is set to zero so that the rarefied flow effect is also excluded in this case.

The pressure field is solved by means of the SGS model in a flat region of the gas layer,
which guarantees the validity of the lubrication assumption. The maximum interface height
of this lubrication region is set to 11.25µm. The pressure fields computed by the SGS model
with three grid resolutions at t = 0.25 × 10−6 s are plotted in Figure 7.9a, compared to the
pressure field computed by means of the DNS with the finest resolution. One sees that as the
grid is refined, the result approaches the ‘exact’ solution obtained from DNS. The mean absolute
percentage error (MAPE) defined as

MAPE=
100

n

n
∑

i=1

|
pSGS(i)− pDNS(i)

pDNS(i)
|, (7.61)

is evaluated for the three used grid resolutions at five time instants, see Figure 7.9b. One
sees that the results converge as the resolution is increased, however slower at later times.
The slower convergence rate at later times is attributed to the accumulated parasitic currents,
though the parasitic currents are relatively small while using the balanced-CSF model for the
computation of the surface tension force.
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Figure 7.8.: Setup of a virtual scenario: retracting ellipsoid droplet over a symmetry plane. The
SGS model is solved in the flat region represented by the green disc beneath the
droplet (defined by giving hmax = 11.25µm).
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Figure 7.9.: (a) Comparison between the pressure fields computed by the SGS model and DNS
with highest resolution at t = 0.25× 10−6 s. (b) Mean absolute percentage error at
five time instants. The arrow indicates the direction of the evolution. The time inter-
val between the neighboring lines is∆t = 0.05×10−6 s. The lowest line corresponds
to t = 0.25× 10−6 s.
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7.4 Integration of the SGS model into the main solver FS3D

The SGS model must be integrated into the main solver FS3D so that it can have an effect on
the macroscopic simulation. The simulations conducted by means of the SGS model integrated
into the main solver FS3D are called multi-scale simulations in this thesis. The integration of the
SGS model is realized by applying the pressure field obtained from the SGS model as pressure
boundary condition on the collision plane. In order to implement this coupling, the pressure in
dummy cells within the lubrication region is modified to

pdummy = 2pSGS − p1, (7.62)

while solving the pressure Poisson equation. In equation (7.62), p1 is the pressure in the cell-
layer in the domain adjacent to the collision plane. In total, the pressure Poisson equation is
solved two times within a time step. After the pressure Poisson equation is for the first time
solved, the obtained pressure in the surrounding serves as a Dirichlet boundary condition for
the SGS model. Applying the pressure in the gas layer obtained from the SGS model as boundary
condition, the Poisson equation is solved again for obtaining the final pressure field.

In order to validate the integration, a test case of binary droplet collision with high gas vis-
cosity and high gas density is considered. Due to the high viscosity and density, the gas layer is
much thicker and is well resolved (i.e. by more than two cells) in the DNS with sufficiently high
grid resolution in the very early stage of the collision, serving as a reference. The simulation by
means of the SGS model is conducted with a lower resolution so that the flow in the gas layer
can only be resolved by the SGS model. Detailed setups are listed in Table C.9 in appendix C.
The pressure profile and the contour of the gas layer between the colliding droplets obtained
from the multi-scale simulation are compared to the reference solution. As it is shown in Figure
7.10, the multi-scale simulation yields results that are in good agreement with the reference
solution.

It was suggested by Mason et al. [33] that the integration of the pressure field obtained from
a SGS model should be conducted by integrating the pressure field as a volumetric force in the
domain as

f= −pSGSnA≈ pSGS
∇ f
||∇ f ||

||∇ f ||= pSGS∇ f . (7.63)

The equation (7.63) implies that the added volumetric force is the pressure force exerted
from the gas film to the droplet. The motivation for this kind of integration seems to be that
the pressure force exerted on the droplet should be added on the droplet surface because the
pressure in the gas layer is not resolved by the macroscopic simulation. In fact, there is a
contradiction in this kind of integration: if the pressure force exerted on the droplet should be
added to the macroscopic simulation, then the reaction force, i.e. the pressure force exerted
from the droplet to the gas layer should also be added. This is on one hand not done in the
work of Mason et al. [33], on the other hand, if the reaction force is integrated by means of
equation (7.63) with reversed sign on the right hand side, then there is no effect at all in the
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Figure 7.10.: Interface contours and pressure profiles at t = 0.16 ms. Solid black lines: reference
solutions obtained from DNS conducted with a resolution of 128 cells per droplet
diameter (cell width is 2.62µm). Blue dashed lines: solutions obtained from multi-
scale simulation conducted with a resolution of 64 cells per droplet diameter (cell
width is 5.24µm); the SGS model is integrated by modifying the pressure bound-
ary condition. Red dash-dotted lines: solutions obtained from multi-scale simu-
lation conducted with a resolution of 64 cells per droplet diameter (cell width is
5.24µm); the SGS model is integrated by adding a volumetric force. The simula-
tions conducted do not account for the rarefaction effect.

