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Abstract

A large extent of today’s computer programs is distributed. For instance, services for
backups, file storage, and cooperative work are now typically managed by distributed
programs. The last two decades also brought a variety of services establishing social
networks, from exchanging short messages to sharing personal information to dating. In
each of the services, distributed programs process and store sensitive information about
their users or the corporations their users work for.

Secure processing of the sensitive information is essential for service providers. For
instance, businesses are bound by law to take security measures against conflicts of
interest. Beyond legal regulations, service providers are also pressed by users to satisfy
their demands for security, such as the privacy of their profiles and messages in online
social networks. In both instances, the prospect of security violations by a service provider
constitutes a serious disadvantage and deters potential users from using the service.

The focus of this thesis is on enabling service providers to secure their distributed
programs by means of run-time enforcement mechanisms. Run-time enforcement mecha-
nisms enforce security in a given program by monitoring, at run-time, the behavior of
the program and by intervening when security violations are about to occur. Enforcing
security in a distributed program includes securing the behavior of the individual agents
of the distributed program as well as securing the joint behavior of all the agents.

We present a framework for enforcing security in distributed programs. The frame-
work combines tools and techniques for the specification, enforcement, and verification
of security policies for distributed programs. For the specification of security policies,
the framework provides the policy language CoDSPL. For generating run-time enforce-
ment mechanisms from given security policies and applying these mechanisms to given
distributed programs, the framework includes the tool CliSeAu. For the verification of
generated enforcement mechanisms, the framework provides a formal model in the pro-
cess algebra CSP. All three, the policy language, the tool, and the formal model allow
for the distributed units of enforcement mechanisms to cooperate with each other. For
supporting the specification of cooperating units, the framework provides two techniques
as extensions of CoDSPL: a technique for specifying cooperation in a modular fashion and
a technique for effectively cooperating in presence of race conditions. Finally, with the
cross-lining technique of the framework, we devise a general approach for instrumenting
distributed programs to apply an enforcement mechanism whose units can cooperate.

The particular novelty of the presented framework is that the cooperation to be per-
formed can be specified by the security policies and can take place even when the agents
of the distributed program do not interact. This distinguishing feature of the framework
enables one to specify and enforce security policies that employ a form of cooperation that
suits the application scenario: Cooperation can be used when one’s security requirements
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cannot be enforced in a fully decentralized fashion; but the overhead of cooperation can
be avoided when no cooperation is needed.

The case studies described in this thesis provide evidence that our framework is suited
for enforcing custom security requirements in services based on third-party programs.
In the case studies, we use the framework for developing two run-time enforcement
mechanisms: one for enforcing a policy against conflicts of interest in a storage service
and one for enforcing users’ privacy policies in online social networks with respect to the
sharing and re-sharing of messages. In both case studies, we experimentally verify the
enforcement mechanisms to be effective and efficient, with an overhead in the range of
milliseconds.
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Zusammenfassung

Ein großer Anteil heutiger Computerprogramme wird durch verteilte Programme ab-
gedeckt. So werden beispielsweise Dienste für Sicherungskopien, Dateiaustausch und
computergestützte Zusammenarbeit üblicherweise durch verteilte Programme realisiert.
Hinzu kamen insbesondere in den letzten zwei Jahrzehnten eine Vielzahl von Diensten für
soziale Netzwerke zum Austausch von Kurznachrichten und persönlichen Informationen
sowie in Form von Partnerbörsen. In jedem dieser Dienste speichern und verarbeiten
verteilte Programme vertrauliche Informationen über die Benutzer der Programme oder
auch deren Arbeitgeber.

Für Anbieter von Diensten („service provider“) ist es essenziell, die Verarbeitung vertrau-
licher Informationen abzusichern. Beispielsweise werden Firmen gesetzlich dazu verpflich-
tet, Maßnahmen gegen finanzielle Interessenskonflikte zu ergreifen. Jenseits gesetzlicher
Bestimmungen üben auch Nutzer Druck auf Dienstanbieter aus, Sicherheitsanforderun-
gen wie beispielsweise den Schutz von Profilen und Nachrichten in sozialen Netzwerken
umzusetzen. In beiden Fällen stellt bereits die Aussicht auf Sicherheitsverletzungen durch
einen Dienstanbieter einen ernstzunehmenden Nachteil dar, der potenzielle Nutzer eines
Dienstes abschreckt.

Der Fokus dieser Arbeit ist, Dienstanbietern zu ermöglichen, mit Hilfe von Laufzeit-
Sicherheitsmechanismen („enforcement mechanisms“) verteilte Programme abzusichern.
Diese Mechanismen setzen Sicherheit in einem gegebenen Programm durch, indem sie
das Programmverhalten zur Laufzeit beobachten und in den Programmablauf eingreifen
wenn Sicherheitsverletzungen bevorstehen. In einem verteilten Programm umfasst dies
nicht nur, das Verhalten der einzelnen verteilten Agenten des Programms abzusichern
sondern auch das gemeinsame Verhalten aller dieser Agenten.

Diese Arbeit stellt ein Rahmenwerk für das Durchsetzen von Sicherheit in verteilten
Programmen vor. Das Rahmenwerk integriert Werkzeuge und Techniken für die Spe-
zifikation, das Durchsetzen und die Verifikation von Sicherheitsrichtlinien für verteilte
Programme. Zur Spezifikation von Sicherheitsrichtlinien („security policies“) stellt das
Rahmenwerk eine Policysprache, CoDSPL bereit. Mit Hilfe des Werkzeugs CliSeAu können
Sicherheitsmechanismen für gegebene Sicherheitsrichtlinien generiert und diese Mecha-
nismen dann auf gegebene verteilte Programme angewandt werden. Für die Verifikation
der so generierten Mechanismen bietet das Rahmenwerk ein formales Modell in der Pro-
zessalgebra CSP an. Diese drei Bestandteile des Rahmenwerks bieten die Möglichkeit zur
Kooperation zwischen den verteilten Einheiten des Mechanismus. Zur Unterstützung für
die Spezifikation solcher Kooperation stellt das Rahmenwerk zwei Techniken in Form von
Erweiterungen von CoDSPL bereit: eine Technik, mit der Kooperation in modularer Form
spezifiziert werden kann sowie eine Technik für effektive Kooperation auch in Gegen-
wart von Race Conditions. Die Crosslining-Technik des Rahmenwerks beschreibt einen
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allgemeinen Ansatz zur Instrumentierung verteilter Programme mit Mechanismen deren
verteilte Einheiten miteinander kooperieren können.

Neu am vorgestellten Rahmenwerk ist inbesondere, dass die gewünschte Form der
Kooperation durch Sicherheitsrichtlinien spezifiziert werden kann und auch dann möglich
ist, wenn die Agenten des verteilten Programms selbst nicht miteinander kommunizieren.
Dadurch ermöglicht das Rahmenwerk sowohl die Spezifikation als auch das Durchsetzen
von Sicherheitsrichtlinien mit einer auf das Anwendungsszenario zugeschnittenen Form
von Kooperation. So kann Kooperation eingesetzt werdenwenn die Sicherheitsanforderung
nicht vollständig dezentral durchgesetzt werden kann. Jedoch kann Kooperation auch
vermieden werden wenn sie im Anwendungsszenario nicht benötigt wird.

Die in dieser Arbeit vorgestellten Fallstudien bestätigen, dass sich das Rahmenwerk dafür
eignet, spezifische Sicherheitsanforderungen in verteilten Diensten durchzusetzen. In den
Fallstudien wird das Rahmenwerk verwendet um zwei Laufzeit-Sicherheitsmechanismen
zu entwickeln: ein Mechanismus zum Durchsetzen einer Sicherheitsrichtlinie gegen Inter-
essenskonflikte in einem verteilten Speicherdienst sowie ein Mechanismus zum Durchset-
zen nutzerspezifischer Datenschutzrichtlinien beim Teilen von Nachrichten in sozialen
Netzwerken. Experimentelle Evaluationen zu beiden Fallstudien bestätigen, dass die ent-
wickelten Mechanismen sowohl effektiv als auch, mit einem Overhead im Bereich weniger
Millisekunden, effizient sind.
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Chapter

1
Introduction

With the ubiquitous availability of fast network access for businesses, private homes,
and mobile devices, distributed software and services have taken over many traditional
domains of non-distributed solutions. While services for file exchange over the Internet
are widespread for a long time, even backups “in the Cloud” and office suites via online
services as increasingly popular. At the same time, e-mail as the traditionally predominant
technique for exchanging messages has been supplemented by a variety of online social
networks for exchanging short messages and personal information as well as for dating. In
each of these examples, client programs and services exchange, process, and store valuable
and sensitive information about users or about the corporations their users work for.

The diversity of security requirements on distributed systems stretches beyond the
domain of traditional access control for confidentiality and integrity. Businesses, for
instance, are bound by law to take security measure, e.g., against conflicts of interest
(in the USA, for instance, according to the Sarbanes-Oxley Act [Uni02]). The billions of
today’s users of social networks have privacy requirements on their profiles and messages
[Gat07]. Incidents of security violations by service providers holding large amounts of
sensitive data can harm not only the users of the system, including business customers,
but through loss of reputation also the system provider itself. It is therefore crucial that
the providers of online services employ adequate mechanisms for providing their users
with the security they demand. In particular, these mechanisms should effectively ensure
security despite the distributed nature of online services.

Already early work on access control points out networked computer systems as “likely
to have a significant impact on computer security problems” [And72]. A variety of generic
models [Sch00; LBW09], techniques [ES00b; CMJ+09], and tools [ES00b; BLW09; MJG+12]
for enforcing security in non-distributed systems have been investigated. The introduction
of usage control [PS04], which lifts access control to the subsequent usage of accessed
resources, provoked the development of mechanisms for distributed enforcement [HPB+07;
ZSS08; KP15].

The goal of this thesis is to improve the state of the art in security enforcement by
lifting generic enforcement to distributed systems. Concretely, we focus on enabling
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generic means for cooperation within distributed enforcement mechanisms while pre-
serving generic means of non-distributed enforcement mechanisms. To date, distributed
enforcement mechanisms limit the security requirements that can effectively be enforced
by constraining the possible forms of cooperation. For instance, mechanisms only allow
cooperation to take place when agents communicate [MU00] and, particularly, only at-
tached to the communication in the distributed system [SVA+04; OBM10; KP13], or build
on general-purpose protocols for cooperation that constrain the security requirements
that can be effectively enforced in a decentralized fashion [KP15].

In the remainder of this chapter we first introduce the state of the art in security
enforcement with a particular focus on distributed systems (Section 1.1). Subsequently,
Section 1.2 provides a more detailed account on the goals of this thesis. The chapter
concludes with an overview of the contributions presented in this thesis and an outline of
the organization of this thesis (Sections 1.3 and 1.4).

1.1. Enforcing Security

The security of a system can affect many and a whole range of stakeholders [SO05].
For instance, the users of an online shopping service require their transactions to be
secured. Vendors of the shopping service require their listed products to be secured from
manipulation. The provider of the shopping service requires that nobody can render the
shopping service dysfunctional through the Internet.

The concrete security requirements of the individual stakeholders on a system can
aim at several security goals [PP06, pp. 10–12]. For a secured transaction, for instance, a
user’s credit card details must not be accessible by other users. This requirement aims at
confidentiality, requiring “that computer-related assets are accessed only by authorized
parties” [PP06]. For another example, no user of the shopping service may modify the
price of a product, unless she is the vendor of the product. This aims at integrity , requiring
“that assets can be modified only by authorized parties or only in authorized ways” [PP06].
The requirement that it must not be possible that the shopping service’s connection to its
database is disabled through the Internet aims at availability, requiring “that assets are
accessible to authorized parties at appropriate times” [PP06]. These three security goals –
confidentiality, integrity, and availability, also called the CIA triad – constitute a common
classification of security requirements in the literature [Bis03; PP06].

Stakeholders can take measures for their security requirements to be met. When a
stakeholder has the system developed for herself and knows her security requirements
at the time, she can demand the software architects and programmers to use techniques
for producing a secure system in the first place (e.g, [Jür02; LBD02; Sea05]). For an
existing system, a stakeholder can employ static analyses for security, i.e., analyses that
examine a system’s code without running it [CM04], to identify satisfaction or violation
of security. (e.g., [VIS96; MS03; LL05; MS12]). When a stakeholder does not have any
influence on the development of the system (e.g., by using off-the-shelf software) or does
not know the security requirements at the time, she can use run-time enforcement , i.e.,
techniques that examine the program while it runs and intervene when necessary to make
the program meet the security requirements (e.g., [ES00b; GBJ+08; BLW09; RBG+15]). Run-
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time enforcement involves a security enforcement mechanism, a “method, tool, or procedure
for enforcing a security policy” [Bis03, p. 9]. In the literature, run-time enforcement is also
known under the name dynamic enforcement . In the following, we abbreviate security
enforcement mechanism by enforcement mechanism or simply mechanism.

1.1.1. Enforcing Security in Non-distributed Systems

For enforcing security in a non-distributed system, a stakeholder can choose from a variety
of mechanisms proposed in the literature. Mechanisms have been developed for a wide
spectrum of target systems (abbreviated targets in the following). One can distinguish two
kinds of approaches for enforcing security on a target: mechanisms that control the target
from another component of the system, such as the operating system, and mechanisms
that are integrated into the code of the target. We introduce the former first in analogy
with their historical appearance.

Early works in computer security advocate enforcement mechanisms for access control
to protect resources stored in the system [War67; And72]. Such mechanisms typically have
been and still are realized as part of the operating system (e.g., [Sal74; WCS+02]). For when
the integrity of the operating system itself is to be secured, hardware-based mechanisms
such as CoPilot [JFM+04] have been proposed. Some mechanisms residing within the op-
erating system go beyond access control. When security requirements concern the access
to resources as well as the subsequent use of these resources, usage control [PS04] can be
employed. For usage control in the operating system OpenBSD, the mechanism by Harvan
and Pretschner [HP09] can be integrated into the operating system. For the Android
operating system, the Porscha [OBM10] mechanism is realized via a modified Android
middleware to enforce security on transmitted messages. Other mechanisms address the
particularities of Android’s confinement of applications, preventing privilege escalation
through collusion attacks [GT14]. When the target is implemented in an interpreted
programming language, the mechanism can also be placed into the interpreter rather than
the operating system. This approach is pursued, e.g., by enforcement mechanisms for
JavaScript targets that are integrated into the browser’s JavaScript interpreter [RHN+13;
RBG+15] as well as by enforcement mechanisms for Java targets that are integrated into
the JVM [NSC+08]. These mechanisms have in common that they are placed external to
their targets’ code and control their targets through the targets’ interfaces to other system
components.

The second approach pursued for enforcing security is to encapsulate the target by
applying an enforcement mechanism directly to the code of the target [WLA+93]. Such
encapsulation is realized by instrumenting the code of the target, i.e., by modifying the
code to include the mechanism and to activate this mechanism when necessary. A variety
of different techniques for instrumenting the code of the target have been proposed for
Java, a language we focus on in this thesis. For instance, PoET [Erl04] and SASI [ES00b]
perform the instrumentation before the target is started. JavaMOP [MJG+12] also performs
the instrumentation before the start of the target but uses aspect-oriented programming
for the instrumentation. In contrast, Polymer [BLW09] instruments the code after the
target is started but before the code is loaded by the Java virtual machine. Beyond Java,
instrumentation-basedmechanisms have also been proposed, for instance, for x86 bytecode
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in the mechanisms Naccio [ET99] and a second variant of SASI, for Android’s Dalvik
bytecode [BGH+14], and for Ruby [PBS14].

1.1.2. Enforceable Security Requirements

Several of the mechanisms named in Section 1.1.1 provide their users a policy language
for tailoring the mechanism to their security requirements. For instance, PoET uses
PSLang [Erl04] for its policy language, Polymer uses a Java-based policy language, and
JavaMOP uses a combination of Java-based specifications with temporal logics or, alterna-
tively, finite state automata specifications. The mechanisms support a diverse range of
targets and, through their policy languages also a wide range of security requirements
they can enforce. For the remainder of this thesis, we refer to enforcement mechanisms
with these two characteristics as generic. Beyond PoET, Polymer, and JavaMOP, further
mechanisms and likewise models of mechanisms aim at being generic [ET99; Sch00; ES00b;
LBW09]. Examples of mechanisms that are not generic are the specialized mechanisms
for access control mentioned in Section 1.1.1 [Sal74; WCS+02].

Which security requirements a generic enforcement mechanism can enforce has been
studied based on several formal models for capturing security requirements, with varied
notions of what it means that a security requirement is enforced, and for several mecha-
nisms. Some security requirements can be captured by predicates on individual sequences
of events that model those executions of a target that satisfy the security requirement
(e.g., [Sch00; LBW05; LBW09]). This class of security requirements includes safety and
liveness [AS85; AS87]. Other security requirements demand that not individual execu-
tions are classified but that relationships between possible executions can be expressed.
Such security requirements can be captured by predicates on sets of sequences of events
[Man03; CS10] and include requirements for secure information flow or constraints on
mean response times.

As criteria for what it means that a security requirement is enforced, Ligatti, Bauer,
and Walker [LBW09] established the diametric soundness and transparency. Soundness
means that with the mechanism applied to the target, the security requirement is never
violated. Transparency means that when the target complies with the security requirement,
the mechanism does not change the behavior of the target. Following Ligatti et al., we
say that a mechanism effectively enforces a security requirement on a target if it soundly
and transparently enforces it. Other criteria for enforcement mechanisms have been
proposed. Traditionally, the so-called “principles for reference validation mechanisms”
[And72] – subsequently also called “reference monitor assumptions” [Rus92] – demand
a mechanism to be tamper-proof, to always be invoked (when an access takes place),
and to be subject to analysis (i.e., to be verifiable) and testing. These criteria relate to
effectiveness in that always being invoked is a prerequisite for effectiveness, being tamper-
proof can be viewed as a variation of effectiveness under a strong attacker, and verifiability
provides assurance of effectiveness. A complementary criterion is the efficiency with
which a mechanism enforces a particular security requirement or the members of a range
of security requirements, i.e., the amount of absolute or relative performance overhead
of the mechanism at the run-time of the target in enforcing security. Newly proposed
implementations of enforcement mechanisms often include an evaluation of the efficiency
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(e.g., [HP09; HMR12; KP13; DLJ15]). In the remainder of this thesis, we use the term
“enforceable” without further qualification for security requirements that can be enforced
effectively by a mechanism on a collection of targets.

Schneider [Sch00] has shown that the class of security properties that are soundly
enforceable with security automata, a variant of non-deterministic automata that captures
the termination of a target the possible countermeasure against security violations, falls
into the class of all safety properties. Basin et al. [BJK+13] refine the notion and analysis
of soundly enforceable properties by explicitly distinguishing observable and controllable
events. Ligatti, Bauer, and Walker [LBW09] show that the class of security properties that
are effectively enforceable with edit automata, automata that support countermeasures
like suppressing and replacing of actions in addition to termination, subsumes also non-
safety properties. Hamlen, Morrisett, and Schneider [HMS06b] characterize the class
of properties enforceable by program rewriting. The program rewriting may analyse
the target such that the class of enforceable properties essentially subsumes the class of
decidable, i.e., statically analyzable, properties.1

1.1.3. Enforcing Security in Distributed Systems

In a distributed system, the target can itself possess a distributed architecture consisting of
components that are distributed over several computers of the distributed system [TS14,
p. 3]. In the following, we refer to such programs, which consist of components that are
distributed over several computers, as distributed programs, and we refer to the individual
autonomous, non-distributed components of a distributed program as agents [Fer99, p. 4].
For clarification, we refer to a target that is a distributed program as a distributed target .
The security requirements for a distributed target might extend to more than individual
requirements on the distributed components.

Firewalls [PP06, pp. 474–484], i.e., mechanisms for protecting targets by monitoring and
manipulating network traffic within and at the boundaries of the distributed target, are
one approach for enforcing security in distributed targets. Where the security requirement
on a distributed target can be formulated in terms of network messages, a firewall can
serve as a security enforcement mechanism. This would require, firstly, that the firewall
can be placed at a node in the network through which the security-relevant network
messages are transmitted. Secondly, it would require that the firewall is able to extract the
security-relevant information from intercepted network messages and that this ability is
not obstructed, e.g., by encryption.

Another approach for enforcing security in a distributed target is to apply instances of
the non-distributed mechanisms discussed in Section 1.1.1 to the individual agents of the
distributed target. This approach treats each agent, which by definition is non-distributed,
as an individual non-distributed program. The individual mechanisms could observe the
agents’ internal behavior as well as the agents’ interaction over the network, and thereby
they are able to observe more than a firewall. In contrast to a firewall, such individual
mechanisms can, however only observe the actions of individual agents. Consequently,

1The exception are unsatisfiable properties such as the property that forbids all executions, which can only
be enforced through static analysis [HMS06b].
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the approach can be pursued whenever the security requirement can be represented as a
collection of security requirements on the individual agents of the distributed target.

Security requirements on distributed programs cannot be represented as a collection
of security requirements on individual agents, in general, as observed by Martinelli and
Matteucci [MM08] at the example of the Chinese Wall Security Policy [BN89]. Consider
the following example scenario.

Example 1.1. A storage service provides a data storage infrastructure with servers in
several data centers. Authenticated users can deposit files at the service and obtain files
from the service on behalf of companies. The security requirement for the storage service
is that, for avoiding conflicts of interest, no single user of the service may access files
belonging to competing companies. ♦

The application scenario of Example 1.1 involves a distributed target whose agents are
the servers distributed over the data centers as well as a security requirement against
conflicts of interest. According to the security requirement, whether or not a user may
access a file at one of the servers depends not only on the user’s anterior accesses at
the same server but also her accesses at other servers. Hence, the security requirement
cannot be reduced to a collection of security requirements on the individual servers (i.e.,
the agents of the service). Isolated enforcement mechanisms, such as those aiming for
non-distributed targets, could be applied to the servers in the scenario but could not
enforce security in the example without at some point being overly conservative or letting
security violations happen.

Mechanisms specifically proposed for enforcing security requirements in a distributed
target often provide means for coordinating the enforcement that is performed at the
individual agents of the distributed target. We refer to such mechanisms, i.e., enforcement
mechanisms consisting of multiple distributed components whose components cooperate,
as distributed enforcement mechanisms. To avoid confusion between the distributed compo-
nents of a distributed target and the distributed components of a distributed enforcement
mechanism, we refer to the latter as units. Several mechanisms for distributed targets
attach the cooperation between units to the communication between the agents of the
target. The units of Porscha and of the enforcement mechanism by Kelbert and Pretschner
[KP13] exchange information about policies affecting the data that is exchanged between
agents. The units of DiAna [SVA+04] cooperate by exchanging information about their
state piggy-backed on the communication of the agents. The units of Moses [MU00] can
cooperate by modifying messages that are exchanged by the agents of the target.

More recently, other forms of cooperation have been proposed. For instance, the mech-
anism by Kelbert and Pretschner [KP15] utilizes a distributed database for the cooperation
between units. In contrast to the mechanisms mentioned in the previous paragraph, the
cooperation performed by this mechanism can take place even at times when the agents
of the target do not communicate. In the mechanism proposed by Decat, Lagaisse, and
Joosen [DLJ15], the units also cooperate independently of communication between agents.
The cooperation performed by this mechanism is used for exchanging information about
authorizations for resources.

When security is defined by authorizations of individual users of the distributed target,
a mechanism could require the users to prove that they are authorized (e.g., [LAB+92]). In
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Example 1.1, a user could request from the mechanism at each individual server a certificate
that no accesses to files in conflict with a particular company have been accessed. The
user could then present such certificates to the mechanism at the one server at which she
wants to access a file.

For non-distributed targets, generic enforcement mechanisms have been proposed and
studied extensively [ES00b; Erl04; BLW09; MJG+12]. While such mechanisms exist also for
distributed targets, the extent to which they are generic is rather limited compared to what
is possible for a distributed enforcement mechanism: Some mechanisms perform coopera-
tion only when the agents of the target communicate [MU00; SVA+04; OBM10; KP13]. A
security requirement such as the one in Example 1.1, in which the security-relevant actions
are not communication among the agents, can only be approximated by such mechanisms.
A notable exception is the mechanism by Kelbert and Pretschner [KP15], which builds
on the general-purpose distributed database Cassandra [LM10]. The mechanism uses the
distributed database for cooperation by means of information exchange. As pointed out
by Kelbert [Kel16, p. 90], establishing consistency in the distributed database incurs the
penalty of synchronizing all nodes of the distributed database and thereby centralizing
the database. In consequence, for effectively enforcing security in general, the mechanism
can be used only in a centralized fashion. That is, the limitations constrain the security
requirements that are effectively enforceable by the mechanism.

1.2. Goals of this Thesis

The goal of this thesis project is to provide techniques and tools for enforcing security in
distributed programs. The security of a distributed program subsumes secure behavior of
the individual agents of the distributed program as well as secure interplay between the
agents and secure behavior of all the agents as a whole. In a distributed program neither
information about the global state nor about the global ordering of events are known a-
priori [Lam78; CL85] at the individual agents of the distributed program. A key challenge,
thus, is establishing sufficient awareness in a distributed enforcement mechanism about
global state and events for enforcing security without imposing unnecessary bottlenecks
through synchronization.

Concretely, this thesis focuses on the providers of distributed systems, henceforth called
service providers, as the target stakeholders and on malicious users of the distributed
systems as the adversaries. These service providers apply security enforcement mech-
anisms for securing their distributed systems. Supporting other stakeholders, such as
benign developers, as well as taking measures against other adversaries, such as malicious
developers, are outside the scope of this thesis but is briefly discussed in Section 10.2.

A service provider desires a few elementary requirements to be satisfied by a security
enforcement mechanism. Firstly, the service provider requires a sufficiently generic
enforcement mechanism for her to enforce her particular security requirements. These
security requirements can be originally hers or also originally the requirements of the
system’s users, henceforth simply called users. Secondly, the service provider demands
verifiability of the mechanism. Verifiability shall assure the service provider of a low risk
of security violations, because security violations can cause a loss of reputation of her
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name requirement validation

(Req-1) The enforcement mechanism should be
generic

§3.6 (p. 47), §5.6.1 (p. 76),
§5.7 (p. 80), §6.3 (p. 86)

(Req-2) The enforcement mechanism should be
verifiable.

§3.6 (p. 47), §5.6.3 (p. 79),
§5.7 (p. 80), §5.7 (p. 80),
§6.3 (p. 86), §8.4 (p. 148)

(Req-3) The security requirements should be
enforced effectively.

§5.5.2 (p. 74), §5.6.2 (p. 77),
§5.7 (p. 80), §6.4.4 (p. 103),
§7.4.4 (p. 122), §8.5.3 (p. 153)

(Req-4) The security requirements should be
enforced efficiently.

§5.6.2 (p. 77), §5.7 (p. 80),
§5.7 (p. 80), §6.4.4 (p. 104),
§7.4.4 (p. 125)

Table 1.1.: Requirements of service providers and users

provided service. Thirdly, security requirements should be enforced effectively such that
both security and functionality needs of the service provider are met. Fourthly, security
requirements should be enforced efficiently, because bad service performance dissatisfies
users of the service.

The malicious users we consider are characterized by the following capabilities and
incapabilities. Malicious users are able to provide inputs to the target and to observe
outputs of the target, and they are able to observe and modify network communication
between agents of the target and between units of an enforcement mechanism. Malicious
users are unable to influence the target or an enforcement mechanism by other means
than inputs, outputs, and network communication. Particularly, they are unable to directly
modify the target or the mechanism on the provider’s computers.

We summarize the four requirements of service providers in Table 1.1. We validate the
contributions against these requirements throughout the thesis, particularly at the places
indicated in the last column of the table.

1.3. Overview of Contributions

This thesis presents a generic framework for enforcing security in distributed systems.
The framework enables the specification of security policies for distributed programs, the
enforcement of specified security policies, and the verification of effective enforcement.
The framework is validated in two case studies. The framework consists of techniques,
languages, tools, models, and case studies. Figure 1.1 displays the individual parts of the
framework.

For the specification of security policies, the framework provides the policy language
CoDSPL. CoDSPL supports the specification of policies for a wide range of security
requirements in distributed programs. Through a technique for identifying and separating
concerns, the framework enables the modularization of cooperative security policies. The
modularity of resulting policies aims at a reduced complexity of policy specifications.
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Generic Framework for
Enforcing Security in
Distributed Systems

tool

CliSeAu
Chapter 5

policy language

CoDSPL
Chapter 3

technique

modular policies
Chapter 6

technique

static delegation
Chapter 7

formal model

cooperation model
Chapter 8

case studies

CReDiC & ChESt
Sections 6.4 and 7.4

technique

cross-lining
Chapter 4

enforcement
specification

validation & verification

Figure 1.1.: Main contributions of this thesis

With static delegation, the framework provides a specialized cooperation technique for ef-
fectively enforcing a class of security requirements under race conditions. Both techniques,
for modular policies and for static delegation, include extensions of CoDSPL through which
the techniques can be applied in CoDSPL policies.

For the enforcement of security requirements, the framework provides CliSeAu, a tool
for enforcing security in distributed systems. CliSeAu consists of a parametric implemen-
tation of a distributed enforcement mechanism that can be instantiated for enforcing given
CoDSPL policies as well as a tool that instantiates and applies the parametric mechanism
for enforcing a given CoDSPL policy in a given distributed target implemented in Java or
in Ruby. As a generalization of the technique underlying CliSeAu for the design and appli-
cation of distributed enforcement mechanisms, the framework comprises the cross-lining
technique. The cross-lining technique enables cooperation within a distributed enforce-
ment mechanism even when some agents of the distributed target do not communicate or
are even idle.

For validating the virtues of the framework, the thesis provides two non-trivial case
studies. The first case study presents CReDiC, a mechanism for enforcing users’ privacy
policies in a decentralized online social network. The second case study presents ChESt, a
mechanism for enforcing a Chinese Wall Security Policy in a distributed storage service.
Moreover, for enabling the modeling and verification of particular security policies, the
framework provides a formal model of a distributed enforcement mechanism in CSP. The
model captures the parametric modular architecture of CliSeAu’s units.

Overall, the framework presented in this thesis covers specification, enforcement, valida-
tion and verification for security in distributed systems, addressing the four requirements
of the addressed stakeholder, the service provider. The presented enforcement mechanism
and policy language are generic (Req-1). Verifiability (Req-2) is addressed through modu-
larity in the design of CliSeAu and in the design of CoDSPL policies as well as the formal
cooperation model, which enables formal verification of sound enforcement. Effectiveness
(Req-3) and efficiency (Req-4) are evaluated twofold: firstly through static analysis of
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the code of CliSeAu against common implementation flaws and inefficiencies; secondly
through validation testing [Som16, p. 227] in the two conducted case studies.

1.4. Organization of the Thesis

Notions underlying the contributions of this thesis along with notational conventions
concerning text as well as formal parts of this thesis can be found in Chapter 2. The
contributions of this thesis are contained in Chapters 3 to 8. For an overview on where
particular contributions can be found, the reader is referred to Figure 1.1. Related works
to the technical contributions described in this thesis are discussed in Chapter 9. The body
of this thesis concludes in Chapter 10 with a summary and with an outlook on conceptual
and technical challenges that are related to the topic of this thesis and yet awaiting a
solution.
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Chapter

2
Notions and Notation

In this chapter, we introduce basic notions and notations that are relevant for several
of the following chapters. Concretely, we first introduce mathematical notation and
concepts, security properties as models of security requirements, and the BNF notation
(Sections 2.1 to 2.3) used for unambiguous formal specifications in this thesis. Subsequently,
we introduce notions from object-oriented programming, with a focus on the Java language,
and from aspect-oriented programming, as well as the software design patterns used in
this thesis (Sections 2.4 to 2.6). Finally, we introduce to concepts from the area of run-time
enforcement, namely inlining and service automata (Sections 2.7 and 2.8).

2.1. Basic Mathematical Concepts and Notation

In this section, we introduce basic mathematical notions and notation that are used in this
thesis, covering first-order logics, sets, relations, functions, sequences, and languages.

First-order logic We use formulas in first-order logic [EFT94] in formal modeling as well
as in formal reasoning. In the following, we give a primer on syntax and semantics of
first-order logic as we use it in this thesis.

A formula in first-order logic is a string of symbols based on a signature, a set of variable
symbols, and a set of terms. A signature is a set in which each element represents either
a constant symbol, or an n-ary function symbol, or an n-ary relation symbol (n ≥ 1).
Given a signature S and a set V of variable symbols, the set T (S,V ) of terms and the set
F(S,V ) of formulas are inductively defined by the left column in Table 2.1. We call ¬ϕ
the negation of ϕ, ϕ ∧ ψ the conjunction of ϕ and ψ, and ϕ ∨ ψ the disjunction of ϕ and ψ.

The semantics of first-order logic is given by the satisfaction relation, which is defined
based on the notions of signatures from above as well as the notions of structures and
interpretations introduced below. Given a signature S , an S-structure is a tupleA = (D, a),
where D is a non-empty set, called the domain ofA, and where a is a map defined on S that
maps every constant symbol in S to an element in D, maps every n-ary function symbol



12 Chapter 2. Notions and Notation

syntax semantics

if v ∈ V , then v ∈ T (S,V ); if v ∈ V , then vI = β(v);
if cs ∈ S is a constant symbol, then
cs ∈ T (S,V );

if cs ∈ S is a constant symbol, then
csI = a(cs);

if fs ∈ S is an n-ary function symbol and
t1, . . . , tn ∈ T (S,V ), then
fs(t1, . . . , tn) ∈ T (S,V ).

if fs ∈ S is an n-ary function symbol and
t1, . . . , tn ∈ T (S,V ), then
fs(t1, . . . , tn)I = a(fs)(tI1 , . . . , t

I
n ).

if t1, t2 ∈ T (S,V ), then t1 = t2 ∈ F(S,V ); if t1, t2 ∈ T (S,V ) and tI1 = tI2 , then
I � t1 = t2;

if rs ∈ S is an n-ary relation symbol and
t1, . . . , tn ∈ T (S,V ), then
rs(t1, . . . , tn) ∈ F(S,V );

if rs ∈ S is an n-ary relation symbol,
t1, . . . , tn ∈ T (S,V ), and
(tI1 , . . . , t

I
n ) ∈ a(rs), then I � rs(t1, . . . , tn);

if ϕ ∈ F(S,V ), then ¬ϕ ∈ F(S,V ); if ϕ ∈ F(S,V ) and not I � ϕ, then I � ¬ϕ;
if ϕ,ψ ∈ F(S,V ), then (ϕ ∧ ψ) ∈ F(S,V ); if ϕ,ψ ∈ F(S,V ), I � ϕ, and I � ψ, then

I � (ϕ ∧ ψ);
if ϕ,ψ ∈ F(S,V ), then (ϕ ∨ ψ) ∈ F(S,V ); if ϕ,ψ ∈ F(S,V ) and I � ϕ or I � ψ, then

I � (ϕ ∨ ψ);
if ϕ ∈ F(S,V ) and v ∈ V , then
∀v : ϕ ∈ F(S,V );

if ϕ ∈ F(S,V ), v ∈ V , and, for each x ∈ D,
I[v 7→ x] � ϕ, then I � ∀v : ϕ;

if ϕ ∈ F(S,V ) and v ∈ V , then
∃v : ϕ ∈ F(S,V ).

if ϕ ∈ F(S,V ), v ∈ V , and there is x ∈ D
such that I[v 7→ x] � ϕ, then I � ∃v : ϕ.

Table 2.1.: Inductive definitions of T , F , ·I, and �

in S to an n-ary function on D, and maps every n-ary relation symbol in S to an n-ary
relation on D. An S-interpretation is a tuple I = (A, β), where A is an S-structure and
β : V → D is a map from variable symbols to elements of the domain, called assignment .
Let A = (D, a) be an S-structure and V be a set of variable symbols. The valuation
of terms, ·I : T (S,V ) → D, and the satisfaction relation, �, on S-interpretations and
formulas in F(S,V ) are inductively defined by the right column in Table 2.1. In the
inductive definition, I[v 7→ x] denotes the same interpretation as I except that it maps
the variable symbol v to the value x .

We write ϕ=⇒ ψ to denote that every S-interpretation I satisfying I � ϕ also satisfies
I � ψ. We write ϕ⇐⇒ ψ to abbreviate ϕ=⇒ ψ and ψ =⇒ ϕ.

We use the following abbreviating notations for formulas. We omit outermost paren-
theses around formulas and omit parentheses also around conjunctions in conjunctions
and disjunctions in disjunctions. Moreover, we omit parentheses with the convention that
relation symbols bind stronger than negation, negation binds stronger than conjunction,
and conjunction binds stronger than disjunction. For a binary relation symbol rs, we
sometimes write t1 rs t2 instead of rs(t1, t2). We sometimes write ϕ_ψ instead of ¬ϕ∨ψ
to denote logical implication, and write ϕ]ψ instead of (ϕ_ψ)∧ (ψ_ϕ). Concerning
quantifiers, sometimes we write ∀v,w : ϕ instead of ∀v : ∀w : ϕ, write ∀v ∈ A : ϕ instead
of ∀v : (v ∈ A _ ϕ), and write ∃v ∈ A : ϕ instead of ∃v : (v ∈ A ∧ ϕ).

In this thesis, we often omit explicit signatures, structures, and interpretations. We then
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implicitly refer to the signature that contains one constant symbol for every used constant,
one function symbol for every function, and one relation symbol for every relation defined
in the thesis. When no set of variable symbols is given, we implicitly refer to a set of
symbols for meta-variables that is clear from the context. When no structure is given,
we implicitly refer to a structure A = (D, a), where D is a universe comprising simple
objects (e.g., numbers) as well as complex objects (e.g., sequences of simple objects) that
become clear from the context and where a maps each function and relation symbol to
the corresponding homonymous function and, respectively, relation. For a formula ϕ, we
say that ϕ holds (or: is satisfied), if and only if all free variables in ϕ are bound in the
context and (A, β) � ϕ holds for an assignment β that assigns to each free variable in ϕ
the respective value specified in the context.

Given a sentence ϕ, i.e., a formula with no free variables, we denote by δϕ the constant 1
if ϕ holds true and the constant 0 otherwise.

In the following, we use the symbols ϕ and ψ as meta-variables ranging over formulas.

Sets We denote the empty set by ∅. We denote extensional set specifications, i.e., explicit
enumerations of the elements contained in a set, by terms of the {x, y, z}. We also use
intensional set specifications in the form {t(x1, . . . , xn) ∈ A | ϕ}, where the set then
contains exactly those instances of the terms t(x1, . . . , xn) that are in set A and satisfy the
first-order logic formula ϕ in which x1 to xn can occur as free variables. For an element x
and a set A, we write x ∈ A to denote that x is contained in A. We write A ⊆ B to denote
that set A is a subset of set B or equal to B, i.e., that the formula ∀x : (x ∈ A _ x ∈ B) is
satisfied.

We denote the union of two sets A and B, i.e., {x | x ∈ A ∨ x ∈ B}, by A ∪ B, the
intersection of two sets A and B, i.e., {x | x ∈ A ∧ x ∈ B}, by A ∩ B, and the difference
of two sets A and B, i.e., {x ∈ A | ¬(x ∈ B)} by A \ B. For a finite set I , called index
set , and sets Ai for all i ∈ I we denote by

⋃
i∈I Ai the union of the sets Ai , i.e., the set

{x | ∃i ∈ I : x ∈ Ai}. For a finite set A, we denote by |A| the cardinality of A, i.e., the
number of elements in A. We denote the powerset of a set A, i.e., the set {A′ | A′ ⊆ A}, by
P(A).

Given an index set I , we denote by (xi)i∈I the collection of values xi for all i ∈ I and call
(xi)i∈I a family (of values). A partition of a set A is a family (Bi)i∈I of sets, such that Bi 6= ∅
for each i ∈ I , Bi ∩ Bj = ∅ for i 6= j, and

⋃
i∈I Bi = A. Given two partitions A = (Ai)i∈I

and B = (Bj)j∈J , of a set A, we say that A is a refinement of B if for each i ∈ I there exists
a j ∈ J such that Ai ⊆ Bj holds.

We use N to denote the set of natural numbers, i.e., {1, 2, . . .} (excluding 0), and R to
denote the set of real numbers. We use the following notation for intervals, i.e., particular
ranges of real numbers: We denote the closed interval {z ∈ R | x ≤ z ∧ z ≤ y} by [x, y]
and we denote the left-closed, right-open interval {z ∈ R | x ≤ z ∧ z < y} by [x, y).

Generally, we use symbols A, A′, B, and so forth for meta-variables ranging over sets.
Specifically for index sets, we use meta-variables I and J . For elements of sets we use the
meta-variables x , y, and z as well as their indexed and primed variants. For elements of
index sets, we use the meta-variables i and j. For meta-variables denoting partitions, we
use calligraphic letters – typically the calligraphic counterpart of the partitioned set, i.e.,
A for a partition of set A.
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Relations We write (x1, . . . , xn) for the tuple of elements x1 to xn. We denote by A1 ×
. . . × An = {(x1, . . . , xn) | ∀i ∈ {1, . . . , n} : xi ∈ Ai} the cross product of sets A1 to An

and call a set R ⊆ A1 × . . .× An an (n-ary) relation.
A binary relation R ⊆ A × A on A is a partial order if it is reflexive (i.e., (x, x) ∈ R

for each x ∈ A), antisymmetric (i.e., (x, y), (y, x) ∈ R implies x = y), and transitive
(i.e., (x, y), (y, z) ∈ R implies (x, z) ∈ R). The binary relation R is a total order if it is
antisymmetric, transitive, and total (i.e., one of (x, y) ∈ R and (y, x) ∈ R holds). Moreover,
the binary relation R is symmetric if (x, y) ∈ R implies (y, x) ∈ R and is irreflexive if
(x, x) /∈ R for all x ∈ A.

We make use of maximal as well as minimal values of finite, totally ordered sets. Con-
cretely, we use max{t(x1, . . . , xn) ∈ A | ϕ} to denote themaximal element t(x1, . . . , xn) ∈
A satisfying formula ϕ and use min{x1, . . . , xn} to denote the minimal element xi in the
given set. We use both notations only where the total order of the elements is unambiguous
from the context.

In the following, we use R as meta-variable ranging over relations. For an n-ary
relation R, we sometimes abbreviate (x1, . . . , xn) ∈ R, i.e., the membership of the tuple
(x1, . . . , xn) in R, by R(x1, . . . , xn). Moreover, for a binary relation R, we sometimes
abbreviate (x1, x2) ∈ R by x1Rx2.