macroscopic simulation. The key is that the volumetric force in interface cells cannot be added
to a particular phase but can only be added to the field consisting a mixture of both phases due
to the one-field formulation of the Navier-Stokes equations (2.18). Integrating the SGS model
through adding the volumetric force, the same test case described in this section is computed.
The disagreement between the obtained result and the reference solution shown in Figure 7.10
confirms that the integration of the SGS model in form of the volumetric force is not reasonable.

7.5 Prediction of the collision outcome in terms of coalescence versus bouncing

In order to facilitate a predictive simulation in terms of the prediction of coalescence versus
bouncing, a coalescence criterion is needed. As it has been explained in the introduction, the
competition between the resisting effect of the gas layer due to the high pressure built up and
the intermolecular forces ultimately determines whether the droplets merge into a single droplet
or bounce apart. It is therefore natural to account for the intermolecular force, i.e. Van der
Waals force within this thesis, on the multi-scale computation aiming at a predictive simulation.
According to Pan et al. [40], the effect of the Van der Waals force can be modeled as a negative
pressure pVdW = −

AH
6π(2h)3 , where AH is the Hamaker constant, exerted on the surfaces of the

droplets forming the boundary of the gas film. The negative pressure can be integrated in the
momentum equation as a volumetric force given as

fV dW = −pVdWnA≈ pVdW
∇ f
||∇ f ||

||∇ f |= pVdW∇ f = −
AH

6π(2h)3
∇ f . (7.64)
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Figure 7.11.: (a) PLIC surfaces over collision plane; coalescence has not occurred yet. (b) Inter-
section of PLIC surfaces with the collision plane defining coalescence.

Having accounted for the Van der Waals force, the coalescence is activated in the simulation
in case of two possible occurrences serving as coalescence criteria:

• The minimum thickness of the gas layer is smaller than the threshold for distinguishing
liquid and gas (called zero gas film thickness in algorithm tolerance in the following):
if 1 − f < 10−6 is identified in the cell-layer adjacent to the collision plane, the cell is
considered containing only the liquid phase and coalescence can be perceived. Note that
the minimum thickness of the gas layer before possible coalescence is determined by f in
the first cell-layer, since the gas film thickness is thinner than one cell.

• A PLIC-surface intersects the collision plane, as suggested by Jiang and James [24]. The
PLIC-surfaces suggesting ‘coalescence’ or ‘not coalescence’, respectively, are exemplarily
shown in Figure 7.11.

Mason et al. [33] proposed that 40 nm can be defined as a critical value for coalescence. This
critical value is abandoned in this thesis, since there is no convincing evidence for the existence
of this general critical value in binary droplet collisions.

7.5.1 Preliminary results of predictions

The setups of the simulations aiming at the prediction of the collision outcomes are based on
the experimental work of Pan et al. [40], who showed that the critical Weber number (Web)
between sector II and III in the collision diagram for head-on collision of tetradecane droplets
(approximately same Ohnesorge number Oh= 0.028 is held) in air under standard conditions is
between 9.33 and 13.63. The comparisons between the experiments and the simulation results
with prescribed collision outcomes without using the SGS model are shown in Figure 4.8 and
4.9, yielding very good agreement. The simulations with the same setups (prescribed collision
outcome) and in addition by means of the integrated SGS model yield indistinguishable collision
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Mesh We= 7.77 9.59 11.61 13.63 16.21 18.80
963 C C C C C C

1283 C C C C C C
1923 B C C C C C
2563 B B B C C C

Table 7.1.: Prediction of the collision outcome in terms of coalescence (denoted as C) and
bouncing (denoted as B).

processes compared to the results obtained without using the SGS model on the macroscopic
scale. Therefore, the illustration of the collision processes computed by means of the integrated
SGS model is omitted. The focus is the prediction of the critical Weber number Web.

Around We = 13.63, the Weber number in the conducted simulations is successively changed
by varying the collision velocity, while keeping the same Ohnesorge number (Oh = 0.028)
and leaving all the other setups untouched. The numerical setups for the case of We = 13.63
are listed in Table C.10 in appendix C. The predicted collision outcomes in terms of bounc-
ing/coalescence using the intersection of PLIC surfaces as coalescence criterion are summarized
in Table 7.1. The results show that at relatively low grid resolutions, the collision outcome
bouncing does not emerge even at lower Weber numbers. At higher grid resolutions, the col-
lision outcome can be both bouncing or coalescence. However, the critical Weber number is
strongly dependent on the grid resolution. Seemingly, the predicted Weber number increases
with increasing grid resolution.

Using zero gas film thickness in algorithm tolerance as coalescence criterion, all the simula-
tions mapped in Table 7.1 yield bouncing. The evolutions of the minimum thickness of the gas
layer in the case of We = 13.63, the collision outcome of which is expected to be coalescence,
are shown in Figure 7.12. The minimum thicknesses obtained with used resolutions are all so
high that the Van der Waals forces are too small to cause coalescence. This issue is further
addressed in the following section.

7.5.2 Modified f -transport

The transport of the f -field determines directly whether the coalescence occurs in combina-
tion with the criterion of zero gas film thickness in algorithm tolerance, since the film thickness
in the simulations is calculated by means of the height function which is a function of f ; see
Figure 7.13. It is shown in Chapter 6 that the velocity profile in the gas layer is parabolic and
can be much larger than the velocity in the droplet near the interface. However, the thickness
of the gas film is on the sub-grid scale and only averaged velocities are computed and stored at
the center of the cell faces, which are used for solving the transport equation (3.3) determining
the f -values, yielding inaccurate transport of the f -field. Based on this fact, further attempts
have been conducted by means of modifying the velocity for the transport of the f -field in the
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Figure 7.12.: Evolution of the minimum thickness of the gas layer in the case of We= 13.63.
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Figure 7.13.: Schematic illustration of the modification of the velocity field for the transport of
the f -field. u∗l1 and u∗r1 are located at the position which is computed based on the
averaged gas layer thickness at the cell faces.
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first cell-layer, in order to facilitate coalescence in combination with the criterion of zero gas
film thickness in algorithm tolerance.

The first attempt is based on the employment of the velocity field in the gas layer which can
be obtained from the SGS model: Applying the pressure field obtained from the SGS model
and integrating equation (7.37) and (7.38) over the thickness of the gas film yield numerical
solution of the average velocity in the gas layer. Using this averaged velocity in the gas layer
for transporting the gas phase (by reversing f ) yields, however, only bouncing in all conducted
simulations.

Further attempts are based on direct correction of the velocity field for the transport of the
f -field. Instead of the averaged velocity located at the centers of the cell surfaces ul1 and ur1,
the averaged velocity of the liquid phase in the first cell-layer u∗l1 and u∗r1 is used for solving the
transport equation (3.3); see Figure 7.13. The transport velocity in the vertical direction is also
modified in certain cases (see Table 7.2). The corresponding modifications and the resulting
collision outcomes are listed in Table 7.2. Comparing the four attempts and collision outcomes,
all results change from bouncing to coalescence as long as the interpolated velocity w1, which
is located in the liquid phase, is used for solving the transport equation (3.3), implying that
the velocity in the vertical direction for the transport of f is the key to the collision outcome.
The SGS model in this thesis has been able to describe the flow in the gas layer. In order
to achieve predictive simulations in terms of the prediction of the collision outcome bouncing
versus coalescence with satisfied accuracy, the flow in the droplet near the interface has to be
understood in detail in future work.

7.6 Rarefaction effect

Qian and Law [45] showed in their experimental work that the area of the bouncing sector in
the collision diagram expands with elevated gaseous pressure. Zhang and Law [71] argued that
the gas possesses a higher density with elevated pressure which is then harder to be squeezed
out, leading to higher pressure buildup in the gas layer and reduced possibility of coalescence.
By the same token, the collision outcome tends to be coalescence at reduced ambient pressure.