Functions We formally treat functions as special kinds of relations. Concretely, we denote
the set of partial functions from domain A to co-domain B by A ⇀ B = {R ⊆ A × B |
((x, y) ∈ R ∧ (x, y ′) ∈ R) _ y = y ′}. We denote the set of total functions from a domain
A to co-domain B by A → B = {R ∈ A ⇀ B | ∀x ∈ A : ∃y ∈ B : (x, y) ∈ R}. Given a
partial function f : A ⇀ B, we denote by dom(f ) the set A′ ⊆ A of values for which f is
defined (called the domain of definition). A total function f : A → B is injective, if for all
x, x ′ ∈ A, f (x) = f (x ′) implies x = x ′.

Given sets A, A′, and B and two partial functions f : A ⇀ B and g : A′ ⇀ B, we denote
by f ⊕ g : (A ∪ A′)⇀ B the partial function defined by

(f ⊕ g)(x) =

{
g(x) if x ∈ dom(g),
f (x) if x ∈ dom(f ) \ dom(g),

and undefined otherwise. We call f ⊕ g the overriding of function f by function g.
In the following, we use symbols f , f ′, g, and so forth for meta-variables ranging over

functions.

Sequences A sequence is an ordered collection of elements. We use 〈 〉 to denote the empty
sequence and 〈x1, . . . , xn〉 to denote the sequence consisting of the elements x1 to xn in
this order. For a given set A, we denote by A∗ the set of all finite sequences over A. By
A+, we denote the set of all non-empty finite sequences over A, i.e., A∗ \ {〈 〉}. Given two
sequences t1 = 〈x1, . . . , xn〉 and t2 = 〈y1, . . . , ym〉, we denote by t1.t2 the concatenation
of t1 and t2, i.e., 〈x1, . . . , xn, y1, . . . , ym〉. We denote the projection of a sequence t to a set
A, i.e., the sequence resulting from pruning from t all elements not contained in A, by
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t � A. Formally, t � A is defined inductively by

〈 〉 � A =〈 〉,

〈x〉.t � A =

{
〈x〉.(t � A) if x ∈ A,
t � A if x /∈ A.

Given a sequence t = 〈x1, . . . , xn〉, we denote the length n of t by |t |. We denote by x / t
that an element x occurs in a sequence t , i.e., that ∃t1, t2 : t = t1.〈x〉.t2 is satisfied. That
an element x does not occur in a sequence t , we denote by x 6 t . We call a sequence t a
prefix of sequence t ′, denoted by t � t ′, if there is a sequence t ′′ such that t .t ′′ = t ′. We
call a set B ⊆ A∗ of sequences over A prefix-closed , if ∀t, t ′ : ((t ∈ B ∧ t ′ � t) _ t ′ ∈ B) is
satisfied.

In the following, we use t as well as its indexed and primed forms as meta-variable
ranging over sequences.

Words and languages We use Σ to denote the universe of symbols we implicitly assume
all languages introduced in this thesis to be constructed upon. This universe contains
all alphanumeric symbols as well as punctuation symbols, whitespace symbols, control
symbols (such as line breaks), and mathematical symbols. We use the symbol W = Σ∗ to
refer to the set of all words over Σ. For a set A ⊆ Σ, we denote by WA = (Σ \ A)∗ the set
of all words in which symbols from A do not occur. By the symbol ε ∈ W , we denote the
empty word , and by w u, we denote the concatenation of the words w and u.

In the following, we use w and u as meta-variables ranging over words.

2.2. Security Properties

We capture security requirements on programs formally by security properties. By a
security property, we unambiguously distinguish “secure” from “insecure” executions of
programs. We capture this as follows.

Definition 2.1. An event is a term that captures an atomic action of an agent [Man03]. ♦

Definition 2.2. Given a program Prog and a set E of events in which the program can in
principle engage, an execution of Prog is a (finite) sequence t ∈ E∗ of events and captures
the individual atomic actions performed by the program in the order in which they are
performed. ♦

For example, the action “open the file /etc/passwd” can be captured by the event
open(/etc/passwd). When a program first reads the content of file /etc/passwd into a
buffer and subsequently sends its content over the network to some recipient, can be
modeled by the execution 〈read(/etc/passwd, buf ), send(buf )〉.

Definition 2.3. Given a set E of events a security property is a set P ⊆ E∗ of sequences of
events. ♦

Given a security property P , we call each sequence t ∈ P security-compliant and call
each sequence t ′ /∈ P a security violation.
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Security properties modeled as sets of sequences of events are sufficiently expressive
to capture a variety of security requirements. For example, discretionary or mandatory
access control requirements [Bis03, pp. 103–104] can be captured by the set of sequences
in which each of the events either captures a non-access action or captures an allowed
access action. For another example, some usage control requirements [PS04], such as
the requirement that certain sensitive documents may be printed at most 5 times, can
be captured as well. In this latter example, the security property would consist of all
sequences in which for each sensitive document there are at most 5 events capturing a
printing action.

Outside the expressiveness of security properties as defined in Definition 2.3 are re-
quirements that cannot be expressed as properties of individual executions. Such security
properties are also outside the scope of this thesis. Examples of such properties include
formalizations of non-interference [GM82], capturing, e.g., the lack of dependencies be-
tween confidential inputs and public outputs. Such lack of dependence can be captured,
e.g., by requiring that two executions that only differ in confidential inputs must not
differ in the public outputs. That is, such properties do not classify individual executions
but collections of executions. Another example of properties outside the scope of this
thesis are properties that capture availability by constraining average response times of
programs (e.g., [CS10]), which also involves classifying collections of executions rather
than individual executions.

Our definition of security property is adopted from Ligatti, Bauer, and Walker [LBW05].
Other formal models of security properties also involve sets of sequences. For instance,
sets of both finite and infinite sequences of events were proposed for capturing addition-
ally properties of nonterminating programs [Sch00; LBW09; BJK+13]. Sets of sequences
of sets of events were proposed for capturing simultaneously occurring actions [Lov15;
Kel16]. For when the evolution of a program’s state is in the focus of the security re-
quirements, models of security properties as sets of infinite sequences of program states
were proposed [AS85; AS87]. Beyond the scope of security, properties have also been
defined to classify finite sequences of events into categories such as “match”, “fail”, and
“don’t know” [MJG+12]. The term security property has also been used for sets of sets of
sequences of events [Man03], which in other works are called security policies [Sch00] or
hyperproperties [CS10]. In the remainder of this thesis, we use the term security properties
as introduced in Definition 2.3 on page 15 and use the term hyperproperties for sets of
sets of sequences.

Safety and liveness Two particular classes of security properties relevant for this thesis
are safety properties and liveness properties. Intuitively, a safety property specifies
that “something bad” must never happen and, consequently, any execution containing a
“bad” event violates the property [AS85]. Conversely, a liveness property specifies that
“something good” must eventually happen during an execution. Safety and, particularly,
liveness properties are commonly characterized based on infinite sequences [AS85]. In
this thesis, we formally define the two classes of security properties as follows, where we
adopt the formalizations of Ligatti, Bauer, and Walker [LBW05; LBW09], which build on
finite rather than infinite sequences.
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Definition 2.4. A security property P ⊆ E∗ is a safety property over set E of events if
and only if ∀t ∈ E∗ : (¬P(t) _ ∀t ′ ∈ E∗ : (t � t ′ _ ¬P(t ′))) holds [LBW05]. ♦

Definition 2.5. A security property P ⊆ E∗ is a liveness property over set E of events if
and only if ∀t ∈ E∗ : ∃t ′ ∈ E∗ : (t � t ′ _ P(t ′)) holds [LBW09]. ♦

Security properties in distributed programs The notions of safety and liveness properties
distinguish security properties by the kind of security required. In the context of distributed
programs, we further introduce an architectural aspect of security properties. Concretely,
some security properties for distributed programs can be represented as a collection of
security properties on the individual agents of distributed programs in the following sense:
Security violations can soundly and completely be detected by independently analyzing
the behavior of the individual agents. We capture such security properties as follows.

Definition 2.6. Let DP be a distributed program whose individual agents are identified
by the elements of the finite nonempty set I and let (Ei)i∈I be the family of sets of events
of the individual agents of DP . Let P be a security property over E, where E =

⋃
i∈I Ei . We

call P localizable with respect to (Ei)i∈I if and only if there is a family (Pi)i∈I of security
properties over (Ei)i∈I such that

∀t ∈ E∗ : (t ∈ P ] ∀i ∈ I : t � Ei ∈ Pi) (LOC)

holds. Conversely, we call P non-localizable with respect to (Ei)i∈I if P is not localizable
with respect to (Ei)i∈I . ♦

The family (Pi)i∈I in the definition captures the collection of security properties by
which the individual agents of the distributed program can “locally” detect a security
violation. The sentence (LOC) faithfully captures that such detection is possible soundly
and completely. For each security violation t /∈ P , there must be an agent i ∈ I such that
t � Ei , i.e., the local view of agent i on execution t , is a security violation with respect
to the local security property, Pi , of agent i. That is, security violations can be detected
completely by independently analyzing the agents’ local views. Conversely, for each
detection t � Ei /∈ Pi , also t /∈ P must hold. That is, security violations can soundly be
detected by independently analyzing the agents’ local views.

A non-localizable security property cannot be represented as a collection of security
properties on the individual agents of a distributed program. For detecting some of
the security violations, the individual agents’ views in isolation do not suffice. Rather,
the security property requires the agents of the distributed program to act in concert.
Therefore, to characterize non-localizable security properties positively, we also refer to
them as concerted security properties.

In Definition 2.6, the family of security properties, (Pi)i∈I , is existentially quantified.
For simplifying the analysis of whether a security property is localizable, the following
theorem provides a construction of the family of security properties.

Theorem 2.1. Let E be a set of events, P be a security property over E, and (Ei)i∈I be a
family of sets of events with

⋃
i∈I Ei = E. Then P is localizable with respect to (Ei)i∈I if and

only if sentence (LOC) holds for the family (Pi)i∈I of security properties with Pi = {t � Ei |
t ∈ P}. ♦
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Proof. Let E be a set of events, P be a security property over E, and (Ei)i∈I be a family of
sets of events with

⋃
i∈I Ei = E. Let (P̃i)i∈I be a family of security properties defined by

P̃i = {t � Ei | t ∈ P}. We show both directions of the “if and only if”. Firstly, if sentence
(LOC) holds for (Pi)i∈I = (P̃i)i∈I , then trivially P is localizable, as (P̃i)i∈I stands as a
witness for the existentially quantified (Pi)i∈I in Definition 2.6. Secondly and conversely,
if P is localizable, then there exists a family (Pi)i∈I of security properties that satisfies the
sentence (LOC). Let such (Pi)i∈I be fixed in the following. By splitting the bi-implication
in (LOC) we get

1. ∀t ∈ E∗ : (t ∈ P _ ∀i ∈ I : t � Ei ∈ Pi) =⇒∀t ∈ P : ∀i ∈ I : (t � Ei ∈ Pi)

=⇒∀i ∈ I : {t � Ei | t ∈ P} ⊆ Pi =⇒∀i ∈ I : P̃i ⊆ Pi
2. ∀t ∈ E∗ : ((∀i ∈ I : t � Ei ∈ Pi) _ t ∈ P)

=⇒∀t ∈ (E∗ \ P) : ∃i ∈ I : (t � Ei /∈ Pi)
To show that (LOC) holds for (P̃i)i∈I , let t ∈ E∗ be arbitrary but fixed. If t ∈ P , then by
definition of P̃i , t � Ei ∈ P̃i holds for each i ∈ I . Conversely, if t /∈ P , then by (2) we have
∃i ∈ I : (t � Ei /∈ Pi) and by (1) we particularly have ∃i ∈ I : (t � Ei /∈ P̃i), as it was to be
shown.

We conclude by illustrating localizable and concerted security properties at the following
two examples.

Example 2.1. For an example of a security property that is localizable, consider a dis-
tributed storage service with the requirement that user Alice must not log in at any of
the distributed servers. The service consists of 5 servers with identifiers I = {1, 2, 3, 4, 5}.
The event logini(Alice) ∈ Ei captures a successful login of Alice at server i ∈ I . We capture
the security requirement by the security property P = {t ∈ E∗ | t � Elogin = 〈 〉}, where
E =

⋃
i∈I Ei and Elogin = {logini(Alice) | i ∈ I}.

The security property P is localizable with respect to (Ei)i∈I , as the family (Pi)i∈I of
security properties defined by Pi = {t ∈ Ei∗ | t � {logini(Alice)} = 〈 〉} satisfies the
sentence (LOC). ♦

Example 2.2. For an example of a concerted security property, consider a distributed
storage service consisting of 5 servers with identifiers I = {1, 2, 3, 4, 5}. The security
requirement on the service is that user Bob must not access both the balance sheets
bsA and bsB of Bank A and, respectively, Bank B during one execution of the service.
The event accessi(Bob, bs) ∈ Ei captures a successful access by Bob to the balance sheet
bs ∈ {bsA, bsB} at server i ∈ I . We capture the security requirement by the security
property P = {t ∈ E∗ | ¬∃i, j ∈ I : (accessi(Bob, bsA) / t ∧ accessj(Bob, bsB) / t)}, where
E =

⋃
i∈I Ei .

The security property P is concerted with respect to (Ei)i∈I . According toTheorem 2.1, P
could only be concerted (i.e., non-localizable), if sentence (LOC) holds for (Pi)i∈I defined by
Pi = {t ∈ E∗ | ¬(accessi(Bob, bsA)/ t ∧accessi(Bob, bsB)/ t)}. However, for the sequence
t = 〈access1(Bob, bsA), access2(Bob, bsB)〉 we have t /∈ P but ∀i ∈ I : (t � Ei ∈ Pi). Hence,
sentence (LOC) is not satisfied and P is concerted with respect to (Ei)i∈I . ♦

Remark 2.1. Literature does not provide generally accepted meanings of the terms “se-
curity requirement”, “security policy”, and “security property”. In this thesis we refer to
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natural-language statements of requirements from the CIA triad as security requirements
and refer to formalizations of security requirements as sets of sequences as security prop-
erties. By the term “security policy”, we refer to a machine-readable expression in a policy
language understood by some enforcement mechanism (as, e.g., Ponder [DDL+01]). In
particular, a security policy can be operational as well as declarative. Intuitive, the purpose
of a security policy is to make the enforcement mechanism enforce particular security
requirements. We do not use other meanings of the term “security policy” found in the
literature, notably a strategy addressing a whole organization rather than an enforcement
mechanism (e.g., Schneier [Sch04, pp. 308–309]) and a set of sets of executions (e.g., Schnei-
der [Sch00]). As an exception to this nomenclature, we use the established term “Chinese
Wall Security Policy” for the (natural-language) security requirement stated in the work
by Brewer and Nash [BN89]. ♦

2.3. BNF

In this thesis, we use Wirth’s variant [Wir77] of the Backus-Naur Form [BBG+60] for
specifying context-free grammars that define the syntax of a language. We abbreviate this
variant by BNF in the remainder of the thesis. Following Wirth, we provide the syntax of
BNF using BNF itself:

grammar = { production }.
production = identifier ‘=’ expression ‘.’.
expression = term { ‘|’ term }.
term = factor { factor }.
factor = identifier | literal | ‘(’ expression ‘)’

| ‘[’ expression ‘]’ | ‘{’expression ‘}’.
literal = ‘ ‘’ ’ character { character } ‘ ‘’ ’.

In this BNF, identifier denotes a non-terminal symbol. A sequence of ASCII characters
enclosed in single quotes denotes a terminal symbol. Two successive single quotes within
a terminal symbol represent the single quote character. An expression enclosed in curly
braces denotes repetition, zero or more times. An expression enclosed in square braces
denotes optionality. Terms separated by a pipe symbol denote alternative choice. A
sequence of factors without separation symbol denotes concatenation. Then a grammar is
a sequence of zero or more production rules, of which each production rule associates a
non-terminal with an expression. An expression is a collection of alternatives, of which
each is a sequence of terms, i.e., non-terminals, terminals, grouped expressions, optional
expressions, and repeated expressions. For a given grammar specified in BNF, we refer to
the set of all words that can be produced by the production rules for a given non-terminal
identifier , by L(identifier).

2.4. Java

Java is a general-purpose object-oriented programming language. All Java code developed
for this thesis runs conforms to the Java 8 SE language and API [GJS+14], i.e., the standard
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edition of Java version 8. The presentation chosen for this thesis, however, does not go
into a level of code details at which the precise version of Java makes a difference. In the
following, we briefly introduce the Java-related terms used in this thesis.

Core concepts of the Java language In this thesis, we use the term class as in Java for a code
template from which objects, i.e., individual instances of the class, can be created. A class
can define methods, i.e., procedures associated with every object of the class, constructors,
i.e., procedures specifically for the construction of objects of the class, as well as fields, i.e.,
variables associated with every object of the class. A class can furthermore define static
methods, i.e., procedures associated to the class itself, as well as static fields, i.e., variables
associated to the class. A method can have a possibly empty list of formal parameters and
can have a return type. When a method is called , a list of actual arguments are provided
for the formal parameters. A method with a return type must, upon non-exceptional
completion of its execution, provide a return value to the caller of the method. Like a
method, a constructor also has a list of formal parameters but does not have a return
type. A class can inherit from another class, making the former a subclass of the latter. A
class can also declare abstract methods, i.e., methods for which only the name, the formal
parameters and the return type are declared but the implementation must be provided
by a subclass. A class containing abstract methods is called an abstract class. Java also
provides the concept of interfaces, constructs that declare methods (like abstract methods
of a class) but cannot have any fields. When a classes implements an interface, it provides
code for all methods declared by the interface. Methods and fields of a class can be private,
protected , or public, meaning that they are accessible only from code of the class, code of
the class as well as of subclasses, or code of any class, respectively.

The Java language provides a few primitive types, for holding integers, floating-point
values, Boolean values, and characters. Additionally, the Java language includes a large
collection of classes and interfaces, called the Java API , which implement commonly used
functionality for, e.g., data structures and network sockets. The Java API also provides
means for serialization and deserialization, i.e., for turning in-memory objects into a
storable piece of data and, respectively, turning back the latter into the former. Java code
is organized into Java packages, sets of files sharing the same identifier provided to the
package keyword in the source code and typically residing in the same directory.

Compilation, execution, and analysis of Java programs Java code is typically compiled to
Java bytecode, in the Java virtual machine language (JVML) [LYB+14], for being interpreted
by the Java virtual machine (JVM ). Multiple compiled units of Java code are typically placed
into a Java Archive (JAR file), which is a container that maintains the association between
the file names of the compiled units and their content. Code documentation for Java is
typically specified through code comments with a specific syntax (e.g., comments initiated
by the “/** ” sequence) from which the Javadoc tool of Java generates a documentation of
packages, classes, methods, and fields.

For analyzing Java source code as well as Java bytecode with regard to various as-
pects, several tools exist. In this thesis, we particularly make use of FindBugs [AHM+08],
PMD [PMD], and Checkstyle [Che], each being the result of several years of development.
FindBugs is a tool for finding bugs in Java bytecode based on static analysis. The tool
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analyzes the Java bytecode with regard to several kinds of problematic code, including
dereferencing of null pointers, wrong use of the Java API, and even inefficient code. PMD
is an analysis tool for several programming languages, particularly including Java source
code, that checks the code for overly complex code parts, dead code, and inefficient code.
Checkstyle is a tool for checking Java source code against stylistic criteria such as in-
dentation, naming of variables, etc., as well as code documentation criteria, particularly
regarding complete and properly formatted Javadoc comments. Checkstyle includes an im-
plementation of checks against the Google Java Style Guide, i.e., “Google’s coding standards
for source code in the Java programming language” [Gooa].

2.5. Aspect-oriented Programming

Aspect-oriented programming (brief: AOP ) is a technique for realizing separation of con-
cerns in computer programs [KLM+97; KHH+01]. Frequently named examples of func-
tionality for which AOP is employed to achieve separation of concerns include logging,
transactions, and, most relevant for this thesis, security.

In this thesis, we use concepts, techniques, and tools from aspect-oriented programming
for instrumenting the code of a target with an enforcement mechanism. In particular,
we utilize AspectJ , the de-facto standard AOP implementation for Java. We here briefly
recapitulate the key notions from AOP that are relevant for this thesis. For further details,
we refer to [KLM+97; KHH+01; WKD04]. A join point is an execution of a program operation
(an instruction or atomic statement in the language of a program). A pointcut is a set
of join points. We also use the term pointcut for referring to a specification of a set of
join points. An advice is a method-like piece of code that is bound to a pointcut and
whose purpose is to define additional program behavior for all join points specified by
the pointcut. A particular kind of advice is the around-advice, which is an advice that is
executed instead of the join point and that may or may not invoke the join point during
its execution. An aspect is a set of advice together with a set of pointcuts and ordinary
code. A join point shadow for a given join point is a point in the code of a program whose
execution triggers the join point [MKD03; BH12]. Given a program and an aspect, the
process of realizing that during the execution of the program, the behavior specified by
each advice of the aspect is performed at each join point matching the pointcut of the
advice, is called weaving.

2.6. Software Design Patterns

A software design pattern “names, abstracts, and identifies the key aspects of a common
design structure that make it useful for creating a reusable object-oriented design” [GHJ+95,
p. 3]. We use software design patterns in the high-level and low-level architectures
proposed in this thesis.

The Abstract Factory pattern [GHJ+95, pp. 87–95] is a creational design pattern, i.e., a
pattern that “concern[s] the process of object creation” [GHJ+95, p. 10]. The pattern can be
applied, for instance, when the creation and representation of a family of products should
be transparent to the clients using the concrete products. Conceptually, the Abstract
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Factory pattern involves five kinds of entities: an abstract factory, one or more concrete
factories, abstract products, concrete products, and a client. An abstract product defines an
interface for a particular kind of products. The abstract factory defines an interface for the
creation of each abstract product from the family of products: For each kind of product of
the family, this interface declares a factory method , i.e., a method for creating instances
of this kind. Each concrete product implements a particular representation of an abstract
product. A concrete factory inherits from the abstract factory and, as such, implements a
particular way of creating particular concrete products from the family of products. The
client uses a concrete factory and concrete products through the interfaces defined by
the abstract factory and the abstract products. The pattern allows the representation of
products to be transparent to clients through the distinction between abstract products
and concrete products, and allows the creation of products to be transparent through the
distinction between the abstract factory and concrete factories.

The Strategy pattern [GHJ+95, pp. 315–323] is a behavioral design pattern, i.e., a pat-
tern that “characterize[s] the ways in which classes or objects interact and distribute
responsibility” [GHJ+95, p. 10]. The pattern can be applied, for instance, in an architecture
in which several different but yet related behaviors exist and a client shall be configurable
to use either of them. Moreover, the pattern can be applied when a client shall not know
about internal data used by an algorithm that implements some behavior. Conceptually,
the Strategy pattern involves three kinds of entities: an abstract strategy, one or more
concrete strategies, and a context. The abstract strategy defines an interface through
which the behaviors can be invoked. In the Java language, an abstract strategy can be
implemented as an interface. Each concrete strategy is an instance of the abstract strategy
and implements some concrete behavior. The context is the point in the architecture in
which a concrete strategy is used through the interface defined by the abstract strategy.
In particular, the context does not use specifics of the concrete strategy that exceed the
interface defined by the abstract strategy.

The Constructor Injection pattern [Fow04] is a low-level architectural pattern for sepa-
rating the concerns of constructing and, respectively, using of an object of a particular
type. According to the pattern, the object that uses another object obtains the latter as an
argument of its constructor. That is, the construction of the latter object is not performed
by the former object. By avoiding that the former object creates the latter object itself, the
concrete type of the latter object can vary independently of the former object. Note that
the Constructor Injection pattern can be used for realizing the Strategy pattern, namely
by passing a concrete strategy through a constructor.

2.7. Inlining

Instrumentation is one possible technique for encapsulating a given program by applying
an enforcement mechanism. Several proposed security enforcement mechanisms for
non-distributed programs have been proposed to be applied to a given program through
instrumentation of the program [ET99; ES00b; Erl04; BLW09; ADG09; MJG+12; ZTE13;
BGH+14; PBS14]. Generally, the goal of such instrumentation techniques is that the en-
forcement mechanism is invoked at run-time by the program itself whenever the program
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1 File file = new File(fileName);
2 if (file.exists()) {
3 sendFile(file);
4 } else {
5 sendErrMsg(fileName);
6 }

Listing 2.1.: Example code subject to inlining

1 File file = new File(fileName);
2 if (file.exists()) {

3a if (!EM.check(”send”, file, this.user)) {
3b System.exit(403);
3c } else {
3d EM.record(”send”, file, this.user);
3 sendFile(file);

3e }
4 } else {
5 sendErrMsg(fileName);
6 }

Listing 2.2.: Resulting code after inlining

is about to perform a security-relevant action.
Technically, the individual instrumentation techniques differ from each other in that the

mechanisms target different programming languages or use particular tools and techniques
for modifying the relevant portions of the target’s code. The techniques have in common
that they place code of the enforcement mechanism figuratively around those lines of
the existing code of the target whose execution might be relevant for security. When
the resulting code is executed, the code of the mechanism is carried out sequentially
interleaved with the original code of the target. Following Erlingsson and Schneider
[ES00a], we refer to such program instrumentation techniques for enforcing security
as inlining. Accounting for the technical differences between the individual inlining
techniques, we use the term here in a way that aims to account for the variations found
in the literature. Note that the inlining technique does not involve modifications of the
environments in which the agent is supposed to be executed. We illustrate inlining at the
following example.

Example 2.3. Let the Java-like code fragment in Listing 2.1 be part of the code of a
program that provides access to files as a service. The code checks whether a file, whose
name is stored in variable fileName, exists or not (Lines 1 and 2). If the file exists, the code
sends the file to its destination (Line 3). Otherwise, the code sends out an error message
(Line 5). The code is part of a program in which conflicts of interest shall be prevented
(in analogy to Example 1.1 on page 6). In this context, calls to the sendFile method are
security-relevant actions: They could violate the security requirement by sending a file to
a user who previously already accessed a conflicting file.

The result of inlining an enforcement mechanism for the security requirement could
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Figure 2.1.: Architecture, interfaces, and parameters of a service automaton [GMS12]

be as shown in Listing 2.2 on page 23, in which the shaded lines are added compared to
Listing 2.1 on page 23. The added code first performs a check whether executing sendFile
should be permitted (Line 3a). If the check fails, the code terminates the program before
sendFile can be performed (Line 3b). Otherwise, the code records the upcoming occurrence
of sendFile (Line 3d) before it calls sendFile. ♦

2.8. Service Automata

Service automata [GMS12] are a concept of a generic enforcement mechanism for security
in distributed systems such as service-oriented architectures (hence the name service
automata). The goal of the concept is to enable decentralized enforcement in a coordinated
fashion. Coordination aims for the sound enforcement of security aspects that cannot be
achieved locally in a distributed target. Decentralization aims to avoid bottlenecks and a
reduction of communication overhead.

An individual service automaton constitutes a unit of a distributed enforcement mecha-
nism. A particularity of a service automaton is that it can communicate with other service
automata. This enables service automata to coordinate their enforcement of a security
property on a distributed program.

A service automaton has a modular architecture comprising four components. Figure 2.1
shows these components. Each component takes over a particular task during the en-
forcement. At run-time, the interceptor continuously intercepts the next security-relevant
action of the agent. That is, it anticipates the action before the action is performed and
temporarily blocks the execution of the agent. The local policy makes local decisions about
intercepted actions, i.e., determines whether the actions comply with the security property
and determines suitable countermeasures, when possible. The coordinator uses the local
policy and a network of other service automata to decide whether an intercepted action
may be performed by the agent or, if not, to decide which countermeasure to impose
on the agent. The enforcer implements these decisions and, if mandated by a decision,
unblocks the execution of the target.

When the coordinator cannot make a decision about an intercepted action using the local
policy, it can involve another service automaton in the decision-making. The coordinator
then delegates the decision-making, i.e., transfers the responsibility to make a decision, for
the intercepted action to the other service automaton by sending a delegation request . The
coordinator can obtain the result of the delegation by receiving a delegation response from
another service automaton. The coordinator can also assume the converse role, receiving
delegation requests from other service automata and replying with a delegation response
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or further delegating the decision-making.
The generic aspect of the Service Automata concept is achieved by parametric com-

ponents of the individual service automata: the local policy and the enforcer (the boxes
with the dark gray background in Figure 2.1). These components can be instantiated by a
concrete local policy and a concrete enforcer for enforcing a particular security property
on a particular target.
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Chapter

3
A Language for Specifying

Modular Cooperative Policies

3.1. Introduction

We present CoDSPL (pronounced “code-spell” and abbreviating “Cooperative Distributed
Security Policy Language”), a language for specifying policies for cooperative distributed
enforcement mechanisms. The policy language allows policies to specify which units
apply to which agents of a distributed program, which actions of the agents are security-
relevant, and how countermeasures are decided, possibly by cooperation among units. In
particular, CoDSPL allows the policies to specify for each unit of a distributed enforcement
mechanism when and how this unit initiates cooperation and how it responds to other
units’ requests for cooperation. CoDSPL supports targets implemented in Java or in Ruby.

Specifying the cooperation in a security policy allows the designer of a policy to tailor
cooperation to, e.g., the distributed program, the architecture of the underlying distributed
system, and the security requirements. Beyond expressiveness regarding cooperation,
CoDSPL is also expressive with regard to aspects that apply to non-distributed settings.
Namely, CoDSPL allows wide ranges for the specification of which actions shall be in-
tercepted, how decisions about intercepted actions are made, and what countermeasures
shall be taken against security-violating actions.

Structure The remainder of this chapter is structured as follows. Section 3.2 introduces
the reference architecture of enforcement mechanisms assumed by the policy language. In
Section 3.3, we present the high-level structure of the policy language. Section 3.4 presents
the syntax of our policy language, structured into the language’s three sub-languages.
Section 3.5 provides the semantics of CoDSPL, i.e., how the individual units specified
by a CoDSPL policy behave at run-time. We summarize the presented contributions in
Section 3.6.
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Figure 3.1.: Reference architecture of units for CoDSPL (UML component diagram)

3.2. Reference Architecture

The reference architecture for CoDSPL specifies basic architectural assumptions about
enforcement mechanisms that shall enforce CoDSPL policies. Since CoDSPL targets
enforcement mechanisms for distributed programs, the reference architecture consists
of two architectural aspects. The reference architecture specifies the distribution of the
mechanism in relationship to the agents of the distributed target. The reference architecture
specifies the architecture of the individual mechanism’s units, particularly with regard to
the aspects that specified by CoDSPL policies.

The enforcement mechanism of the reference architecture is itself distributed. It consists
of one unit for each agent of the distributed target that shall be subject to the enforcement.
Moreover, each unit of the mechanism can be configured individually by the CoDSPL
policy. That is, firstly, agents of the target that are irrelevant for security need not be
subject to the enforcement mechanism and, hence, need not be subject to a CoDSPL policy.
Secondly, for those agents that are subject to the mechanism, the mechanism allows the
CoDSPL policy to tailor the units individually to these agents.

Figure 3.1 depicts the architecture of units in the reference architecture, modeled as
a UML [BME+07] component diagram. The figure displays the fixed and parametric
components of the unit, the interfaces between the components, and the interfaces to the
environment.

Components The reference architecture of units refines the architecture of the service
automata concept (depicted in Figure 2.1 on page 24). It retains the interceptor, coordinator,
local policy, and enforcer components and introduces two novel components: the event
factory and the enforcer factory . The event factory abstracts from intercepted operations
of an agent to objects capturing these operations at a level suitable for the local policy. In
the following, we refer to these objects as event objects. The enforcer factory concretizes
decisions at the level of the local policy to concrete countermeasures that can be performed
on an agent. In the following, we refer to such decisions as decision objects and to the
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resulting concrete countermeasures as countermeasure objects.
A subset of the components in the reference architecture are parametric while the

remaining components are fixed. In Figure 3.1, parametric components (event factory,
local policy, and enforcer factory) are displayed with a bright background, and fixed
components (interceptor, coordinator, and enforcer) are displayed with a gray background.
That a component is parametric means that its functionality is fully or in part determined by
the CoDSPL policy. Conversely, the functionality of a fixed component is not determined
by the policy.

Note that the division between fixed and parametric components in the reference
architecture deviates from the one of the service automata concept. While the local policy
is parametric and the interceptor is fixed in both architectures, the enforcer component
is parametric only in the service automata concept. In the reference architecture, the
enforcer is reduced to the fixed task of implementing the countermeasure objects obtained
from the parametric enforcer factory.

Interfaces The parametric components, i.e., those components whose functionality is
determined by a CoDSPL policy, offer several interfaces to the fixed components. The local
policy component provides a local request interface, for processing event objects, and a
remote request interface, for processing delegation requests and delegation responses. The
event factory provides an interface for the creation of event objects. The enforcer factory
provides an interface for the creation of countermeasures from decision objects.

The interfaces between the fixed components are indirectly relevant for CoDSPL policies.
Concretely, the interfaces between the interceptor, coordinator, and enforcer components
establish that event objects and decision objects can be delivered to and, respectively,
from the local policy. The external interfaces to the agent establish that security-relevant
actions of the agent are intercepted and that countermeasures are applied. The interface
to other units establishes that requests can be exchanged with other units.

Separation of concerns The reference architecture of units achieves separation of concerns
in two regards. Firstly, the architecture separates operations of an agent from event objects
as they are used by the local policy. Secondly, the architecture separates decision objects
of the local policy from the countermeasures that are applied to the agent. The following
example illustrates both.

Example 3.1. Consider Example 2.3 on page 23, in which an agent provides access to files
as a service and the enforcement mechanism prevents conflicts of interest by checking
the accesses of individual users. In the example, calls to the sendFile method are security-
relevant operations, as they might allow a user to access conflicting files.

Of the method call, both the actual argument (file) and object (this) on which the
method is called can be used to determine whether an access is complies with the security
requirement or not. For the local policy of an enforcement mechanism, not the full file and
this objects but rather only the names of the file and of the user stored in these objects
suffice for checking compliance in a local policy. By extracting only the names of the
file and the user, the event factory can separate agent-specific data structures from event
objects.
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Figure 3.2.: Entities of a CoDSPL policy and their relationships

As a countermeasure against security-violating accesses, a call to method System.exit
can be used. For the local policy of an enforcement mechanism, however, not the precise
method call but rather the mere decision to call the method or not suffices. By generating
the precise method call or its absence as a countermeasure object, the enforcer factory can
separate the agent-specific countermeasure from decision objects of the local policy. ♦

3.3. Structure of CoDSPL policies

CoDSPL consists of three sub-languages:
1. the encapsulation description, a specification of which units to generate and of basic

properties of these units and the agents they encapsulate;
2. the units’ declarations of security-relevant operations; and
3. operational specifications of parametric unit components, i.e., of local policies, event

factories, and enforcer factories.
The language uses three sub-languages for these three parts to cater for the different nature
of the respective specified entities. Figure 3.2 shows these entities and their relationships.

A CoDSPL policy consists of a single encapsulation description, multiple declarations
of security-relevant operations (one for each unit to generate), and multiple operational
specifications (one local policy, one event factory, and one enforcer factory for each unit).
The encapsulation description references the locations of the remaining constituents of a
CoDSPL policy.

3.4. Syntax of CoDSPL

We introduce the three sub-languages of CoDSPL separately in Sections 3.4.1 to 3.4.3.
In the presentation of the syntax, we abstract away some technical details to keep the
presentation focused on the essential aspects of the language. Concretely, we omit the
treatment of line breaks, whitespace, and escape characters.

3.4.1. Syntax of Declarations of Security-Relevant Operations

CoDSPL’s syntax for declaring security-relevant operations borrows from aspect-oriented
programming, where expressive languages for specifying program operations are used
for identifying join points at which the functionality of aspects shall be added. For a Java
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PointcutSpec = { ( PointcutDecl | Import ) ‘;’ }.
Import = ‘import’ JavaFQN .
PointcutDecl = ‘pointcut’ Id Formals ‘:’ PointcutExpr .
Formals = ‘(’ [ ParamList ] [ ( ‘>’ JavaFQN ) ] ‘)’.
ParamList = JavaFQN Id { ‘,’ JavaFQN Id }.
PointcutExpr = PointcutPrim

| ‘!’ PointcutExpr | ‘(’ PointcutExpr ‘)’
| PointcutExpr ‘&&’ PointcutExpr
| PointcutExpr ‘||’ PointcutExpr .

PointcutPrim = Id ‘(’ JavaExpression ‘)’.
JavaFQN = Id { ‘.’{ ‘.’ } Id }.
Id = [‘a’-‘z’,‘A’-‘Z’] { [‘a’-‘z’,‘A’-‘Z’,‘0’-‘9’] }.

Figure 3.3.: Syntax for declaring security-relevant operations in BNF

agent, the CoDSPL syntax is derived from the language of AspectJ for specifying pointcuts
[Tea05]. For a Ruby agent, the syntax is derived from the language of Aquarium [Aqu], a
tool for aspect-oriented programming with Ruby. Both languages already provides rich
means for selecting method calls and binding values of actual arguments passed to these
methods. In the following, we present CoDSPL’s syntax for Java agents.

Figure 3.3 shows the syntax of CoDSPL’s sub-language for declaring security-relevant
operations of agents. The syntax is defined by the PointcutSpec non-terminal. The words of
the language are semicolon-separated sequences of pointcut declarations, captured by the
PointcutDecl non-terminal, and import declarations, captured by the Import non-terminal.
Import declarations, as in regular Java code, serve the purpose of making name-spaces
available for use in the pointcut declarations. In the following, we focus on the pointcut
declarations, which can be used to specify a set of security-relevant program operations.

A pointcut declaration is indicated by the ‘pointcut’ keyword and consists of a pointcut
identifier, a list of formal parameters, a pointcut expression, and a list of pointcut modifiers.
The pointcut identifier is a unique name of the pointcut. The formal parameters list names
and types of parameters of the pointcut as well as the return type of the pointcut. The
purpose of the parameter names is to make actual parameters of a program operation
captured by a pointcut accessible. The pointcut expression is either a pointcut primitive
or a possibly grouped, logical combination of pointcut expressions (including negation
‘!’, conjunction ‘&&’, and disjunction ‘||’). The pointcut primitive is a combination of an
identifier and an expression. The identifier specifies the type of pointcut and the expression
specifies the program operations matched by the pointcut primitive.

The syntax used by CoDSPL deviates from AspectJ’s pointcut syntax as follows. Firstly,
CoDSPL’s syntax adds the possibility to specify a return type of methods, in the form
of the JavaFQN in the Formals non-terminal. This return type is added for capturing
what type of return values may be substituted by a countermeasure. Secondly, CoDSPL’s
syntax over-approximates the pointcut primitives in that, firstly, an arbitrary identifier
rather than one of AspectJ’s 23 keywords are permitted and, secondly, that the subsequent
expression is required only to be well-bracketed (when strings enclosed in double quotes
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1 import java.nio.file.Files;
2 import java.nio.file.Path;
3 import java.nio.charset.Charset;
4

5 pointcut fileRead(Path path):
6 (call(* Files.readAllBytes(Path)) && args(path))
7 (call(* Files.readAllLines(Path, Charset)) && args(path));

Listing 3.1.: Example declaration of security-relevant file-reading operations

1 pointcut printSens(Document doc):
2 (call(void Document.printSensitive()) && target(doc));

Listing 3.2.: Example declaration of security-relevant printing operations

are factored out) rather than an expression from a language determined by the respective
keyword. This simplifies the syntax and allows an implementation of CoDSPL to pass
pointcut primitives directly to the AspectJ backend. Finally, CoDSPL’s syntax leaves out
so-called pointcut modifiers, which declare the visibility of pointcuts in AspectJ and, as
such, are not relevant for merely declaring security-relevant operations.

CoDSPL’s sub-language for declaring security-relevant operations aims at being used
for capturing method calls. For this purpose, each pointcut primitive must have ‘call’,
‘execute’, ‘target’, ‘this’, or ‘args’ is its identifier. The first two identifiers declare a
method call or, respectively execution as the operation to be security-relevant. The latter
bind the object on which the method is called, the current this-object, and the actual
arguments of the method call to the formal parameters of the security-relevant operation.

Example 3.2. Consider a security requirement that specifies that a program shall only
read from files located in the home-directory of the user on whose behalf the program
is run. Consider an agent whose code reads the content of files via the two Java API
methods Files.readAllBytes and Files.readAllLines. For specifying that calls to these two
methods are security-relevant, we use the declaration in Listing 3.1. The fileRead pointcut
matches all operations that call (specified by ‘call’) a method Files.readAllBytes or a method
Files.readAllLines: the first with a single formal parameters of type Path, the second with
formal parameters of types Path and Charset, and both with neglected return type (specified
by ‘∗’). The ‘import’ declarations allow the short form of types Files, Path, and Charset to
be used in the pointcut declaration. The ‘args’ pointcut primitive binds the first argument
of the called methods to the parameter path of the pointcut. The return values and the
second argument to Files.readAllLines are not bound to parameters of the pointcut. ♦

Example 3.3. Consider a security requirement demanding that sensitive documents may
be printed at most 5 times, and consider a program in which the printing of a sensitive
document is performed by the custom method printSensitive of class Document declared as
“void printSensitive();”, i.e., without formal parameters and return type. For specifying that
calls to themethod are security-relevant, we use the declaration in Listing 3.2. The printSens
pointcut matches all operations that call the method printSensitive of class Document. The
pointcut has a formal parameter doc of class Document, which is bound to the object on
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1 print_sens = Aquarium::Aspects::Pointcut.new :calls_to => :print_sensitive,
2 :for_types => [Document]

Listing 3.3.: Example declaration of security-relevant Ruby printing operations

which the method printSensitive is called (specified by the term target(doc)). ♦

Like the syntax of declarations of security-relevant operations for Java agents is derived
from the AspectJ language, the syntax for Ruby agents is derived from the language of the
Aquarium [Aqu], an AOP tool for Ruby. Conceptually, the relationships between CoDSPL
and AspectJ and, respectively, Aquarium are almost the same: CoDSPL uses the syntax of
pointcut declarations but does not include syntax for specifying advice and aspects. While
CoDSPL’s syntax for Java makes small modifications to AspectJ’s pointcut syntax (recall:
adding a return type and leaving out pointcut modifiers), CoDSPL’s syntax for Ruby does
not make such modifications. We therefore refrain from introducing the syntax here and
instead refer to the resources on Aquarium and illustrate the language by the following
example as the Ruby counterpart to Example 3.3.

Example 3.4. Consider the security requirement and program of Example 3.3, except
that the program is implemented in Ruby. For specifying that calls to the print_sensitive
method1 are security-relevant, we use the declaration in Listing 3.3. The declaration
defines the print_sens pointcut to match calls to the printSensitive method of the Document
type in a self-explanatory fashion. A difference to the Java counterpart in Listing 3.2
is that the Document object on which the method is invoked is not explicitly bound to
a parameter. This difference takes into account that Aquarium automatically makes all
actual arguments and the target object available to advice. ♦

Overall, CoDSPL’s sub-language supports the declaration of a set of method calls as
security-relevant operations. The operations can be named and have a list of formal pa-
rameters such that actual arguments to method calls can be captured at run-time. Methods
can be matched by their name, the class they belong to, and their formal parameters list,
and multiple methods can be combined to a single pointcut declaration. This provides a
rich means for identifying and grouping security-relevant operations. The restriction to
the granularity of method calls limits which operations can be declared security-relevant.
For instance, accesses to variables cannot be declared security-relevant. However, in Java
calls to methods must be made whenever system resources (e.g., files or network sockets)
are accessed. Moreover, method calls are used for application-specific abstractions such as
exemplified by the methods sendFile and printSensitive in Examples 2.3, 3.3 and 3.4. Hence,
for agents by benign developers, we expect the granularity of method calls to suffice for
capturing security-relevant operations in a wide range of scenarios.

3.4.2. Syntax of Operational Specifications

Operational specifications in CoDSPL policies serve the specification of the parametric
components of the units, i.e., the local policies, event factories, and enforcer factories in the

1In Ruby-related code, we follow the Ruby naming convention for variables, fields, and methods using
underscores rather than Java’s camel case.
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1 interface Event extends Serializable {}
2 interface Decision extends Serializable,LocalPolicyResponse {}
3 interface DelegationReqResp extends Serializable {}
4

5 class DelegationLocPolReturn implements LocalPolicyResponse {
6 private String destinationId;
7 private DelegationReqResp delReqResp; }
8 interface LocalPolicyResponse {}
9

10 interface EventFactory {
11 /* one method per pointcut of the EC, of the form
12 public Event <pointcutId>(<formals>); */ }
13 interface EnforcerFactory {
14 Countermeasure fromDecision(Decision dec); }
15 interface Countermeasure {
16 void before();
17 void after();
18 boolean suppress(); }
19 abstract class LocalPolicy { /* fields, getters, setters, and constructor omitted */
20 abstract LocalPolicyResponse localRequest(Event ev);
21 abstract LocalPolicyResponse remoteRequest(DelegationReqResp dr); }

Listing 3.4.: Java base classes and interfaces for operational specifications

architecture proposed in Section 3.2 on page 28. The syntax for operational specifications
in CoDSPL aims at allowing a wide range of algorithmic specifications.

Specifications of local policies are always in Java whereas the event factory and enforcer
factory are specified in the language of the respective agent, i.e., Java or Ruby. We first
present CoDSPL’s syntax for Java agents. Operational specifications for Java agents assume
the form of JAR files, i.e., compressed files containing compiled Java class files. CoDSPL
places no further constraints about the content of the JAR files, including the way the Java
code that constitutes the operational specifications is structured. However, operational
specifications are required to provide implementations of classes that implement the inter-
faces EventFactory and EnforcerFactory or extend the abstract class LocalPolicy, respectively.
Listing 3.4 shows how these interfaces and abstract class are defined in CoDSPL.

Local policies A CoDSPL policy must specify a subclass of the abstract LocalPolicy class,
thereby providing implementations of the methods localRequest and remoteRequest. The
former is expected to take an event object, of type Event, and return an object of type
LocalPolicyResponse. The latter is expected to take a delegation request or delegation
response, of type DelegationReqResp, and return a LocalPolicyResponse object. An object of
type LocalPolicyResponse is either a decision object (if implementing the Decision interface)
or a unit identifier and a delegation request or delegation response (encapsulated in a
DelegationLocPolReturn object). By extending the LocalPolicy class and, thus, implementing
the methods localRequest and remoteRequest, the operational specification of a local policy
provides the two interfaces to the coordinator of a unit (see Figure 3.1 on page 28).

Example 3.5. Consider the security requirement and program of Example 3.3, i.e., that
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1 class PrintEvent implements Event {
2 public String docId; }
3 class PrintDecision implements Decision,DelegationReqResp {
4 public boolean permit; }
5 class PrintDelegation implements DelegationReqResp {
6 public PrintEvent event;
7 public String sourceUnit; }
8

9 class CentralPrintPolicy extends LocalPolicy {
10 privateMap<String, int> counters;
11 private PrintDecision decide(PrintEvent event) {
12 int current = counters.getOrDefault(event.docId, 0);
13 if (current < 5) counters.put(event.docId, current+1);
14 return new PrintDecision(current < 5); }
15 public LocalPolicyResponse localRequest(Event event) {
16 return decide((PrintEvent)event); }
17 public LocalPolicyResponse remoteRequest(DelegationReqResp delReqResp) {
18 PrintDelegation del = (PrintDelegation)delReqResp;
19 return new DelegationLocPolReturn(del.sourceUnit, decide(del.event)); }
20 }
21 class ClientPrintPolicy extends LocalPolicy {
22 public LocalPolicyResponse localRequest(Event event) {
23 return new DelegationLocPolReturn(”central”,
24 new PrintDelegation((PrintEvent)event, getIdentifier())); }
25 public LocalPolicyResponse remoteRequest(DelegationReqResp delReqResp) {
26 return (PrintDecision)delReqResp; }
27 }

Listing 3.5.: Example local policy for limiting printing of documents

sensitive documents may be printed at most 5 times by the target. We specify centralized
local policy components, with one central unit that the makes decisions and all other units
delegating decision-making to the central unit. Listing 3.5 shows the definition of two
local policy classes for limiting the printing of each individual sensitive document to at
most 5 times, and shows the underlying definitions of event and decision objects. For
readability, the listing does not include import statements and trivial constructors.

The PrintEvent class comprises the docId field for storing unique document identifiers in
event objects. The PrintDecision class for decision objects comprises the Boolean permit
field for storing whether printing of the respective document shall be granted (value true)
or not (value false). The PrintDelegation class for delegation requests comprises fields for
storing the delegated event (event) and for the identifier of the unit at which the event
originated (sourceUnit).

The classCentralPrintPolicy is the local policy of the central unit. It defines a field counters
as a map from document identifiers to print counts for storing how often individual
documents were printed. It further defines a method decide that takes an event object and
uses the counters field for checking and updating how often the document referenced by
the event object (event.docId) has been permitted to be printed. The method returns the
decision to permit the printing if and only if the document has been printed 5 times or
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1 class PrintEventFactory implements EventFactory {
2 public static Event printSens(Document doc) {
3 return new PrintEvent(doc.getID());
4 } }

Listing 3.6.: Example event factory for limiting printing of documents

less so far. The localRequest method of the central unit’s local policy simply returns the
decision provided by the decide method. The remoteRequest method takes a delegation
request from another unit and returns the decision provided by the decide method to the
source of the delegation request.

The local policy class ClientPrintPolicy implements the local policy of a non-central
unit. Its localRequest method delegates all events to the unit with identifier “central”, and
its remoteRequest method can directly return a received delegation object, because for a
non-central unit this is always a delegation response. ♦

The example particularly illustrates two aspects about local policies of CoDSPL. Firstly,
the example shows that local policies can employ delegation without using network sock-
ets. Rather, local policies can delegate by returning objects of the DelegationLocPolReturn
type, which specify the destination unit. This reduces the complexity of local policy
implementations by network connection management and the serialization and deserial-
ization of transferred data structures. Secondly, the example indicates how local policy
implementations can make use of the expressiveness of Java: Methods like decide in class
CentralPrintPolicy can use data structures of the Java API such as maps and Java control
structures like branching, loops, and recursion.

Event factory and enforcer factory CoDSPL imposes two constraints on operational
specifications for event factories and enforcer factories. Firstly, an event factory must
implement the EventFactory interface and must provide one method for each pointcut
declaration in the declaration of security-relevant operations for the same unit. This
method must share the name and the formal parameter list of the respective pointcut
declaration. Note that these methods together provide the interface for event object
creation to the interceptor component of the unit’s architecture (see Figure 3.1 on page 28).
Secondly, an enforcer factory must implement the EnforcerFactory interface and, by def-
inition of the latter, must implement a fromDecision method. This method takes a decision
object and returns a Countermeasure object, which must implement the before, after, and
suppress methods for specifying what code shall be inserted before and, respectively, after
performing the intercepted operation and for specifying whether the operation shall be
suppressed. As such, the fromDecision method providing the interface for countermeasure
creation to the enforcer component of the unit’s architecture (see Figure 3.1 on page 28).

Example 3.6. We resume Example 3.5 by providing an event factory for the scenario.
Listing 3.6 shows the implementation of the event factory by the PrintEventFactory class.
The class implements the EventFactory interface and defines one method, printSens. The
definition of this method matches the security-relevant operation declared in Example 3.3
on page 32, whose name and formal parameter list it shares. The method simply returns
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1 class PrintEnforcer implements Countermeasure {
2 public boolean permit;
3 public void before() {
4 if (!permit) {
5 JOptionPane.showMessageDialog(null,
6 ”Printing prohibited (limit reached).”, JOptionPane.ERROR_MESSAGE);
7 } }
8 public void after() { /* nothing */ }
9 public boolean suppress() { return !permit; }

10 }
11 class PrintEnforcerFactory implements EnforcerFactory {
12 public Countermeasure fromDecision(Decision dec) {
13 return new PrintEnforcer(dec.permit); }
14 }

Listing 3.7.: Example enforcer factory for limiting printing of documents

an event object of type PrintEvent whose stored document identifier is initialized to the
identifier of the document object in the actual argument doc. ♦

Example 3.7. We continue Example 3.5 by providing an enforcer factory. Listing 3.7
shows the implementation of the enforcer factory by the PrintEnforcerFactory class to-
gether with an implementation of a class for countermeasure objects by PrintEnforcer.
The PrintEnforcerFactory class implements the EnforcerFactory interface by defining the
method fromDecision. Independently of the concrete Decision object passed to this method,
the method returns an object of type PrintEnforcer. In the construction of the object, the
method uses the Boolean value permit stored in the decision object. The PrintEnforcer class
implements the three methods of the Countermeasure interface. Through its implementa-
tion of the suppress method, objects of the class suppress an intercepted event if and only
if the Boolean field permit stores value false. Before an event is suppressed by the enforcer
object, the implementation of method before ensures that a message dialog signals the
security violation to the user. ♦

For agents implemented in Ruby, the event factory and enforcer factory are specified by
Ruby code; the local policy component for Ruby agents is specified in Java. Event factories
and enforcer factories for Ruby agents, however, share the same low-level architecture as
for Java agents. Besides the different programming language, two technical differences
to the Java code exist. Firstly, a method in an event factory class that matches the name
of a security-relevant operation has a formal parameter list that begins with the object
on which the intercepted method was invoked and that is followed by the list of the
intercepted method’s arguments. Secondly, when the definitions of event classes used by
the local policy reside inside a Java package, then the event factory in Ruby must provide
a method java_package that returns the name of this package. This allows a connection
between the Ruby event objects and the Java event objects to be established unambiguously.
We show how a concrete event factory and enforcer factory can be specified in an example.

Example 3.8. Againwe resume Example 3.5 by providing an event factory and an enforcer
factory for the scenario, but here for a Ruby agent. Listing 3.8 on the following page
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1 class PrintEvent
2 attr_accessor :doc_id
3 end
4 class PrintDecision
5 attr_accessor :permit
6 end
7 class PrintEnforcer
8 attr_accessor :permit
9 def before

10 if !@permit puts ”Printing prohibited (limit reached).” end
11 end
12 def after end
13 def suppress return !@permit end
14 end
15 class PrintEventFactory
16 def self.print_sens(doc) return PrintEvent.new(doc.get_id) end
17 end
18 class PrintEnforcerFactory
19 def self.from_decision(dec) return PrintEnforcer.new(dec.permit) end
20 end

Listing 3.8.: Example event factory and enforcer factory for Ruby agents

shows the implementation of both components as well as of underlying classes. As in
previous listings, we omit constructors of classes in the listing. The defined classes directly
correspond to the Java classes of the same name in Listings 3.5 to 3.7. We therefore abstain
from a description here. The only difference in the code is that the PrintEnforcer prints an
error message on the console rather than displaying a dialog in the Java code. ♦

CoDSPL’s syntax for operational specifications of local policies, event factories, and
enforcer factories inherits the expressiveness of the general purpose languages Java and
Ruby. This allows the specifications of these components to express a variety of possible
abstractions for events and decisions, to express complex algorithms for decision-making
and recording state, and to express when to cooperate and with which other units.

3.4.3. Syntax of Encapsulation Descriptions

Encapsulation descriptions are specified in a simple syntax. They capture which units
exist and basic properties of these units. They do not contain the technically more complex
entities of CoDSPL, namely the security-relevant operations as well as the parametric unit
components. To these more complex entities, encapsulation descriptions contain pointers.

Syntactically, the language for encapsulation descriptions is a sub-language of the
language used by Java for representing Properties objects [Ora]. The simplified syntax for
encapsulation descriptions is captured by the BNF in Figure 3.4 on the next page. This
syntax abstracts from details such as character escaping, line breaks, and comments. For
the technical details, the reader is referred to the Java documentation [Ora].

The syntax for encapsulation descriptions is defined by the policy non-terminal. The
words of the language are nonempty sequences of keyvalue elements. Each keyvalue
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policy = keyvalue | policy ‘C’ keyvalue.
keyvalue = ‘cfg.units’ ‘=’ IdList

| ‘cfg.destdir’ ‘=’ FileName
| ‘cfg.crypto’ ‘=’ ( ‘true’ | ‘false’ )
| Id ‘.policy.’Id ‘=’ value
| Id ‘.type’ ‘=’ ( ‘Java’ | ‘Ruby’ )
| Id ‘.’addrkey ‘=’ DomainOrIP
| Id ‘.’portkey ‘=’ PortNumber
| Id ‘.’classkey ‘=’ JavaFQN
| Id ‘.’filekey ‘=’ FileName
| Id ‘.’cpkey ‘=’ FileName { ‘:’ FileName }
| Id ‘.’enckey ‘=’ ( ‘serialization’ | ‘JSON’ )
| Id ‘.loglevel’ ‘=’ ( ‘WARNING’ | ‘INFO’ ).

addrkey = ‘ext−host’ | ‘cor−host’ | ‘enf−host’.
portkey = ‘ext−port’ | ‘cor−port’ | ‘enf−port’.
classkey = ‘event−factory’ | ‘enforcer−factory’ | ‘policy’.
filekey = ‘target’ | ‘target−dir’ | ‘inline−dir’ | ‘pointcuts’ |

‘target−javavm’.
enckey = ‘cooperation−encoding’ | ‘local−encoding’.
cpkey = ‘inline−classpath’ | ‘policy−classpath’.

Figure 3.4.: Syntax of encapsulation descriptions in BNF

element is of the general form key ‘=’value, but only specific key instances are allowed in
the language. We discuss the allowed key and value combinations as well as the purpose
of the keys in the following.

The keys in the language can be distinguished into three classes. The first class contains
the keys with prefix ‘cfg.’. Those keys apply not to a particular unit but to the whole
distributed enforcement mechanism. The second class contains the keys with prefix Id
and suffix Id . These keys specify a named value for a local policy component, where the
suffix Id identifies the name and the prefix Id identifies the unit for whose local policy the
named value is specified. The third class contains all the remaining keys, which all have a
prefix Id . These keys specify settings for the unit identified by the Id . In the following,
we refer to such identifiers of units as unit identifiers or just identifiers. Instead of a unit
identifier, the word ‘unit’ can be used in the language for specifying that the value shall
apply to each unit.

Intuitions for all the keys in the language for encapsulation descriptions are provided
in Table 3.1 on the following page. In the table, those keys that only apply to agents that
are implemented in Java are marked with a “J” subscript, and those keys that only apply
to Ruby agents are marked with an “R” subscript.

Example 3.9. We resume and complete Examples 3.3 to 3.8 by an encapsulation descrip-
tion. The distributed program that offers printing of sensitive documents now consists
of three agents: two Java agents and one Ruby agent. Listing 3.9 on page 41 shows the
encapsulation description for the scenario. The first line of the encapsulation description
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‘cfg.units’ This key must be set to a comma-separated list of unit iden-
tifiers (from IdList). This list specifies unique names for the
units specified by the policy.

‘cfg.destdir’ This key specifies the name of a directory into which the
result of applying the policy to a given target shall be stored.

‘cfg.crypto’ This key specifies whether encryption of the communication
between units shall be used or not.

Id ‘.’ … For the unit identified by Id , this key specifies…
‘policy.’Id …a named value to be passed to the unit’s local policy.
‘type’ …the type of the unit’s agent, which is the programming

language that the target is implemented in.
‘ext−host’, ‘ext−port’,
‘cor−host’, ‘cor−port’,
‘enf−host’, ‘enf−port’

…the host and port throughwhich (a) the unit can be reached
by other units, (b) the coordinator can be reached within
the unit, and, respectively, (c) the enforcer can be reached
within the unit.

‘policy’, ‘event−factory’,
‘enforcer−factory’

…the fully-qualified class names of the local policy, the event
factory, and the enforcer factory, respectively.

‘target’J …the path to the JAR file that holds the Java bytecode of the
target agent’s implementation.

‘target−dir’R …the path to the directory in which the code of the agent
resides.

‘target−javavm’J …the path to the Java virtual machine executable on the
computer on which the agent executes.

‘pointcuts’ …the path to the file containing the declaration of security-
relevant operations of the agent.

‘cooperation−encoding’,
‘local−encoding’

…the data encoding to be used at run-time in the communi-
cation between units and, respectively, within units.

‘policy−classpath’ …the colon-separated list of paths to all JAR files in which
the implementation of the local policy of the unit together
with its dependencies resides.

‘inline−classpath’J …the colon-separated list of paths to all JAR files in which
the implementation of the event factory and enforcer factory
together with their dependencies reside.

‘inline−dir’R …path to the directory that contains the implementation of
the event factory and enforcer factory and their dependen-
cies.

‘loglevel’ …the log level to use when encapsulating the agent.

Table 3.1.: Intuitions of the keys in encapsulation descriptions
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1 cfg.units = central, java−cli, ruby−cli
2 cfg.destdir = ./instrumented/
3 cfg.crypto = true
4

5 central.type = Java
6 central.target = PrintService.jar
7 central.ext−host = central.example.com
8 central.policy = CentralPrintPolicy
9 central.pointcuts = JavaPrint.pc

10 central.inline−classpath = JavaFactories.jar
11

12 java−cli.type = Java
13 java−cli.target = PrintService.jar
14 java−cli.ext−host = java−cli.example.com
15 java−cli.pointcuts = JavaPrint.pc
16 java−cli.inline−classpath = JavaFactories.jar
17

18 ruby−cli.type = Ruby
19 ruby−cli.target−dir = ./PrintService/
20 ruby−cli.ext−host = ruby−cli.example.com
21 ruby−cli.pointcuts = RubyPrint.pc
22 ruby−cli.inline−dir = RubyFactories/
23

24 unit.policy = ClientPrintPolicy
25 unit.policy−classpath = PrintPolicy.jar
26 unit.event−factory = PrintEventFactory
27 unit.enforcer−factory = PrintEnforcerFactory
28 unit.local−encoding = JSON
29 unit.cooperation−encoding = serialization
30 unit.loglevel = WARNING
31 unit.target−javavm = /usr/bin/java

Listing 3.9.: Example encapsulation description for limiting printing of documents
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declares three units, named “central”, “java-cli”, and “ruby-cli”. The remaining two lines
of the first block specify that the result of applying the policy shall be written to the
sub-directory instrumented and that encryption for the communication between units
shall be used. The subsequent four blocks of lines in the encapsulation description specify
properties of the central unit, the two client units, and properties applying to all three
units unless specified otherwise.

The units named “central” and “java-cli” encapsulate Java agents, whose implementation
is in JAR file PrintService.jar. The unit named “ruby-cli” encapsulates a Ruby agent,
whose implementation is stored in directory ./PrintService/ and its sub-directories. The
specified values for the units reference several files and directories that contain the code
or, respectively, compiled code of listings shown before: JavaPrint.pc (Example 3.3),
RubyPrint.pc (Example 3.4), PrintPolicy.jar (Example 3.5), JavaFactories.jar (Ex-
amples 3.6 and 3.7), RubyFactories/ (Example 3.8). The ‘unit.policy’ key specifies the
default local policy class of units to be ClientPrintPolicy, and the ‘central.policy’ key
overrides this default for the “central” unit by the CentralPrintPolicy. Furthermore, the
encapsulation description specifies network addresses in the domain “example.com” for
the computers at which the agents and the units are run. Port numbers are not specified
such that default ports can be used when interpreting the encapsulation description. For
the communication between the units, serialization is specified as the encoding via key
‘unit.cooperation−encoding’, whereas the communication within units is specified to
use JSON as an encoding that is understood by the Ruby components and the Java com-
ponents. Finally, the encapsulation description specifies the log level of all units show
warnings and more severe problems and the Java virtual machine to be located in file
/usr/bin/java on the agents’ computers. ♦

Overall, an encapsulation description specifies which units constitute the specified
distributed enforcement mechanism and to which agents the individual units apply. More-
over, it specifies basic properties such as hosts and ports of the individual units. Finally, it
specifies pointers to separate files containing specifications in the other two sub-languages
of CoDSPL: declarations of security-relevant operations (via ‘pointcuts’ keys) and op-
erational specifications of the units’ parametric components (via the keys specified by
the cpkey non-terminal). In recognition that encapsulation descriptions are the central
entities of CoDSPL and contain references to files containing the remaining entities, we
define CoDSPL policies as follows.

Definition 3.1. A CoDSPL policy is a tuple (ed, files)where ed ∈ L(policy) is an encapsu-
lation description, files : L(FileName)⇀ FileContent is a partial function mapping names
of files and directories to their content, and FileContent models the set of all possible file
and directory contents, i.e., all possible finite sequences of byte values. We call files the
file map of the CoDSPL policy. ♦

The first element of a CoDSPL policy tuple is the encapsulation description. The second
element – the file map – captures that further named files can belong to a CoDSPL
policy such that the declarations of security-relevant operations and the operational
specifications of parametric unit components can be contained in separate files. These
separate files must obey the syntax of the corresponding sub-languages of CoDSPL. We
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introduce the syntax of these sub-languages in the following sections. In the remainder of
this thesis, we use the symbol pol to range over CoDSPL policies.

3.5. Semantics of CoDSPL

We define the semantics of CoDSPL in a semi-formal fashion. In the description of the
semantics, we first provide a semantics for the key-value syntax of the encapsulation
descriptions in CoDSPL policies. Subsequently, we cover how a unit is initialized based on
a given operational specification and address how operational specifications determine
a unit’s processing of an individual intercepted operation and an individual delegation
request. Finally, we specify how a sequence of operations and delegation requests is
processed. The exposition is based on established semantics of incorporated sub-languages
of Java and AspectJ where possible. We introduce the semantics of these sub-languages
here only to the extent necessary for a self-contained presentation and refer to the literature
on Java [GJS+14; LYB+14] and on AspectJ [KHH+01; WKD04] for a detailed exposition.

Key-value semantics of encapsulation descriptions We model the semantics of encap-
sulation descriptions such that it captures three main aspects. The first aspect is that
encapsulation descriptions specify global as well as unit-local properties and, in particular,
specify which units exist. The second aspect is that encapsulation descriptions shall use
the same semantics as when they are parsed by Java Properties objects, which means that,
for global as well as for local properties, if multiple values are specified for a property, the
last specification overrides the preceding ones. The third aspect is that properties specified
for a particular unit override properties specified for all units (via the ‘unit’ prefix of keys
instead of a unit identifier).

Definition 3.2. The semantics of an encapsulation description ed ∈ L(policy), is the
triple JedK = (glob, Ids, loc) where

glob = kvmap(ed, ‘cfg’),

Ids =

{
idsl(glob(‘units’)) if ‘units’ ∈ dom(glob),
∅ otherwise

loc : Ids → W{‘=’} ⇀W, with loc(id) = kvmap(ed, ‘unit’)⊕ kvmap(ed, id), (3.1)

and

• kvmap : L(policy) → W{‘.’,‘=’} → W{‘=’} ⇀W such that

kvmap(kv,w) = {(k, v) ∈ W{‘=’} ×W | kv = (w ‘.’ k ‘=’ v)}
kvmap(ed ′ ‘C’ kv,w) = kvmap(ed ′,w)⊕ kvmap(kv,w) (3.2)

for each ed ′ ∈ L(policy), kv ∈ L(keyvalue), and w ∈ W{‘.’,‘=’};

• idsl : L(IdList) → P(L(Id)) such that

idsl(id) = {id}
idsl(idl id) = idsl(idl) ∪ idsl(id)
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for each id ∈ L(Id) and idl ∈ L(IdList);
We call the first component of the semantics the global configuration, the second component
the identifier set , and the third component the local configuration. ♦

The global configuration models all parts of the encapsulation description that apply
to the whole distributed enforcement mechanism rather than to individual units. The
identifier set models the unit identifier specified by the encapsulation description, agnostic
of the ordering in which the names are provided. The local configuration models all
parts of the encapsulation description that apply to individual units. Inside the definition,
kvmap(ed,w)models the mapping between suffixes of keys whose prefix isw and values in
encapsulation description ed . Values idsl(idl) model the set of all unit identifiers captured
by the word idl ∈ L(IdList).

The three components of the semantics – global configuration, identifier set, and local
configuration – faithfully capture the three kinds of properties that can be part of an
encapsulation description. Global properties of an encapsulation description are con-
tained in keys that are prefixed with ‘cfg.’, which is captured by the second parameter
in kvmap(ed, ‘cfg’). Which units exist is specified via the ‘cfg.units’ key of an encapsu-
lation description and is faithfully captured by glob(‘units’). Unit-local properties are
specified via keys that are prefixed with the respective unit identifier or via keys prefixed
by ‘unit.’, where the former override the latter. This overriding is faithfully captured by
Equation (3.1) on page 43. That the last specification of a value for a key overrides all
previous specifications for the key is faithfully captured by Equation (3.2) on page 43 in
the definition of kvmap, which is used for global as well as unit-local properties. That is,
overall our semantics, as defined in Definition 3.2 on page 43 faithfully captures the three
main aspects we aimed for.

Based on the semantics of encapsulation descriptions, we now have the ingredients to
define when a CoDSPL policy is well-formed. Intuitively, a CoDSPL policy pol = (ed, files)
is well-formed if values are defined for all keys and all references in the encapsulation
description ed to other files are referring to files whose content is from the right language.
Concretely, referenced pointcut files must have content from the pointcut language, refer-
enced JAR files and executable files must obey the JAR file format. We formally capture
this as follows.

Definition 3.3. A CoDSPL policy (ed, files) is well-formed if, for (glob, Ids, loc) = JedK
and for each id ∈ Ids, the following conditions hold:

• for each key w ∈ {‘units’, ‘destdir’, ‘crypto’}, it holds that w ∈ dom(glob);
• for each keyw ∈ L(addrkey)∪L(portkey)∪L(classkey)∪L(filekey)∪L(enckey)∪
L(cpkey), it holds that (id,w) ∈ dom(loc); in the following, particularly let type =
loc(id, ‘type’);

• loc(id, ‘pointcuts’) ∈ dom(files) and files(loc(id, ‘pointcuts’)) ∈ L(PointcutSpec),
where no two contained pointcuts may share a join point shadow;

• if type = ‘Java’, then loc(id, ‘target’) ∈ dom(files) and files(loc(id, ‘target’)) is
in the JAR file format; if type = ‘Ruby’, then loc(id, ‘target−dir’) ∈ dom(files) and
files(loc(id, ‘target−dir’)) is a directory;

• for each w ∈ L(cpkey), if (id,w) ∈ dom(loc) holds, then for each cp contained in
the colon-separated list loc(id,w) ∈ dom(files), files(loc(id, ‘target’)) is in the JAR
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file format.
In the following, we denote by POL ⊆ L(policy)× (L(FileName)⇀ FileContent) the set
of all well-formed CoDSPL policies. ♦

The definition faithfully captures the intention of defining all keys (global as well as local
keys) and of constraining the content of referenced files. Firstly, the definition includes a
constraint for each specified unit and for each key whose value is from L(FileName) or is
composed of words from L(FileName), as defined in Figure 3.4 on page 39. Secondly, this
constraint specifies the referenced files to be contained in the CoDSPL policy’s file map
and to be of the respective expected format.

For the remainder of this section, let (ed, files) ∈ POL be a well-formed CoDSPL policy,
(glob, Ids, loc) = JedK be the policy’s encapsulation description, and id ∈ Ids be an
arbitrary but fixed unit identifier. Moreover, let LP = loc(id, ‘policy’) be the name of the
local policy class, EvF = loc(id, ‘event−factory’) be the name of the event factory class,
EnF = loc(id, ‘enforcer−factory’) be the name of the enforcer factory class.

Initialization of units When a unit specified by a CoDSPL policy starts, it creates three
objects of classes whose name is provided by the encapsulation description ed . An object
of type LP is created through the constructor that accepts a single String argument, to
which the unit identifier id is passed. In the following, we denote the local policy object
by lp. An event factory object of type EvF and an enforcer factory object of type EnF are
created without any arguments to their constructors.

Individual intercepted operation When an agent performs an operation that, according to
AspectJ’s semantics of pointcuts, matches a pointcut declaration from loc(id, ‘pointcuts’),
where id is the identifier of the agent’s unit, then this operation is intercepted. That is, the
agent does not perform this operation or continue with other operations from the agent’s
implementation, but rather the unit for the agent continues as follows.

Let the intercepted operation be the method call captured by o.m(a1, . . . , an), where m
is the method to which the call is intercepted, o is the object on which the method is called,
n is the number of formal parameters of m, and a1, . . . , an are the actual arguments in
the method call. The event factory object is used by the unit for obtaining an event object
of class Event from the intercepted operation. For this, the unit obtains the event object
eo of type Event from the value returned from calling the method pcname(a′1, . . . , a

′
k) on

the event factory object, where pcname is the (unique) name of the pointcut matching the
intercepted operation, p1, . . . , pk are the names of the formal parameters of the pointcut
with name pcname, and a′1, . . . , a′k ∈ {o, a1, . . . , an} are the following values:

• a′i = o if pi is the argument of a ‘target’ pointcut primitive for pcname and
• a′i = aj if pi occurs in the j-th position of the formal parameters list of an ‘args’
pointcut primitive for pcname.

In the transmission from the interceptor component to the coordinator component, the
event object is encoded for transmission and subsequently decoded. While this produces
a new event object, it’s content remains the same in the process. In the following, we
therefore refer to the transmitted event object also as eo.

The unit’s coordinator then invokes the local policy object lp for deciding about the
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event object by invoking the method lp.localRequest(eo). The object returned by the local
policy is of type LocalPolicyResponse, i.e., of type Decision or of type DelegationLocPolReturn
(see Listing 3.4 on page 34). In the latter case, delegation is requested by the local pol-
icy. The unit’s coordinator extracts the identifier id ′ of the destination unit and the
DelegationReqResp object, i.e., the delegation request or delegation response that the coor-
dinator subsequently sends to the unit with identifier id ′. For the address of the unit, the
coordinator uses loc(id ′, ‘ext−host’) and loc(id ′, ‘ext−port’).

In the former of the two cases, i.e., if the local policy invocation yields an object
do of type Decision, this object is transmitted to the enforcer component via address
loc(id, ‘enf−host’) and loc(id, ‘enf−port’). The enforcer component uses the enforcer
factory object for obtaining a countermeasure object from the decision do by calling
EnF .fromDecision(do). On the returned countermeasure object, the unit then successively
calls the methods before, suppress, and after. If suppress returns false, then the originally
intercepted method call o.m(a1, . . . , an) is performed before method after is called. The
methods of the countermeasure object are called by the enforcer component, i.e., in the
context of the agent which can, thus, be influenced by the countermeasure object.

In the above, we deliberately neglected the memory (stack and heap) of the unit. Rather,
we implicitly consider the unit’s memory at the point in time that the agent’s operation is
intercepted. This accounts for the fact that the components communicate by exchanging
messages rather than using shared memory.

Individual delegation request and delegation response Let dr be the decoded delegation
request object or delegation response object received by the coordinator of the unit. The
unit’s coordinator then invokes the local policy object lp for deciding about the delegation
request or, respectively, delegation response by calling the method lp.remoteRequest(dr).
The object returned by the local policy is of type LocalPolicyResponse and is further pro-
cessed as is the result of the local policy invocation in the case of an individual program
operation.

Sequences of intercepted operations and delegation For a given sequence of event objects,
delegation requests, and delegation responses, the local policy object lp is invoked on
a memory that is essentially the same as after the previous invocation. For the first
invocation of lp, the memory is essentially the same as after lp’s construction. More
concretely, by “essentially the same”, we refer to a memory in which

1. lp is the same object (including, transitively, all objects that lp references) and
2. the event object, delegation request, or delegation response on which the local policy

object lp is invoked is added to the memory.
That is, the coordinator does not alter the part of the memory that is relevant to lp.

Analogous to the local policy, also the memory for the event factory and the enforcer
factory is essentially the same between two invocations. That is, the relevant part of
the memory for the event factory and the enforcer factory is not changed between two
invocations by the fixed components of the unit or by the agent.

Our semantics of CoDSPL, as defined in this section, formally specifies the semantics of
encapsulation descriptions as this semantics deviates from typical key-value semantics
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and, moreover, constitutes the basis for the remaining semantics. We provide a semi-
formal description of the declarations of security-relevant operations and of operational
specifications as we expect this level of detail to suffice for clarifying the understanding. A
full formal semantics would benefit, e.g., the formal verification of properties of individual
CoDSPL policies or of the class of all CoDSPL policies. For such a model, existing formal
semantics of Java (e.g., Jinja [KN06]) and AspectJ (e.g., [WKD04]) could be used. However,
this is not our focus here. For the verification of sound enforcement, we propose to use a
more light-weight, process-algebraic model in Chapter 8.

3.6. Summary

We presented the policy language CoDSPL for specifying cooperative distributed enforce-
ment mechanisms. The language allows policies to specify which units encapsulate which
agents of a distributed program, which actions of the agents are security-relevant, and
how countermeasures are decided. In particular, CoDSPL allows the policies to specify
when and how each unit of a distributed enforcement mechanism initiates cooperation
and how it responds to other units’ requests for cooperation.

The syntax of CoDSPL enables modular policy specifications, firstly through the mod-
ularization introduced through the three sub-languages and secondly through standard
modularization techniques from object-oriented programming that can be applied to the
operational specifications. This modularity simplifies both the specification of CoDSPL
policies as well as the subsequent verifiability of the policies (thereby supporting Require-
ment (Req-2)). Modularity has been proposed for policy languages of security enforcement
mechanisms before [BLW09], but to the best of our knowledge, CoDSPL is the first modular
policy language that supports distributed targets and the first to incorporate cooperation.

CoDSPL is an expressive policy language. It obtains its expressiveness mainly from its
integrated sub-languages: the general purpose programming languages Java and Ruby as
well as the pointcut specification languages of the general-purpose AOP tools AspectJ and
Aquarium. Due to its expressiveness, CoDSPL can be used for specifying policies for a wide
range of security requirements (i.e., the policy language supports Requirement (Req-1)).
For non-distributed programs implemented in Java, a similar combination has already
been proposed for policy languages [MJG+12]. We are the first to apply this combination
to Java and Ruby in one policy language and to apply it in a policy language for distributed
programs.

CoDSPL particularly allows policies to specify which and when units shall cooperate.
Cooperation can be specified in a centralized fashion (as, e.g., in Example 3.5) as well
as in a decentralized fashion (for instance, by not always delegating to a central unit
but delegating to event-specific units). Policies can also desist from cooperation (e.g.,
CentralPrintPolicy in Example 3.5 never delegates). That is, cooperation can be specified in
a way that suits the security requirement and/or the architecture of the distributed target.
We are not the first to propose policy-determined cooperation [MU00], but we are the
first to support such parametric cooperation in a policy language in which both when
cooperation shall take place as well as which units shall cooperate can be specified in
an expressive language (concretely, via Java). Moreover, we are the first to support such
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cooperation in a policy language that supports events beyond transmission of network
messages.

Leaving the specification of cooperation up to CoDSPL policies evades theoretical
limitations that suggest that automatically deriving a suitable form of cooperation might
be infeasible in general. For instance, the problem of synthesizing a distributed program
for a given architecture and a specification is infeasible for particular forms of cooperation
such as chains and rings [KV01] and is undecidable in general [PR90]. Transferred to
run-time enforcement, the distributed program corresponds to the distributed enforcement
mechanism and the specification corresponds to the security requirement.

The policy language presented in this chapter integrates into the context of this thesis as
follows: Firstly, CoDSPL is the policy language used by our tool CliSeAu, which is described
in Chapter 5. Secondly, CoDSPL constitutes the basis for the delegation approaches
presented in Chapters 6 and 7, which focus on modularity of policy specifications and,
respectively, on the effectiveness of policies under race conditions.
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Chapter

4
A Technique for Encapsulating

Distributed Programs

4.1. Introduction

We propose cross-lining, a technique for encapsulating distributed programs with dis-
tributed enforcement mechanisms. The technique is formulated at an architectural level,
based on a very basic common architecture of enforcement mechanisms. Based on such
modular units, the technique consists of two parts: encapsulating each agent such that the
agent’s security-relevant actions can be intercepted and countermeasures can be applied;
and generating a component for each agent that is external to the agent’s code and that
can make decisions and cooperate with other units.

The cross-lining technique enables, as a result of the encapsulation, each unit of the
distributed enforcement mechanism to intercept the security-relevant actions of an agent
before they take place, to impose timely countermeasures on the agent, and to cooperate
with other units of the mechanism. Timely countermeasures against an intercepted action
especially include two kinds of measures of the unit: firstly, measures that take place
directly before or after the intercepted action is performed; secondly, measures that alter
or suppress the intercepted action altogether. The cooperation enabled by the cross-lining
technique encompasses cooperation that may or may not follow the respective agents’
communication. That is, two units are enabled to cooperate when a communication at-
tempt between their agents was intercepted. A unit may also cooperate with another unit
if the former unit’s agent attempted to communicate with a different agent or did not
attempt to communicate at all. Particularly, the technique enables a unit to cooperate with
other units even when the unit’s local agent is not engaging in security-relevant actions
or is idle.

Structure The remainder of this chapter is structured as follows. In Section 4.2, we
introduce the basic unit architecture underlying the cross-lining technique. Section 4.3
presents the cross-lining technique. In Section 4.4, we instantiate the technique for selected
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Figure 4.1.: Processing of security-relevant actions by an enforcement mechanism (UML
activity diagram)

example architectures of enforcement mechanisms, and in Section 4.5, we compare cross-
lining with inlining. We summarize the content of the chapter in Section 4.6.

4.2. Functionality of Enforcement Mechanisms

Enforcement mechanisms provide functionality for being able to enforce certain secu-
rity requirements on certain kinds of targets. While the concrete functionality differs
from mechanism to mechanism, we can identify a common baseline of functionality of
enforcement mechanisms. Here, we focus on the run-time functionality of enforcement
mechanisms, i.e., the functionality used by the mechanisms at run-time for processing
security-relevant actions of a target.

Figure 4.1 shows the three activities that, in some form, are part of the functionality of
enforcement mechanisms. For each potentially security-relevant action performed by the
target at run-time, an enforcement mechanism intercepts the action. Intercepting an action
involves at least detecting that the action is occurring or is about to occur. It possibly
also involves temporarily preventing the action and subsequent actions from occurring.
After intercepting an action, the mechanism decides about the action. Depending on the
mechanism, the security requirement, and the action, the deciding may involve several
subordinate activities: retrieving information (state), the actual decision-making, and
recording the decision made (state-keeping). Possible decisions are, e.g., to allow an
intercepted action, to disallow the action by performing some countermeasure, or to allow
the action along with, e.g., logging the occurrence of the action or raising an alarm to
a stakeholder. The enforcement mechanism finally enforces the respective decision and
thereby completes the processing for the intercepted action.

The three activities can be found in many enforcement mechanisms (e.g., [ES00b; MU00;
BLW09; PLB11; MJG+12; KP15]). Some mechanisms reflect the three activities in their
component architecture. For instance, the XACML [OAS13] reference architecture [OAS13,
Section 3.1] distinguishes the policy enforcement point (PEP ), a component for intercepting
access requests and for imposing obligations, and the policy decision point (PDP ) and policy
information point (PIP ) for deciding about an access request based on information about the
target’s environment and about subjects relevant to the target. This reference architecture
constitutes the basis for several enforcement mechanisms (e.g., [PLB11; KP15]). The
architecture of service automata [GMS12] also reflects the three activities by two separate
components for intercepting actions and enforcing decisions as well as two components
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Figure 4.2.: Encapsulation of agents (UML activity diagram)

for decision-making. Some mechanisms also reflect the three activities in the structure
of their policy languages, in which the individual activities are specified separately (e.g.,
[BLW09; MJG+12] and also CoDSPL in Chapter 3).

4.3. The Cross-lining Technique

The cross-lining technique employs aspects of the inlining technique, which weaves all
the code of an enforcement mechanism into the code of a target, but only weaves the
code implementing selected functionality of the mechanism. The technique places the
remaining functionality of the mechanism into a separate program that is supposed to run
in parallel to the target.

Encapsulating non-distributed programs Cross-lining uses the inlining technique for the
functionalities of intercepting program actions and of enforcing decisions. It creates a
separate program, called decider program, that contains and executes the functionality
of decision-making. That is, the technique instruments the target by placing the code of
the enforcement mechanism that implements the functionalities of intercepting program
actions and of enforcing decisions into the code of the target. More concretely, this
code of the enforcement mechanism is placed around the instructions (figuratively: the
lines) of potentially security-relevant operations such that the code of the mechanism
is invoked whenever a security-relevant operation is performed. For establishing that
all three activities of the enforcement mechanism connect as displayed in Figure 4.1,
cross-lining further places functionality of inter-process communication (IPC) into both
the instrumented target as well as the separate program such that both interface with each
other.