The viscosity of the gas remains fairly constant in a large range of pressure variation [45]. As
the pressure variation also affects the mean free path of the gas molecules, the rarefaction effect
is examined based on the case of We = 13.63 described in section 7.5. The pressure field and
gas layer thickness at t = 0.368 ms obtained from the simulation with enlarged mean free path
λ= 680 nm are plotted in Figure 7.14, compared to the reference case where the mean free path
is λ = 68 nm. In both simulations, the droplet diameter is resolved by 128 cells. One observes
that the pressure in the gas layer with the enlarged mean free path is significantly smaller than
in the reference case, leading to a smaller gas film thickness. This observation implies that the
binary droplet collision in gas environment consisting of gas molecules having larger mean free
path tends to yield coalescence easier.
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attempts collision outcome

• Extrapolating u∗1 with u2 and u3

• Transporting f with u∗l1,u∗r1 and w1

all bouncing

• Interpolating u∗1 with u1 and u2

• Transporting f with u∗l1,u∗r1 and w1

all bouncing

• Extrapolating w1 with w3 and w2

• Extrapolating u∗1 with u2 and u3

• Transporting f with u∗l1,u∗r1 and extrapolated w1

all coalescence

• Extrapolating w1 with w3 and w2

• Interpolating u∗1 with u1 and u2

• Transporting f with u∗l1,u∗r1 and extrapolated w1

all coalescence

Table 7.2.: Attempts on the predictive simulations based on the corrections of the velocity for
solving the transport equation (3.3). The subscripts l and r are omitted in some
notations for simplicity.
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Figure 7.14.: Gas film thickness and pressure profile at t = 0.368 ms when coalescence is sup-
posed to occur in the experiment [40]. Black solid lines: reference case with
λ = 68 nm. Red dashed lines: results with increased mean free path of the gas
molecules λ= 680 nm.

7.7 Role of the compressibility

The derivation of the SGS model solving the flow in the gas film is based on the assumption
of incompressibility. If the pressure elevation in the gas layer is comparable to the ambient
pressure, the gas flow should be considered as compressible [71]. In all the conducted numer-
ical simulations, the pressure elevation in the gas layer does not exceed the order of 1000 pa
(compared to zero pressure at the outer boundary of the computational domain) as it is ex-
emplarily shown in Figure 7.14, which is significantly smaller than the pressure in standard
ambient conditions (105 pa). Therefore, the incompressible flow assumption is valid in the gas
film.
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8 Summary and Outlook

8.1 Summary

This thesis has been driven by the realization of the prediction of the collision outcome in
terms of bouncing versus coalescence and in terms of the onset of spatter as well as the pre-
diction of the size spectrum of the secondary droplets resulting from the spatter phenomenon.
An important task has been the deeper understanding of phenomena related to the mechanisms
that decide the collision outcomes, especially the mechanism of the rim instability of a colli-
sion complex in high energetic collisions. Multi-scale simulations have been performed for the
prediction of the transition between bouncing and coalescence. Based on further numerical
investigations, it has been revealed that the Rayleigh-Plateau instability pattern dominates the
rim instability over a long time span, which is very valuable for the establishment of analytical
models used for predicting the onset of spatter and the spectrum of secondary droplets ejected
from the unstable rim.

The thin liquid lamella emerging at high energetic collisions ruptures in the numerical simu-
lations due to the artificial interaction while computing the surface tension force of both sides of
the lamella, which results in unphysical collision processes. The lamella stabilization algorithm
developed by Focke and Bothe [17], which prevents the lamella rupture by a correction of the
computation of the surface tension force in the lamella region, has been improved in terms of
a more accurate identification of the lamella region. The improved lamella stabilization algo-
rithm has been validated by comparing the simulation results to experiments, which yields very
good agreement. A domain adjustment technique, which adjusts the computational domain to
the deformation of the collision complex successively, has been developed and employed in the
simulations of spatter, in order to reduce the computational effort.

By means of a properly chosen white noise disturbance, the rim instability is triggered and
excellent agreement between the simulation result and the experiment has been achieved for
water droplet collision at We = 442.3. It has also been shown that white noise disturbances in
different strength result in obviously different collision processes in the numerical simulations,
which implies that the ubiquitous disturbances presented in the real world should also affect the
collision outcome at high Weber numbers, though it has not been mentioned by experimenters.
Although the agreement between simulations and experiments is less good at higher Weber
numbers, the breakup mechanism of the rim at an extremely high Weber number (We = 1520)
has been shown not to be as different as at relatively lower Weber numbers in terms of whether
the rim is completely detached from the liquid film before the formation of secondary droplets,
which is in disagreement with the conclusion of Kuan et al. [27].