Figure 4.2 shows the encapsulation a single non-distributed program with a focus on the
involved activities. The technique takes the code of a non-distributed target as well as the
code of an enforcement mechanism as input. From these inputs, the technique produces
as its two outputs firstly, the instrumented code of the target, and, secondly, the decider
program, i.e., the program containing the decision-making functionality.
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Figure 4.3.: Cross-lining for distributed targets (UML activity diagram)

Encapsulating distributed targets The cross-lining technique lifts to a distributed target
and a distributed enforcement mechanism by applying the technique for each unit of the
distributed enforcement mechanism and the corresponding agent of the distributed target
that shall be encapsulated by this unit. In the context of cross-lining for distributed targets,
we refer to the two outputs of the cross-lining for an individual agent as the encapsulated
agent .

Figure 4.3 depicts the cross-lining technique for encapsulating a distributed target.
The technique takes as input a distributed target whose individual agents can be derived
from this input. Analogously, it takes as input a distributed enforcement mechanism
whose units can be derived from this input and additionally obey the service automata
architecture. As output, the technique produces an encapsulated target : a collection of
encapsulated agents. The activity splits the distributed target into its agents and splits the
distributed enforcement mechanism into its units. For each agent and the corresponding
unit of the enforcement mechanism, the activity encapsulates the agent by performing the
“encapsulate non-distributed program” activity, depicted in Figure 4.2 on page 51. As there
are no dependencies between the agents or units with regard to the encapsulation, cross-
lining can perform the encapsulation of the individual agents in parallel. The resulting
instrumented agents’ codes and decider programs are then collated to the encapsulated
agents, which in turn form the encapsulated target.

The particular design of the cross-lining technique enables the activities of intercepting
and enforcing to take place synchronously to the agents of a distributed target and to make
use of application abstractions (e.g., methods defined in the code of an agent). Moreover,
the technique enables the decision-making functionality to take place in parallel to the
running agent. This allows the decision-making functionality to be responsive both to
input from the intercepting functionality and to cooperation requests from remote units.
The responsiveness is particularly not limited to time frames in which the local agent
activates the decision-making by performing security-relevant operations. Rather, the
decider program can cooperate with remote units even when the local agent is idle, blocked,
or terminated.
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4.4. Example Instances of Cross-lining

We illustrate the cross-lining technique for three high-level architectures of enforcement
mechanisms.

Service automata The service automata concept comprises four components: the in-
terceptor, the coordinator, the local policy, and the enforcer. Of these components, the
interceptor intercepts security-relevant actions, the local policy decides about locally
intercepted actions as well as about delegation requests from remote service automata, and
the enforcer implements decisions made by the service automaton. Finally, the coordinator
manages the delegation between service automata.

We can instantiate cross-lining for an enforcement mechanism that implements the
service automata concept as follows. Firstly, the code of the interceptor and enforcer
components would be inlined into the respective target, since they implement the function-
ality of intercepting actions and enforcing decisions and no decision-making functionality.
Conversely, the code of the coordinator and local policy components would be placed into
the decider program, since they both implement functionality of decision-making and
neither functionality of intercepting nor of enforcing decisions.

The CoDSPL reference architecture The reference architecture of CoDSPL, as introduced
in Section 3.2, refines the architecture of the service automata concept. As part of this
refinement, the architecture comprises two components in addition to the components
in the service automata concept: the event factory and the enforcer factory. The two
additional components are responsible for abstracting from intercepted operations to
entities suitable for the local policy and, respectively, for concretizing decisions of the
local policy to concrete countermeasures.

We can instantiate cross-lining for an enforcement mechanism that implements the
CoDSPL reference architecture as follows. The four components inherited from the service
automata concept are treated the same as described for cross-lining of service automata,
since the classification of these components with regard to the three functionalities of
enforcement mechanisms remains the same. The two additional components can be
classified as being part of the decision-making functionality as well as being part of the
other two functionalities. Inlining the code implementing the two components would
allow a reduction of the amount of data transferred between the components, because the
abstracted event objects and decision objects can be expected to be smaller in size than the
intercepted operation and, respectively, countermeasure as a whole. Conversely, placing
the two components into the decider program would effectuate a smaller modification of
the target.

XACML The XACML reference architecture [OAS13, Section 3.1] comprises four central
components: the PEP, the PDP, the PIP, and the context handler. The PEP is the component
that intercepts access requests and enforces authorization decisions [OAS13, p. 10]. The
PDP evaluates the given policy and makes authorization decisions. The PIP provides
information for the decision-making by the PDP. Finally, the context handler is a component
that manages both the interaction between PDP and PIP as well as between PDP and



54 Chapter 4. A Technique for Encapsulating Distributed Programs

PEP. As part of the latter, the context handler also performs translations between the
XML-based XACML language and the respective “native” format understood by the PEP
[OAS13, p. 10].

We can instantiate cross-lining for an enforcement mechanism that exhibits the XACML
reference architecture as follows. Firstly, the code of the PEP would be inlined into
the respective target, since it implements the functionality of intercepting actions and
enforcing decisions and no decision-making functionality. Conversely, the code of the
PDP and PIP components would be placed into the decider program. The context handler’s
functionality of managing the interaction between PDP and PIP can be attributed to the
decision-making functionality and its code would therefore also be placed into the decider
program. The context handler’s translation functionality can be attributed to either of
decision-making or intercepting/enforcing and its code can therefore be placed in either
of the two outputs of cross-lining.

4.5. Comparison with Other Techniques

We compare the cross-lining technique against other possible techniques for applying a
security enforcement mechanism to a program. For the comparison, we choose two aspects:
the granularity of operations with which the enforcement mechanism interfaces with the
program, and the possibility of cooperation for a distributed enforcement mechanism.

Granularity of operations and countermeasures Cross-lining instruments a target by plac-
ing the enforcement mechanism’s functionality of intercepting actions and enforcing
decisions into the code of the target’s agents. By building on program instrumentation,
cross-lining allows the units of the enforcement mechanism to control an agent by inter-
cepting actions and imposing countermeasures at programming-language granularity and
at a level of application abstractions. This granularity and level of abstraction, in contrast
to, e.g., the level of hardware or operating system granularity, benefits the enforcement of
security requirements that are formulated in terms of higher level operations.

Example 4.1. Consider the scenario of Example 1.1 on page 6, in which the security
requirement constraining downloads of users. Consider furthermore that the services that
provides files for download is implemented in an object-oriented programming language
and following an object-oriented design [BME+07]. The implementation of the service,
thus, contains abstractions such as user objects and session objects, where a session
object encapsulates (in the OOP sense [BME+07, pp. 50-54]) the connection between a
user who is logged in and the network connection through which she is logged in. In
the implementation, a download of a file is performed by a method on a session object.
An enforcement mechanism based on instrumentation of the services can intercept the
download by intercepting calls to the particular method of the session object.

For an enforcement mechanism at a lower-level interface to the service, such as the
level of an operating system, the download of a file by a user assumes a different form. At
that level, the download would consist of a sequence of operations such as the establish-
ment of a network connection, several network transmissions in a protocol such as FTP
corresponding to the successful login of the user, the opening of a file, and the piecewise
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transfer of content from the file to the user’s network connection. All these operations
would have to be intercepted at the operating system level for detecting when a particular
user downloads a particular file. ♦

While Example 4.1 illustrates the benefit of high level of abstraction for intercept-
ing actions, the argument also transfers to countermeasures. At an application level,
countermeasures can invoke custom error routines or through suitable exceptions. Coun-
termeasures directly available in the operating system are more crude, such as terminating
a program or closing a network connection.

Besides cross-lining, the inlining technique [ES00b] also supports an application-level
granularity. Enforcement mechanisms implemented in an interpreter or virtual machine
(e.g., [RHN+13; RBG+15]) also support this granularity, but require the presence of an
interpreter or VM and particularly one that supports enforcing security requirements.
Cross-lining, like inlining, does not require an interpreter or VM at all and, thus, particu-
larly does not require a customized interpreter or VM that supports enforcing security
policies.

Cooperation within a distributed enforcement mechanism Cross-lining places an enforce-
ment mechanism’s functionality of decision-making into separate programs that are run
in parallel to the target’s agents. This allows the decision-making functionality at the
individual units to cooperate when the information available at only one unit does not
suffice. More concretely, the cooperation can be performed by the units asynchronously
to the communication of the agents of the target. That is, cooperation between the units
can take place event when the respective agents do not communicate.

Example 4.2. Consider again the scenario of Example 1.1, and consider a distributed en-
forcement mechanism whose decision-making functionality supports cooperation among
units. The enforcement mechanism is applied to the distributed storage service by means
of cross-lining. For preventing conflicts of interest, the units cooperate as follows. The unit
at which a file access by a user is intercepted requests from all other units (respectively,
their decider programs) where the user could have accessed a conflicting file whether
the user indeed accessed such a file. This form of cooperation is asynchronous to the
communication of the agents, as the agent at which the file access is intercepted would
communicate with the other agents as part of the access. Due to cross-lining, all involved
decider programs are responsive to these requests.1 ♦

To some extent also the inlining technique can be applied to cooperating units of a
distributed enforcement mechanism. Firstly, inlined units can perform cooperation that is
synchronous to the communication of agents. For this form of cooperation, the unit of a
sending agent can piggy-back information required by the receiving agent’s unit on the
regular message; the unit of the receiving agent then extracts the piggy-backed informa-
tion. Variations of this form of cooperation have been proposed for several distributed
enforcement mechanisms, though none based on the inlining technique. Rather, dedicated
communication libraries [MU00; SVA+04] or middleware have been used [OBM10].

1In Chapter 7, we describe in detail an approach that requires less communication and is effective even
when a malicious user attempts to concurrently access conflicting files.
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Secondly, inlined units can perform asynchronous cooperation as follows. An operation
that is performed very early during the start-up of an agent is declared as a security-
relevant operation. When the respective unit intercepts this operation (for the first time),
the unit spawns a new thread or process that runs the decision-making functionality. The
resulting architecture of the units after spawning the thread or process then resembles the
architecture of units in the cross-lining technique, but for achieving this, the approach
requires reliable means for identifying the start-up operation. We are not aware of dis-
tributed enforcement mechanisms based on inlining that have been used for asynchronous
cooperation.

4.6. Summary

We proposed the cross-lining technique for encapsulating distributed programs with dis-
tributed enforcement mechanisms. The technique encapsulates each individual agent of
the distributed target by a unit of the distributed enforcement mechanism. For encapsu-
lating individual agents, the technique splits the units of the enforcement mechanism by
three basic functionalities that are common to enforcement mechanisms: intercepting
potentially security-relevant operations, deciding about intercepted operations, and en-
forcing decisions. The code of the agent is instrumented to contain the first and the last of
the three functionalities, while the second functionality is placed into the separate decider
program.

By building on program instrumentation, cross-lining enables a unit to control an agent
by intercepting actions and imposing countermeasures at programming-language granu-
larity and at a level of application abstractions. This granularity and level of abstraction,
in contrast to, e.g., the level of hardware or operating system granularity, benefits the en-
forcement of security requirements that are formulated in terms of higher level operations.
Cross-lining inherits this feature from the inlining technique [ES00b], which in variations
has been adopted by several enforcement mechanisms (e.g., [Erl04; BLW09; MJG+12]).

By placing the decision-making functionality of an enforcement mechanism into sep-
arate programs that are run in parallel to the target’s agents, cross-lining enables the
decision-making functionality of a unit to take place even when the agent is idle, termi-
nated, or performing security-irrelevant actions. This property of cross-lined units enables
them to cooperate with each other in enforcing security requirements in a distributed
program. In particular, the property enables a cross-lined distributed enforcement mecha-
nism to enforce, concerted security properties such as the one of Example 2.2. We are not
the first to propose cooperating enforcement mechanisms [MU00; SVA+04; OBM10; KP15;
DLJ15] but, to the best of our knowledge, cross-lining is the first proposal for a generally
applicable technique that enables cooperating distributed enforcement mechanisms.

In the context of this thesis, the cross-lining technique is relevant for the tool CliSeAu,
which implements the technique and is presented in the next chapter.
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Chapter

5
A Generic Enforcement Mechanism

For Distributed Programs

5.1. Introduction

Generic enforcement mechanisms can be employed for enforcing a wide range of security
requirements and can be applied to a wide range of targets. When the target is a distributed
program, i.e., consists of several distributed agents, a generic enforcement mechanism
can consist of several units that enforce security at the agents of the target. The units of
such a mechanism can cooperate with each other for enforcing security requirements that
constrain the joint behavior of the target’s agents, such as those requirements captured by
concerted security properties.

We present CliSeAu (abbreviating “Cross-lining Service Automata”), a tool for enforcing
security requirements in distributed programs. CliSeAu consists of two parts: two para-
metric unit implementations, called generic enforcement capsule (generic EC in short), and
a tool implementing the cross-lining technique, called the encapsulation tool. Figure 5.1
on the next page illustrates the two parts of CliSeAu together with their connections
to inputs and outputs of CliSeAu. The encapsulation tool takes a distributed target and
a CoDSPL policy as input artifacts. From these inputs, the encapsulation tool uses the
generic ECs for creating an encapsulated target as the output artifact. The two generic
ECs of CliSeAu implement the reference architecture of CoDSPL policy, which in turn
derives from the service automata concept, for Java agents and, respectively, for Ruby
agents. The encapsulation tool uses the cross-lining technique for creating an encapsulated
target as described in Chapter 4.

By supporting CoDSPL as policy language for the enforcement mechanisms generated
by encapsulation tool, CliSeAu allows for enforcing a wide range of security requirements
on a wide range of Java and Ruby programs. Particularly, CliSeAu supports that the units
of generated enforcement mechanisms can make local decisions and can also cooper-
ate by means of delegation. The design of both the generic EC and the encapsulation
tool of CliSeAu follows the principles of object-oriented design [BME+07; GHJ+95]. The
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Figure 5.1.: High-level architecture and inputs/outputs of CliSeAu (UML component dia-
gram)

implementation of CliSeAu passed three static analysis tools that identify common imple-
mentation flaws and inefficiencies, and the code is thoroughly documented. The design
and implementation of CliSeAu’s generic ECs enables cooperation for multiple intercepted
actions to be performed concurrently to reduce latencies in the decision-making.

Structure The remainder of this chapter is structured as follows. Section 5.2 describes
the high-level architecture of CliSeAu’s encapsulation tool. In Section 5.3, the design of
CliSeAu’s generic ECs is presented with a focus on the how the generic ECs cooperate. How
the cross-lining technique is instantiated by CliSeAu is modeled in Section 5.4. Section 5.5
describes selected aspects of CliSeAu’s low-level architecture and implementation. An
analysis of the design and implementation of CliSeAu with respect to its design, code
quality, and documentation is provided in Section 5.6. Finally, Section 5.7 summarizes the
contributions presented in this chapter.

5.2. Design of the Encapsulation Tool

CliSeAu’s encapsulation tool generates a distributed enforcement mechanism from a
given CoDSPL policy and applies the generated mechanism to a distributed target. For
generating the mechanism, CliSeAu instantiates its generic ECs using the CoDSPL policy.
For applying the mechanism, CliSeAu builds on the cross-lining technique introduced in
Chapter 4. In this section, we introduce a white-box view on the high-level design of the
encapsulation tool.

The architecture aims at separation of concerns for the individual activities and enti-
ties involved in encapsulating a distributed target by means of cross-lining. Concretely,
the architecture identifies three concerns: the generation of the decider programs, the
instrumentation of the agents, and the provisioning of policy elements.

Figure 5.2 shows the high-level component our model of the encapsulation tool based on
the identified concerns. As input, the tool expects a CoDSPL policy as well as a distributed
target and produces an encapsulated target as output. The encapsulation tool includes a
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Figure 5.2.: Architecture of encapsulation tool (UML component diagram)

policy provider component, which offers an interface for querying individual parts of the
given CoDSPL policy. Two components, the decider generator and the agent instrumenter ,
offer interfaces for generating decider programs and, respectively, instrumented code of
agents. The two components use of the generic EC implementation, i.e., the second part
of CliSeAu next to the encapsulation tool. The encapsulator is a component that uses the
two components for producing the encapsulated target. The inputs and outputs of the
encapsulation tool resemble those of the cross-lining activity displayed in Figure 4.3 on
page 52. The difference is that the encapsulation tool takes a CoDSPL policy as input
instead of a distributed enforcement mechanism, but internally generates the units of the
distributed enforcement mechanism by instantiating the generic EC as specified by the
CoDSPL policy.

The separation between the policy provider, decider generator, and agent instrumenter
allows each of the components to vary with low impact on the other. For instance,
how a decider program is generated by the decider generator component could vary
independently from how the instrumentation is realized and vice versa. Moreover, the
separate policy provider hides the specificities of the CoDSPL syntax, such as the key-
value format of encapsulation descriptions and its key precedence rules, as defined in
Definition 3.2 on page 43. This simplifies the realization of the other two components that
use the policy provider and would furthermore allow for future extensions of CoDSPL, as
already evidenced by Hamann [Ham16].

5.3. Design of Generic Enforcement Capsules

CliSeAu’s generic ECs implement the reference architecture of CoDSPL presented in
Section 3.2 on page 28. In this section, we present how the coordinator of CliSeAu’s generic
ECs realizes cooperation. The cooperation is realized such that it enables cooperation for
multiple intercepted actions to be performed concurrently.

We capture the cooperation performed by the coordinator component together with
a local policy through its involved activities. The overall activity, cooperatively deciding,
takes an event object as input and produces a decision object as output. The activity itself
may involve communication with other units, when helpful for determining an appropriate
decision object, but is not required to. Whether communication takes place or not can be
determined by the activity of cooperative deciding itself.
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Figure 5.3.: Cooperative deciding by units (UML activity diagram)

The cooperative deciding can be triggered by an intercepted program operation and
can also be triggered by the cooperative deciding activity of a remote unit. Overall, we
identify five possible courses of action for the cooperative deciding that are enabled by the
coordinator component. These courses of action are determined by the trigger as well as
by when the local policy specifies that delegation shall take place. They correspond to the
possible paths depicted in Figure 5.3, which we discuss in the following. In the exposition,
we distinguishes the aspects ‘when’, ‘where’, and ‘what’ of delegation.

Case 1: locally making a decision for a locally intercepted event (path from event object
to decision object).

This case occurs when an event object (top box) is given to the cooperative deciding
and the result of the “can decide” activity is positive (‘when’). Then the unit performs
the “decide locally” activity and returns the result as a decision object (bottom box).

Case 2: delegating the decision-making for a locally intercepted event (path from event
object to delegation request).

This case also occurs when an event object is given to the cooperative deciding and the
result of the “can decide” activity is negative (‘when’). In this case, the unit performs
the “delegate” activity to determine the unit (id ′) to which the delegation shall take
place (‘where’) and the delegation request that shall be sent to that unit (‘what’).

Case 3: locally making a decision for a remotely intercepted event (path from delegation
request to delegation response).

This case occurs when a delegation request is signaled to the unit and the result of
the “can decide” activity is positive (‘when’). Then the unit performs the “decide
locally” activity to determine the unit to which the result shall be sent (‘where’) and
the delegation response that shall be sent to that unit (‘what’).
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Case 4: delegating the decision-making for a remotely intercepted event (path from dele-
gation request to delegation request).

This case occurs when a delegation request is signaled to the unit and the result of the
“can decide” activity is negative (‘when’). In this case, the unit performs the “delegate”
activity to determine the unit to which the delegation shall take place (‘where’) and
the delegation request that shall be sent to that unit (‘what’). This course of action can
occur when a unit makes a partial decision.

Case 5: receiving a remotely made decision for a locally intercepted event (path from
delegation response to decision object).

This case occurs when a delegation response is signaled to the unit. In this case, the
unit performs the “extract decision” activity and returns the result as a decision object.

The cooperative deciding ends either by returning a decision object or by signaling a
delegation request or delegation response to another unit. Which of the cases takes place
is determined by a sequence of at most two activities that determine the aspects ‘when’,
‘where’, and ‘what’ of delegation. In case of delegation, the cooperative deciding ends
after a signal is sent to another unit. This ensures that the cooperative deciding does not
block until a decision for a delegated event is obtained. Non-blocking cooperation is also
achieved when the decision-making for a received delegation request is further delegated
(Case 4). This allows delegation responses to be returned directly to their destination
without indirections over other units. It also allows the coordinator to be stateless with
respect to received or sent delegation requests and responses.

5.4. Cross-lining

We specify how CliSeAu implements the cross-lining technique for a given CoDSPL
policy in particular detail by providing a semi-formal model. In the model, we capture the
implementation in a denotational form, as a function from CoDSPL policies to encapsulated
targets, in the main definition of this section, Definition 5.4 on page 67. As prerequisite
for this definition, we first provide a definition of template instantiation, how aspects are
generated and woven into agent code, and how a decider program is generated.

Template instantiation For capturing complex strings that are constructed from multi-
ple parameters, CliSeAu uses templates. These templates are strings (i.e., words) with
placeholders specified in a particular syntax, which we describe next. Firstly, a template
can contain placeholders enclosed in angle brackets that can be substituted by concrete
parameters. Secondly, a template can contain conditional blocks (enclosed in guards of the
form ‘< if(guard) >’ and ‘< endif >’) that are included in an instance of the template if
and only if the parameter in the conditional is set to the word ‘true’. Placeholders inside
included conditionals are again substituted by concrete parameters, but without further
recursive substitution. The use of the placeholders and conditionals models the subset of
the possibilities offered by the stringtemplate library for Java that is used by CliSeAu. We
define templates and their instantiation as follows.
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Definition 5.1. The template instantiation is the function inst : W × (W ⇀W) → W
for which inst(w, sf ) = w ′ holds if and only if w ′ is the result of substituting

1. every infix ‘< if(’ u ‘) >’ v ‘< endif >’ of w that satisfies u ∈ W{<,>} and
‘< endif >’ 6 v by v if u ∈ dom(sf ) and sf (u) = ‘true’ and by ε otherwise;

2. every infix ‘<’ u ‘>’ of w that satisfies u ∈ W{<,>} ∩ dom(sf ) by sf (u).
We call a function used as the second argument to the template instantiation a substitu-

tion function. ♦

The definition faithfully captures the intention of instantiating a template, both for
parameters and for conditionals. In particular, the definition ensures that a parameter is
substituted at most once and that the substitute is not subject to further substitution.

Agent instrumentation For instrumenting an agent, CliSeAu utilizes an AOP aspect that
captures what methods of the agent’s code are security-relevant and what functionality
shall be performed when the agent is about to call one of such methods. In the following,
we present the instrumentation of agents that are implemented in the Java programming
language. We leave out the instrumentation for Ruby agents as it is largely analogous
except that the respective templates are for the Aquarium tool rather than for AspectJ. The
functionality performed by the aspect corresponds to the functionality of the interceptor
and the enforcer components. We capture the generation of this aspect as follows.

Definition 5.2. The aspect generation function genAspect : POL×L(Id)⇀W is defined
as follows. For an arbitrary but fixed well-formed CoDSPL policy pol = (ed, files) ∈ POL,
(glob, Ids, loc) = JedK, and a unit identifier id ∈ L(Id), the partial function genAspect is
undefined for (pol, id) if id /∈ Ids holds and defined as follows otherwise.

genAspect(pol, id) = inst(aspt, sf )

where
• pcs = loc(id, ‘pointcuts’) ∈ L(PointcutSpec),
• aspt is the content of Listing 5.2 on page 64,
• sf : W ⇀W is defined by

– sf (‘Imports’) ∈ L({ Import ‘;’ }) is the adjoined import declarations occurring
in pcs;

– sf (‘Pointcuts’) ∈ L({ PointcutDecl‘;’ }) is the adjoined pointcut declarations
occurring in pcs with two modifications: firstly, from the “formals” the return
type is removed and, secondly, each pointcut expression pe is substituted by
‘(’ pe ‘)&&!within(CliSeAu)’;

– sf (‘LocalEncodingClass’) = x , where x = ‘SerializationEncoding’ holds if
loc(id, ‘local−encoding’) = ‘serialization’ and x = ‘GsonEncoding’ holds
if loc(id, ‘local−encoding’) = ‘JSON’;

– sf (‘CorHost’) = loc(id, ‘cor−host’);
– sf (‘CorPort’) = loc(id, ‘cor−port’);
– sf (‘EnfHost’) = loc(id, ‘enf−host’);
– sf (‘EnfPort’) = loc(id, ‘enf−port’);
– sf (‘Advice’) is the result of concatenating inst(advt, sf ′) for all pointcut dec-

larations pd occurring pcs, for which sf ′ : W ⇀W is defined by
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* sf ′(‘PointcutName’) is the pointcut identifier of pd ;
* sf ′(‘ReturnType’) is the return type of pd , if provided, or ‘void’ otherwise;
* sf ′(‘TypedParameters’) ∈ L(ParamList) is the formal parameters, includ-
ing their types, of pd ;

* sf ′(‘Parameters’) is the comma-separated list of names of formal param-
eters of pd ;

* sf ′(‘EventFactory’) = loc(id, ‘event− factory’);
* sf ′(‘EnforcerFactory’) = loc(id, ‘enforcer− factory’);
* sf ′(‘hasReturnType’) is ‘false’ if ‘ReturnType’ is mapped to ‘void’ and
is ‘true’ otherwise;

* sf ′(‘ObjReturnType’) equals sf ′(‘ReturnType’) is it is an object type and
equals its boxed type (e.g., Integer for int) if it is a primitive type;

• advt is the content of Listing 5.1 on the next page. ♦

By the definition, genAspect(pol, id) faithfully captures an aspect for CoDSPL policy
pol and unit identifier id that implements the functionality of the interceptor and enforcer
components. The aspect contains all the specified pointcuts and corresponding advices
and thereby causes the aspect to intercept all operations of the agent declared as security-
relevant in the CoDSPL policy. The pointcuts of the specification of security-relevant
program operations are all transferred to the aspect such that all specified operations are ac-
tually part of the aspect. The augmentation of pointcut expressions by ‘!within(CliSeAu)’
ensures that the pointcuts apply to the agent’s code only and do not accidentally apply to
code of units.1 The advices, generated from the template in Listing 5.1 on the following
page,2 combined into the aspect implement the interceptor and enforcer components:
firstly, by invoking the event factory and enforcer factory for creating event objects and,
respectively, countermeasure objects; secondly, by sending event objects to the coordi-
nator and receiving decision objects from the coordinator; and thirdly, by invoking the
countermeasure’s methods before, suppress, and after for inserting and suppressing actions
as specified by the countermeasure object. The second aspect is implemented by the
CoordinatorInterface class, whose network configuration is performed, based on the host
and port specifications of pol, in the aspect’s constructor. The definition of the advice
template is carefully crafted to treat return values of intercepted method calls adequately,
for primitive types as well as objects and for the case of suppressed method calls.

We capture how AspectJ weaves an aspect into a given Java program by the function
AspectJ : FileContent × FileContent ⇀ FileContent . This partial function takes an aspect
and a JAR file and, if the inputs are valid for AspectJ, returns a JAR file. The returned
JAR file corresponds to the JAR file provided to the function but with the provided aspect
woven into the code. We refrain from further defining the working of AspectJ here and
refer to Section 2.5 as well as to the literature for an informal overview over AspectJ
[KHH+01] and for formalizations of AspectJ’s weaving of aspects (e.g., [BD06]).

1This is based on the assumption that the agent’s code does not define a ‘CliSeAu’ class.
2For the sake of brevity, handling of exceptional behavior is not displayed in the templates. The implementa-
tion of the templates in CliSeAu does handle exceptions.
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1 <ReturnType> around(<TypedParameters>) : <PointcutName>(<Parameters>) {
2 Event event = <EventFactory>.<PointcutName>(<Parameters>);
3 Countermeasure cm = null;
4

5 CoordinatorInterface.send(event);
6 Decision decision = CoordinatorInterface.receive();
7 cm = <EnforcerFactory>.fromDecision(decision);
8 if (cm == null) {
9 cm = <EnforcerFactory>.fallback(event);

10 }
11 cm.before();
12 <if(hasReturnType)> <ReturnType> result;<endif>
13 if (!cm.suppress()) {
14 <if(hasReturnType)>result = <endif> proceed(<Parameters>);
15 } else {
16 <if(hasReturnType)>result =

(<ObjReturnType>)cm.getReturnValue(<ObjReturnType>.class);<endif>
17 }
18 cm.after();
19

20 <if(hasReturnType)>return result;<endif>
21 }

Listing 5.1.: Advice template used by the aspect generation function

1 import java.io.IOException;
2 import java.net.UnknownHostException;
3 import net.cliseau.runtime.javacor.Event;
4 import net.cliseau.runtime.javacor.Decision;
5 import net.cliseau.runtime.javatarget.Enforcer;
6 import net.cliseau.runtime.javatarget.CoordinatorInterface;
7 import net.cliseau.runtime.javacor.encoding.DataEncoding;
8 <Imports>
9

10 aspect CliSeAu {
11 CliSeAu() throws IOException,UnknownHostException {
12 DataEncoding encoding = new <LocalEncodingClass>();
13 CoordinatorInterface.init(encoding,
14 ”<CorHost>”, <CorPort>, ”<EnfHost>”, <EnfPort>);
15 }
16 <Pointcuts>
17 <Advice>
18 }

Listing 5.2.: Aspect template used by the aspect generation function
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Decider program generation The decider program is one of the two components produced
in the encapsulation of an agent via cross-lining, next to the instrumented code of the
agent (see Section 4.3 on page 51). The decider program contains the coordinator and the
local policy of a unit and, as such, serves the purpose of cooperatively deciding about
intercepted operations of the target. We model the production of the decider program by
a function genDecider . In our model, we capture that CliSeAu refines the functionality of
the decider program of the cross-lining technique: CliSeAu’s decider program includes,
besides the decision-making functionality, also the functionality to start the instrumented
agent code after starting the decision-making functionality. The decider program is stored
in the JAR file format. The JAR file contains a set of key-value files that configure the
coordinator, the start-up of the agent, and the local policy based on the given CoDSPL
policy.

Definition 5.3. The decider generation function genDecider : POL × L(Id) ⇀ W is
defined as follows. Let pol = (ed, files) ∈ POL be an arbitrary but fixed well-formed
CoDSPL policy. Let (glob, Ids, loc) = JedK and let id ∈ L(Id) be arbitrary but fixed. The
partial function genDecider is undefined for (pol, id) if id /∈ Ids holds and defined as
follows otherwise.

genDecider(pol, id) = jar(cdFixed ⊕ cdConfigs)

where
• cdConfigs : L(FileName) ⇀ FileContent maps the three configuration file names
shown in Table 5.2 on the following page to the pol-dependent key-value content
displayed in the very same table (other file names are not in the domain of cdConfigs),

• cdFixed : L(FileName)⇀ FileContent models the fixed (i.e., pol-independent) im-
plementation of the coordinator component and the implementation of the start-up
of the decider program, as a map from file names to the content of the implementa-
tion’s Java bytecode,

• jar : (L(FileName) ⇀ FileContent) → FileContent models the creation of a JAR
file from a list of files and their content, as for instance performed by the jar tool of
the Java distribution (we leave this function underspecified, as its precise definition
is not of particular relevance for the model). ♦

The modeled generation of the decider program, by function genDecider , faithfully
captures by its signature that a decider program can be generated for each unit declared by
a given CoDSPL policy. The production of a JAR file is captured by the jar function, whose
co-domain is the content of a single file and whose domain is a partial map of file names
to their content. This function’s signature captures faithfully that a JAR file is actually an
archive inwhich the content of multiple files is stored in associationwith the names of these
files. The fixed implementation of the coordinator and its start-up is faithfully captured
by the underspecified map cdFixed , which reflects that the implementation consists of
multiple Java classes and, hence, multiple files. Finally, the configuration files faithfully
captured by the map cdConfigs, which transfers all those properties of the CoDSPL policy’s
encapsulation description that are relevant for the unit at run-time to key-value files for the
decider program – including, e.g., network addresses and excluding, e.g., the specification
of security-relevant program operations.
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key value quantification

file coordinator.cfg

‘identifier’ id

‘policyConfigRes’ policy.cfg

‘units’ glob(‘units’)
‘local−host’ loc(id, ‘cor−host’)
‘local−port’ loc(id, ‘cor−port’)
‘enforcer−host’ loc(id, ‘enf−host’)
‘enforcer−port’ loc(id, ‘enf−port’)
‘remote−host.’ id ′ loc(id ′, ‘ext−host’) for all id ′ ∈ Ids

‘remote−port.’ id ′ loc(id ′, ‘ext−port’) for all id ′ ∈ Ids

‘LogLevel’ loc(id, ‘loglevel’)
‘localPolicyClass’ loc(id, ‘policy’)

file target.cfg

‘type’ loc(id, ‘type’)
‘JARfile’ loc(id, ‘target’)
‘JavaVM’ loc(id, ‘target−javavm’)

file policy.cfg

w loc(id, ‘policy.’ w) for all w ∈ W such that
(id, ‘policy.’ w) ∈ dom(loc)

Table 5.2.: Content of configuration files in the decider program of unit id ∈ Ids for
CoDSPL policy (ed, files) and (glob, Ids, loc) = JedK
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Main definition Building on the previous definitions, we model the cross-lining imple-
mented by CliSeAu as a function from CoDSPL policies to encapsulated targets. We
model the encapsulated agents of an encapsulated target by tuples from the set EA =
FileContent × FileContent whose first component captures the instrumented agent code
and whose second component captures the decider program.

Definition 5.4. The cross-lining implementation by CliSeAu is the function J·K : POL →
P(EA) defined by

J(ed, files)K = {crossline((ed, files), id) | (glob, Ids, loc) = JedK ∧ id ∈ Ids}

where crossline : POL × L(Id)⇀ EA with

crossline(pol, id) = (AspectJ(genAspect(pol, id), files(loc(id, ‘target’))),
genDecider(pol, id))

for each pol = (ed, files) ∈ POL and (glob, Ids, loc) = JedK and each id ∈ Ids. For id /∈ Ids,
(pol, id) /∈ dom(crossline). ♦

The definition captures the cross-lining implemented by CliSeAu as a combination of
the decider generator and the agent instrumenter, as depicted in Section 5.2.

The model of CliSeAu’s cross-lining implementation makes explicit how CliSeAu pro-
cesses CoDSPL policies and instantiates the cross-lining technique for creating an encapsu-
lated target. In particular, the model highlights two properties of how CliSeAu implements
cross-lining. Firstly, the model shows how CliSeAu internally uses AOP tools but hides
the specification of AOP aspects from the user of CliSeAu. By keeping the amount aspect-
oriented specification limited to the pointcuts specified in CoDSPL only, a concern raised
by Kästner, Apel, and Batory [KAB07] about the readability and understandability of
aspect specifications do not apply to CliSeAu. Secondly, the model clarifies the start-up of
an encapsulated agent, which is not subject of the cross-lining technique itself. Concretely,
CliSeAu places the functionality of starting the instrumented code of the agent into the
implementation of the decider program. In consequence, the decider program can ensure
that the instrumented agent is started only after the decision-making functionality is
active, such that even early security-relevant operations of the agent can be processed by
the unit.

5.5. Low-Level Architecture and Implementation

In this section, we discuss detailed aspects about the low-level architecture and the im-
plementation of CliSeAu. Firstly, we point out how the design of CliSeAu’s two main
components is implemented using software design patterns (Section 5.5.1). Secondly, we
present technical design decisions behind the implementation of cooperation (Section 5.5.2)
and the use of AOP tools (Section 5.5.3).

5.5.1. Mapping between Design and Implementation

CliSeAu consists of twomain parts, the generic enforcement capsules and the encapsulation
tool. We present the mapping between design and implementation for each part separately.
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Generic enforcement capsules The components of generic ECs, shown in Figure 3.1 on
page 28, are implemented as Java classes, interfaces, and methods. The interfaces between
the components of generic ECs are implemented through methods and network sockets.
The parametric components are part of CoDSPL policies and are discussed earlier in this
thesis, in Section 3.4.3 on page 38. In the following, we discuss the three fixed components:
the interceptor, the enforcer, and the coordinator.

The coordinator component is implemented by CliSeAu’s Coordinator class. This class
implements the “event delivery” interface and the “requests from other units” interface
(both in Figure 3.1 on page 28) through two threads that concurrently listen on network
sockets for incoming event objects and, respectively, delegation requests or delegation
responses. The processing of incoming messages is performed in the handleSocket method,
which uses the local policy and immediately sends out a result based on the local policy’s
output, without waiting for a response to the sent message. This form of communication
allows the coordinator implementation to be stateless and to handle delegation requests
even while other delegations have not completed, as described in Section 5.3.

The interceptor and enforcer components are implemented in two parts. The first part
is the CoordinatorInterface class, which both components use. This class encapsulates the
components’ code for communicating with the coordinator component. That is, the class
provides functionality for using the “event delivery” interface of the coordinator as well as
functionality based on network sockets for providing the “decision delivery” interface to the
coordinator. The second part of the interceptor and enforcer component implementation is
an AspectJ around-advice template. This advice template mainly consists of a block of Java
code, of which the first part implements the main interceptor functionality and the second
part implements the main enforcer functionality. The template contains placeholders for
the names of the Java classes providing the concrete event factory and enforcer factory
implementations. These placeholders are instantiated by the encapsulation tool. Being
implemented as an around-advice, the interceptor and enforcer establish the interfaces to
the agent as devised in the unit architecture: Firstly, as an around-advice, the components
run sequentially to the agent and run instead of the respective security-relevant operations.
This establishes the “blocking” and “unblocking” interfaces to the agent. Secondly, AspectJ
provides around-advice with information about the security-relevant operations, such
as the actual parameters of a method call, which establishes the “observation” interface.
Finally, around-advice may or may not invoke the security-relevant operation and may
run further code that modifies the state of the agent, which altogether establishes an
“intervention” interface to the agent.

Encapsulation tool The components of CliSeAu’s encapsulation tool, shown in Figure 5.2
on page 59, are implemented as Java classes and interfaces. The interfaces between
components are realized with methods.

The policy provider component is implemented by the PropertiesConfig class. This class
is part of a low-level architecture, which is shown in Figure 5.4. It consists of two main
parts: The first part are abstract strategies for retrieving unit-specific information from
a CoDSPL policy’s encapsulation description (top part of the figure). The second part
are abstract and concrete factories that create concrete strategies for the retrieval of the
information (bottom part of the figure).
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Figure 5.4.: Low-level architecture for the policy provider component
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The abstract strategies are realized as a hierarchy of Java interfaces. The root of this
hierarchy, UnitConfig, provides methods for obtaining basic unit information from an
encapsulation description. Towards the leaves, JavaConfig and RubyConfig, the interfaces
provide further methods for obtaining more specific unit information. The intermediate
interfaces provide methods for specific details like whether the coordinator is imple-
mented in Java (JavaCorConfig) or what instrumentation tool is used (AspectJConfig and
AquariumConfig). The interfaces are part of a Strategy pattern, in which the encapsulation
tool provides one concrete strategy, implemented in UnitPropertiesConfig, that provides
unit information from encapsulation descriptions given in the Java Properties format (as
described in Section 3.4.3 on page 38. This separates concerns of obtaining unit informa-
tion from encapsulation descriptions and using this information. The interfaces are used
by clients according to the Constructor Injection pattern, i.e., the clients get a concrete
strategy object passed via the clients’ constructors. Concretely, clients only get the most
narrow interface from the UnitConfig hierarchy, such that through the use of the pattern,
the fine-granular hierarchy of interfaces realizes a need-to-know principle in the code.

The creation of encapsulation description retrieval objects is realized in an Abstract
Factory pattern. The Java interfaces ConfigProvider and UnitConfigProvider constitute the
pattern’s abstract factories. They declare methods for producing objects that provide global
and, respectively, unit-specific information of a CoDSPL encapsulation description. The
Java classes PropertiesConfig and UnitPropertiesConfig constitute corresponding concrete
factories for obtaining the information from encapsulation descriptions provided in Java’s
Properties format. These two concrete factories implement the interfaces for retrieval of
unit information and, respectively, of ArchitectureConfig, themselves such that their factory
methods simply return the concrete factory itself. This realization of the Abstract Factory
pattern keeps the retrieval code bundled in two classes while still offering the discussed
advantages of the fine-grained architecture.

The generic EC implementation component of the encapsulation tool consists of two
kinds of artifacts: compiled Java classes and Java source code templates. The compiled
classes capture the fixed components of the generic EC. These are in the format of Java
bytecode and stored together in a JAR file, CliSeAuRT.jar. The Java source code templates
contain placeholders for parameters whole values are obtained from the encapsulation
description given to the encapsulation tool. For instantiating the templates, the encapsula-
tion tool uses the stringtemplate library, and for turning the instantiated templates into
executable code, the encapsulation tool uses the standard Java compiler, javac. An alterna-
tive design to the choice of source code templates would be to instead use compiled Java
code and use parameters that expect Java class names through Java’s reflection API. The ap-
proach implemented in the encapsulation tool has the advantage that parameter validation
is anticipated from run-time of the encapsulated agent to the time of encapsulation.

The remaining components of the encapsulation tool’s architecture – the decider gener-
ator, the agent instrumenter, and the encapsulator – are realized by the low-level archi-
tecture shown in Figure 5.5. The functionality of the decider generator is implemented
by the UnitStartupCreatorJavaCor class. The agent instrumenter is implemented by the
AspectWeaver class (for instrumenting Java agents) and the AquariumWeaver class (for in-
strumenting Ruby agents). The encapsulator is implemented by several Java classes,
including the Encapsulate class, which contains the entry point of the encapsulation
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UnitStartupCreatorJavaCorAspectWeaver AquariumWeaver

Figure 5.5.: Low-level architecture of decider generator, agent instrumenter, and encapsu-
lator

tool (i.e., its main method). The Encapsulate class uses the PropertiesConfig class for ob-
taining the encapsulation description specified via the command line. Moreover, the
Encapsulate class uses the TargetEncapsulator class for encapsulating the individual agents
of the target specified in the encapsulation description. The TargetEncapsulator class,
in turn, uses the FeatureRegistry class, which provides a factory method for producing
UnitInstantiation objects (JavaUnitInstantiation for a Java agent and RubyUnitInstantiation for
a Ruby agent). This architecture defines a clearly identified place for agents’ language ex-
tensions (the FeatureRegistry) and achieves separation of concerns in two directions: Firstly,
the TargetEncapsulator depends only on ConfigProvider rather than the storage-format spe-
cific PropertiesConfig. Secondly, the TargetEncapsulator depends only on UnitInstantiation
rather than the language-specific implementations.

5.5.2. Cooperation

Coordinator implementation The coordinator component of CliSeAu’s generic ECs is
implemented as a Java class named Coordinator. The implementation enables the courses
of action for cooperative deciding introduced in Section 5.3, implements the coordinator’s
share of the semantics of CoDSPL, and hides the technical details of network communica-
tion between components from the local policy component. Listing 5.3 on the following
page shows the essential code of the implementation of the coordinator. The implementa-
tion handles a variety of possible exceptions in the network communication, but for the
sake of brevity this exception handling is not included in the listing. The listing shows
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1 void handleSocket(ServerSocket socket, DataEncoding sockEncoding) {
2 while (true) {
3 Socket connection = socket.accept();
4 Object input = readObject(logger, connection, sockEncoding);
5 LocalPolicyResponse resp;
6 synchronized (localPolicy) {
7 if (isLocal) {
8 Event event = (Event) input;
9 resp = localPolicy.localRequest(event);

10 } else {
11 DelegationReqResp delReqResp = (DelegationReqResp) input;
12 resp = localPolicy.remoteRequest(delReqResp);
13 }
14 }
15 if (resp instanceof Decision) {
16 Socket out_connection = addressing.connectLocalEnforcer();
17 localEncoding.write(out_connection.getOutputStream(), resp);
18 out_connection.close();
19 } else if (resp instanceof DelegationLocPolReturn) {
20 DelegationLocPolReturn del = (DelegationLocPolReturn)resp;
21 Socket out_connection = addressing.connectRemote(del.getDestinationId());
22 cooperationEncoding.write(out_connection.getOutputStream(), del.getDelReqResp());
23 out_connection.close();
24 }
25 }
26 }

Listing 5.3.: Essential code of the coordinator implementation
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the handleSocket method, which is run in parallel by the Coordinator for a network socket
listening to the interceptor component and, respectively, a network socket listening to
input from other units. In Lines 3 to 4, the implementation reads the three possible inputs
of the cooperative deciding activity. Subsequently, Lines 9 and 12 use the local policy
for determining whether and where delegation shall be performed. Depending on the
local policy’s result, the coordinator then in Lines 17 and 22 sends a decision object or
a delegation request or response to the enforcer or, respectively, a unit specified by the
local policy. Overall, this implementation enables the five courses of action described
in Section 5.3 as well as four additional cases (event to response, response to response,
response to request, and request to decision) which the implementation allows as they
are neither considered intuitively useful nor harmful. In particular, the implementation
does not block after sending out a delegation request until a corresponding response is
received. This allows the coordinator to continue cooperating, possibly with multiple
other units, even when a locally intercepted operation is awaiting a delegation response.
Moreover, the implementation realizes the interaction between the coordinator and the
local policy specified by the semantics of CoDSPL (see Section 3.5 on page 43). Finally, the
implementation takes over and hides the network communication from the local policy.

Network connection management CliSeAu’s generic ECs establish network connections on
demand and with the help of classes that form an Abstract Factory pattern. The generic ECs
use these classes both for the network connections between the components within a unit
as well as for the network connections between units. Establishing network connections
on demand rather than establishing them once and then reusing them serves the purpose
of simplicity: it renders checks for whether the remote end has the connection opened – for
which there is no direct way in the Java API – unnecessary. The Abstract Factory pattern
used by CliSeAu’s generic ECs augments the Java API, which provides abstract factories
for client-side as well as server-side network sockets but concrete factories only for SSL
sockets. CliSeAu’s generic ECs augment the Java API by concrete factories for plain, i.e.,
non-SSL TCP sockets, PlainSocketFactory and PlainServerSocketFactory. The generic ECs
encapsulates the selection between the SSL and non-SSL factories based on the respective
CoDSPL policy’s ‘cfg.crypto’ specification in the MetaSocketFactory class. In particular,
the MetaSocketFactory produces concrete factories for server-side SSL network sockets
that, upon creation, have client authentication enabled. Enabling client authentication
improves on the Java default, which is to only enable server authentication. Note that, in
the excerpt of the implementation of the coordinator component in Listing 5.3, the use of
the network socket factories is encapsulated in the object stored in the addressing field of
the coordinator object.

Encryption of cooperation CliSeAu supports encrypted, authenticated network communi-
cation for the cooperation among units. For each unit, the encapsulation tool generates a
private key and a cryptographic certificate. Moreover, the encapsulation tool generates a
single root certificate and uses the private key corresponding to the root certificate to sign
the units’ certificates. The encapsulation tool provides each generated unit with its own
certificate and private key as well as with the root certificate. At run-time, each unit uses
its certificate to authenticate itself against other units in the cooperation via SSL network
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sockets. Using the root certificate, each unit can validate the authenticity of another unit’s
certificate. By following this approach, CliSeAu provides encrypted and authenticated
network communication while keeping the details about certificates and cryptographic
keys transparent to the user of CliSeAu.

CliSeAu’s encapsulation tool generates public/private key-pairs using Java’s crypto
API, particularly its KeyGenerator class, and generates cryptographic certificates using
BouncyCastle, a “lightweight cryptography API for Java and C#” [Bou]. The public/private
key-pairs are RSA keys of 2048 bit size. This key size follows recent recommendations
by NIST [BD15, Table 2-1]. The generated certificates are X.509 certificates using the
“SHA256withRSA” algorithm, which uses the padding scheme PKCS #1 v1.5 [Eas05, Sec-
tion 2.3.2] and follows recent recommendations by NIST [BD15, Table 2-2].

The support of encrypted cooperation among units allows one to use CliSeAu for ef-
fectively enforcing security even in presence of attackers who have access to the network
communication between units. More concretely, the encryption prevents attackers from
forging delegation requests and delegation responses and thereby hindering and otherwise
effective enforcement. The encryption also prevents attackers from learning potential
secrets about the target by eavesdropping on the communication among units.

Encoding of information CoDSPL policies allows the specification of the encoding that
units shall use for transmitting in-memory objects, namely event objects, delegation
requests and responses, and decision objects over network connections. The language
supports two encodings: the native serialization of the respective agent’s programming
language and the JSON format. In CliSeAu, this encoding is used on top of the encoding
of the network sockets used (i.e., either TCP or SSL-over-TCP). CliSeAu supports Java’s
serialization of objects via ObjectOutputStream and ObjectInputStream, and supports the
JSON format via Google’s GSON library [Goob].

For realizing the selectable encoding, the low-level architecture of units includes a Java
interface DataEncoding that provides methods for reading Java objects via a stream object
and for writing Java objects via a stream object. This interface is implemented by the
supported encodings, in the Java classes SerializationEncoding and GsonEncoding. CliSeAu’s
encapsulation tool, when generating units, instantiates the generic EC such that encoding
objects of the right class are created. This design, on the one hand, hides details about
the concrete encodings from the clients using the classes and, on the other hand, enables
future extensions by further encodings without requiring changes to the architecture.

5.5.3. Instrumentation by AOP Tools

Instrumentation for Java agents using AspectJ The encapsulation tool implements the
instrumentation of Java agents in its AspectWeaver class. At the implementation level,
three aspects are noteworthy. Firstly, AspectWeaver invokes the command-line tool ajc
of AspectJ, providing it the JAR file containing the respective agent’s code as well as
an AspectJ aspect that encodes the interceptor and enforcer components. This way the
encapsulation tool hides details of AspectJ from users of CliSeAu. Secondly, AspectWeaver
copies all the dependencies to a dedicated directory inside the directory into which the
instrumented JAR file is placed. This allows a user of CliSeAu to simply copy the agent’s
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directory to the machine from which it shall be run. Thirdly, AspectWeaver includes all
the dependencies (i.e., JAR files) specified in the encapsulation description into the JAR
file containing the instrumented agent, by modifying the classpath setting in the JAR’s
manifest file. This way, a user of CliSeAu need not specify paths to dependencies upon
invocation of an agent. The dependencies are specified using relative paths to the sub-
directory in which the dependencies are copied. This enables users of CliSeAu to copy
instrumented agents even to a different directory than the one in which the instrumented
agent is placed by the encapsulation tool.

Instrumentation for Ruby agents using Aquarium The encapsulation tool implements the
instrumentation of Ruby agents in its AquariumWeaver class. At the implementation level,
two aspects are noteworthy. Firstly, AquariumWeaver copies the whole code directory of the
Ruby agent to a dedicated place. This allows modifications of the code without changing
the original code and, thereby, allows the same code to be modified differently for different
agents. Secondly, AquariumWeaver instruments the Ruby code of an agent by inserting
two lines into the Ruby code, a require_relative and an include directive for loading and
activating the respective aspect when the Ruby code is run. With the Aquarium framework,
this suffices for activating the aspect at run-time at the specified join points.

5.6. Analytic Evaluation

We evaluated the design and implementation of CliSeAu in three directions: software
design, code quality, and code documentation. Regarding software design, we investigate
in Section 5.6.1 the object-oriented design and software design patterns used for realizing
the generic ECs. Results from analyzing code quality and code documentation of CliSeAu
are presented in Section 5.6.2 and Section 5.6.3, respectively.

5.6.1. Object-oriented Design in the Low-level Architecture

The architecture of CliSeAu follows principles of object-oriented design for enabling a
generic architecture of units (the generic ECs) as well as for generally managing the
complexity of the implementation. Through reducing conceptual complexity of individual
components in the design, we particularly aim at better verifiability of CliSeAu through
manual code review.

For the design of the generic ECs, software design patterns [GHJ+95] were used for
combining the fixed components (interceptor, coordinator, and enforcer) with instances of
the parametric components (event factory, enforcer factory, and local policy). Concretely,
the Abstract Factory pattern is used for separating the (fixed) interceptor component
from the concrete, policy-specific event objects. Analogously, the pattern is also used
for separating the (fixed) enforcer component from the concrete, policy-specific decision
objects and countermeasure objects. This allows the policy-specific objects to vary in
their structure without requiring the fixed components to know this structure in advance.
Finally, the Strategy pattern is used for separating the fixed coordinator component
from the concrete, policy-specific algorithm for decision-making and delegation that is
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encapsulated by a local policy component. Again, this allows the algorithm for decision-
making and delegation to vary independently from the coordinator component that
uses the algorithm. For all three parametric components, the use of the design patterns
enables a loose coupling to the fixed components by which the fixed components do not
impose constraints on the parametric components. Thereby, the design preserves the
expressiveness of CoDSPL and, hence, supports Requirement (Req-1).

In the design of the encapsulation tool, software design patterns are used primarily
for a separation between the implementation of CoDSPL policies and the components
that use parts of policies. Concretely, the Abstract Factory pattern as well as the Strategy
pattern are used. The latter is used for obtaining particular elements of a CoDSPL policy
independent of syntax-specific aspects (such as the key-value syntax of encapsulation
descriptions). The former is used for separating the creation of the syntax-specific strategy
objects. This design choice addresses Requirement (Req-2) by reducing the complexity in
the implementation of components that use parts of policies and, secondarily, simplifies
future enhancements to the policy language.

The design of CliSeAu’s generic ECs is based on the service automata concept whose
modular architecture and collaboration between its components constitute the key ab-
stractions and mechanisms [BME+07, pp. 138–144] of the problem domain of a generic
enforcement mechanism. An architectural documentation of CliSeAu is part of this thesis,
based on UML component diagrams and activity diagrams for the high-level architectures
and based on class diagrams for the low-level architecture [BME+07, pp. 320–322].

5.6.2. CodeQuality

In the development of CliSeAu, we used the static code analysis tools FindBugs and PMD
for improving the quality and thereby reliability of the implementation. We report on the
results of analyzing the code of CliSeAu with the two analysis tools in the following.

We analyzed the code of CliSeAu with FindBugs version 3.0.1, the most recent version
at the time of writing. For the hand-written code of CliSeAu, the analysis reported four
potential problems, all of them in the code of CliSeAu’s encapsulation tool and all of
them unchecked type casts that FindBugs considers possible to fail. We could manually
identify all four cases as false positives, as the program logic ensures that the type cast
does not fail. CliSeAu’s encapsulation tool also contains automatically generated code by
the javacc parser generator for parsing specification of security-relevant operations of a
CoDSPL policy. For this code, the analysis discovered 119 findings. None of the findings
are classified by FindBugs as “troubling” and we assume that the input to javacc could
not be improved for better parser code. Overall, the results of the analysis with FindBugs
show that the code of CliSeAu’s generic ECs did not trigger any findings. The findings in
CliSeAu’s encapsulation tool appear to be either false positives or, in the case of the parser
code, unproblematic.

We analyzed the code of CliSeAu with PMD version 5.5.4, the most recent version at
the time of writing. PMD includes a variety of so-called analysis rules for Java code which
can be enabled/disabled and whose configuration can be customized. For our analysis, we
used the set of all rules for Java code, from which we excluded the following: rule sets for
Android, J2EE, and JavaBeans (they do not apply to CliSeAu); controversial rules (these
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rules are labeled controversial by PMD); a rule for the “Law of Demeter” (a controversial
software design guide [Lie04] that is not labeled as such in PMD); rules limiting the length
of variable names and comments (we prefer expressive names) and a rule for names of
abstract classes (this rule is inconsistent with the naming used by the Java API).

The analysis of CliSeAu’s code with PMD yielded 17 findings. All findings were carefully
checked whether they actually constitute bad design or implementation and were manually
confirmed to be spurious warnings by PMD. To account for the variety of different kinds
of findings, we justify the individual kinds of findings in Table 5.4 on the following page.
Each row of the table corresponds to a kind of finding. The black horizontal lines divide
the rows into three groups of findings relating to efficiency, to code structure, and to
logging. The columns of the table provide the concrete message of PMD for the finding,
the number of times the finding occurred, the CliSeAu components in which the finding
occurred, and our justification for why the respective finding is unproblematic.

During the development of CliSeAu, we used both analysis tools after the development
of new features and code refactorings. The intermediate analyses during the development
oftentimes produced several hundreds of findings that revealed incorrect, inefficient, as
well as otherwise badly designed code. Some of the findings revealed mistakes in corner
cases that might not have been revealed through test cases. Because of these experiences,
we are confident that we applied the tools correctly and that the tools could indeed discover
problematic code in CliSeAu.

Based on the results of both analysis tools, we are confident that the code of CliSeAu
is of good quality. By making sure that the analysis tools do not reveal true findings of
incorrect or inefficient code, we address Requirements (Req-3) and (Req-4). In particular,
we expect that newly developed and previously untested CoDSPL policies do not trigger
unexpected behavior in CliSeAu.

5.6.3. Code Style and Documentation

In the development of CliSeAu, we used a uniform code formatting according to a widely
used coding style and specified a complete Javadoc documentation for CliSeAu’s source
code. We used two tools, Checkstyle and Java’s javadoc, to find and remove violations of
the code style and documentation. In the following, we report on the results of analyzing
the code of CliSeAu with these two tools.

We conducted an analysis of the source code of CliSeAu with Checkstyle version 7.6,
at the time of writing the most recent stable version, and analyzed against the Google
Java Style Guide. The result of the analysis is that CliSeAu fulfills all checks performed
by Checkstyle except for five findings: Four of the findings are lines longer than 100
characters, which we deem acceptable as these lines are code comments containing long
hyperlinks that could not be broken into several lines. The fifth finding indicates a
wrong level of indentation but appears to be a false positive that might be caused by an
improperly supported language feature introduced in Java 7. That is, all source code of
CliSeAu, including the encapsulation tool as well as the generic ECs uniformly follows the
Google Java Style Guide.

The code of CliSeAu includes a complete Javadoc documentation of all classes and
methods, including documentation of formal parameters, return values, and thrown
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finding # components justification

“Avoid instantiating new
objects inside loops”

2 encapsulation
tool

The individual objects are
placed into a data structure for
use outside the loop.

“A switch with less than three
branches is inefficient”

1 encapsulation
tool

The switch-statement was
chosen to indicate possible
future extensions by further
branches (the statement is
executed once per unit).

“StringBuffer constructor is
initialized with size 16, but has
at least 36 characters
appended”

2 encapsulation
tool

Spurious warning: The
initialization is with size
“4 * 50”, i.e., more than 36
characters.

“Possible God class” 1 encapsulation
tool

The class contains many but
mostly simple policy reading
methods.

“The method […] has a
(Standard) Cyclomatic
Complexity of 10”

2 encapsulation
tool

Spurious warning: The method
has 12 SLOC but many code
paths in a switch-statement
with 10 simple branches.

“The class […] has a (Standard)
Cyclomatic Complexity of 3
(Highest = 10)”

2 encapsulation
tool

This complexity is solely due
to the method causing the
finding in the previous row.

“Consider simply returning
the value vs storing it in local
variable”

2 encapsulation
tool, generic
EC

Spurious warning: The local
variables store values that
cannot directly be returned.

“Overriding method merely
calls super”

1 encapsulation
tool

A code comment explains this
deliberate choice.

“There is log block not
surrounded by if”

2 generic EC Spurious warning: A
conditional using method
isLoggable exists, but PMD
falsely does not check for this
method.

“The Logger variable
declaration does not contain
the static and final modifiers”

1 generic EC The logger depends on the
non-static unit identifier.

“Class contains more than one
logger.”

1 generic EC There is one logger for each of
the two coordinator threads.

Table 5.4.: Findings by PMD upon analysing the CliSeAu implementation
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CliSeAu component files SLOC comment license empty total

encapsulation tool 51 2003 1897 1024 1519 6443
generic ECs 25 852 945 500 604 2901
shared code 1 18 20 20 15 73

total 77 2873 2862 1544 2138 9417

Table 5.5.: Source code lines of the CliSeAu implementation

exceptions. The Javadoc documentation is confirmed to be complete by a run of the
javadoc tool on the source code as well as by a run of the Checkstyle analysis tool. Both
tools did not report missing documentation or inconsistencies between documentation
and code, e.g., with regard to lists of formal parameters, return types, or exceptions.

For a complete picture of the code documentation, subsuming Javadoc as well as in-line
comments, we counted the lines of source code (SLOC), lines of comment, license block
lines, and empty lines. Table 5.5 summarizes the results. For the number of files as well as
for each kind of lines, the table contains a column. For each component of CliSeAu, i.e., the
encapsulation tool, the generic ECs, as well as the small amount of shared code between
both parts, the table contains a row. The code lines were counted using the sloccount
tool in its most recent version 2.26. Since each code file of CliSeAu begins with a license
header, all lines in the first multi-line comment block were counted as license block lines.
Empty lines were counted using the grep tool applied to a simple regular expression filter
that also includes empty lines in multi-line comments. As comment lines, we counted all
remaining lines. In the 51 files of the encapsulation tool, the 2003 SLOC are supplemented
by 1897 lines of comments. The generic ECs are implemented in 25 files, consisting of 852
SLOC and 945 lines of comments. Altogether, the 2873 lines of CliSeAu’s Java source code
and 2862 lines of code documentation are very balanced.

The reported results of the tools confirm that the code follows an established code
style and that the code of CliSeAu is quantitatively well-documented. This evidence
was complemented by personal discussions with students who worked with CliSeAu
and confirmed the code to be well-documented also qualitatively, most notably Hamann
[Ham16], Schickel [Sch16], and Tiedje [Tie15]. Overall, we take these results as strong
evidence that the implementation of CliSeAu, including the generic ECs as well as the
encapsulation tool, is well-maintainable and understandable and, in this regard, also
supports verifiability of the implementation (Requirement (Req-2)).

5.7. Summary

We introduced CliSeAu, a tool for enforcing security requirements in distributed programs.
CliSeAu consists of generic enforcement capsules, parametric implementations of units
for generic enforcement mechanisms, and the encapsulation tool, which instantiates
and applies the generic enforcement capsules for a given CoDSPL policy and distributed
program. For both parts of CliSeAu, the chapter presented the design as well as selected
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low-level architectural and implementation aspects. We analyzed the use of software
design patterns in CliSeAu and applied static code analysis tools to check code quality,
uniform code style, and documentation.

CliSeAu generates enforcement mechanisms for given CoDSPL policies by instantiating
the generic enforcement capsules, which are parametric in the operational specifications
of CoDSPL, and applying the cross-lining technique for instrumenting a given Java or
Ruby target. The AOP tools used internally by CliSeAu allows CliSeAu to be applied to Java
or Ruby programs that have not specifically designed for operating under an enforcement
mechanism. CliSeAu inherits from CoDSPL that the units of generated enforcement
mechanisms can make local decisions and can also cooperate by means of delegation. That
is, CliSeAu allows for enforcing a wide range of security requirements on a wide range
of Java and Ruby programs, as specified in Requirement (Req-1). CliSeAu is not the first
generic enforcement mechanism for distributed programs [MU00; SVA+04; OBM10; KP15].
However, CliSeAu is the first that allows policies to specify cooperation to take place
asynchronously to the communication of the target and is the first that can automatically
be applied to a distributed Java or Ruby program.

The design of both the generic EC and the encapsulation tool of CliSeAu follows the
principles of object-oriented design [BME+07; GHJ+95]. In particular, the design employs
software design patterns for decoupling the fixed components of CliSeAu’s generic en-
forcement capsules and the parametric components that are specified through CoDSPL
policies. CliSeAu’s design furthermore separates the concerns of CoDSPL syntax and the
use of information contained in a policy by client components . The modular architectures
of CliSeAu simplify the understanding and analysis of CliSeAu [BME+07, pp. 13–19] and
thereby support verifiability (Requirement (Req-2)). We are not aware of other works
applying principles of object-oriented design to generic enforcement mechanisms.

Our analysis of the CliSeAu implementation with the tools FindBugs, PMD, Checkstyle,
and Javadoc with a manual inspection of the results revealed no problematic findings with
regard to code quality, code style, and code documentation. Since FindBugs and PMD
check code quality also with regard to incorrect and inefficient code, the result of our
analysis support effectiveness and efficiency (Requirements (Req-3) and (Req-4)) for the
fixed components of CliSeAu’s generic ECs. Code style and documentation simplify the
analysis of CliSeAu and thereby support verifiability (Requirement (Req-2)). We are not
aware of other enforcement mechanisms whose implementation has been subjected to
code analysis tools for ensuring code quality.

The design and implementation of the coordinator component of CliSeAu’s generic ECs
performs a non-blocking cooperation. That is, upon delegating the decision-making for
an event, the coordinator does not block until it receives a delegation response but rather
accepts delegation requests from other units in the meantime. Non-blocking coopera-
tion enables a unit to concurrently contribute to the decision-making of multiple events.
This avoids latencies and deadlocks through blocking and improves on the efficiency of
enforcement mechanisms generated by CliSeAu (supporting Requirement (Req-4)).

In the context of this thesis, CliSeAu is used for encapsulating concrete distributed
programs with concrete CoDSPL policies in the case studies of Chapters 6 and 7. Moreover,
the formal model in Chapter 8 captures the high-level architecture of CliSeAu and the
cooperation pursued by CliSeAu to enable formal verification of cooperative enforcement.
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Chapter

6
Modular Delegation-Based Security

Policies

6.1. Introduction

Cooperation among the units of a distributed enforcement mechanism enables the mecha-
nism to coordinate the enforcement when units’ locally available information does not
suffice for enforcing security. This benefit of cooperation, however, comes at the expense
of an increased complexity of the individual units: A unit has to simultaneously ensure a
secure behavior of an agent and to interact with other units.

We provide an identification of concerns in cooperative enforcement of security by
delegation. Based on this identification, we propose a modular design for a separation
of concerns in CoDSPL and an implementation of this design as an extension library
for CoDSPL. Technically, the extension library is realized as a Java package that can be
used by CoDSPL policies without changes to the syntax and semantics of CoDSPL and
without changes to CliSeAu. We demonstrate the applicability of the proposed design and
extension library in a case study, in which we enforce compliance with users’ privacy
policies in the popular decentralized online social network Diaspora* [GSS+]. As part of
the case study, we present a CoDSPL policy, called CReDiC, that enforces compliance
with privacy policies based on the extension library and provide an empirical evaluation
of CReDiC’s effectiveness and efficiency.

Our modular design for CoDSPL can be adopted by CoDSPL policies such that fewer
architectural design decisions remain to be made when a CoDSPL policy is specified.
Moreover, by separating concerns, our modular design also facilitates mastering the
potential complexity of a CoDSPL policy [BME+07, pp. 13–14]. CReDiC, on the one hand,
provides an example for specifying a complex CoDSPL policy in a modular fashion and, on
the other hand, provides a solution for controlled re-sharing in decentralized online social
networks that allows the users of such social networks to expand the outreach of their
messages in a controlled fashion. Our empirical evaluation shows that CReDiC is effective
and introduces only minor run-time overhead into the encapsulated Diaspora* system.
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Structure The remainder of this chapter is structured as follows. In Section 6.2, we
identify the concerns of delegation-based local policies. The design and implementation
of the modular extension library for local policies in CoDSPL based on the identified
concerns is described in Section 6.3. Section 6.4 provides the case study of controlled
sharing and re-sharing in decentralized online social networks. Section 6.5 summarizes
the contributions presented in this chapter.

6.2. Concerns of Delegation-based Local Policies

Delegation enables a unit to cooperate with other units when the information available at
the former unit does not suffice to make a decision locally. Delegating and contributing to
the decision-making are not mutually exclusive: Before delegating, a unit might already
use locally available information (i.e., local state) for performing parts of the decision-
making. In this case, the unit delegates only the remaining parts of the decision-making.
A delegate unit, in turn, can perform the same two steps – making a partial decision and
further delegating the remainder. Delegation-based decision-making can, thus, involve a
sequence of steps until a decision is made.

In the step-wise decision-making, each participating unit accomplishes a subgoal in the
decision-making by either making a decision or by delegating a request that is simpler – in
the sense of requiring less information or fewer computational resources – to accomplish
than the decision-making prior to the delegation. We illustrate the step-wise decision-
making with delegation based on the following example.

Example 6.1. System-6.1 is a distributed program consisting of several connected services
through which users can exchange files. Each user of System-6.1 can connect to System-6.1
through only one of the services via her web browser. From her browser, the user can
upload own files, can view files of other users, and can store copies of other users’ files
in her own directory at the service. The security requirement on System-6.1 is: A user
may upload a file only if the upload does not exceed her storage quota at the service; A
user may only make a copy of another user’s file if the former user’s storage quota are not
exceeded by the copy and if the latter user declared the file to be approved for copying.

The enforcement mechanism that enforces the security requirement consists of one
unit for each service of System-6.1. When a copy operation is intercepted by a unit, the
unit at the respective service proceeds in the following steps: first, checking whether
the copy would violate the user’s storage quota; second, determining whether the file
is stored at another service and at which one; third, delegating the decision-making for
the intercepted operation to the unit encapsulating this other service; fourth, if the copy
is permitted, the intercepting unit updates the user’s amount of available storage space.
When an upload is intercepted, only the first and the last step are performed. ♦

In the example, a unit of the enforcement mechanism can perform the decision-making
for a copy operation alone if the two involved users (the source user for the file and the
user who wants to copy the file) use the same service of the distributed program. The
unit can also perform the decision-making alone if the storage quota of the copying user
would be exceeded through the copy. Otherwise, the intercepting unit can first make a
partial decision (“storage quota not exceeded”) and then delegate the remainder to the
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unit for the service of the source user. A more elaborate variant of this example is used
in the case study conducted in Section 6.4 of this chapter. The example illustrates how
decision-making for a single operation can consist of multiple steps that may be performed
by the same unit and may involve delegation.

We propose to separate the concerns in delegation-based local policies in order to reduce
the complexity in the design and implementation of local policies.

Definition 6.1. We distinguish the following concerns of delegation-based local policies:
(a) selection of decision-making subgoals: Which subgoals exist and how is the next

subgoal for the overall goal ofmaking a decision selected for an intercepted operation,
delegation request, or delegation response?

(b) realization of decision-making subgoals: How is the next subgoal accomplished,
by means of using using available information and either making a decision or
delegating?

(c) state-keeping: How is the state of an individual local policy updated upon accom-
plishing a subgoal?

(d) routing: How are delegation requests routed in a network of units to selected
delegates, for instance to account for network topology? ♦

Separating the concerns of delegation-based local policies leads to local policies of
reduced complexity. The separation between the selection and realization of decision-
making subgoals reduces the complexity particularly in case of local policies with several
subgoals and a non-trivial workflow for achieving the subgoals. In this case, the separation
between selection and realization simplifies local policies by making the subgoals and
their chronological orderings explicit and by reducing the conceptual complexity of the
realization of separated, individual subgoals. Separating the decision-making concerns
from the state-keeping simplifies subgoal realization by separating how state is used from
how state is modified. Separating the selection of delegates from routing simplifies the
delegation, as network topology can be neglected in the design of the latter.

Example 6.2. Consider the enforcement mechanism in Example 6.1. We can identify two
subgoals in the description of the mechanism’s decision-making for copy operations by
users: firstly, excluding quota violations; secondly, ensuring that the file is approved for
copying by the owner of the file. The subgoal selection is performed sequentially in the
listed order of the subgoals. For realizing the first subgoal, the unit compares locally the
size of the file against the available storage space of the user. For realizing the second
subgoal, the unit delegates to the unit of the file’s source service if this is a different unit;
Otherwise or if the unit is already the unit of the source service, the unit checks locally
whether copying the file is approved. State-keeping is performed only when a decision
was made, is performed by the intercepting unit, and consists of reducing the amount of
the user’s available storage space. Routing is not specified, so delegates might directly be
reachable in the network of units.

Note that depending on how the services are realized, an additional subgoal might
improve the separation: Concretely, the source service might not immediately known for
a file, for instance because the file has been propagated several times before. In this case,
determining the source service can constitute an independent subgoal. ♦
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Note that CoDSPL policies can specify local policy components that employ delegation
by using their interface to the coordinator component (see Figure 3.1 on page 28). How a
local policy determines when and how delegation shall take place and how it integrates
with the state-keeping and local decision-making is not specified by CoDSPL. This keeps
the policy language small and provides the individual CoDSPL policies with the flexibility
to structure their local policies tailored for the respective application scenario.

6.3. Separation of Concerns in CoDSPL

In this section, we present the architecture and implementation of an extension library for
modular local policies in CoDSPL. The extension library is implemented as a Java package
that is part of CliSeAu but is not mandatory to be used by CoDSPL policies. The goal of
the extension library is to enable the specification of local policies in a modular fashion
that separates the concerns identified in Section 6.2.

The central concept of the extension library are micro-policies. A micro-policy is a com-
ponent for realizing a particular subgoal in the decision-making for a security requirement
as well as for performing the state-keeping corresponding to the respective subgoal. The
subgoal selection, i.e., the selection of a micro-policy for a particular intercepted program
operation or received delegation, is performed by another component of the extension
library, the micro-policy factory . Finally, the extension library includes a routing policy , a
component for determining next units on paths to a particular delegate unit.

Figure 6.1 on the next page shows the low-level architecture of the extension library.
For micro-policies, the extension library provides the MicroPolicy interface. A local policy
based on the extension library can provide multiple implementations of this interface,
one for each logical subgoal to be accomplished by the local policy. For micro-policy
factories, the extension library provides the MicroPolicyFactory interface. Both interfaces
are defined as Java generics, i.e., parametric types: The interfaces are parametric in a
type encapsulating local policy state (StateT) and a type providing an interface for reading
state information (StateReaderT). For routing policies, the extension library provides
the RoutingPolicy interface. The interfaces are combined in the ModularLocalPolicy class,
an implementation of CoDSPL’s abstract LocalPolicy class that is parametric in objects
implementing these interfaces. Concrete instances of the interfaces are provided to the
ModularLocalPolicy through its constructor, following the Constructor Injection pattern
[Fow04].

The separation between subgoal selection and subgoal realization is implemented via the
abstract factory design pattern: An implementation of theMicroPolicyFactory interface is an
abstract factorywhosemethods, createFromEvent and createFromDelegation, select a subgoal
in the form of producing a MicroPolicy object. The object implementing the MicroPolicy
interface is expected to realize the subgoal, by providing a decision or a delegation, captured
by a MicroPolicyResult object returned by the suggestPolicyResult method.

The extension library reifies the separation between decision-making and state-keeping
by two means. Firstly, the extension library’s design of micro-policies provides two
methods – suggestPolicyResult and implementSuggestion – of which the first is intended to
realize a subgoal of decision-making and of which the second is intended to perform the
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LocalPolicy
{abstract}

 
+ localRequest(Event):
     LocalPolicyResponse
+ remoteRequest(DelegationReqResp):
     LocalPolicyResponse

ModularLocalPolicy<StateT,StateReaderT>
- policyFactory: MicroPolicyFactory<StateT,StateReaderT>
- state: StateT
- routing: RoutingPolicy
+ ModularLocalPolicy(String, MicroPolicyFactory<StateT,StateReaderT>, StateT, RoutingPolicy)
- applyMicroPolicy(MicroPolicy<StateT,StateReaderT>): LocalPolicyResponse

«interface»
MicroPolicyFactory<StateT,StateReaderT>

 
createFromEvent(Event):
    MicroPolicy<StateT,StateReaderT>
createFromDelegation(DelegationReqResp):
    MicroPolicy<StateT,StateReaderT>

«interface»
RoutingPolicy

 
getNext(String): String

«interface»
MicroPolicy<StateT,StateReaderT>

 
suggestPolicyResult(StateReaderT):
    MicroPolicyResult
implementSuggestion(StateT)

MicroPolicyResult
- decision: EnforcementDecision
- delegation: DelegationLocPolReturn
- isDelegation: boolean
+ MicroPolicyResult(EnforcementDecision)
+ MicroPolicyResult(DelegationLocPolReturn)
+ isDelegation(): boolean
+ getDecision(): EnforcementDecision
+ getDelegation(): DelegationLocPolReturn
+ getResult(): LocalPolicyResponse*

Figure 6.1.: Low-level architecture of the extension library for separation of concerns in
CoDSPL policies (UML class diagram)

state-keeping. In the design, we use the notion of “suggestions” in imitation of Polymer’s
policies, in which decision-making and state-keeping is also separated. Secondly, to
support the implementation of decision-making free of side-effects on the state, while still
allowing the decision-making to make use of state, the extension library distinguishes the
type parameters StateT (used in state-keeping) and StateReaderT (used in decision-making).
This allows the specification of a read-only interface for the state through the StateReaderT
parameter to prevent inadvertent state changes in the decision-making implementation.1

The extension library separates decision-making from routing by encapsulating both
functionalities in separate interfaces. The implementation of ModularLocalPolicy then uses
the provided routing policy after a MicroPolicy has returned a delegation object.

While the extension library provides an architecture that supports the implementation
of modular delegation-based local policies, this architecture does not constrain the expres-
siveness of local policies. That is, the extension library is still generic, in the sense that
for an arbitrary but fixed subclass C of LocalPolicy, a subclass C’ of ModularLocalPolicy can
be constructed that performs the same computation as C. We show that this claim holds
in Appendix B.1 on page 203 by construction of a concrete implementation of a class C’.
Notably, while the functionality accomplished by the classes is the same, the constructed
class performs more object creations at run-time and, thus, can be expected to perform
slightly slower.

The presented extension library can be used in a CoDSPL policy by specifying the
local policy component as a subclass of ModularLocalPolicy and, thus, by transitivity of
subclassing, as a subclass of LocalPolicy. The constructor of the subclass implementation

1Through this technique, we compensate that Java does not allow the specification of method signatures
that declare some arguments as being unmodified by the method body (such as achieved with the const
keyword for formal method parameters in C++)
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constructs objects that implement the MicroPolicyFactory interface and, respectively, the
RoutingPolicy interface. Moreover, the constructor creates a state object (the type of the
object must be the first type parameter of theModularLocalPolicy subclass). Such a subclass
can then be used as a local policy in a CoDSPL policy.

Overall, the presented extension library allows the specification of modular, delega-
tion-based local policies in CoDSPL. When used by a local policy, this modularity can
support the verifiability of the local policy. The architecture of the extension library uses
software design patterns (abstract factory, constructor injection) for the modularity. The
local policies specified using the extension library are as expressive as local policies in
CoDSPL that do not use the extension library. The extension library, thus, preserves the
expressiveness of CoDSPL and, hence, supports Requirement (Req-1).

6.4. Case Study

We demonstrate the use of delegation as a means for cooperatively enforcing security
in distributed targets in a case study. In the exposition, we focus on the design and
implementation of modular local policies, for which we build on the extension library
proposed in this Chapter 6. Overall, we use the case study as evidence,

1. that delegation-based enforcement can be specified with CliSeAu in a modular
fashion,

2. that the enforcement can be performed on a real-world target of decent code size,
and

3. that the enforcement can be performed effectively and with moderate performance
overhead.

The case study is structured as follows. We start by introducing the application scenario
in Section 6.4.1. In Section 6.4.2 we develop a modular local policy for decentralized
coordinated enforcement in the application scenario. We evaluate first the faithfulness
of the policy analytically, in Section 6.4.3. Afterwards, in Section 6.4.4 we provide an
empirical evaluation of the faithfulness and performance of the policy in an experimental
setting.

6.4.1. Application Scenario

The application scenario we consider in this case study are decentralized online social
networks, which we introduce first in the following. Afterwards, we introduce the security
requirement in the scenario, which is fine-grained control by users over the propagation
of their messages.

Decentralized Online Social Networks

Online social networks (OSNs) are web-based services that offer users the functionality
to share text and multimedia messages with other users. A decentralized online social
network (DOSN ) [DBV+10; PFS14; YLL+09] is an OSN that is supported by multiple service
providers. In a DOSN, users can, hence, choose a service provider whom they trust most
to store their profiles.
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Figure 6.2.: Entity relationships in a DOSN

Target architecture The service that each service provider of a DOSN runs is a pod , a
server program through which clients can connect via a web interface. That is, a DOSN
consists of one or more pods. Each pod is identified by a unique name: the URL through
which the pod is addressed in the network. In this exposition as well as in the following,
we use the terminology of Diaspora* [GSS+], at the time of writing this thesis the most
popular DOSN concerning the number of users. The network topology is such that pods
can communicate directly with each other (no routing needed).

Each pod of a DOSN stores a set of user accounts, one for each user who is registered
with the pod. A user account consists of information about the user (the user profile),
such as full name, birth date, picture, and biography, and it has a collection of categories
as well as a collection of posts associated to it. A category2 is associated with a set of
user accounts, of which each user account can be with the same pod or with a different
one. Examples for categories are “family”, “friends”, or “colleagues”. Through categories,
DOSNs allow users to logically group connected users.

The set of posts of a user profile is called stream and includes posts of the user herself as
well as posts of other users. A post is a message by a user, alongside with the information
about which user is the post’s author and at what date and time the post was created.
Each post has a unique global identifier (GID) in the DOSN and it is part of at least one
stream, namely the stream of the post’s author. Figure 6.2 summarizes and visualizes the
relevant entities and their relationships in DOSNs.

Stakeholders A DOSN involves two kinds of stakeholders: service providers, i.e., those
who operate individual pods, and users, i.e., those who have an account at some pod of
the DOSN and use the DOSN to socialize among each other.

Sharing and re-sharing A user of a DOSN can communicate to other users by sharing
posts. Sharing is the operation by which a user enters a post into the DOSN. For sharing,
the user composes the text of the post in the interface of the pod at which the user’s
account resides and possibly attaches further objects, such as images to the text. The user
then instructs the pod to share the post with other users. In the following, we refer to the
user who creates a post as its author . DOSNs typically offer different modes of visibility

2Diaspora* uses the term “aspect” instead of “category”. We chose “category” to avoid confusion with
“aspect” from AOP.
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for posts: public visibility, visibility for selected categories, and visibility for selected users.
Public visibility means that every other user can see the post on the author’s stream and
that every user who is associated with the author through one of the author’s categories
can see the post on her own stream as well. Visibility for selected categories or selected
users mean that only the users from the selected categories or, respectively, only the
selected users can see the post on the author’s stream and on their own stream. This way,
an author can selectively reach other users in the DOSN. When a user shares a post, the
pod on which the user has her account distributes the post to the respective streams. In
particular, when a user shares a post with users on other pods, then the pod communicates
the post to the other pods.

Another form of communication in OSNs and DOSNs is re-sharing. Re-sharing is the
operation by which a user can make a post that was shared with her visible for further
users. Conceptually, the same modes of visibility as for sharing apply also to re-sharing.
When a user re-shares a post, the post is displayed in other users’ streams according to
the same procedure as for sharing. The re-sharing user is then displayed in addition to the
author in the respective streams.

Note that support for re-sharing of non-public posts is very restrictive in existing DOSN
implementations. We discuss the limitations in more detail and provide a solution for
controlled re-sharing in DOSNs in Section 6.4.

Controlled Re-sharing

Typical OSNs provide an author with means for sharing a post with the group of users she
categorized as ‘friends’, ‘family’, ‘colleagues’, ‘followers’, or the like. As of today, DOSNs
allow authors to share sensitive posts with selectable sets of users but forbid re-sharing of
sensitive posts entirely.3 A better support of controlled re-sharing in DOSNs would be
beneficial.

Example 6.3. A researcher attends a conference to present a paper. Immediately when
the paper got accepted, she informed her colleagues early that she will be attending the
conference. During the conference talks, she writes her opinion about the presentations
to her colleagues, and during the free time, she takes pictures of the landscape as well as
of having fun with other researchers in bars. For privacy reasons, she wants to control
spreading of this information: Pictures taken in bars should remain among her friends only
and personal opinions about presentations should remain among her direct colleagues. The
fact that she attends the conference should remain among colleagues and their colleagues.
Her motivation for limiting spreading of her attendance could be to not provoke burglary
[MSK11]. In contrast, she is less concerned about distributing pictures of the landscape.
This information may be distributed further, but without becoming public. ♦

This example scenario illustrates the need for providing fine-grained control over sharing
and re-sharing as well as over the distribution of re-shared posts. For brevity, we refer to
the combination of these three forms of controlled information dissemination by the term

3Even the non-decentralized OSN Facebook supports controlled re-sharing only with users with whom
the author of the post had already shared the post. The next less restrictive control over re-sharing in
Facebook is already to allow arbitrary re-sharing of posts.
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controlled re-sharing.

Privacy Policies

As the basis for controlled re-sharing of users’ privacy in DOSNs, we first establish a
model of users’ privacy policies. The goal we pursue with the policies is threefold. Firstly,
the policies shall allow fine-grained control over re-sharing. Secondly, the policies shall
require low specification effort by users. Finally, the concepts used by the policies should
be close to what existing DOSNs offer already. In the following, we first model privacy
policies and subsequently define their semantics.

The set of users in a DOSN can vary over time. Moreover, also the categories of individual
users can vary. For capturing snapshots of DOSNs and their pods, in the following we
use USER to denote the universe of possible identifiers of users and CAT to denote the
universe of all possible category names. The former universe particularly contains user
names such as “alice@example.com”. The latter universe particularly contains the words
“friend”, “family”, and “colleague”.