Based on the quantifications of the simulation results of the case We= 442.3, which is in best
agreement with the corresponding experiment, the mechanism of the rim instability is investi-
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gated in depth. The development of the rim instability has been considered as the amplification
of a signal through an amplification system that is subdivided into three sequential connected
subsystems (initial phase, linear phase and non-linear phase), according to whether the collision
complex rim and the neck of fingers can be identified by the algorithm. In the initial phase, the
rim acceleration and rim oscillation have been identified for the first time. The analysis in the
initial phase does not confirm that the RT instability pattern is dominant at the early stage of the
rim instability as stated in [27], though the results approve that the rim deceleration provides
a small boost to amplitude growth in regions of small modes as was stated in [1]. In the linear
phase, strong evidence has been found for the statement that the PR instability pattern domi-
nates the rim instability: the magnification of the amplitudes of instability modes can be well
predicted by the PR-based theory over a long time span. In the non-linear phase, the evolution
of the pressure field and the velocity field in the rim shows that the Rayleigh-like pattern is also
present.

Also based on the case of We = 442.3, the viscosity effect is investigated numerically by
varying solely the liquid viscosity with all other setups untouched. It has been shown that
the viscosity has a significant effect on the rim instability only when it is high enough. The
analysis has been able to reveal that the droplet viscosity influences the development of the
rim instability mainly through varying the geometrical evolution of the rim. In addition, the PR
instability pattern has been found to dominate the rim instability in the linear phase in a very
large Reynolds number range.

The artificial interaction related to the computation of the surface tension force of a fluid
lamella is also present in the simulation of possible coalescence, which makes a predictive sim-
ulation in terms of whether the collision outcome is ‘bouncing’ or ‘coalescence’ difficult. As a
result of the interaction between the approaching droplet interfaces, the colliding droplets will
always coalesce in standard VOF-simulations. Stabilizing the gas film between the colliding
droplets by temporarily removing the symmetric counterpart of one droplet while computing
the surface tension force, the bouncing phenomenon can also be reproduced, giving very good
agreement with the experiment. In the simulation of coalescence, the coalescence is first sup-
pressed by the stabilization technique. At the instant of possible coalescence, which is obtained
from the experimental observation, this stabilization of the gas film is discarded so that coales-
cence then occurs. The collision process yielding coalescence has also been reproduced, which
is in good agreement with experiments. However, the simulations have not been able to be pre-
dictive in the sense that the collision outcome has to be prescribed so far. In order to facilitate
a predictive simulation, a concept for multi-scale simulations is designed, containing three ele-
ments: (1) a SGS model solving the flow in the gas layer which is on the sub-grid scale. (2) the
coalescence is first suppressed. (3) the coalescence is imposed when a numerical coalescence
criterion is fulfilled.

Based on the classical lubrication theory, the SGS model has been derived, which accounts for
the rarefaction effect by introducing a slip between the gaseous molecules and the gas-liquid
interface. The SGS model has been implemented in FS3D and validated by means of a series of
setups. It has been found that the integration of the SGS model by adding a volumetric force
active for interface cells suggested in [33] results in an inappropriate coupling. In contrast,
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applying the pressure field obtained from the SGS model as a pressure boundary condition on
the collision plane yields more reasonable results, and is therefore used to conduct the multi-
scale simulations.

Employing the first intersection of the PLIC-surfaces with the collision plane as coalescence
criterion, the simulation has been able to yield both coalescence and bouncing. However, the
predicted critical Weber number is strongly dependent on the grid resolution, which restricts its
application. Using the zero gas film thickness in algorithm tolerance as coalescence criterion,
the simulation results are all bouncing. A 2D-simulation with high resolution shows that the
drainage velocity in the gas film can be much higher than the velocity in the liquid phase near
interface. Based on this observation, various corrections of the velocity for the transport of the
f -values in the first cell-layer adjacent to the collision plane have been conducted, which yielded
all coalescence or all bouncing.

The rarefaction effect has been qualitatively investigated by comparing the gas film thickness
and the pressure field in the gas layer between the case with enlarged mean free path of the
gaseous molecules and a reference case. The results imply that binary collision in gas environ-
ment consisting of gas molecules having larger mean free path tends to yield coalescence.

8.2 Outlook

The rim instability has been numerically investigated in three phases subdivided in terms of
the geometrical characteristics of the unstable rim. It has been revealed that the rim instability
in the linear phase can be predicted by the PR instability theory for a very large Reynolds number
range.