When a user shares or re-shares a post in a DOSN, the post’s recipients might afterwards
use the sensitive content of the post to the disadvantage of the post’s author. Consequently,
the user could use her trust in a particular recipient as a basis for deciding whether to
share the sensitive post with this recipient. This instance of trust is well captured by the
notion of decision trust , “the extent to which one party is willing to depend on something
or somebody in a given situation with a feeling of relative security, even though negative
consequences are possible” [JIB07]. Users’ decision trust4 constitutes a central element
of the privacy policies we propose for constraining the propagation of sensitive posts in
DOSNs.

Definition 6.2. A privacy policy of a user u is a triple pp = (cat, rel, tv), where cat ⊆
CAT is a set, rel ⊆ cat × USER is a binary relation, and tv : cat → [0, 1] is a function.
In the privacy policy, cat models the categories that u uses for categorizing other users,
rel(c, u′) models that user u′ is in the category c of user u, and tv(c) models the trust
of user u in her category c. We call rel the relationships of u and the values tv(c) trust
values. In the following, we denote the set of all possible privacy policies by PP and model
several users’ privacy policies by partial functions pps : USER ⇀ PP . We abbreviate
PPS = USER⇀ PP . ♦

Intuitively, the relation relu of a user u’s privacy policy specifies which users may obtain
a post that u (re-)shares with a particular category. The function tvu specifies to which
extent user u trusts other users in her categories to re-share her posts in her interests.
Trust values are modeled as scalar values, where greater values mean greater trust. The
maximal trust value 1 means that the respective user trusts the users in the category as
much as herself wrt. the propagation of her posts. The minimal trust value 0 means that
the user does not have any trust in the users in the category wrt. propagation of posts.

Example 6.4. A user Alice uses a privacy policy with two categories, “friend” and
“colleague”. She assigns user Bob to category “friend” and user Charlie to category

4In the following, we use “trust” and “decision trust” synonymously.
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“colleague”. Her trust in friends Alice specifies as 0.8, her trust in colleagues as 0.5.
Bob has both Alice and Charlie in his only category “friend”, in which his trust is
0.7 and Charlie considers only Bob a friend, also with trust 0.7. Consequently, Al-
ice’s privacy policy would be (cata, rela, tva) with cata = {friend, colleague}, rela =
{(friend, bob), (colleague, charlie)}, tva(friend) = 0.8, and tva(colleague) = 0.5. Inde-
pendently, Bob’s chosen privacy policy is (catb, relb, tvb) with catb = {friend}, relb =
{(friend, alice), (friend, charlie)}, tvb(friend) = 0.7. Finally, Charlie’s privacy policy is
(catc, relc, tvc) with catc = {friend}, relc = {(friend, bob)}, tvc(friend) = 0.8. ♦

The example shows how a user’s privacy policy can look like and how individual users’
privacy policies can differ in their sets of categories as well as in the trust they associate
with their categories. We revisit this example after defining the semantics of privacy
policies for controlled re-sharing.

When a user has a post in her stream that is not her own post, then she must have
obtained it from another user. This other user must either have shared the post herself or
have re-shared another user’s post she had in her own stream. That is, the user obtained
the post through a path of sharing and re-sharing operations of other users. Each of
the share and re-share operations along the path was performed by a user and with a
particular set of categories to which the next user in the path belongs. To capture how
a post has been propagated from the post’s author to a recipient, we introduce re-share
paths, defined as follows.

Definition 6.3. A re-share path for a post to a user u is a list of users who actually or
hypothetically shared and re-shared the post with particular categories of a post before it
reached user u. Wemodel a re-share path as a non-empty, alternating sequence of users and
sets of categories π ∈ (USER× P(CAT ))+. A re-share path π = (u1,C1, . . . , un,Cn),
for n ≥ 1, models that user u1 shared (as author) with all categories in C1 to user
u2, who in turn re-shared with all categories in C2, and so forth to user un, who in
turn re-shared with all categories in Cn. We denote the set of possible re-share paths by
PATH = (USER× P(CAT ))+. ♦

Such re-share paths faithfully capture the propagation of a post from the post’s author
to a recipient. This is because a re-share path captures all share and re-share operations
that caused a post to be propagated to a recipient, in terms of which user (re-)shared
and which categories the user (re-)shared with. Moreover, a re-share path captures all
share and re-share operations and captures them in the order in which they occur in the
propagation. Note that a re-share path does not contain the post itself or a recipient of the
last (re-)share, as they are not required for capturing the propagation.

Example 6.5. The re-share path (alice@pod1, {friend, colleague}, bob@pod2, {family})
captures that a user alice@pod1 shared some post with all users in category friend and all
users in category colleague and that, subsequently, a user bob@pod2 re-shared the post
with all users in category family. ♦

Sharing and re-sharing in a DOSN propagates posts along the relationships between
users. We capture this aspect as a property of re-share paths, particularly capturing also
that the relationships are part of users’ privacy policies and can even change over time.
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Definition 6.4. The relation PC ⊆ PPS × PATH × USER is defined inductively by:

(a) (pps, 〈(u,C)〉, u′) ∈ PC holds if pps ∈ PPS and u ∈ dom(pps) hold and, with
(catu, relu, tvu) = pps(u), furthermore C ⊆ CAT , u′ ∈ USER, and relu(c, u′) hold
for some c ∈ C ∩ catu; and

(b) (pps, π.〈(u,C)〉, u′) ∈ PC holds for π ∈ PATH if both (pps, 〈(u,C)〉, u′) ∈ PC and
(pps, π, u) ∈ PC hold.

We call a re-share path π to a user u connected for a family pps of users’ privacy policies if
and only if (pps, π, u) ∈ PC holds. ♦

The definition of faithfully captures that subsequent users in a connected re-share
path are related according to the respective users’ privacy policies. For ensuring this
property, the definition primarily requires the predicate relu(c, u′) between subsequent
users u and u′ and some category c of the respective (re-)share operation, where relu are
the relationships of u’s privacy policy. Our model of re-share paths supports changing
users’ privacy policies in multiple ways: Connectedness can be evaluated with the privacy
policies pps as they were at the time of the respective (re-)shares in a re-share path, even
if users’ privacy policies changed afterwards; Connectedness can also be evaluated with
the users’ most recent privacy policies pps, even if the privacy policies were different at
the times of the respective (re-)shares in a re-share path. Our model excludes the rather
pathological case of different privacy policies for one and the same user if that user occurs
more than once in a re-share path.

In their privacy policies, users specify their decision trust in categories of users to which
they are (directly) related. When a post is shared and re-shared, the recipients of the post
might not be in a direct relationship to the post’s author. That is, the privacy policy of
an author might not assign trust values to all recipients of re-sharing. Moreover, even
when a trust value is assigned to a user, this user might show different behavior with
respect to re-sharing a post when she obtained the post directly than when she obtained
the post indirectly: The fact that another user has already re-shared post might, on the one
hand, make a user less cautious about further re-sharing the post than when she directly
obtained the post. On the other hand, a user might have an incentive to be more cautious
about re-sharing an already re-shared post because of the potential to displease not only
the author of the post but also the previously re-sharing users. That is, “indirect trust”
depends on the trust between users on a re-share path. To capture our notion of indirect
trust based on users’ privacy policies, we introduce path trust as the last remaining concept
underlying our semantics of privacy policies.

Definition 6.5. The path trust is the decision trust that the author of a post has into an
actual or hypothetical recipient of the post who obtained the post through a particular re-
share path from the author. Formally, we capture path trust for a re-share path π to a user
u under a family pps of users’ privacy policies by pt(pps, π, u), where pt : PC → [0, 1] is
defined recursively over the length of the re-share path as follows:

pt(pps, 〈(u,C)〉, u′) = max{tv(c) | c ∈ cat ∩ C ∧ rel(c, u′)},
where (cat, rel, tv) = pps(u)

pt(pps, π.〈(u,C)〉, u′) = pt(pps, π, u) · pt(pps, 〈(u,C)〉, u′)
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where π ranges over re-share paths (i.e., π in particular is a non-empty sequence). ♦

By the definition, the path trust for a post is the product of all direct trust values specified
by the users along a re-share path along which the post was obtained. That is, if a user
obtained a post directly from the author u, the path trust equals u’s trust value in the
categories that she shared with. Path trust can be greater or lower than the direct trust and
can, as such, capture the cases of more and of less cautious users with regard to re-sharing.
The following example illustrates both cases.

Example 6.6. Consider the scenario and the privacy policies of Example 6.4 on page 89
and let pps be a family containing the three privacy policies of Alice, Bob, and Charlie.
Then we have pt(pps, 〈(alice, {friend}), (bob, {friend})〉, charlie) = 0.8 · 0.7 > 0.5 =
pt(pps, 〈(alice, {colleague})〉, charlie) for Alice’s trust in Charlie (via Bob). Here, path
trust is higher than direct trust due to the rather strongly trusted friend category, compared
to the colleague category.

Conversely, pt(pps, 〈(alice, {colleague}), (charlie, {friend})〉, bob) = 0.5 · 0.8 < 0.8 =
pt(pps, 〈(alice, {friend})〉, bob) holds for Alice’s trust in Bob (via Charlie). Here, path trust
is lower than direct trust due to the rather weakly trusted colleague category, compared
to the friend category. ♦

Note that pt is well-defined even in the recursive case of the definition, because the
relation PC is closed in the sense that (pps, π.〈(u, c)〉, u′) ∈ PC implies (pps, π, u) ∈ PC
and (pps, 〈(u, c)〉, u′) ∈ PC by Definition 6.4.

To capture that the content of posts in a DOSN can be of varying sensitivity, we introduce
sensitivity values. A sensitivity value is a value s from the half-open interval [0, 1) that
models the sensitivity of a post. Greater sensitivity values model greater sensitivity.

The goal behind our privacy policies is two-fold: Firstly, privacy policies shall constrain
who, i.e., which users are allowed to obtain a post in their stream in consequence of a
sharing or re-sharing. Secondly, privacy policies shall constrain who is allowed to re-share
a post. We capture both aspects in the following definition of the semantics of privacy
policies.

Definition 6.6. Let sc ∈ [0, 1] be arbitrary. Re-sharing of a post p with sensitivity value
s ∈ [0, 1), which had been received via a re-share path π, by a user u with a set of categories
C complies with the family pps ∈ PPS of users’ privacy policies if and only if each of the
following conditions is satisfied:

(a) C ⊆ catu;
(b) (pps, π.〈(u,C)〉, u′) ∈ PC holds for all users u′ who receive p due to this sharing;

and
(c) pt(pps, π, u) ≥ sc

1−s holds,
where (cat, rel, tv) = pps(u). ♦

The semantics is parametric in sensitivity coefficient sc ∈ [0, 1], for which higher values
make the privacy policies more restrictive (Definition 6.6 (c)). For instance, the choice of
sensitivity coefficient sc = 0.35 ensures that re-sharing is completely forbidden along re-
share paths with low trust (pt(pps, π, u) < 0.3), is allowed for low-sensitivity posts (with a
sensitivity value below 0.3) along re-share paths with medium trust (0.5 ≤ pt(pps, π, u) ≤
0.6), and is completely forbidden for posts with a sensitivity value above 0.65. Sensitivity
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coefficients have been used before in the semantics of privacy policies for controlling
the direct sharing of posts between users. For instance, Kumari et al. [KPP+11] propose
sensitivity coefficients for different kinds of operations.

The definition faithfully captures the two aspects of re-sharing we aim to control:
who may re-share and who may obtain a re-shared post. Regarding the latter aspect,
the semantics requires that all recipients of a re-shared post must be related to the re-
sharing user in some category with which she re-shared. This reflects the intuition behind
categories in DOSNs. Regarding the former aspect – who may re-share –, the semantics
requires that a re-sharing user must be in a connected re-share path together with the
re-share path along which she obtained the post (Definition 6.6 (b)) and must be trusted
enough by the author of the post along the re-share path (Definition 6.6 (c)). This reflects
the intuition behind trust values of privacy policies.

The focus in this chapter is controlled re-sharing. For the sake of completeness, we
introduce compliance of sharing with users’ privacy policies as well. This shall demonstrate
that our privacy policies are compliant with existing mechanisms of DOSNs to control the
sharing of posts.

Definition 6.7. Sharing of a post p with sensitivity value s ∈ [0, 1) by a user u with a set
of categories C complies with the family pps ∈ PPS of users’ privacy policies if and only if
each of the following conditions is satisfied:

(a) C ⊆ catu and
(b) (pps, 〈(u,C)〉, u′) ∈ PC holds for all users u′ who receive p due to this sharing,

where (cat, rel, tv) = pps(u). ♦

The conditions for compliant sharing are enumerated to expose the similarity to their
counterparts in Definition 6.6. The recipients of shared posts are constrained by Def-
inition 6.7 (b) in the same way as for re-sharing in that they must be related with the
sharing user in some category that was shared with. Who may share is not constrained:
Sharing is always allowed as long as the sharing user chooses a valid set of categories.
That is, overall the semantics of privacy policies for sharing captures what is typically
implemented in OSNs.

Example 6.7. Consider again Example 6.3 on page 88 and suppose Alice, whose privacy
policy is specified in Example 6.4 on page 89, is the researcher who travels to the conference.
Let the sensitivity coefficient be sc = 0.35. When Alice shares her personal opinions
about presentations in posts to category colleague or sends pictures of having fun in bars
in posts to category friend with sensitivity value s1 = 0.7, then her colleague Charlie
obtains her shared opinions and her friend Bob obtains the pictures, but neither Bob nor
Charlie can re-share the posts, because sc

1−s1
≈ 1.17 and no path trust can exceed this

value to satisfy Definition 6.6 (c). When Alice shares her attendance of the conference
with colleagues in posts with sensitivity value s2 = 0.3, then Charlie may re-share
these posts but a recipient of the posts re-shared by Charlie could not re-share further,
because a trust value of Charlie in this recipient of at least sc

(1−s2)·tva(colleague) = 2 would
be required. Finally, when Alice shares pictures from the landscape around the conference
venue with friends in posts with low sensitivity value s3 = 0.2, then Bob could re-
share with his friend Charlie and Charlie could re-share further with his friends, because



94 Chapter 6. Modular Delegation-Based Security Policies

tva(friend) · tvb(friend) · tvc(friend) = 0.448 ≥ sc
1−s3

= 0.4375. ♦

The example demonstrates that our privacy policies together with sensitivity values
enable users of a DOSN to control re-sharing in a fine-grained fashion.

Conceptually, our privacy policies are policies for relationship-based access control
(ReBAC) [Gat07; Fon11], i.e., access control in which the permissibility of an access is
determined by the relationships between involved users. Our privacy policies combine
qualitative relationships (captured by relations rel) as well as quantitative relationships
(captured by functions tv). Both relationships are taken into account by the semantics of
privacy policies in Definition 6.6. In the following, we use CliSeAu for enabling controlled
re-sharing by enforcing the privacy policies introduced in this section.

6.4.2. CReDiC – a CoDSPL policy for Controlled Re-Sharing

In this section, we present CReDiC (abbreviating “Controlled Re-Sharing in Diaspora* with
CliSeAu”), a local policy for enforcing controlled re-sharing in DOSNs and a CoDSPL policy
based on this local policy for the Diaspora* DOSN. The local policy uses delegation and is
designed in a modular fashion with separation of concerns, built with the extension library
introduced in Section 6.3. In the following, we first introduce the basic design decisions
behind the local policy and, second, present the modular architecture and implementation
of the local policy for the application scenario.

Goals and design choices More concretely, the main goal of this section is enforcing
controlled re-sharing with users’ privacy policies in DOSNs. In particular, we aim at an
enforcement mechanism that supports two common properties of DOSNs: firstly that,
like OSNs, DOSNs allow their users to change their relationships to other users (i.e., the
privacy policies in our model) over time and, secondly, that DOSNs store users’ profiles
(including the privacy policies) in a decentralized fashion at the DOSN’s pods. As the
target for the enforcement, we pick Diaspora* for its popularity among DOSNs. Diaspora*
shares both of the aforementioned properties. The two properties provoke two main design
choices. Firstly, that privacy policies in DOSNs can change over time raises a design space
over which privacy policies to use in the enforcement. For instance, the enforcement
could use the users’ privacy policies as they were at the time they performed a (re-)share
operation. Alternatively, users’ most recent privacy policies, at the time of checking
whether a re-share is compliant, could be used. Secondly, that privacy policies are stored
in a decentralized fashion implies that they yet have to be combined for determining the
permissibility of a re-share operation (as specified by the semantics of privacy policies in
Definition 6.6). For instance, all relevant relationships and trust values could be gathered
by the enforcement mechanism for determining the compliance of a re-share. Alternatively,
the permissibility could be determined in a more decentralized fashion.

The local policy we design for enforcing security in the case study is based on the
following design decisions. Concerning the recency of privacy policies, we aim at taking
the most recent ones, such that changes of privacy policies over time can influence even
posts that were shared and re-shared before the change of policy. However, we slightly
relax the recency when privacy policies change during the decision-making: In this
case, the enforcement utilizes the respective most recent privacy policy at some point in
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time during the decision-making. This way, the enforcement mechanism can avoid overly
synchronizing and, thereby, slowing down the DOSN. Concerning the second design choice,
how to cope with the decentralized privacy policies, we aim for a decentralized decision-
making based on partial decisions. More concretely, the partial decisions essentially consist
of intermediate path trust values and, thus, avoid gathering privacy policies at a central
location.

At a more detailed level, the local policy is based on further design choices regarding
the storage of relevant information and regarding the cooperation. Users’ privacy policies
as well as posts’ sensitivity values are stored locally, i.e., at the unit at whose pod the post
is created or, respectively, the users’ profile resides. Re-share paths for posts are stored at
a unit whenever the unit accepted a security-compliant re-share operation. Sensitivity
values and trust values are never directly exchanged in the process of cooperation between
units. Concerning the routing, units communicate with each other directly (as do the
pods).

Note that in this case study, we focus on controlling who may re-share. The pro-
posed mechanism does not control who receives posts due to (re-)sharing, given that this
functionality is typically provided by DOSNs already.

By the choice of this design, we follow the work of Mazaheri [Maz12, Section 4.1]. Our
main contribution here is the entirely re-designed enforcement mechanism, designed with
a modular architecture of the delegation-based local policies and built on a more sophisti-
cated model of privacy policies. We provide a delineation between her contributions and
the contributions made by this thesis in the related works, Section 9.8.1 on page 165.

Policy design Each instance of our local policies is for one pod of a DOSN. At this pod,
the local policy handles four kinds of operations occurring in the pod and produces
two possible decisions. The operations, captured by event objects, are sharing of posts,
changing of relationships between users, changing of trust values, and re-sharing of posts.
The two decisions are to allow an operation and to disallow an operation. Note that we
do not consider operations that change the sensitivity value of a post. That is, sensitivity
values of posts are constant and determined by authors when posts are shared.

For being able to enforce users’ privacy policies, the local policy maintains state. This
state consists of the following parts:

• a map from user identifiers to privacy policies,
• a map from post identifiers to sensitivity values, and
• a map from post identifiers to re-share paths.

The privacy policies in the state are straightforward implementations of Definition 6.2 on
page 89, i.e., consisting of a set of categories, the relationships, and the trust values for
categories. The state is implemented by a State class. For each part of the state, including
the parts of users’ privacy policies, the State class provides methods for retrieving as well
as for updating this part. State-keeping, through updating the State object of the local
policy, is invoked upon occurrence of intercepted operations, as we discuss next for the
micro-policies. This design separates the details of state-keeping (implemented in the State
class) from the realization of decision-making subgoals (implemented in micro-policies).

Some kinds of operations handled by the local policy are always allowed by the local
policy and solely handled for the purpose of maintaining the local policy’s state. These
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kinds of operations are those that change users’ privacy policies (adding/removing cate-
gories, adding/removing users from/to categories, and changing trust values of categories)
and those that share posts. The state-keeping provoked by these operations is always
performed by the local policy of the pod at which the operations are performed. That
is, no delegation takes place for these operations. For each of the four operations, our
local policy provides a single micro-policy. The respective micro-policy always produces
a decision to allow the operation and implements this decision by invoking an update of
the local policy’s state.

The main operation for controlling re-sharing in DOSNs is the re-sharing itself. For
handling this operation in our local policy in accordance with the semantics of users’
privacy policies (see Definition 6.6 on page 92), our local policy provides several micro-
policies. These micro-policies encapsulate subgoals that can be performed by a single unit
without intermediate delegation. Concretely, the micro-policies for handling re-sharing
operations are the following.

• The “path query” micro-policy resolves the re-share path of the post that is to be
re-shared. This re-share path is required for computing the path trust.

• The “sensitivity query” micro-policy retrieves the sensitivity value of the post that
is to be re-shared. This value is required for checking compliance.

• The “trust query” micro-policy performs a partial check for connectedness of the
re-share path and a partial computation of the path trust. Both tasks are performed
for those elements of the re-share path for which the respective users’ privacy
policies are available at the unit.

• The “decision delivery” micro-policy realizes that a delegation response is delivered
to the unit at which the re-share shall be allowed or denied.

Each of the micro-policies includes a branching based on whether the locally available
state provides the information for realizing the subgoal. If this is not the case, the micro-
policy triggers delegation to a unit that is expected to provide the required information.
The delegation objects used by the micro-policies for exchanging partial decisions store
the event object for the re-share as well as the identifier of the unit that expects a decision
for the event object, the re-share path, the identifiers of the units whose users’ privacy
policies remain to be involved for determining compliance, and a variable holding an
intermediate result of the computation of pt(pps, π, u) · (1− s), where pps are the users’
most recent privacy policies, π is the re-share path of the post that is to be re-shared, u is
the user who wants to re-share, and s is the sensitivity of the post. By exchanging last-
mentioned intermediate result – rather than gathered users’ privacy policies –, the local
policy avoids gathering users’ privacy policies at a central location that would otherwise
be stored decentralized. For determining compliance of a re-share, the micro-policies use
the sensitivity coefficient sc = 0.35, which we have already used earlier in our exposition,
in checking pt(pps, π, u) · (1− s) ≥ sc.

Figure 6.3 on the facing page shows all micro-policies used (shaded boxes), their triggers
(white boxes with solid arrows), and their temporal ordering (uncontinuous arrows). The
trigger for a micro-policy is either an operation intercepted by a unit or a delegation
request received by a unit from another unit. The small black circle represents the end of
the decision-making. Temporal ordering comes in three variants: always with delegation,
meaning that the next micro-policy is invoked at another unit (dashed arrows), always
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event delegation

category change path query

relationship change sensitivity query

trust change trust query

sensitivity change decision delivery

Figure 6.3.: Schematic visualization of the micro-policies in CReDiC

without delegation (dotted arrows), and sometimes with and sometimes without delegation
(dash-dotted arrows).

The figure shows that for each of the four operations that are always allowed and only af-
fect the local policy’s state is handled by a separate micro-policy (left column of gray boxes).
Each of these micro-policies, the decision-making ends after the micro-policy’s invocation
and no delegation takes place. Note that the ordering indicated by discontinuous arrows
is a temporal ordering of micro-policies but, in the design and implementation of the
micro-policies, it is not caused by one micro-policy directly invoking another micro-policy.
Rather, the successor of a micro-policy is determined by the micro-policy factory, which
selects the next micro-policy based on the (intermediate) result produced by the former
micro-policy. That is, subgoal selection and subgoal realization are separated in the design
of the local policy.

As we discussed, as part of the design decisions, our local policy aims at routing where
units communicate with each other directly. In the design and implementation of the local
policy, we realize this through a simple class, named DirectRoutingPolicy, which always
provides the destination unit of a delegation itself as the next unit to route to. Through
this separate class, we achieve a separation of the routing concern from the remaining
concerns of the local policy.

Mapping Diaspora* on our trust model Wemap the trust model introduced in Section 6.4.1
to the particularities of Diaspora* (version 0.5.3.1) through three kinds of adaptations: small
extensions to Diaspora*, realized as patches to the Diaspora* code; usage of reasonable
defaults for some parameters in event objects implemented in the event factory of CReDiC;
and altered use of existing Diaspora* elements. We list all concrete instances of adaptations
below to shed light on the extent of the adaptations made.

The extensions made to Diaspora* compensate two particularities of Diaspora*: Firstly,
Diaspora* prohibits re-sharing of sensitive posts (i.e., posts not classified as “public”).
Secondly, the Diaspora* code lacks, for the enforcement, once a sufficiently fine method
granularity, two accessible object attributes, and public rather than private accessibility
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for one method (required by the Aquarium tool). The code patch remediating these two
particularities consists of 22 deleted lines and 20 inserted lines, excluding code comments.

Default values for some parameters of event objects are used in the following cases:
sensitivity of posts, re-sharing with selected categories. In Diaspora*, posts cannot be
assigned a sensitivity value. We simulate sensitivity values of posts by assigning the least
trust value into categories with which a post is shared as the post’s sensitivity value. In
Diaspora*, re-sharing (as opposed to the initial sharing) cannot be further parameterized
with a set of categories. Rather, Diaspora* delivers a re-shared post to all users who are
related to the re-sharing user. In accordance with this behavior of Diaspora*, we therefore
simulate the categories of a re-sharing operation by taking all categories of the re-sharing
user’s privacy policy at the time of re-sharing.

Altered use of existing Diaspora* elements applies to the names of categories. In Dias-
pora*, users cannot assign trust values to categories.5 We compensate this by expecting
users of Diaspora* to specify trust in categories as part of the categories’ name in paren-
theses, e.g., “family (0.9)”, “friend (0.8)”, “colleague (0.5)”. This allows a user to change
the trust value in a category by renaming the category. In the event factory of CReDiC,
we decompose these augmented category names such that this abuse of category names
becomes transparent to the local policy.

Overall, the described mapping of Diaspora* to our trust model constitutes the basis
for the design of the CoDSPL policy of CReDiC on top of our local policy. This CoDSPL
policy enables controlled re-sharing of posts in Diaspora* based on users’ most recent
privacy policies. Through the particular design of the local policy based on delegation,
controlled re-sharing is performed in a decentralized fashion.

6.4.3. Analytic Evaluation of CReDiC

We analyze CReDiC with regard to the two key notions of this chapter: delegation and
modularity through separation of concerns.

Delegation Delegation is an essential concept used by the local policy for enforcing
controlled re-sharing in the case study. However, as network communication is time-
intensive compared to local computations, delegation is also a crucial factor for the
performance of the enforcement mechanism. We, thus, qualify and quantify the use of
delegation by the local policy in the following.

Delegation is performed by the local policy when its own state does not provide all
information needed for checking compliance of a re-share operation. We analyze the
delegation behavior of the local policy along the involved micro-policies for an abstract
instance of an intercepted re-share of a post by a user u. The “path query” micro-policy
performs delegation to the unit at the pod from which user u obtained the post, unless
it is part of this unit itself. Analogously, the “sensitivity query” micro-policy performs
delegation to the unit at the pod from which the post was originally shared, unless it is part
of this unit itself. The “trust query” micro-policy delegates to a unit whose contribution
to computing the path trust is outstanding, if such unit exists. In picking the delegate,

5Note that in Diaspora* the categories are called “aspects”. We prefer to use the term categories to avoid
confusion with AOP terminology.
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this micro-policy ensures that, if the unit at which the re-share was intercepted is in the
list, it is picked last. This avoids one delegation when the recipient unit of the decision
participates in the path trust computation. Finally, the “decision delivery” micro-policy
returns a decision object for the unit’s enforcer if it is part of the unit that intercepted the
re-share, and delegates to that unit otherwise. That is, in the process of decision-making
for an intercepted re-share, each of the micro-policies might delegate once or not at all,
and only “trust query” might delegate more than once.

The number of delegations performed by the local policy for controlling the re-sharing of
a single post is determined by how many units store relevant information for determining
compliance according to Definition 6.6. The following theorem provides the exact number
of delegations as well as lower and upper bounds.

Theorem 6.1. Let u be the user whose re-sharing operation is intercepted, π be the re-share
path along which u received the post, r be u’s pod, p be the pod of the user who (re-)shared
the post with u, s be the pod on which the post was originally shared, and S be the set of all
pods of users in π. Then
(a) the exact number of delegations performed by the local policy is

δr 6=p + δp 6=s + (|S| − δs∈S) + δr /∈S ,

(b) the minimal number of delegations is 0, and
(c) the number of delegations has the tight upper bound 2 + |π|. ♦

Proof. We show the individual claims of the theorem separately.
• Theorem 6.1 (a) is the immediate result of the number of delegations contributed
by the individual micro-policies involved in the decision-making for a re-share
operation. The “path query” micro-policy delegates δr 6=p times, “sensitivity query”
delegates δp 6=s times, “trust query” delegates |S| − 1 times (because s ∈ S is always
the case) until all units involved in the re-share path are visited, and “decision
delivery” delegates δr /∈S times.

• The minimal number of 0 delegations, as claimed by Theorem 6.1 (b), follows imme-
diately from Theorem 6.1 (a) and the fact that the conditions r = p, p = s, |S| = 1,
and r ∈ S can be satisfied simultaneously.

• We argue separately that the formula of Theorem 6.1 (c) is an upper bound and that
it is a tight bound. That the formula provides an upper bound follows immediately
from Theorem 6.1 (a) and the fact that |S| ≤ |π|, δϕ ≤ 1, and s ∈ S, which yields

δr 6=p + δp 6=s + (|S| − δs∈S) + δr /∈S ≤ 2 + (|π| − 1) + 1 = 2 + |π|.

That the upper bound is tight follows from the fact that the conditions r 6= p, p 6= s,
|S| = |π|, and r /∈ S can be satisfied simultaneously.

Overall, we have seen that the local policy avoids delegation for controlling re-sharing of
a post when the re-share path is confined to a single pod. The local policy moreover avoids
a delegation that follows the re-share path but rather clusters the subgoals it performs
by the pods in the re-share path, thereby avoiding delegation when pods occur multiple
times in the re-share path.
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Complexity of local policy design and implementation Aswe have discussed in Section 6.4.2,
the design separates the concerns of subgoal selection, subgoal realization, state-keeping,
and routing. The design of the local policy based on micro-policies consists of one micro-
policy factory, one routing policy, seven micro-policies, and one state component. Despite
the involved cooperation performed by the local policy, the code of the local policy consists
of only 614 source lines of code (SLOC). The code of the micro-policy factory consists of
38 SLOC. The code size of the micro-policy implementations ranges from 12 to 41 SLOC,
thus, still fitting on a single screen in full. These numbers provide evidence that the design
of the local policy is very modular and in a way that is beneficial for the comprehensibility
and, thus, maintainability of the code.

Notably, in contrast to the rather small code size of our local policy, Diaspora* itself is
of decent code size: The version of Diaspora* we used in our application scenario consists
of 31717 Ruby SLOC.

6.4.4. Empirical Evaluation of CReDiC

We empirically evaluate effectiveness and performance of CReDiC. Concretely, concerning
the effectiveness, we evaluate selected test cases – policy-compliant as well as policy-
violating –, showing the respective expectation (hypothesis) and the outcome of the
evaluation. Concerning the performance, we present the overhead caused by our enforce-
ment mechanism at run-time of the target, and we present the time taken to instrument
the target using CliSeAu. The evaluation shall provide evidence that the proposed policy
indeed enforces compliance with users’ privacy policies in the application scenario and
does so with reasonable performance.

For the empirical evaluation, we used three Intel Quad-Core (i5-4590 3.3GHz) machines
with 32 GB RAM.Themachines ran Ubuntu 14.04.2 LTS with a 3.13.0 kernel and OpenJDK 7.
We ran three patched Diaspora* pods (see Paragraph ‘Mapping Diaspora* on our trust
model’ on page 97) in production mode with Ruby 2.1.1 and a MySQL 5.5.54 database. Four
user profiles were hosted by the three pods. For static content, we ran an Apache 2.4.7 web
server. We measured page fetch times on an Intel Quad-Core (i7-6600U 2.6GHz) machine
with 16 GB RAM, a 4.4.26 kernel, OpenJDK 8, and AspectJ 1.8.10, using curl 7.52.1 with
trace-time option. All four machines were connected through a 1 Gbps wired network.

For the evaluation, we use the following concrete setup of users and their privacy
policies of the Diaspora*-based DOSN. The setup refines the one from Example 6.4 on
page 89 with regard to the distribution of users to pods and augments the example by
another user. A visualization of the setup is provided by Figure 6.4 on the facing page.
The three pods of the DOSN are named “pod0”, “pod1”, and “pod2”, respectively. Four
users are registered in the DOSN: “alice”, “bob”, “charlie”, and “dave”. Alice has her profile
at pod0, Bob at pod1, and Charlie and Dave at pod2. The privacy policies of Alice, Bob,
and Charlie are as in Example 6.4, except that Alice’s relationships are expanded to have
Dave as a friend and colleague. Dave’s privacy policy has the same categories and trust
values as Alice and has Alice as her only friend and colleague.
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pod0 pod1 pod2

alice bob charlie

dave

friend (0.8)

colleague (0.5)

friend (0.8),
colleague (0.5)

friend (0.7)

friend (0.7)

friend (0.7)

Figure 6.4.: Example scenario for the empirical evaluation

Effectiveness of the Enforcement

In this section, we provide empirical evidence about the effectiveness of our enforcement
mechanism, i.e., to what extent the mechanism soundly and transparently enforces users’
privacy policies in the application scenario. Our hypothesis is that our enforcement
mechanism is effective in absence of race conditions between re-sharing operations and
changes of privacy policies and can be unsound or intransparent otherwise. This is
coherent with observations by Mazaheri [Maz12].

We select test cases from two categories: tests for operations that are intercepted by our
enforcement mechanism but are always permitted (sharing and changing of relationships
and trust values) and tests for operations that might violate security (re-sharing). In
recognition of the higher complexity of the re-sharing compared to, e.g., the change of
relationships, we provide more test cases for re-sharing: test cases for re-sharing and
re-re-sharing, for one up to three units involved in the decision-making, and for different
causes of dissatisfied compliance. Table 6.1 on the next page displays the list of test cases,
along with their expected results and their empirically observed results.

The test cases are structured into several groups, separated by horizontal rules in the
table. In the table, we use a short-hand notation in which an arrow c−→

s
abbreviates “shares

a post of sensitivity value s with categories c”, an arrow c−→ abbreviates “re-shares” with
categories c, and a boxed user name marks the user who’s re-sharing is tested (all other
operations are for establishing the prerequisites of the test case).

• Test cases 6.1–6.4 aim to ensure that sharing and changing of privacy policies is
maintained functional by CReDiC.

• Test cases 6.5 and 6.6 address re-sharing involving a single unit (i.e., no delegation).
At the same time, these test cases address the impact of posts’ sensitivity values on
the decisions made by CReDiC.

• Test cases 6.7 and 6.8 address re-sharing involving two units and test the impact of
the author’s trust value on the decisions made.

• Test cases 6.9 and 6.10 address re-sharing involving three units and test the impact
on the connectedness of the re-share path on the decisions made.

• Test cases 6.11 and 6.12 tests effectiveness of CReDiC under simultaneous re-shares
and changes of privacy policies.

Consider Test case 6.7 for a closer look. Alice shares a post with categories “friend”
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# test case expectation result

6.1 Alice shares a post with category
“friend”

Alice’s post appears in streams of Bob
and Dave (same as without CReDiC)

4

6.2 Alice changes trust value in category
“colleague” to 0.3

Alice’s former category “colleague
(0.5)” is now “colleague (0.3)”

4

6.3 Alice adds Charlie to category
“friend”

Charlie is displayed in categories
“friend” and “colleague” of Alice
(same as without CReDiC)

4

6.4 Alice removes Charlie from category
“friend”

Alice is displayed to no longer share
with Charlie (same as without
CReDiC)

4

6.5 Dave fri,col−−−→
0.5

Alice fri,col−−−→ Bob re-sharing is allowed; the post
appears in Bob’s stream

4

6.6 Dave fri−−→
0.8

Alice fri,col−−−→ Bob re-sharing by Dave is not permitted 4

6.7 Alice fri,col−−−→
0.5

Bob fri−→ Charlie re-sharing by Bob is allowed; the post
appears in Charlie’s stream

4

6.8 like 6.7 but after sharing, Alice sets
trust in “friend” to 0.66

re-sharing by Bob is not permitted 4

6.9 after executing Test case 6.2,

Alice fri,col−−−→
0.3

Bob fri−→ Charlie fri−→Bob

re-sharing by Charlie is allowed; the
post appears in Bob’s stream

4

6.10 like 6.9 but after re-sharing, Bob
removes Charlie as “friend”

re-sharing by Charlie is not permitted 4

6.11 like 6.10, but Bob changes his privacy
policy while Charlie’s re-sharing is
performed

re-sharing by Charlie is not permitted 8

6.12 Alice col−−→
0.5

Charlie fri−→Bob, while Alice

changes her trust in “colleague” to 0.7

re-sharing by Charlie is allowed 8

Table 6.1.: Test cases for the empirical evaluation of CReDiC’s effectiveness
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and “colleague” (abbreviated “fri” and “col”). Given that in CReDiC, we assign the use the
least trust value for the sensitivity value of the post, this value is s = min{0.8, 0.5} = 0.5.
The re-share by Bob is expected to be allowed because the path trust in this case is
0.8 ≥ 0.35

1−s = 0.7.
We conducted each of the test cases at least once for the version of CReDiC described

in this thesis. Each of the test cases was conducted independently from the other test
cases. That is, changes to users’ privacy policies were reset before another test case was
conducted. The observed results are presented in the rightmost column of Table 6.1. A
checkmark (4) indicates that the test succeeded in all instances of the test; a cross (8)
indicates that the test failed at least once. That is, Test cases 6.1–6.10 succeeded while Test
cases 6.11 and 6.12 failed.

Overall, the empirical evaluation of effectiveness based on the presented test cases
provides evidence that CReDiC is indeed effective as long as race conditions between
decision-making for re-share operations and changes of privacy policies are not present. By
deliberately provoking race conditions, we could show that CReDiC can indeed produce
unsound as well as intransparent decisions. We consider this ineffectiveness, which
appears to be limited to occurrences of race conditions, acceptable for two reasons: Firstly,
the cases of ineffectiveness are constrained to the time windows during which decisions for
re-share operations are made. These time windows are short compared to, e.g., the times
users need to react to posts, as also the results of our performance evaluation suggests.
Secondly, in a case of intransparency, a user could succeed in re-sharing by repeating
her attempt because CReDiC does not memorize failed attempts, and, in situations in
which a case of unsoundness is actually harmful, the user whose racing change of privacy
policy was not taken into account for the decision could have made a more sensible choice
of privacy policy in the first place. Therefore, we find that CReDiC can be considered
sufficiently effective in enforcing controlled re-sharing based on users’ privacy policies.

Run-time Performance

CReDiC is an enforcement mechanism that operates at run-time of its target, the DOSN
Diaspora*. As such, it introduces a certain amount of overhead in order to check compliance
with users’ privacy policies and, if necessary, prevent violations. In the following, we
evaluate the amount of the introduced overhead by comparing the performance of CReDiC
to the performance of Diaspora*. For the comparison, we borrow selected test cases from
Table 6.1 on page 102.

For the performance evaluation, we selected experiments based on two test cases of
operations that are always permitted by CReDiC, as well as three test cases of allowed
re-share operations, with one to three involved units. These experiments allow for a
comparison of CReDiC’s performance with Diaspora*’s performance.

We conducted the experiments by sending requests to the HTTP servers running the
pods and measuring the duration until a response was returned. By including the opera-
tions performed by the HTTP server and all potential overhead incurred by Diaspora*’s
background services, we aimed at being close to the overhead as it would be perceived by
an actual user of Diaspora*. For the sake of conducting many experiments, we conducted
the experiments from a command line rather than from a browser. Our results, thus, do
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experiment test case CReDiC Diaspora*
absolute
overhead

relative
overhead

share message 6.1 231.5ms 230.3ms 1.2ms 0.52%
change trust 6.2 36.0ms 31.1ms 4.9ms 15.76%

re-share/intra 6.5 294.6ms 290.7ms 3.9ms 1.34%
re-share/inter 6.7 294.3ms 281.8ms 12.5ms 4.44%

Table 6.2.: Run-time performance evaluation results for CReDiC

not include the page rendering times that a normal user would experience. While we
expect the absolute overhead we determined to be faithful nevertheless, we expect the
relative overheads to be upper bounds for a normal user’s perceived overhead in our setup.

Table 6.2 shows our experimental results. For each of the performed individual experi-
ments we conducted, the table contains a separate row. The first and the second column
shows the name of the operation for which the overhead was measured as well as the
number of the concrete test case from Table 6.1 on page 102 conducted for the experiment.
The third column shows the durations of the respective operations in Diaspora* when
CReDiC is enabled and the fourth column shows the durations of the operations in Di-
aspora* when CReDiC is disabled. The fifth and the sixth column display the absolute
overhead (in ms) and the relative overhead (in %), respectively, as computed from the two
preceding columns.

Sharing a post took 231.5ms with CReDiC enabled, compared to 230.3ms with CReDiC
disabled, which corresponds to an overhead of 1.2ms (0.52%). For re-sharing, we evaluated
two cases: intra-provider re-sharing and inter-provider re-sharing. For the two operations,
the overhead of CReDiC ranges from 3.9ms to 12.5ms (1.34% to 4.44%). CReDiC’s support
for dynamically changing trust between users effects an overhead of 4.9ms (15.76%, due
to the comparatively low baseline duration of 31.1ms) to operations that change a user’s
trust in another user. Each duration value given in Table 6.2 reflects the mean of the lower
90th% of 1000 measurements [Oak14, p. 28]. The results confirm that CReDiC efficiently
enforces users’ privacy policies.

Encapsulation Performance

In order to use CReDiC, CliSeAu must be used to apply CReDiC to Diaspora*. This step
has to be performed only once before Diaspora* is started. In the following, we show for a
varying number of pods, the time taken by CliSeAu to apply CReDiC.

In the evaluation, we used the same configuration for each pod and its unit except that
each unit had a distinct unit identifier. The CoDSPL policies provided to CliSeAu in the
individual experiments, thus, varied only in the lists of unit identifiers. For each number
of pods encapsulated, we conducted 100 measurings.

The plots in Figure 6.5 on the next page show the results of the evaluation. The horizontal
axes of both plots indicate the number of pods encapsulated in the respective experiment.
The vertical axes indicate the time taken, in seconds. For each number of pods, the plot
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Figure 6.5.: Encapsulation performance evaluation results for CReDiC

on the left of the figure shows a bar depicting the mean of the lower 90th% of the 100
conducted measurements [Oak14, p. 28]. For 5 pods, the plot on the right of the figure
contains one box plot, displaying five values: the first and third quartile of measured times
(lower and upper extents of the gray boxes), the median of measured times (horizontal
lines inside the gray boxes, labeled by the concrete value), and the minimum and maximum
measured times (lower and upper extents of the whiskers extending from the boxes).

The left plot in Figure 6.5 shows the results of measuring the time taken by CliSeAu for
applying CReDiC for varying numbers of pods. The time grows about linearly from 1.29s
for 1 pod to 5.13s for 10 pods. The box plots of the figure shows that for encapsulating 5
agents, the time taken varied by 2.59s between the minimal and maximal time, and by
0.75s between the lower and upper quartile of measurings. While the overall variation in
the time taken by the encapsulation was rather large, even the maximal time taken still
remained below 1s per pod.

6.5. Summary

We presented four concerns, subgoal selection and realization as well as state-keeping
and routing, in delegation-based security policies. In our extension library for modular
CoDSPL policies separation of concerns is achieved through the concept of micro-policies,
which capture individual subgoals in the decision-making. We applied this extension
library in a case study of enforcing controlled re-sharing based on users’ privacy policies
in decentralized online social networks. The mechanism we developed for the case study,
CReDiC, is a usage control mechanism (re-sharing is usage of posts) that enforces controlled
re-sharing in a decentralized fashion. Through analytic and empirical evaluations, we
provided upper bounds on the number of delegations used by CReDiC and confirmed
that CReDiC is efficient and is effective in absence of race conditions during small time
windows.

Our extension library provides a base class, ModularLocalPolicy, from which concrete
local policies of a CoDSPL policy can inherit to implement our modular design. The
base class demands the implementation of micro-policies, a state component, a routing
policy, and a concrete factory for micro-policy objects. In consequence, when specifying a
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CoDSPL policy, fewer architectural design decisions [Som16, Chapter 6] remain to be made
when a CoDSPL policy is specified. As we demonstrate in our case study, our extension
library allows for small micro-policy implementations (each at most 41 lines of Java code)
and, thereby, facilitates mastering the potential complexity of a CoDSPL policy [BME+07,
pp. 13–14]. While our modular design shares the split between decision-making and
state-keeping with the policy language of the non-distributed enforcement mechanism
Polymer [BLW09], we are the first to propose a modular design for security policies that
specify cooperation.

CReDiC, our mechanism for controlled re-sharing in decentralized online social net-
works allows the users to specify privacy policies in which they categorize users and
specify trust values for the individual categories. Such a categorization can be found in
many popular online social networks. Our augmentation with trust values and sensitivity
values for posts enables CReDiC to allow re-sharing of posts in a controlled fashion only
along paths of users whose concatenated trust [HWS09] is sufficiently high with regard
to the sensitivity of the post. As of today, decentralized as well as centralized online
social networks such as Facebook forbid such controlled re-sharing. Controlled re-sharing
allows users to re-share posts and thereby expand the outreach of the post’s author and
yet prevents re-sharing to insufficiently trusted users. Although CReDiC performs the
enforcement in a decentralized fashion by means of cooperation, our empirical evaluation
in test cases shows that CReDiC is effective and our performance evaluation showed a
minor run-time overhead of 12.5ms (4.44%) on the re-sharing.
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Chapter

7
Cooperative Enforcement with

Authoritative Delegates

7.1. Introduction

In a distributed program, the agents of the program run concurrently. Under the regime
of a security enforcement mechanism, race conditions arise when the ordering of two
actions of two agents determines how the enforcement mechanism treats the two actions.
For instance, the enforcement mechanism might permit only the first occurring action
but prevent the second action from occurring. In the enforcement mechanism, such
race conditions can provoke time-of-check to time-of-use flaws [PP06, p. 289] – concretely
between the time span of making a decision (“check”) and the time of enforcing the decision
(“use”). A second action occurring within this time frame might render the decision for
the first action false.

We propose a technique, called static delegation, for the cooperation between the units
of a distributed enforcement mechanism. According to the technique, the decision-making
for an event is always delegated to the so-called responsible unit for the event, except when
the event was already intercepted by this unit. We identify a class of security properties,
called partitionable order-insensitive properties. We show how static delegation can be
applied to such properties such that responsible units become authoritative, i.e., enabled
to make decisions for events that, when enforced, lead to effective enforcement. For the
specification of policies that employ static delegation, we present an extension library
for CoDSPL. In a case study of enforcing a Chinese Wall Security Policy [BN89] on a
distributed storage service, we show how static delegation can be used can be used for
effectively and efficiently enforcing security with CliSeAu.

When static delegation is used as we propose in this chapter, effective enforcement is
possible even in presence of race conditions. That is, an adversary that attempts to exploit
the timing of events cannot circumvent the enforcement mechanism. Static delegation
is parametric in how responsible units are assigned to security-relevant events and par-
ticularly allows the responsibility to be distributed over all the units of the enforcement
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mechanism. Such a decentralized enforcement avoids bottlenecks in the cooperation
among units. By predetermining how units cooperate, static delegation simplifies the
specification of CoDSPL policies conceptually and in terms of policy size.

Structure The remainder of this chapter is structured as follows. In Section 7.2, we intro-
duce the static delegation and define classes of security properties for which authoritative
responsible units are enabled by static delegation. Section 7.3 introduces the extension
library for static delegation in CoDSPL. In Section 7.4, we present a case study in which
the static delegation is used for effectively enforcing a Chinese Wall Security Policy in
a distributed storage service. The case study encompasses a description of the scenario,
the CoDSPL policy, and an empirical evaluation of this CoDSPL policy when applied
by CliSeAu. Section 7.5 discusses possible optimizations of static delegation. Finally, in
Section 7.6, we summarize the content of the chapter.

7.2. Static Delegation

Delegation as a form of cooperation among the units of a distributed enforcement mecha-
nism can be characterized by several attributes, such as when delegation takes place, to
which unit is delegated, and what information constitutes a delegation request. Generally,
these attributes can depend on the concrete cause (such as an event or a delegation request
from another unit), static information of the unit (such as the unit’s identity), and dynamic
information of the unit (such as the past history of events).

We propose a technique for delegation that reduces the degrees of freedom but is
still parametric. In the following, we first describe the technique, which we coin static
delegation. We then make several observations about the knowledge that the units of
an enforcement mechanism can have. Finally, we introduce the notion of authoritative
delegates and present a connection between static delegation and effective enforcement.

Definition 7.1. We say that a unit of a distributed enforcement mechanism performs
static delegation if each of the following conditions is satisfied:

(a) The unit determines solely from an intercepted event itself whether and to which
unit it delegates the decision-making for the event.

(b) The unit transmits, as a delegation request for in intercepted event, solely the event
itself as well as, optionally, static information (such as the unit’s identifier) that is
the same for all events.

(c) Upon receiving a delegation request for an event, whether and where the unit
delegates are the same as if the unit intercepted the event itself. If the unit delegates,
then it transmits the received delegation request without change. ♦

We call the delegation static because information gathered by the unit at run-time does
not influence the delegation behavior. As an information source, we even include the
source for an event, namely interception by the unit or delegation from another unit, and
require that this does not impact the delegation.

Example 7.1. Consider a distributed enforcement mechanism in which there is one
central unit. Each unit that is not the central unit delegates the decision-making for
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all intercepted events and for all received delegation requests to the central unit. For
the delegation request, the unit transmits the intercepted event together with the unit’
identifier or, respectively, the received delegation request. Then each of the non-central
units performs static delegation. Notably, the condition of Definition 7.1 (a) is satisfied
since the unit always delegates to the central unit and, thus, whether and to which unit it
delegates particularly does not depend on more than the intercepted event itself. ♦

We model the parametric aspect of static delegation by the responsibility function of a
unit as follows.

Definition 7.2. Let resp : E → Ids be a total function, where E is a set of events and
Ids is a set of unit identifiers. We say that resp is the responsibility function of a unit with
identifier id if the unit, upon intercepting or being delegated an event e ∈ E,

(a) delegates the decision-making for e to the unit with identifier id ′ if resp(e) = id ′

and id ′ 6= id ; and
(b) does not delegate the decision-making for e if resp(e) = id .

We call the unit with identifier id ′ responsible for an event e if resp(e) = id ′. ♦

The definition captures whether and where a unit delegates the decision-making for
an event. Since the decision-making for events as well as delegation requests for events
in static delegation must be delegated to the respective same units, the responsibility
function captures both cases, i.e., (i.e., Definitions 7.1 (a) and 7.1 (c)). As the information
transmitted as part of a delegation request for an event is fixed, we do not capture it in the
model.

We next lift the notion of static delegation from individual units to enforcement mecha-
nisms consisting of one or more units.

Definition 7.3. An enforcement mechanism performs static delegation if each of its units
performs static delegation and all units share the same responsibility function. ♦

In the following, we make some observations for enforcement mechanisms that perform
static delegation.

Observation 1: For each event occurring at run-time in the distributed target of an en-
forcement mechanism performing static delegation, delegation is either not performed
or performed exactly once. This is because a delegate shares the same responsibility
function as the delegating unit and, thus, could only delegate to itself.

Observation 2: With static delegation, run-time information does not influence whether,
where and what a unit delegates. Thus, static delegation facilitates separation of
delegation and state-keeping in implementations of local policies.

Observation 3: At any point in time, a unit of the mechanism could “know”1 about all
intercepted events for which the unit is responsible, as well as the decisions made for
them and a partial order on the occurrences of these events.

1We use knowledge in the sense of the set of propositions that hold in all possible worlds that are consistent
with the units local view, as used, e.g., by Fagin et al. [FMH+03].
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Observation 4: With static delegation, each event is decided by a single unit (the responsi-
ble unit for the event) and based on a single snapshot of this unit.2

As with the static delegation technique, we primarily aim at effectiveness, we first focus
on Observations 3 and 4. We come back to Observation 2 in Section 7.3 and we discuss
possible optimizations with regard to Observation 1 in Section 7.5.

The responsibility function of an enforcement mechanism performing static delegation
impacts the knowledge that the units can develop at run-time about the target’s behavior.
At run-time, a unit gets to know about all intercepted occurrences of those events that the
unit is responsible for. Moreover, since the unit also makes the decisions for those events,
it also gets to know which of the events actually occur when the decisions are enforced.
The unit can use this knowledge for future decisions. The choice of the responsibility
function thus, influences whether the unit at run-time has sufficient knowledge to make
decisions that render effective enforcement for a given safety property. We capture this
condition as follows.

Definition 7.4. We call a unit of an enforcement mechanism authoritative for an event of
an encapsulated target under a safety property if, for each execution of the encapsulated
target and at any point in time during the execution, the unit’s local information at that
point in time suffices to determine whether the occurrence of the event at this time would
comply with the safety property. We call a unit authoritative for a set of events if it is
authoritative for each event in the set. ♦

The unit’s local information aggregates knowledge of static as well as of dynamic kind.
Static knowledge can include the safety property and its own as well as the other units’
delegation and decision-making procedure. Dynamic knowledge, on the other hand, can
include the events that occurred previously at this unit and remote occurrences of events
obtained from prior communication with remote units.

Before we come to authoritativity for distributed enforcement mechanisms, we first
introduce a particular class of security properties.

Definition 7.5. We call a security property P over event set E order-insensitive if

∀t1, t2 ∈ E∗ :
(
(∀e ∈ E : |t1 � {e}| = |t2 � {e}|) _ (t1 ∈ P ] t2 ∈ P)

)
holds. ♦

Intuitively, a security property is order-insensitive if two sequences of events in which
each event occurs the same number of times (i.e., only the ordering of events in the
sequences might differ) are classified either both as security-compliant or both as security
violations. Among the class of order-insensitive security properties are some concrete
properties collected by Fong [Fon04]. From these security properties, we discuss the
one-out-of-k property [EAC99; Fon04] in Example 7.2 within this section and study the
enforcement of the Chinese Wall property [BN89] in Section 7.4.

In the following, we discuss authoritativity for several constellations in which this
property can be achieved.

2This property differs from the delegation used in the case study of Chapter 6, in which a re-share can
involve several delegation requests and global state can change during the delegation.
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Conjecture 7.1. The one unit of a non-distributed enforcement mechanism is authoritative
for the set of all events that are subject to the security property if and only if this security
property is soundly and transparently enforceable. ♦

This is because the unit gets to know about all the events as it must be responsible for
them. Hence, whether the unit can make sound and transparent decisions for the events
depends solely on whether such deciding is possible at all. Note that we use conjectures for
the sake of independence from a concrete formalism for capturing targets and enforcement
mechanisms here.

In this thesis, the focus is on distributed targets. As the first step in this direction, the
following conjecture makes a transition to a centralized delegation.

Conjecture 7.2. If an enforcement mechanism performs static delegation with a responsi-
bility function that makes one unit responsible for all events, then this unit is authoritative
for the set of all events if the security property is (soundly and transparently) enforceable and
order-insensitive. ♦

A responsible unit as described in Conjecture 7.2 may know all granted events but not
necessarily the ordering in which these events occurred. This is because the decisions made
by the authoritative unit might be realized at the other units in a different ordering than the
decisions, e.g., due to latencies in the cooperation among units. For an order-insensitive
security property, this knowledge is sufficient, however, to be authoritative.

As an example for Conjecture 7.2, we discuss the one-out-of-k authorization property
[EAC99; Fon04]. Although in the literature this property is described in a non-distributed
system setting, we can naturally lift it to a distributed setting as follows.

Example 7.2. System “office” consists of several desktop computers on which from time
to time new applications are installed. Each application, for security reasons, is required
to access resources only in accordance with some class of applications. For example, an
application of class “browser” may access network connections, access temporary files,
and access the display to show content [Fon04]. Among the k classes of applications, the
class that applies to an application is determined dynamically by the accesses made. No
application may exceed the access rights provided by its class. ♦

The security property is enforceable, as it is a safety property and all events subject to the
property are controllable by an enforcement mechanism. The property is order-insensitive,
as the order of an application’s permissible accesses is irrelevant for the classification and
for the determination of which accesses the application may perform at any point. That
is, by designing the units with static delegation where all events of a new application
are delegated to one and the same responsible unit, this unit is authoritative for all the
application’s access events.

In Conjecture 7.2, a single unit is responsible for all events. That is, the conjecture
refers to a centralized cooperation by the enforcement mechanism. We next address
decentralized cooperation.

A security property might be the conjunction of several independent security properties,
which we use as starting point for the decentralization. For instance, the property might
constrain the permissible events of each user or each agent of the target independently
from the events of other users and, respectively, agents. Rather than users or agents, the



112 Chapter 7. Cooperative Enforcement with Authoritative Delegates

security property could also constrain the permissible events of resources managed by the
target, such as files. We capture such conjoined security properties as follows.

Definition 7.6. We call a security property P over event set E partitionable into a partition
(Ei)i∈I of E if a family of security properties (Pi)i∈I with Pi ∈ Ei∗ exists such that P =
{t ∈ E∗ | ∀i ∈ I : ((t � Ei) ∈ Pi)} holds. ♦

In the definition, independence between the individual security properties Pi is achieved
by the constraint that they are sequences over mutually disjoint sets of events. That the
overall property, P , is indeed the conjunction of the individual properties is adequately
captured by the last constraint in the definition: A sequence of events complies with P
if and only if its projection to each of the individual properties’ domains complies with
the respective property. The following theorem provides two essential properties of
partitionable security properties.

Theorem 7.1. Let E be a set of events and let P be a security property over E.
(a) P is partitionable into (Ei)i∈{>} where E> = E.
(b) Let E = (Ei)i∈I and E ′ = (E′j)j∈J be partitions of E such that E is a refinement of E ′

and P is partitionable into E . Then P is also partitionable into E ′. ♦

The theorem shows that there is a “trivial” partition into which every security property
is partitionable and that partitionability is closed under less fine-grained partitions of
events. A formal proof of the theorem can be found in Appendix A.1 on page 189.

In static delegation, the responsibility function establishes a partition of events through
its assignment of the event to the respective responsible units.

Definition 7.7. Let resp : E → Ids be a responsibility function over sets E and Ids of
events and, respectively, unit identifiers. Let I = {id ∈ Ids | ∃e ∈ E : resp(e) = id} be
the set of identifiers of units that are responsible for at least one event. We call (Eid)id∈I ,
where Eid = {e ∈ E | resp(e) = id}, the induced event partition of resp. ♦

Note that the induced event partition is indeed a partition of the respective set of
events E: all elements of the partition are non-empty, mutually disjoint, and together
cover the set of all events. The induced event partition is determined by the responsibility
function, i.e., by a design choice in how the mechanism cooperates. In general, the induced
event partition is unrelated to the partitionability of a security property.

Conjecture 7.3. Let an enforcement mechanism performing static delegation be given and
let resp : E → Ids be the responsibility function of the units. Let P be an enforceable security
property over E. If P is order-insensitive and partitionable into the induced event partition of
resp, then at any point in time during the execution of a target the responsible unit for an
event is authoritative for this event. ♦

A unit as described in Conjecture 7.3 may know all events for which it is responsible. If
the security property is partitionable knowing about these events is sufficient for making
sound and transparent decisions. As before, the unit does not necessarily know the ordering
in which these events occurred, because the decisions made by a unit might be realized
at the other units in a different ordering than the decisions. For an order-insensitive
security property, this knowledge is sufficient, however, to be authoritative. Note that
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Conjecture 7.3 generalizes Conjecture 7.2: The case that a single unit is responsible for
all events is precisely the case considered in the latter conjecture and partitionability in
this case is always given, as shown in Theorem 7.1 (a). Finally, we provide an example
demonstrating that when ordering is relevant for a security property then authoritativity
cannot be achieved in general.

Example 7.3. System “2-store” consists of two agents, each offering storage space to
users. Users can utilize storage at each of the agents. However, the total amount of storage
available to all users on the system is limited by a fixed quota. Users can consume storage
space (by uploading files to the system) and can release storage space (by deleting files).
The security property for the system specifies that no user at any time may exceed her
quota on the system. ♦

The security property in the example is partitionable into the individual users’ sets of
consume and release events. However, the security property is not order-insensitive, as the
ordering among consume and release events matters: If the quota are 3, then the sequence
t = 〈consume(2), consume(2), release(1)〉 of events by one user violates the property
while t ′ = 〈consume(2), release(1), consume(2)〉 does not. Regarding authoritativity, we
consider sequence t after its first event, consume(2), was granted. When a delegation
request for the second event, consume(2) is received by the responsible unit for the event,
this unit must make a decision. If the unit allows the event to occur, then this decision
is unsound if the release(1) occurs only after the second event occurred. On the other
hand, if the unit disallows the event to occur, then this decision is intransparent if, before
this decision is realized, the event release(1) is intercepted and allowed. Hence, static
delegation cannot establish authoritative units for all events in this example. Notably, the
security property is not order-insensitive, but for deciding whether permitting an event
under a given execution does not require knowing the ordering of events in the execution.

The connection between static delegation and authoritativity that we have established
with Conjectures 7.1 to 7.3 provides sufficient conditions for effective enforcement. In
particular, we have identified a class of security properties – order-insensitive partitionable
properties – that allow for an effective decentralized enforcement based on the static
delegation technique.

7.3. Static Delegation in CoDSPL

For specifying local policies that perform static delegation, we present an extension library
for CoDSPL. The extension library for static delegation is implemented as a Java package
that is part of CliSeAu but is not mandatory to be used by CoDSPL policies. The extension
library is provides simple means for specifying local policies using static delegation.

The extension library for static delegation consists of three classes, which are shown
with shaded background in Figure 7.1 on the following page. For employing the extension
library in a CoDSPL policy, a subclass of the abstract class StaticDelegationPolicy, which
itself is a subclass of LocalPolicy, must be used for the local policy component of the units
specified by the CoDSPL policy. The abstract class provides a public constructor, which
receives as argument the identifier of the unit. For the static delegation, it provides three
protected abstract methods that a concrete local policy must implement:
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LocalPolicy
{abstract}

- identifier: String
+ LocalPolicy(String)
+ localRequest(Event): LocalPolicyResponse
+ remoteRequest(DelegationReqResp): LocalPolicyResponse

«interface»
DelegationReqResp

StaticDelegationPolicy
{abstract}

+ StaticDelegationPolicy(String)
 # getResponsible(Event): String
 # getNext(String): String
 # makeDecision(Event): EnforcementDecision

DirectDelegationRequest
- sourceId: String
- event: Event
+ DirectDelegationRequest(String,Event)
+ getSourceId(): String
+ getEvent(): Event

DirectDelegationResponse
- destId: String
- decision: EnforcementDecision
+ DirectDelegationResponse(String,
     EnforcementDecision)
+ getDestId(): String
+ getDecision(): EnforcementDecision

Figure 7.1.: Low-level architecture of the extension library for static delegation in CoDSPL
policies (UML class diagram)

• Themethod getResponsible takes an event and returns the identifier of the responsible
unit. This method corresponds to the responsibility function we introduced in
Section 7.2.

• The method makeDecision takes an event and returns a decision. This method may
be invoked by the extension library with a locally intercepted event or with an event
for which the decision-making was delegated by another unit.

• Finally, the method getNext takes a unit identifier and returns a unit identifier. This
method allows one to implement routing separately from the determination of the
responsible unit.

Through these three methods, our extension library facilitates the implementation of
local policies that satisfy the conditions of static delegation of a unit (Definition 7.1 on
page 108). Note that the extension library does not enforce that local policies satisfy the
conditions, as a StaticDelegationPolicy subclass could, e.g., implement the determination of
delegates based on more than just the respective event.

Internally the StaticDelegationPolicy class uses two classes, one for delegation requests
and one for delegation responses. The former holds the event for which the decision-
making is being delegated as well as the unit identifier of the event source. The class
for delegation responses holds the decision made as well as the unit identifier to which
the decision is to be delivered. Objects of these classes are able to encapsulate sufficient
information for the StaticDelegationPolicy to perform the delegation in a way that a unit
receiving a delegation request can return a decision to the unit that issued the delegation
request. The use of these two classes, however, is transparent to local policies implemented
using the extension library.

We illustrate the delegation specified by a local policy class that inherits from class
StaticDelegationPolicy in the sequence diagram depicted in Figure 7.2 on the facing page.
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i:EC :Poli n:EC :Poln r:EC :Polr
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i
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Figure 7.2.: Cooperation of units with static delegation (UML sequence diagram)

For the illustration we take the case that an event ev is intercepted by a unit that is not
responsible for this event. The sequence diagram displays three units, named i, n, and r
as well as their local policies of types Poli, Poln, and Polr, each with their own lifeline
(the parallel vertical lines). In the sequence diagram, i is the unit at which an event ev is
intercepted. By calling methods getResponsible and getNext, the unit uses Poli to determine
the responsible unit r for event evas well as the next unit n to unit r. The unit i then
delegates to n, sending the event as well as its own identifier. At unit n, the same control
flow is triggered by receiving the delegation request. At the responsible unit, the control
flow starts with getResponsible as for the other units, but diverges when the unit obtains
that it is responsible. Thereafter, the unit calls method makeDecision of Polr to compute
decision dec for ev and then calls method getNext to obtain the next unit to unit i, at which
ev was intercepted. Finally, unit rsends decision dec and identifier i of the destination in
a delegation response to unit i, at which the decision would afterwards be realized.

The sequence diagram particularly illustrates two properties of static delegation. Firstly,
the decision-making for an event via method makeDecision is triggered only a single time
during the process. That is, the decision-making is performed based on the one partial
snapshot of the enforcement mechanism that the responsible unit has at the time of
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deciding. This is in contrast to, e.g., the decision-making of CReDiC (see Section 6.4),
which can involve partial decisions of several units at various points in time and, thus,
enable race conditions that result in unsound or intransparent decisions. Secondly, a
decision made by a responsible unit is not further processed by the local policy of the
recipient unit. That is, the responsible unit “knows” that its decisions are going to be
realized and use this in its decision-making.3

Overall, the proposed extension library provides means for implementing local policies
of CoDSPL policies that perform static delegation. The interface that such a local policy
must implement is simple – three methods – and facilitates separation of concerns for
delegation, decision-making, and routing.

7.4. Case Study

We demonstrate the application of the static delegation technique in a case study. In the
case study, we show that static delegation can be used for effectively enforcing Chinese
Wall Security Policies. For the specification of an enforcement mechanism for Chinese
Walls, we utilize CoDSPL with the extension library for static delegation and provide
evidence that the extension library enables modular local policy implementations. We
empirically confirm that the enforcement can be performed effectively with moderate
performance overhead.

The case study is structured as follows. We start by introducing the application scenario
in Section 7.4.1. In Section 7.4.2 we develop a local policy for a decentralized cooperative
enforcement in the application scenario based on the extension library introduced in
Section 7.3. We evaluate first the faithfulness of the policy analytically, in Section 7.4.3.
Afterwards, in Section 7.4.4 we provide an empirical evaluation of the faithfulness and
performance of the policy in an experimental setting.

7.4.1. Application Scenario

The application scenario we investigate in this section is a distributed storage service in
which conflicts of interest shall be prevented programmatically. We have briefly discussed
this scenario already in Example 1.1 on page 6.

Target and stakeholders The target of our case study is a distributed storage service. It
consists of several services, each of which constituting an agent of the target. The services
store files and offer an interface to its users for downloading and uploading files. Figure 7.3
on the facing page shows the system’s architecture.

Overall, we identify three groups of stakeholders in the application scenario. The users
of the storage service process the files as part of contracts with the proprietors. The
proprietors are the legal owners of the files. They might interact with the storage service
for placing the files. This task, however, could also be performed by the users as part of
their contractual obligations. For an example, users could be financial auditors, files could

3We neglect circumstances such as message loss in the communication between units or an inadequate
choice for the recipient’s enforcer component here.
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Figure 7.3.: Storage service architecture and stakeholders

be balance sheets, and proprietors could be large companies, such as banks. Next to users
and proprietors, the third stakeholder is the provider of the storage service. Users and
proprietors are depicted in the figure by rounded boxes. The shaded areas around the
proprietors indicates the files that the respective proprietors own. Finally, as the arrows
in the figure indicate, users can in general access files on any of the system’s services.

Security requirement The security requirement whose enforcement we investigate in this
case study is a requirement by the proprietors:

No user may at any point in time have had access to two files that belong to
competing proprietors.

The security requirement aims to prevent conflicts of interest among the users that might
arise from competitors’ business secrets. Note that the application scenario in practice
typically involves further security requirements. For instance, proprietors would require
that only authenticated and authorized users can access their files. We neglect this
requirement in our case study, as commodity storage server protocols and implementations
(FTP, HTTP, and cloud implementations on top of these protocols) already offer security
features for them. Also outside the scope of our case study are requirements such as low
downtime (availability) or low probability of data loss (integrity). Instead, our case study
focuses on the prevention of conflicts of interest, a security requirement that is typically
not fulfilled by commodity storage software.

The concrete requirement against conflicts of interest that we choose for the case study
is the Chinese Wall Security Policy (brief: CWSP ), which specifies:

“Access [of a subject to an object] is only granted if the object requested:

1. is in the same company dataset as an object already accessed by that
subject, i.e., within the Wall, or

2. belongs to an entirely different conflict of interest class.” [BN89]

The requirement, thus, captures that a subject may access objects from the dataset of at
most one company within a conflict of interest class. By the term conflict of interest class
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(brief: COI class) we refer to a set of companies that compete with each other. Transferred
to our application scenario, users are the subjects, files are the objects, proprietors are the
companies, and conflict of interest classes are sets of competing proprietors.

7.4.2. ChESt – CoDSPL policies for Chinese Walls

ChESt (abbreviating “Chinese Wall Enforcement for Storage Systems with CliSeAu”) is a
local policy for enforcing Chinese Wall Security Policies in distributed storage services
and CoDSPL policies based on this local policy for two FTP servers, AnomicFTPD [Ano09]
and simple-ftpd [Sim10]. The local policy is built with the extension library for static
delegation proposed in Section 7.3 and utilizes a responsibility function that is suitable
for authoritativity in the application scenario. In the following, we first introduce the
event objects and states used by the local policy, afterwards describe the proposed local
policy, and finally cover briefly how the local policy is completed to CoDSPL policies for
AnomicFTPD and simple-ftpd.

For event objects we define a class, ConflictClassAccessEvent, that contains fields for four
attributes: the name of the file being accessed, the proprietor to whom the file belongs, the
COI class of this proprietor, and the user on whose behalf the access shall be performed. All
fields are designed to hold String objects. In the model we pursue with this design of event
objects, we rely on information for all four attributes to be available upon an intercepted
access operation. While the name of the file is naturally available, the others deserve an
explanation. The accessing user must be authenticated and authorized for accessing any
files at all, so the user’s identity is known and, depending on the implementation of the
target, available as part of the session information maintained for the user’s connection.
The proprietor could be the owner of the file in the storage service’s file system. Finally,
the COI class might not be available in commodity storage services as such, but could, for
instance, be preserved by the group of the file being accessed.

Listing 7.1 on the next page shows the code of ChESt’s local policy class, which inherits
from StaticDelegationPolicy. That is, the local policy of ChESt is built with the extension
library for static delegation proposed in Section 7.3. The code omits exception handling,
the constructor, and inline code comments. In the following, we discuss how the imple-
mentation realizes state, the responsibility function, routing, and decision-making.

The state of a local policy of a ChESt unit holds, at any point during run-time, an
abstraction of the granted accesses of all users for which the unit is responsible. Concretely,
the state stores for each user and each COI class the proprietor whose files the user has
accessed. If a COI class has not been accessed by the user, then no entry for this pair is
stored. Technically, the state is stored as a map from String objects to maps from String to
String. This information is sufficient for recording all information relevant to the unit for
making sound and transparent decisions for the Chinese Wall Security Policy. Further
information, such as file names or ordering of accesses of the user are not required and,
thus, abstracted away by the state for reducing the memory consumption of the unit.

In the design of the responsibility function for static delegation, we assign the responsible
unit to an event based on the joint hash value of the user and the COI class of the event
object. Concretely, the responsible unit is computed by taking this hash value modulo the
total number of units in the enforcement mechanism and appended to the prefix “id-”. The
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1 public class ChineseWallPolicy extends StaticDelegationPolicy {
2 privateMap<String, HashMap<String, String>> accessedFiles;
3

4 protected String getResponsible(Event event) {
5 ConflictClassAccessEvent ChWev = (ConflictClassAccessEvent)event;
6 return ”id−” + (Math.abs((ChWev.conflictClass.hashCode() ^

ChWev.userName.hashCode()) % numberOfUnits));
7 }
8 protected String getNext(String destinationId) { return destinationId; }
9 protected EnforcementDecision makeDecision(Event event) {

10 ConflictClassAccessEvent ChWev = (ConflictClassAccessEvent)event;
11 HashMap<String,String> accessed = accessedFiles.getOrDefault(ChWev.userName,
12 new HashMap<String,String>(1));
13 String accessedCompany = accessed.get(ChWev.conflictClass);
14 if (accessedCompany != null && !ChWev.company.equals(accessedCompany)) {
15 return BinaryDecision.REJECT;
16 } else {
17 accessed.put(ChWev.conflictClass, ChWev.company);
18 accessedFiles.put(ChWev.userName, accessed);
19 return BinaryDecision.PERMIT;
20 }
21 } }

Listing 7.1.: The local policy of ChESt

encapsulation descriptions ChESt are defined such that they declare exactly those unit
identifiers. The assignment of responsible units through hash values achieves a uniform
distribution of responsibilities for avoiding bottlenecks. More importantly, the assignment
enables authoritative units as we will analyze in Section 7.4.3.

The decision-making of the local policy uses the state to check whether the user who
performs the intercepted access event already accessed files from the same COI class. If
this is the case, the access is permitted if and only if the prior accesses to the COI class
were to files of the same proprietor. Otherwise, i.e., if the user never accessed files from
the COI class, the access is always permitted. When an access to a file is permitted, the
local policy updates its state as follows. If the user already accessed a file from the same
COI class before, then the state is not changed, because the user’s access to files of the
same proprietor in the COI class has already been recorded in the state. Otherwise, the
state is updated to hold all information that was in the state before and additionally the
information that the user accessed, in the COI class of the access, files from the proprietor
of the access. That is, overall decision-making and state-keeping are implemented as for a
non-distributed target.

7.4.3. Analytic Evaluation of ChESt

We analyze the design of ChESt with regard to authoritativity and analyze the implemen-
tation of ChESt with regard to their complexity.
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Authoritativity We introduced the notion of authoritativity in Definition 7.4 to capture
that a unit is able to determine whether an event would comply with or violate a security
property. This ability, in turn, allows the unit to make sound and transparent decisions. In
Conjecture 7.3, we provided a sufficient condition for authoritativity under decentralized
enforcement based on static delegation. In the following, we utilize this condition to show
that ChESt establishes authoritative units.

As a first step, we make an observation about properties of the Chinese Wall Security
Policy.

Conjecture 7.4. The Chinese Wall Security Policy, as introduced in this thesis based on
Brewer and Nash [BN89], is order-insensitive and is partitionable into the sets of access events
that share the same user and COI class. ♦

Firstly, the CWSP is clearly order-insensitive, as it only constrains which access events
may occur together in one execution of a target and which may not. Exchanging the
ordering between access events in an execution, thus, does not change compliance with
the CWSP. Secondly, the CWSP is also partitionable into the sets of events named in
the conjecture. This is because an execution of a target complies with the CWSP if and
only if the entirety of each user’s accesses to each of the COI classes comply with the
CWSP. Access events of distinct users or to distinct COI classes by the same user do not
interfere with each other under the CWSP. The family of security properties demanded by
Definition 7.6, thus, is constituted by the individual security properties that require for
the respective user and COI class that all accesses of the user to this COI class are to files
of the same proprietor.

The CWSP is not only partitionable as provided in Conjecture 7.4 but is also partitionable
into the partition induced by the responsibility function in ChESt. Recall that by this
responsibility function, a unit is responsible for the union of all access events of particular
combinations of users and COI classes – namely those exhibiting a particular hash value.
Consequentially, the partition provided in Conjecture 7.4 is a refinement of the induced
event partition. Through Theorem 7.1 (b), we therefore obtain that the CWSP is indeed
partitionable also into the partition induced by the responsibility function in ChESt.

The above arguments, together with Conjecture 7.3, allow the conclusion that for all
access events the respective responsible unit is authoritative for the event. That is, in
ChESt, sound and transparent decisions for all access events can be made by the respective
responsible units.

Complexity of local policy design and implementation The local policy of ChESt, imple-
mented in class ChineseWallPolicy, consists of 56 SLOC. Of these lines, 25 SLOC are for
decision-making and state-keeping in method makeDecision, four SLOC are for the re-
sponsibility function and one SLOC implements for routing in methods getResponsible and
getNext. The remaining lines distribute over package imports, the field definition for the
state, and boiler-plate code. In addition, ChESt consists of 18 SLOC for the definition of the
event objects 11 SLOC for the decision objects, 35 SLOC for the countermeasure objects,
and 54 SLOC for the event factory and enforcer factory. In total, ChESt thus consists of
174 SLOC. These numbers indicate that policies for coordinated decentralized enforcement
can be implemented in a modular fashion with low code complexity in CoDSPL based on
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the extension library for static delegation.

7.4.4. Empirical Evaluation of the Policy

We empirically evaluate effectiveness and performance of ChESt. We conduct the evalua-
tion along the lines as the evaluation of Chapter 6. That is, concerning the effectiveness, we
evaluate selected policy-compliant as well as policy-violating test cases. Concerning the
performance, we evaluate the overhead caused by ChESt at run-time of the two targets as
well as the time taken to instrument these targets using CliSeAu. The evaluation shall show
that the Chinese Wall Security Policy is effectively enforced in the application scenario
and with reasonable performance.

For the experimental evaluation, we used three Intel Quad-Core (i5-4590 3.3GHz) ma-
chines with 32 GB RAM. The machines ran Ubuntu 14.04.2 LTS with a 3.13.0 kernel and
OpenJDK 7 for running the FTP servers. We measured page fetch times as well as the
encapsulation performance on an Intel Quad-Core (i7-6600U 2.6GHz) machine with 16 GB
RAM, a 4.4.26 kernel, OpenJDK 8, and AspectJ 1.8.10, using curl 7.52.1 with trace-time
option.

The configuration of the targets is the same for AnomicFTPD and for simple-ftpd and is
as described in the following. The configuration provides the files for both the effectiveness
test cases and the run-time performance evaluation. The target consists of three agents
(FTP servers), each running on a separate computer. Two users have accounts on each
of the target’s agents, “user0” and “user1”. There are 1001 COI classes, named “coi0” to
“coi1000”. For class “coi0”, there are two files of proprietor “p0”, named “coi0:p0:f0” and
“coi0:p0:f1” and one file of proprietor “p1”, named “coi0:p1:f0”. For the other COI
classes, there are one file for each of the two proprietors, named “coiX:pY:f0”, where X
is the number of the COI class and Y the number of the proprietor. Each of these files
contain random data of size 100 kilobytes. Moreover, there are one file each for file sizes
0 kilobytes to 1000 kilobytes in steps of 100 kilobytes, named “coi0:p0:sN” where N is
the number of kilobytes. All of the aforementioned files are stored in the same directory
and on each agent of the target.

Effectiveness of the Enforcement

In this section, we show by means of several test cases that ChESt is effective in enforcing
the Chinese Wall Security Policy in storage systems, particularly under race conditions.

We select test cases from two categories: tests without race conditions and tests with
race conditions. Table 7.1 on the following page displays the list of test cases, along with
their expected results and their empirically observed results.

The test cases are split into two groups, separated by a horizontal rule in the table.
Test cases 7.1 and 7.2 cover the two conceptual possibilities for a single user to download
distinct files in compliance with the CWSP. Test case 7.3 covers the one possibility for a
user to violate the CWSP and Test case 7.4 covers same situation except that the downloads
are conducted by two distinct users and, as such, compliant with the CWSP. Finally, Test
case 7.5 modifies Test case 7.3 to several in which the user attempts to circumvent ChESt
through race conditions. For each test case, the table provides the test itself as well as the
expected result from an effective enforcement mechanism for CWSP.
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# test case expectation result

7.1 user successively downloads two
distinct files from same proprietor

both downloads succeed 4

7.2 user successively downloads two files
from different COI classes

both downloads succeed 4

7.3 user successively downloads two files
from same COI classes but different
proprietor

first download succeeds, second is
denied

4

7.4 two users successively download one
file each from same COI classes but
different proprietor

both downloads succeed 4

7.5 for 1000 distinct COI classes, a user
concurrently downloads two files with
different proprietor from this COI
class

for each of the COI classes, one of the
downloads succeeds and the other one
is denied

4

Table 7.1.: Test cases for the empirical evaluation of ChESt’s effectiveness

We conducted each of Test cases 7.1–7.4 manually for each of AnomicFTPD and simple-
ftpd, which were both encapsulated with ChESt. Each of the two downloads were per-
formed from distinct encapsulated agents. The test cases were conducted independently
from each other by restarting the encapsulated target between the tests. Test case 7.5
was conducted in an automated fashion through a script. In the script, we also measured
at which points in time the concurrent downloads are requested from the servers for
gathering evidence whether the downloads are indeed started sufficiently close together
for discovering potential flaws. The observed results are presented in the rightmost column
of Table 7.1. A checkmark (4) indicates that the respective observed result equaled the
formulated expectation for both AnomicFTPD and simple-ftpd each of the times the test
was conducted; a cross (8) indicates that observed and expected result differed at least
once for at least one of the two targets. As the table shows, in all conducted test cases
the observed results match the expected results. We are confident that the automation
for Test case 7.5 was indeed suitable for discovering potential flaws, because the points in
time of the concurrent downloads were often only few microseconds apart.

Overall, the empirical evaluation of ChESt’s effectiveness based on the presented test
cases provides strong evidence that ChESt indeed effectively enforces the CWSP in storage
systems, even in presence of race conditions.

Run-time Performance

ChESt, like CReDiC, is an enforcement mechanism and, as such, introduces a certain
amount of overhead at the run-time of its target. In the following, we evaluate the amount
of overhead in our experimental setup by comparing the performance of ChESt to the
performance of the target. We perform this comparison for the two targets of ChESt,
AnomicFTPD and simple-ftpd.



7.4. Case Study 123

For the performance evaluation, we selected two experiments. In both experiments, we
essentially perform Test case 7.1, i.e., permitted downloads, except that always the same
file is downloaded. The first experiment varies the size of the file being downloaded as
a parameter whose choice is expected to be irrelevant for the performance of ChESt. In
this experiment, we choose to perform the download at an agent whose unit is also the
responsible unit for this download event. That is, in the experiment, no delegation takes
place. The second experiment uses a fixed file size (100 kilobytes) and varies the number
of hops taken in the cooperation among units. For this, we introduced a variation in the
routing of ChESt (i.e., in method getNext) such that the units establish a ring topology and
ensured for a varying number of agents that the responsible unit differs from the unit that
intercepts the access event. This way, the number of hops taken equals the number of
agents in the storage system. Our hypotheses for the experiments are that the file size
does not influence the overhead caused by ChESt and that the overhead increases linearly
in the number of hops.

We conducted the experiments by performing FTP file downloads from the agents
of the storage service and measuring the duration until the file was received. In the
measured durations, we included the whole time frame from sending the FTP request
until the receipt of the complete file. The measured durations do not include further parts
of the FTP connection, such as logging in, changing the directory to the directory of
the respective file, and logging out. We expect these durations to adequately reflect the
durations and, consequentially, also overheads as they would be perceived by an actual
user of the respective target. The measurings were performed and recorded by the curl
tool, which supports downloading of files from FTP servers and recording time stamps
with microseconds precision.

Figure 7.4 on the next page shows our experimental results. For each of the two servers,
the figure contains three plots. The first plots, (a) and (b), show the absolute times that
the downloads of files took, without ChESt (blue circle marks) and with ChESt (red box
marks). The second plots, (c) and (d), show the absolute (blue circle marks) and relative (red
box marks) overhead induced by ChESt. The absolute overhead is the difference between
the first two plots, and the relative overhead is the absolute overhead divided by the
absolute time without ChESt. Both plots show results for ChESt in which no cooperation
takes place. The third plots, (e) and (f), show the absolute overhead induced by ChESt for
different numbers of hops in the cooperation between units.

Without ChESt, downloads of files from AnomicFTPD took from 101.2ms to 119.5ms,
depending on the file size. Downloads of files from simple-ftpd took between 41.2ms
and 41.5ms. With ChESt, downloads from AnomicFTPD took from 103.8ms to 122.0ms
and downloads from simple-ftpd took between 43.1ms and 43.5ms. For both FTP servers,
the resulting absolute overhead ranged between 2.44ms and 2.64ms (AnomicFTPD) and,
respectively, 1.91ms and 2.04ms (simple-ftpd). The relative overhead dropped from 2.54%
to 2.11% for AnomicFTPD and varied between 4.63% and 4.94% for simple-ftpd. For two
hops in the cooperation, the absolute overhead for downloading a 100 kilobytes file was
6.07ms for AnomicFTPD and 5.00ms for simple-ftpd. For three hops, the overhead was
8.26ms and, respectively, 7.25ms.