The input signal of the linear unstable phase is the output signal of the initial phase. In fact,
we do not know much about the instability mechanism in the initial stage due to absent images
from the experiment and the relatively poor local grid resolution in the simulations for resolving
the rim geometry in this early stage. It is supposed that the toroidal rim emerging at the end of
this initial stage results from the retraction of the frontier of the expanding liquid film due to the
surface tension force and that the ratio between the film thickness and the rim radius is relatively
large in the initial phase. Therefore, the film thickness should play a more important role in the
rim instability in this phase. Modeling the instability growth on a liquid cylinder combined by
a liquid film, Roisman et al. [54] showed that the presence of the liquid film stabilizes the rim
instability. Zhang et al. [70] stated that the transition from rim to film also slows the growth
of the rim instability. Numerical simulations with much higher grid resolutions focusing on this
initial stage are recommended to be conducted in the future. In addition, the rim instability in
this initial phase can be numerically studied by means of a simplified geometry consisting of
a rim connected to a liquid film. A preliminary simulation showing the rim instability in this
simplified geometry is presented in Figure 8.1. Further studies are needed in the future.

In the linear phase, future work should be focused on the modeling of the evolution of the
rim geometry without instability depending on the Reynolds number and Weber number, since
the evolution of the rim geometry unambiguously decides the characteristics of the amplification
system in the linear phase. Is has been shown that varying the Reynolds number has a significant
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Figure 8.1.: Modeling the rim instability in the initial phase based on a cylindrical rim connected
with a liquid film with inflow coming from the left wall.

effect on the evolution of the rim geometry at low Reynolds numbers and has negligible effect
at high Reynolds numbers while holding the Weber number constant. The effect of the Weber
number should also be investigated in detail in future work. The modeling of the evolution of
the rim geometry, which is dependent on Reynolds number and Weber number, can be facilitated
by axis-symmetric simulations, which reduce the computational efforts and enable simulations
at much higher Weber numbers.

It is difficult to quantify the evolution of the rim instability in the nonlinear phase. However,
modeling the evolution of rim geometry in the linear phase and its initial signal properly, apply-
ing the PR theory to the rim and setting a threshold for the output signal of the linear phase,
the prediction of the collision outcome in terms of the size spectrum of the secondary droplets
will be possible.

Considering the whole collision process as a signal amplification system, it is reasonable to
perceive that the collision outcome should be able to be manipulated by controlling the input
signal in form of oscillation of the colliding droplets or fluctuation in the environment or in
the whole liquid/gas system. Due to the importance of the initial disturbance on the onset
of the instability, the modeling of the boundary curve between IV-VI on the collision diagram
should also include an appropriate quantification of the initial disturbance, which has not been
considered in previous experimental works. Furthermore, the knowledge concerning the rim
instability in the context of binary droplet collisions can be transmitted to the investigation of
the rim instability in other contexts, i.e. the collision of a droplet onto a liquid film or onto a
solid substrate.

In order to facilitate a predictive simulation in terms of the prediction of ‘bouncing’ versus
‘coalescence’, the f -transport has to be accurately computed. This can be achieved by means of
mesh grading which significantly refines the grid resolution near the collision plane. The flow
field in the droplet near the colliding interface should be investigated in detail which should
be valuable to enhance the modeling on the sub-grid scale. Furthermore, it is recommended
that the Volume-averaged VOF method [69], which accounts for the velocity difference of both
phases in one cell, should be implemented to increase the accuracy of the f -transport. The
velocity field obtained from the developed SGS model can be applied in principle in the Volume-
averaged VOF method.

104 8. Summary and Outlook



A Simulations of Spatter Conducted at ITLR
of the University of Stuttgart

Head-on collisions of water droplets with We = 805.2 and Re = 6370.0 (same case as de-
scribed in Chapter 5) have been simulated in ITLR of University Stuttgart by means of another
version of FS3D integrated with the same lamella stabilization algorithm as described in Chapter
4, see the simulation results in Figure A.1. The domain adjustment technique is not employed.
In the reference cases in Figure A.1, the relative grid resolution is the same as it is in Chapter 5.
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(a)

(b)

Figure A.1.: Evolutions of the collision complex shapes obtained from the numerical simulations
conducted in ITLR of University Stuttgart within collaborate work [31]. Dimension-
less time from the left to the right is 0.78, 2.34, 4.68, 7.8, 15.6. (a) simulation
results without initial disturbance. (b ) simulation results with an initial disturbance
∆U = 1%. The images in the upper row of both (a) and (b) correspond to the same
relative grid resolution as used in Chapter 5. The images in the lower row of both
(a) and (b) correspond to the doubled grid resolution.
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B Lubrication Equation in Cylindrical
Coordinates

B.1 Transformation between Cartesian coordinates and polar coordinates

The transformation from polar coordinates (r,α) to Cartesian coordinates (x , y) is simply
�

x = r · cosα
y = r · sinα .

(B.1)

Then the corresponding transformation for the derivatives is given as
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B.2 Lubrication equation in cylindrical coordinates

Making use of the transformation equation (B.2), the separate terms of the lubrication equa-
tion without the rarefaction effect (7.22) are given as following:
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Inserting equations (B.3) (B.4) (B.5) (B.6) into the lubrication equation (7.22) gives the lu-
brication equation in cylindrical coordinates:
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B.3 Pressure in the gas layer between two approaching parallel plates in cylindrical
form

The derivatives in terms ofϕ in the lubrication equation in cylindrical coordinates (B.7) vanish
in axis-symmetric problems. For the the gas flow between two approaching parallel plates in
cylindrical form with zero surrounding pressure, applying the boundary conditions to equation
(B.7) yields the pressure in the gas layer:

p(r) =
3ηGws

4h3
(r2 − R2), (B.8)

where R is the radius of the cylindrical plates, ws is the velocity of one plate with respect to the
symmetry plane and h is the distance between one plate and the symmetry plane.

In case of two parallel plates due to the parallelism, the only difference between the lubrica-
tion equations with (7.22) and without the rarefaction effect (7.46) lies on the reciprocal value
of the coefficient

∆(Kn) = 1+ 6C1Kn+ 12C2Kn2. (B.9)

Therefore, the pressure in the gas film between two parallel approaching cylindrical plates
considering the rarefaction effect is given as

p(r) =
3ηGws

4h3
(r2 − R2)∆−1(Kn). (B.10)

108 B. Lubrication Equation in Cylindrical Coordinates



C Setups

Domain size: 800 × 800 × 800µm
Grid: 128 × 128 × 128

Number of the employed symmetry planes: 3
Initial position of the droplet: (0, 0,0)

Droplet diameter: 400µm
Initial velocity: 0.5 m/s
Disperse phase: ηl = 1.0 · 10−3 Pas, ρ f = 1000 kg/m3

Continuous Phase: ηg = 0.0182 · 10−3 Pa s,ρg = 1.19 kg/m3

Surface tension: 50 · 10−3 N/m

Table C.1.: Setup for the simulation of droplet oscillation with integral surface energy output;
Chapter 3.6

Domain size: 720 × 720 × 240µm
Grid: 288 × 288 × 96

Number of the employed symmetry planes: 3
Initial distance of droplet centers: 231.6µm

Droplet diameter: 231.6µm
Relative velocity: 5.6 m/s

Disperse phase: ηl = 2.39 · 10−3 Pa s, ρ f = 784.5 kg/m3

Continuous Phase: ηg = 0.0182 · 10−3 Pa s,ρg = 1.19 kg/m3

Surface tension: 21.4 ·10−3 N/m

Table C.2.: Setup for the simulation of the case We= 268 ; Chapter 4.1.
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Domain size: 750 × 750 × 250µm
Grid M1: 192 × 192 × 64

M2: 288 × 288 × 96
M3: 384 × 384 × 128

Number of the employed symmetry planes: 3
Initial distance of droplet centers: 235.9µm

Droplet diameter: 235.9µm
Relative velocity: 7.74 m/s

Disperse phase: ηl = 2.39 · 10−3 Pas, ρ f = 784.5 kg/m3

Continuous Phase: ηg = 0.0182 · 10−3 Pas,ρg = 1.19 kg/m3

Surface tension: 21.4 ·10−3 N/m

Table C.3.: Setups for the simulations of the case We= 518; Chapter 4.1.

Domain size: 750 × 750 × 250µm
Grid: 384 × 384 × 128

Number of the employed symmetry planes: 3
Initial distance of droplet centers: 235.9µm

Droplet diameter: 235.9µm
Relative velocity: 7.2 m/s

Disperse phase: ηl = 2.39 · 10−3 Pas, ρ f = 784.5 kg/m3

Continuous Phase: ηg = 0.0182 · 10−3 Pas,ρg = 1.19 kg/m3

Surface tension: 21.4 · 10−3 N/m

Table C.4.: Setup for the simulation of the case We= 448; Chapter 4.1.

Domain size: 720 × 720 × 720µm
Grid: 144 × 144 × 48

Number of the employed symmetry planes: 3
Initial distance of droplet centers: 231.6µm

Droplet diameter: 231.6µm
Relative velocity: 7.0 m/s

Disperse phase: ηl = 2.39 · 10−3 Pas, ρ f = 784.5 kg/m3

Continuous Phase: ηg = 0.0182 · 10−3 Pas,ρg = 1.19 kg/m3

Surface tension: 21.4 · 10−3 N/m

Table C.5.: Setup for the simulation of a droplet collision process for illustrating the correction
of the surface energy computation; Chapter 4.1.
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Domain size: 670.4 × 670.4 × 670.4µm
Grid M1: 64 × 64 × 64

M2: 128 × 128 × 128
M3: 256 × 256 × 256

Number of the employed symmetry planes: 3
Initial distance of droplet centers: 789.162µm

Droplet diameter: 335.2µm
Relative velocity: 0.992 m/s

Disperse phase: ηl = 2.2 · 10−3 Pas, ρ f = 730 kg/m3

Continuous Phase: ηg = 0.0198 · 10−3 Pa s,ρg = 1 kg/m3

Surface tension: 27 · 10−3 N/m

Table C.6.: Setups for the simulations of bouncing; Chapter 4.2.

Domain size: 678.8 × 678.8 × 678.8µm
Grid M1: 64 × 64 × 64

M2: 128 × 128 × 128
M3: 256 × 256 × 256

Number of the employed symmetry planes: 3
Initial distance of droplet centers: 471.072.581µm

Droplet diameter: 339.4µm
Relative velocity: 1.192 m/s

Coalescence instant: 0.368 ms
Disperse phase: ηl = 2.2 · 10−3 Pas, ρ f = 730 kg/m3

Continuous Phase: ηg = 0.0198 · 10−3 Pas,ρg = 1 kg/m3

Surface tension: 27 ·10−3 N/m

Table C.7.: Setups for the simulations of coalescence; Chapter 4.2.

Domain size: 500 × 500µm
Grid : 2048 × 2048

Number of the employed symmetry planes: 2
Initial distance of droplet centers: 300µm

Droplet diameter: 300µm
Relative velocity: 1.0 m/s

Disperse phase: ηl = 2.2 · 10−3 Pa s, ρ f = 730 kg/m3

Continuous Phase: ηg = 0.22 · 10−3 Pa s,ρg = 73 kg/m3

Surface tension: 27 ·10−3 N/m

Table C.8.: Setup for the 2D simulation; Chapter 6.
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Domain size: 670.4 × 670.4 × 670.4µm
Grid M1: 128 × 128 × 128

M2: 256 × 256 × 256
Number of the employed symmetry planes: 3

Initial distance of droplet centers: 400µm
Droplet diameter: 335.2µm
Relative velocity: 0.992 m/s

Disperse phase: ηl = 2.2 · 10−3 Pas, ρ f = 730 kg/m3

Continuous Phase: ηg = 1.98 · 10−3 Pas,ρg = 100 kg/m3

Surface tension: 27 ·10−3 N/m

Table C.9.: Setups for the validation of the integration of the SGS model with the main solver
FS3D; Chapter 7.4.

Domain size: 678.8 × 678.8 × 678.8µm
Grid M1: 96 × 96 × 96

M2: 128 × 128 × 128
M3: 192 × 192 × 192
M4: 256 × 256 × 256

Number of the employed symmetry planes: 3
Initial distance of droplet centers: 471.072.581µm

Droplet diameter: 339.4µm
Relative velocity: 0.9, 1.0, 1.1, 1.192, 1.3, 1.4 m/s

Disperse phase: ηl = 2.3 · 10−3 Pas, ρ f = 763 kg/m3

Continuous Phase: ηg = 0.0198 · 10−3 Pas,ρg = 1 kg/m3

Surface tension: 27 ·10−3 N/m
Mean free path: 68 nm

Table C.10.: Setups for the simulations aiming at the prediction of the collision outcomes; Chap-
ter 7.5.
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