The experiments show that the two FTP servers differ in their efficiency, presumably due
to their internal use of different buffering techniques and buffer sizes for implementing the
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Figure 7.4.: Run-time performance evaluation results for ChESt
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Figure 7.5.: Encapsulation performance evaluation results for ChESt

protocol. We verified particularly for simple-ftpd that downloads were correctly conducted
in the experiments. The run-time overhead introduced by enforcing the CWSP with ChESt
shows to be independent of the sizes of downloaded files, as expected. Moreover, the
experiments reveal a roughly linear increase of the overhead in number of hops by around
2ms per hop. Overall, the results confirm that ChESt efficiently enforces the CWSP in the
distributed storage service.

Encapsulation Performance

In order to use ChESt, CliSeAu must be used to encapsulate the target before the target
is started. This step has to be performed only once before the encapsulated target is
started. In the following, we evaluate for a varying number of agents of the two targets –
AnomicFTPD and simple-ftpd – the time taken by CliSeAu to encapsulate the target.

In the evaluation, we used the same configuration for each agent and its unit except
that each unit had a distinct unit identifier. The CoDSPL policies provided to CliSeAu
in the individual experiments, thus, varied only in the lists of unit identifiers. For each
number of agents encapsulated, we conducted 100 measurings. The plots in Figure 7.5
show the results of the evaluation. The horizontal axes of both plots indicate the number
of agents encapsulated in the respective experiment. The vertical axes indicate the time
taken, in seconds. The plot on the left of the figure shows two bars for each number of
agents, depicting the mean of the lower 90th% of the 100 conducted measurements [Oak14,
p. 28] for AnomicFTPD (left, blue) and simple-ftpd (right, red), respectively. For 5 agents,
the plot on the right of the figure contains two box plots, one for AnomicFTPD and one
for simple-ftpd. The kind of data displayed by each box plot – minimum, first quartile,
median, third quartile, and maximum – are the same as in Figure 6.5 on page 105.

The left plot in Figure 7.5 shows the results of measuring the time taken by CliSeAu
for applying ChESt to each of the two FTP servers. For AnomicFTPD, the time grows
from 1.39s for 1 agent to 11.12s for 10 agents. For simple-ftpd, the time grows from
1.32s for 1 agent to 10.48s for 10 agents. With both servers, as the figure shows, the
time grows about linearly with the number of agents. The instrumentation that is part of
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CliSeAu’s encapsulation increased the JAR file of AnomicFTPD from 32.6KB to 38.1KB
and the JAR file of simple-ftpd from 18.4KB to 22.9KB. The box plots of the figure shows
that for encapsulating 5 agents, the time taken varied for AnomicFTPD and, respectively,
simple-ftpd by 0.35s and 0.31s between the minimal and maximal time, and by 0.08s and
0.07s between the lower and upper quartile of measurings. That is, the variation in the
time taken is small.

7.5. Optimizations

Static delegation enables effective enforcement while retaining a conceptual simplicity.
Optimizations in terms of the number of delegations are possible when simplicity is
sacrificed to some extent.

Regarding the amount of delegations performed for enforcing a particular security
property, static delegation leaves room for optimizations under certain conditions. For
instance, with certain security properties, once a particular decision about an event has
been made, all subsequent occurrences of the same event could soundly and transparently
be handled according to the same decision. An abstract example of such security properties
are properties that are monotonous over time in the set of permissible events. A concrete
instance would be the Chinese Wall Security Policy, in which the set of permissible events
is monotonically decreasing over time. Hence, such security properties would not require
delegation for the occurrence of an event for which a prior occurrence has already received
the particular decision. The extent to which such augmentations of static delegation lend
themselves for soundly and transparently enforcing security, however, depends on the
respective security property.

Another optimization concerns knowledge about the possible runs of the target. In
our conjectures, we do not make use of knowledge about the possible runs of the target.
Such knowledge about the possible runs of the target could be obtained through static
analysis of the target. Rather, the condition quantifies over all possible event sequences
– an over-approximation of the target’s runs. The use of a more precise set would yield
weaker but yet sufficient conditions.

In our discussions of the possible knowledge of a unit, we deliberately abstract from
any orderings of events. However, the observations by a unit would allow the unit to
establish an ordering at least between some of the observed events – for instance such
events intercepted and delegated by one and the same unit. Capturing the knowledge of
such orderings would reduce the set of possible worlds for a unit to consider in decision-
making and, thus, enable the unit to become authoritative for a broader class of security
properties than order-insensitive ones. Formally such partial orders among observed events
could be captured, e.g., through strand spaces [THG99], a model used for verification of
cryptographic protocols.

7.6. Summary

We introduced the static delegation technique for the cooperation between the units of a
distributed enforcement mechanism. The technique specifies that a unit must delegate
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the decision-making for an event always to the responsible unit for the event, except
when the intercepting unit already is responsible for the event. We defined two classes
of security properties, partitionable security properties and order-insensitive security
properties properties. For properties from the intersection of the two classes, we show
when an assignment of events to responsible units makes the units authoritative and
thereby enables them to effectively enforce the security property. For the specification
of policies that employ static delegation, we presented an extension library for CoDSPL
that consists of an abstract class from which local policy classes can inherit as well as
classes for delegation requests and responses. We presented ChESt, two CoDSPL policies
for enforcing a Chinese Wall Security Policy on a distributed storage service built from
one of two FTP servers. In empirical evaluations, we show that ChESt effectively and
efficiently enforces security in the scenario when applied with CliSeAu.

Static delegation eliminates time-of-check to time-of-use flaws for partitionable order-
insensitive security properties essentially by eliminating the time from between check and
use: Assigning all events from an equivalence class of a partitionable security property to
the same responsible unit ensures that decisions about potentially interfering intercepted
events are made by the same unit; A responsible unit can treat a decision like it was already
enforced because the security property is order-insensitive such that it does not matter
when it’s actually enforced. Since static delegation enables the effective enforcement of
security properties even under race conditions, the technique is particularly suitable for
scenarios such as the conflict of interest scenario, in which attackers can trigger race
conditions. After our initial proposal of an instance of static delegation for enforcing
the Chinese Wall Security Policy [GMS12], similar instances based on responsible units
have been adopted in the literature [DLJ15]. However, we are the first to describe the
technique in the presented generality and the first to classify security properties for
effective enforcement in distributed programs.

A security property that is partitionable into a large partition of events allows static
delegation to be used in a way that distributes the responsibilities for the sets of events
in the partition over the units of a distributed enforcement mechanism. The units of
the mechanism can then cooperate in a decentralized fashion. Particularly, one can
distribute the responsibilities such that expected frequencies of event occurrences for
the individual sets in a partition match the capacities available at the responsible units.
Such a decentralized enforcement avoids bottlenecks in the cooperation among units.
Decentralized enforcement has been studied before [SVA+04; OBM10; KP15] but we are
the first to study it in combination with effectively enforcing security properties.

Static delegation simplifies the design of policies for enforcing security properties in
distributed programs as it obviates the need for specifying how units of a distributed
enforcement mechanism cooperate. Moreover, static delegation for a partitionable order-
insensitive security property makes units responsible for classes of potentially interfering
events and, thereby, enables the decision-making at each individual unit to be realized like
in a non-distributed scenario. Both, simplified delegation and simplified decision-making,
allow for less complex policy specifications and, in consequence, a reduced chance of flaws
in the policy specification.
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Chapter

8
A Formal Cooperation Model for CliSeAu

8.1. Introduction

Formal models of enforcement mechanisms enable unambiguous formulations of desired
properties and allow for rigorous proofs that the properties are satisfied, even in presence
of race conditions. While for non-distributed enforcement mechanisms various such
models have been proposed in the literature (e.g., [Sch00; HMS06a; BOS07; ADG09; HT09;
LBW09]), models for distributed enforcement mechanisms and the cooperation adopted
by the mechanisms have not been proposed.

In this chapter, we propose a formal model of CliSeAu’s generic enforcement capsules,
particularly including the cooperation between units and the communication between the
components within units. The model is specified in Hoare’s CSP [Hoa85] and captures the
modular architecture of CliSeAu’s generic enforcement capsules. The model’s parameters
reflect the CoDSPL policies that can be input to CliSeAu. In the model capture also how
individual agents and units are composed such that intercepting events and imposing
countermeasures is possible. For formally verifying whether a given security property
from the class of safety properties is soundly enforced by an instance of the model, this
chapter provides a formal definition of sound enforcement in terms of our model. Picking
up the application scenario of Section 7.4, we use our model to formalize ChESt and use
our definition of sound enforcement to formally verify that the cooperative enforcement
performed by ChESt is indeed sound.

The formal model provided in this chapter allows one to capture one’s CoDSPL policy
in a formal language (CSP) whose semantics is more amenable to formal analysis than
Java. In particular, by faithfully modeling one’s CoDSPL policy in our formal model, one
can analyze one’s CoDSPL policy with regard to sound enforcement. Our model of a
distributed enforcement mechanism that captures the concurrent operation of agents and
units as well as the cooperation adopted by the mechanism’s units. That is, the model can
in particular capture race conditions caused by concurrent security-relevant operations of
agents, such that possibilities for race conditions are adequately covered when verifying
sound enforcement.
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Structure This chapter is structured as follows: Section 8.2 introduces syntax and seman-
tics of the sub-language of CSPwe use in this chapter. In Section 8.3, we provide a definition
of the formal model, its parameters, and how the modeled enforcement mechanism is
combined with the model of a target. Section 8.4 defines a notion of soundness for this
model. The applicability of the model for proving sound enforcement is demonstrated in
Section 8.5 with an example instance. Section 8.6 summarizes the contributions presented
in this chapter.

8.2. A Primer on CSP

Hoare’s algebra of communicating sequential processes (CSP ) is a process algebra with a
rich set of operators and several semantics [Hoa85]. The formal models we present in this
chapter are built on a sub-language and the trace semantics of the process algebra. In this
section, we introduce the syntax and semantics of this sub-language of CSP.

Definition 8.1. A process expression is an element of the language L(P), defined by the
following BNF:

P = ‘STOP’E | NAME | e ‘→’ P | x ‘:’ E ‘→’ P | x ‘→’ P | P ‘\’E
| P ‘�’ P | P ‘u’ P | P ‘‖’ P .

where E ranges over sets, NAME ranges over identifiers (called process names), e ranges
over elements (called events1), and x ranges over event variables. ♦

Intuitively, the primitives and operators of the language model systems exposing the
following behaviors.

• STOPE models a system that immediately terminates.
• NAME models a system that behaves as the system with name NAME.
• e→ P models a system that first performs event e and afterwards behaves according
to the process expression P .

• x: E → P models a system that first participates in some event e from set E and af-
terwards behaves according to the process expression P where all free occurrences2
of x are substituted by e.

• x → P models the same as e → P , except that the concrete event e that takes place
is determined by a preceding x: E.

• P \ E, called hiding, models a system that behaves as P but all events in the set E are
hidden to the environment of the system.

• P�Q, called external choice, models a system that behaves as either P orQ, depending
on the choice of the environment of the system.

• P u Q, called internal choice, models a system that behaves as either P or Q where it
is up to the system to choose between P and Q.

1For the sake of consistency with the literature, we use the term “event” for these elements in CSP and also,
as introduced earlier in this thesis, more broadly for atomic actions of agents.

2For the sake of brevity we refrain from formally defining free or bound occurrences of variables as well as
substitution, as we use them analogous to, e.g., first order logic.
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• P ‖Q, called parallel composition, models a system resulting from running the
systems modeled by P and Q in parallel such that the two systems synchronize on
the events that they can both in principle participate in.

Beyond the syntax introduced in Definition 8.1, we use some short-hand notation to
ease the legibility and simplify the specification of process expressions. Firstly, we lift
the binary operators �, u, and ‖ to n-ary operators over non-empty finite sets. For
the external choice, we use �i∈IP(i) to abbreviate P(a) if I = {a} and to abbreviate
P(a)�

(
�i∈I\{a} P(i)

)
if a ∈ I and I \{a} 6= ∅. Where the set E of events is unambiguous

from the context, we also use the n-ary operators over empty sets to denote STOPE . For
the internal choice (ui∈IP(i)) and parallel composition (‖i∈I P(i)), we use the analogous
notation.

Secondly, we use structured events to model communication over channels. A structured
event is of the form c.m, where c is the channel over which message m is communicated.
For making explicit that a message is sent over a channel, we write c!m→ P instead of
c.m→P . For making explicit that amessage is received over a channel, wewrite c?x: M→P
instead of x: {c.m | m ∈ M}→ P . Finally, when messages to be received over a channel
are themselves structured in the form of tuples of values, we write c?(x1, . . . , xn): M1 ×
. . .×Mn → P instead of writing c?x: M1 × . . .×Mn → P and using selector functions for
the individual elements of x in P .

In this thesis, we use the trace semantics of CSP, which we introduce in the following
definitions. The models specified by process expressions are defined below.

Definition 8.2. A process is a tuple (E, Tr) consisting of a set E of events and a non-
empty, prefix-closed set of finite sequences over E, Tr ⊆ E∗. We call E the alphabet of the
process and Tr the set of possible traces of the process. We use PROC to denote the set of
all processes. ♦

The alphabet of a process contains all events in which the process could in principle
engage. The set of possible traces of a process contains all sequences of events that the
process can in principle perform. Note that in the standard literature on CSP [Hoa85;
Ros05], what we call process expression is typically referred to as “process”. What we
call process does not have a named counterpart in the works of Hoare and Roscoe but the
components of processes – alphabet and possible traces – are described individually there.

For modeling recursive behavior of systems, the syntax of process expressions contains
process names. The meaning of a process name is assigned through an equation of the
following form.

Definition 8.3. A process equation is an equation NAME def
=E P , where NAME is a process

name, P is a process expression, and E is a set of events. ♦

Intuitively, a process equation declares a process name NAME and defines that this
process name models the system modeled by process expression P . The set of events in
which the process could in principle engage is declared to be E. We occasionally omit the
set of events when it is clear from the respective process expression.

In this thesis, we use process names in the form of simple identifiers and also in a
parameterized form, such as NAME(x1, . . . , xn). In this parameterized form, we view the
whole term including the arguments as the process name. Correspondingly, when we use
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process equations to define such parameterized process names, we typically provide a
set of process equations, one for each instance of the parameters. When we include such
parameterized process names in process expressions, we often use sub-expressions in place
of the parameters. In such cases, we consider the result of evaluating the sub-expressions
to be part of the process expression rather than the sub-expressions themselves. For
instance, we might write NAME(A ∪ {x}) to refer to the process name NAME(B), where
B is the set resulting from A ∪ {x}.

For defining the trace semantics, we first define the semantics of a process expression
under a set of process equations and a given function that provides semantics – in terms
of processes – to the individual process names defined by the process equations. In a
subsequent definition, we clarify that this function corresponds to fixed points for the
semantics of process names under the set of process equations. In this semantics, we
follow Hoare [Hoa85] and Roscoe [Ros05, p. 37].

Definition 8.4. Let EQ be a set of process equations in which no left-hand side occurs
more than once and let N be the set of process names declared by the process equations
in EQ. Let fp : N → PROC be a total function assigning processes to process names.
Then the process specified by a process expression P under EQ and fp is (α(P), traces(P)),
where α and traces are defined recursively over process expressions as follows.

• for every set E of events:

α(STOPE) =E

traces(STOPE) ={〈 〉}

• for each process name NAME ∈ N and (E, Tr) = fp(NAME):

α(NAME) =E

traces(NAME) =Tr

• for process expression P and event e ∈ α(P):

α(e → P) =α(P)

traces(e → P) ={〈 〉} ∪ {〈e〉.tr | tr ∈ traces(P)}

• for process expression P , set E ⊆ α(P), and event variable x :

α(x: E → P) =α(P)

traces(x: E → P) ={〈 〉} ∪ {〈e〉.tr | e ∈ E ∧ tr ∈ traces(P [x/e])}

where P [x/e] is the process expression P with all free occurrences of x substituted
by e.

• for process expression P and event variable x :

α(x → P) =α(P)

while traces(x → P) is not defined.
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• for process expression P and set E of events:

α(P \ E) =α(P) \ E
traces(P \ E) ={tr � α(P \ E) | tr ∈ traces(P)}

• for process expressions P and Q with α(P) = α(Q):

α(P � Q) =α(P u Q) = α(P) = α(Q)

traces(P � Q) =traces(P u Q) = traces(P) ∪ traces(Q)

• for process expressions P and Q:

α(P ‖Q) =α(P) ∪ α(Q)

traces(P ‖Q) =
{
tr ∈ α(P ‖Q)∗

∣∣∣∣ tr � α(P) ∈ traces(P)∧
tr � α(Q) ∈ traces(Q)

}
♦

Note that the definition does not provide a process for every process expression. Firstly,
no process is provided when a process name is used for which no process equation is
contained in the given set of process equations. Secondly, no process is provided when
the process expression contains free occurrences of event variables.

Recall that the previous definition does not demand a connection between the processes
assigned to process names by function fp and the right-hand side of the corresponding
process equations. We establish this connection in the following definition.

Definition 8.5. Let EQ be a set of process equations in which no left-hand side occurs
more than once and let fp : N → PROC be a total function assigning processes to process
names. Then fp is a fixed point of EQ if for each process equation (NAME def

=E P) ∈ EQ, it
holds that fp(NAME) = (α(P), traces(P)). ♦

Throughout this thesis, the process expressions we specify obey the property that each
occurrence of a process name is guarded , i.e., sequentially preceded by an event. For a
more rigorous definition of guardedness, we refer to Hoare [Hoa85, p. 79]. As observed by
Hoare [Hoa85, pp. 77 sqq.], sets of process equations in which all occurrences of process
names are guarded have a unique fixed point. We make use of this in the following.

Definition 8.6. Let EQ be a set of process equations in which no left-hand side occurs
more than once and that has a unique fixed point fp : N → PROC . Then the trace
semantics of a process expression P under set EQ of process equations is the process
(α(P), traces(P)). ♦

In this thesis, when we omit an explicit specification of the set of process equations, we
implicitly consider the set of all process equations defined up to the respective point in
the thesis. Since we ensure to not use multiple process equations for the same process
name, in this set of process equations no left-hand side occurs more than once. Moreover,
when we use the functions α and traces, we leave the fixed point to the respective set of
process equations implicit.

We model properties of process expressions by unary predicates on traces.
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Definition 8.7. A process expression P satisfies a unary predicate ϕ on traces(P), denoted
by P sat ϕ, if and only if ϕ(tr) holds for each tr ∈ traces(P). ♦

We abuse notation and write P satA, for a set A of sequences, to denote P satϕA where
ϕA is the characteristic predicate for A.

Definition 8.8. Let P be a process expression with set EQP of process equations and
let Q be a process expression with set EQQ of process equations. We say that the two
process expressions P and Q are equivalent under their respective sets of process equations,
denoted P EQP

≡EQQ Q, if and only if α(P) = α(Q) and traces(P) = traces(Q) holds. Where
the same sets of process equations shall be used for both process expressions and they are
clear from the context, we also omit them. ♦

Definition 8.9. Let EQ be a set of process equations and let N be the set of process names
declared by the process equations in EQ.

For a process expression P and trace tr ∈ traces(P), we denote by P / tr , the process
expression recursively defined on the structure of P and the elements in tr as follows.

• for every set E of events: STOPE / 〈 〉 = STOPE
• for each process name NAME ∈ N : NAME / tr = Q / tr , where Q is the process
expression for NAME according to EQ

• for process expression P and event e ∈ α(P): (e → P) /(e.t) = P / t .
• for process expression P , set E ⊆ α(P), and event variable x : (x: E → P) /(e.t) =
P [x/e] / t if e ∈ E.

• for process expression P and event variable x : (x → P) / t is undefined
• for process expressions P and Q with α(P) = α(Q): (P � Q) / tr = P / tr if
tr ∈ traces(P) \ traces(Q); (P � Q) / tr = Q / tr if tr ∈ traces(Q) \ traces(P); and
(P � Q) / tr = (P / tr) u (Q / tr) if tr ∈ traces(Q) ∩ traces(P)

• for process expressions P and Q with α(P) = α(Q): (P u Q) / tr = P / tr if
tr ∈ traces(P) \ traces(Q); (P u Q) / tr = Q / tr if tr ∈ traces(Q) \ traces(P); and
(P u Q) / tr = (P / tr) u (Q / tr) if tr ∈ traces(Q) ∩ traces(P)

• for process expressions P and Q: (P ‖Q) / tr = (P / tr) ‖(Q / tr)
• for process expression P and set E of events: (P \ E) / tr = (ut∈TtrP / t) \ E where
Ttr = traces(P) ∩ {t | t � α(P) \ E = tr} if Ttr is finite and tr ∈ traces(P \ E). ♦

Intuitively, P / tr models a system that behaves as P after it has performed the sequence
tr of events. The following recapitulates some basic properties of process expressions
provided by Hoare [Hoa85].

Lemma 8.1. Let P ,Q be process expressions, E, E′ be sets of events, t1, t2, tr be sequences of
events, e ∈ α(P) be an event, and f be an injective function on alphabets.

(a) f (P ‖Q) ≡ f (P) ‖ f (Q) [Hoa85, p. 65 (L3)]
(b) P \ (E ∪ E′) ≡ (P \ E) \ E′ [Hoa85, p. 92 (L2)]
(c) (P ‖Q) \ E ≡ (P \ E) ‖(Q \ E) if α(P) ∩ α(Q) ∩ E = ∅ [Hoa85, p. 92 (L6)]
(d) f (P \ E) ≡ f (P) \ f (E) [Hoa85, p. 92 (L7)]
(e) P /(t1.t2) ≡ (P / t1) / t2 [Hoa85, p. 32 (L2)]

♦
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8.3. The Model in CSP

In Chapter 5, we have seen the modular architecture of CliSeAu’s generic ECs and how
these generic ECs cooperate. This architecture provides fixed components – the interceptor,
the coordinator, and the enforcer – as well as parametric components – the event factory,
the local policy, and the enforcer factory (see Section 3.2 on page 28). In this section, we
provide a formal model in the process algebra CSP that captures the essential aspects of
CliSeAu’s generic ECs: Concretely, the model captures the parametricity in components
that specify the cooperative decision-making, captures the possibility of units to cooperate,
and captures the interface of the local policy component to the coordinator. The focus on
the interface of the local policy is due to our focus on particularly capturing the cooperation
faithfully.

The model we present comprises the modular model of units, which exhibits the same
modular architecture as the service automata concept (see Section 2.8), which also CliSeAu’s
generic ECs implement. Two of the components are fixed and the remaining two com-
ponents are parametric. In the following, we first introduce the fixed components in
Section 8.3.1 and subsequently specify the interface for the parametric components in
Section 8.3.2. Finally, in Section 8.3.3 we present how a distributed target is encapsulated
by an instance of the formal model.

8.3.1. Fixed Components

Our formal model of CliSeAu’s generic ECs comprises two fixed components, one modeling
the coordinator of CliSeAu and one modeling the interceptor of CliSeAu. These two
components also define the interface to the two parametric components, which consists
of a collection of channels. We first introduce these channels and subsequently zoom into
the individual fixed components.

Figure 8.1 on the following page shows the four components of an EC model, where
the fixed components are displayed in white boxes and the parametric components in
shaded boxes. Beyond the EC model in focus, the figure furthermore shows the agent
encapsulated by the unit and other units, which encapsulate other agents of a distributed
target. An arrow from one component to another indicates that the former communicates
to the latter. Where an arrow is absent, no communication takes place. The labels of
the arrows show the names of the channels used for the communication as well as the
domain of the messages communicated via these channels. Where no channels are used,
i.e., between the agent and the unit, only the domain of communicated events is placed as
labels. In the following, we introduce the individual channels.

The interceptor communicates intercepted events, i.e., events that the agent cannot
perform without the unit halting the agent until a decision is made and is implemented,
to the coordinator via channel icpt. We use IE as meta-variable for sets of intercepted
events. This models the communication of event objects by CliSeAu’s generic ECs from
the interceptor to the coordinator through a network socket.

The coordinator has two channels to the local policy: lreq and rreq. Through the former,
intercepted events are communicated, and through the latter, delegation requests and
delegation responses – together modeled by the set DR – are communicated. In the reverse
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edec,appv: ED

ddec,rdec,fwd: Id×DR

Figure 8.1.: Components and channels of an EC model

direction, five channels allow the local policy to communicate to the coordinator. The
local policy can return a decision to the coordinator via the channels edec (decisions
made locally) and appv (decisions obtained after delegation). We use ED as meta-variable
for sets of decisions. The local policy can also return a delegation request or delegation
response together with the identifier of the unit to which the delegation shall be per-
formed via the channels ddec (delegation for locally intercepted event), rdec (decision for
remotely intercepted and delegated event), and fwd (further delegation for a previously
delegated event). We use Id as meta-variable for sets of unit identifiers. The five channels
between the coordinator and the local policy model the two methods (localRequest and
remoteRequest), including actual arguments and return values, that a subclass of LocalPolicy
in CoDSPL must implement. The actual exchange of delegation requests and delegation
responses between units takes place via the link channels, one channel for each pair of
units and communication direction. These channels model the network sockets used by
the coordinators of CliSeAu to communicate with each other.

The enforcer has one channel, enf, for obtaining decisions from the coordinator. This
models the communication of decision objects by CliSeAu’s generic ECs from the coordina-
tor to the enforcer through a network socket. Moreover, the enforcer has one channel, sync
for synchronizing with the interceptor by sending the symbol X. This synchronization
is used to model that in CliSeAu’s generic ECs, the interceptor and the enforcer ensure
that the agent is blocked from the time an operation is intercepted until the enforcer has
performed a countermeasure. Finally, the enforcer can, without dedicated channel, impose
events on the agent. We use EE as meta-variable for such sets of effectable events, i.e.,
events that an enforcer can effectuate. This models that an enforcer can itself perform
operations in the context of the agent as part of enforcing a security property.

The interceptor The interceptor is the component of a unit that observes security-relevant
operations of an agent for a subsequent decision-making. Upon observing a security-
relevant operation, the interceptor blocks all further operations of the agent until a
countermeasure has been performed. It triggers the decision-making by passing the
intercepted event to the coordinator. We capture these properties of the interceptor as
follows.

Definition 8.10. Let ii = (E, IE) be a tuple where E is a set of all events of the agent and
IE is a set of intercepted events. Then the interceptor model for ii is the process expression
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INTii along with the process equation

INTii
def
=EINTii

x: (E ∩ IE)→ icpt!x → sync?y: {X}→ INTii
�x: (E \ IE)→ INTii

where EINTii = E ∪ {icpt.e | e ∈ E ∩ IE} ∪ {sync.X}. We denote the set containing this
single process equation by EQINT

ii . We call ii an interceptor instance. ♦

The interceptor model is parametric in two sets, E and IE, capturing all events of the
agent and the security-relevant ones. It observes the security-relevant events of the agent
by synchronizing on all events in E ∩ IE and sends them to the coordinator via the icpt
channel, as formalized in the first line of the process equation. Secondly, the interceptor
model also synchronizes on the events that are not security-relevant (in E \ IE) such that
these events can only occur when the interceptor model is not blocked. That is, while
the interceptor model is blocked, all events of the agent are blocked, too. As soon as a
countermeasure for a security-relevant event has been performed and the interceptor
model is unblocked by receivingX on channel sync, the agent is unblocked again. Overall,
the interceptor model, thus, faithfully captures the desired properties of the interceptor.

The coordinator The coordinator is the component that takes over the communication
between the local policy and the interceptor, the enforcer, and remote units. Concretely,
the coordinator forwards events from the local interceptor and delegation requests and
responses from remote units to the local policy; it forwards decisions as well as delegation
requests and responses of the local policy to the enforcer or, respectively, remote units.
Moreover, the coordinator in CliSeAu’s generic ECs is stateless and is non-blocking in the
sense that it does not wait for the result of a delegation request until processing further
incoming intercepted events or delegation requests and responses. We capture these
properties of the coordinator as follows.

Definition 8.11. Let ci = (Id, i, IE, ED,DR) be a tuple where Id is a set of unit identifiers,
i ∈ Id is a unit identifier, IE is a set of intercepted events, ED is a set of decisions, and
DR is a set of delegation requests and responses. Then the coordinator model for ci is the
process expression CORci along with the process equation

CORci
def
=ECORci

icpt?e: IE → lreq!e

→
( (

edec?ed: ED → enf!ed → CORci
)

�
(
ddec?(k, dr): (Id\{i})× DR → linki,k!dr → CORci

))
��j∈Id\{i}linkj,i?dr : DR → rreq!dr

→
( (

fwd?(k, dr ′): (Id\{i})× DR → linki,k!dr ′ → CORci
)

�
(
rdec?(k, dr ′): (Id\{i})× DR → linki,k!dr ′ → CORci

)
�
(
appv?ed: ED → enf!ed → CORci

))
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where

ECORci =


icpt.e, enf.ed, linki,k.dr , linkk,i.dr ,
lreq.e, rreq.dr , edec.ed, appv.ed,
ddec.(k, dr), rdec.(k, dr), fwd.(k, dr)

∣∣∣∣∣∣
e ∈ IE, ed ∈ ED,
dr ∈ DR,
k ∈ Id \ {i}


We denote the set containing this single process equation by EQCOR

ci . We call ci a coordinator
instance. ♦

The coordinator model is parametric in several sets and an identifier. The sets IE, ED,
and DR determine the possible messages that can be communicated via the channels that
the coordinator uses. The set Id specifies which units belong to the distributed enforcement
mechanism and thereby which other units incoming delegation requests and responses
the coordinator shall receive from and send to. In the first and fourth line of the process
equation, the process waits for incoming intercepted events (channel icpt) and, respectively
delegation requests and responses (channel linkj,k). It subsequently passes its input to
the local policy. The results received from the local policy through the channels in the
subsequent lines of the process equation are then further delivered to the enforcer or to
a remote unit. That is, the coordinator takes over the communication between the local
policy and the interceptor, the enforcer, and remote units. Moreover, the coordinator
model is non-blocking with regard to delegation as evident from the third, fifth, and sixth
line of the process equation: After receiving on a channel from the local policy a message
dr or dr ′ to be delegated, the coordinator sends out this message on a link channel and
afterwards returns to its initial receiving state again. However, despite this implicit state
established through the external choices and the sequential steps, the coordinator does
not carry any state. In particular, the coordinator does not record information about the
history of processed intercepted events or delegation requests and responses. Overall, the
coordinator model, thus, faithfully captures the intended behavior and properties of the
coordinator.

8.3.2. Parametric Components

In this section, we define the two parametric components of our formal model by their
interfaces to the fixed components. We capture the interface of a parametric component
via the alphabet of the process that instantiates the component, i.e., via the set of events in
which the process can participate and, thus, potentially synchronizewith other components.
We provide examples to illustrate our definitions.

The enforcer In CliSeAu as well as in our formal model, the enforcer serves the purpose
of implementing the decisions made by the enforcement mechanism. What it means to
implement a decision can vary depending on the security property being enforced as well
as the target. Therefore, our model aims to impose as little constraints as possible on the
enforcer model, demanding only that the enforcer model interfaces with the remaining
components of the formal model.
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Definition 8.12. An enforcer model for a set ED of decisions and a set EE of effectable
events is a process expression P along with a set EQ of process equations such that

α(P) = {sync.X} ∪ {enf.ed | ed ∈ ED} ∪ EE.

holds. ♦

Our definition of an enforcer model specifies the interface to the remaining components
of the formal model by fixing the alphabet of a process expression that could be used for
instantiating this parametric component. Concretely, alphabet fixes which channels can
be used (sync and enf), which messages may be communicated via these channels, and
which events the enforcer can effectuate. Note that through the parameterized set EE,
further channels could be introduced to the alphabet. We eliminate this possibility in
Section 8.3.3, after all the individual components have been introduced.

Generally, a wide range of possible enforcer models are imaginable. In the following,
we demonstrate by example that our definition of enforcer models is sufficiently broad
to capture the countermeasures supported by two of the most acknowledged models of
generic enforcement mechanisms: security automata [Sch00] and edit automata [LBW09]
[LBW09].

The first example of an enforcer model is one that conceptually supports two possible
decisions: permitting the occurrence of an event and terminating the respective agent
of the target. These two possibilities coincide with the countermeasures of the security
automata model.

Example 8.1. The terminating enforcer for a set EE of effectable events is the enforcer
model TERMEE for ED = EE × {perm, term} and EE together with the process equation

TERMEE
def
=ETERM enf?(e, x): EE × {perm}→ e → sync!X→ TERMEE

�enf?(e, x): EE × {term}→ STOPETERM

where the alphabet ETERM = {sync.X} ∪ {enf.ed | ed ∈ ED} ∪ EE satisfies the constraint
of an enforcer model for ED and EE. ♦

In the terminating enforcer, decisions are modeled as the cross product of events and
a set of two symbols modeling permission and, respectively, termination. When the
terminating enforcer receives a decision via the enf channel, and the decision is to permit
an event (first line of the process equation), then it executes the respective event and
subsequently unblocks the interceptor by sending X over channel sync. Afterwards, the
terminating enforcer returns again to its initial configuration in which it is ready to receive
further decisions. When the terminating enforcer receives a decision to terminate (second
line of the process equation), then it neither performs the respective event nor unblocks the
interceptor and instead terminates itself. By terminating itself, the terminating enforcer
particularly prevents to receive and implement further decisions for the local agent.

The edit automata model allows, in addition to termination, also to suppress a security-
violating event, i.e., to skip the event but to allow the agent to resume afterwards. In
the following second example of an enforcer model, we capture suppression as the only
possible countermeasure.
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Example 8.2. The suppressing enforcer for a set EE of effectable events is the enforcer
model SUPPEE for ED = EE × {perm, supp} and EE together with the process equation

SUPPEE
def
=ESUPP enf?(e, x): EE × {perm}→ e → sync!X→ SUPPEE

�enf?(e, x): EE × {supp}→ sync!X→ SUPPEE

where the alphabet ESUPP = {sync.X} ∪ {enf.ed | ed ∈ ED} ∪ EE satisfies the constraint
of an enforcer model for ED and EE. ♦

The suppressing enforcer is modeled very similar to the terminating enforcer. The case
of permitting an event (first line of the process equation) is treated in the same way as
for the terminating enforcer. The difference is in the second line, in which the decision
to suppress an event is implemented by immediately unblocking the interceptor via the
sync channel, without allowing the event to happen before. This way, only the intercepted
event is suppressed and the agent is allowed to resume afterwards.

In addition to suppressing events, the edit automata model finally also allows to insert
events, i.e., to perform events that the target itself would not have performed at the
respective point in the target’s execution. In the following final example, we combine the
possible countermeasures of terminating, suppressing, and inserting.

Example 8.3. The replacing enforcer for a set IE of intercepted events and a set EE of
effectable events is the enforcer model REPLACEIE,EE for ED = IE × (EE ∪ {term})∗ and
EE together with the process equations

REPLACEIE,EE
def
=EREPLenf?(e, t): IE × (EE ∪ {term})∗ → REPLIE,EE(t)

REPLIE,EE(〈 〉)
def
=EREPLsync!X→ REPLACEIE,EE

REPLIE,EE(〈term〉.t) def
=EREPLSTOPEREPL

REPLIE,EE(〈e〉.t)
def
=EREPLe → REPLIE,EE(t)

for each t ∈ (EE ∪ {term})∗ and e ∈ EE. In the process equations, the alphabet EREPL
is defined by EREPL = {sync.X} ∪ {enf.ed | ed ∈ ED} ∪ EE, The alphabet satisfies the
constraint of an enforcer model for ED and EE. ♦

In the replacing enforcer, the decisions are tuples of an intercepted event and a sequence
of effectable events and the special symbol term. Intuitively, a decision (e, t) means
that instead of e, the enforcer shall perform the sequence t of events. If t contains the
symbol term, then the agent shall be terminated after inserting the prefix of t to this point.
Otherwise, if t does not contain term, then the agent may resume after t has been inserted.
In the process equations, this intuition is mainly captured through the auxiliary processes
with process names REPLIE,EE(t). These processes recursively perform the events in t in
sequential order (fourth process equation) until either term is encountered (third process
equation) or t has been processed completely (second process equation). The former
case is analogous to the terminating enforcer, in which no unblocking of the interceptor
takes place and the process terminates itself. The latter case is like the “perm” cases in
the terminating enforcer and the suppressing enforcer: the interceptor is unblocked and
the enforcer becomes ready to receive further decisions. Overall, the replacing enforcer,
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thus, subsumes the countermeasures terminating (t = 〈term〉), suppressing (t = 〈 〉), and
inserting (t ∈ EE∗). It also supports countermeasures such as “terminate after insertion”,
which could be used, e.g., for logging the reason for termination.

As demonstrated by Examples 8.1 to 8.3, our definition of enforcer model and the process
algebra CSP are powerful enough to capture the countermeasures of security automata and
edit automata. On the other hand, as described earlier, the interface provided to enforcer
models allows them to model also the countermeasures supported by CliSeAu’s generic
ECs.

The local policy In CliSeAu, the local policy is the component that makes decisions for
intercepted operations of an agent as well as for delegation requests of other units, and
creates delegation requests and delegation responses when a local decision cannot be made
by the local policy. How a local policy proceeds to fulfill this purpose can vary significantly
depending on the security property to be enforced. Like for the enforcer model, our model
of a local policy constrains only the interface to the remaining components and not the
internal behavior.

Definition 8.13. Let ci = (Id, i, IE, ED,DR) be a coordinator instance (see Definition 8.11
on page 137). A local policy model for ci is a process expression P along with a set EQ of
process equations such that

α(P) =
{
lreq.e, rreq.dr , edec.ed, appv.ed,
ddec.(k, dr), rdec.(k, dr), fwd.(k, dr)

∣∣∣∣ e ∈ IE, ed ∈ ED,
dr ∈ DR, k ∈ Id\{i}

}
holds. ♦

The definition specifies the allowed interface of a local policy model to its environment
by fixing the alphabet of its process expression. The seven channels and the respective
messages that must be contained in the alphabet correspond to the interface described
in Section 8.3.1 and illustrated in Figure 8.1. All these channels are shared with the
coordinator model. That is, we have α(P) ⊆ α(CORci). Note that this constraint on the
alphabet of a local policy model still allows a local policy model to make use of further
events internally, as long as they are hidden from its environment. The possibility of
internal events allows a local policy model to be composed of several communicating
components. We demonstrate such modularity of a local policy model in Section 8.5.

In the following, we provide a small example of a local policy model. To show the
expressive power, we specify a local policy model that simulates a security automaton,
which is defined by Schneider [Sch00] as follows.

Definition 8.14. A security automaton is a tuple (Q,Q0, IE, δ) where Q is a countable set
of states, Q0 ⊆ Q is a countable set of initial states, IE is a set of intercepted events, and
δ : Q × IE → P(Q) is a (total) transition function. In the following, we lift δ to sets of
states, using δ(Q′, e) to denote

⋃
q∈Q′ δ(q, e). ♦

Intuitively, a security automaton starts in a set of states Q0. Upon an intercepted event
e ∈ IE, it makes a transition to a new set of states that is determined by the transition
function δ. As long as this new set of states is non-empty, the respective intercepted events
are permitted. If this new set of states at some point is empty, then this models that the
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target shall be terminated. Security automata are a model of an enforcement mechanism
for non-distributed targets and, as such, do not make use of cooperation. Our local policy
model simulating a security automaton is defined as follows.

Example 8.4. Let (Q,Q0, IE, δ) be a security automaton with a finite number of states (a
restriction also applied by Erlingsson [Erl04]). Let Id be a non-empty set of unit identifiers
and i ∈ Id be the identifier of the unit in which the security automaton shall be simulated
for the decision-making. Let ci = (Id, i, IE, ED,DR) for ED = IE × {perm, term} and
DR = ∅ be a coordinator instance.

We specify the security automaton as a local policymodel for ci by the process expression
SecAut(Q0) along with the set containing the following process equation for each Q′ ⊆ Q.

SecAut(Q′)
def
=ESecAutlreq?e: {e′ | δ(Q′, e′) 6= ∅}→ edec!(e, perm)→ SecAut(δ(Q′, e))

�lreq?e: {e′ | δ(Q′, e′) = ∅}→ edec!(e, term)→ SecAut(∅)

where

ESecAut =
{
lreq.e, rreq.dr , edec.ed, appv.ed,
ddec.(k, dr), rdec.(k, dr), fwd.(k, dr)

∣∣∣∣ e ∈ IE, ed ∈ ED,
dr ∈ DR, k ∈ Id\{i}

}
. ♦

The process defined in the example receives inputs on channel lreq and on no other
channels. Notably, delegation requests and responses are not received on channel rreq,
following that security automata do not perform cooperation. Along this line, the set DR of
delegation requests and responses is defined to be empty. For events received on channel
lreq, the process distinguishes two cases: events that lead to a non-empty successor set of
states (first line of the process equation) and events that lead to an empty set (second line).
In the former case, the decision to permit the respective event is sent via channel edec
and the process continues with an updated set of states. In the latter case, the decision to
terminate the agent is sent and the process also continues with the updated set of states
(where the empty set causes all subsequent events to result in the decision to terminate as
well). This faithfully captures the provided intuitive semantics of a security automaton.
Moreover, as the alphabet of the process is defined, the process is indeed a local policy
model for the coordinator instance ci used.

The example of the local policy model for a security automaton shows that our definition
is expressive with respect to non-cooperative decision-making. A concrete example that
also demonstrates the means of a local policy model to employ delegation, is shown in
Section 8.5.

8.3.3. Encapsulated Target

In this section, we define how the four components introduced so far are composed to a
model of a CliSeAu’s generic EC and how an instance of such generic EC encapsulates an
agent of a target in terms of CSP operators. We also define how multiple such EC models
are composed to a model of an encapsulated target.

The generic EC CliSeAu’s generic ECs are generic in the sense that they are parametric
in the enforcer and the local policy as well as in the agent of a target. That is, the generic



8.3. The Model in CSP 143

EC is parametric in components that specify functionality. The generic EC can also be
viewed as parametric in the agent whose operations the generic EC intercepts and which
it blocks until a decision is made. We capture this as follows.

Definition 8.15. The EC model for a coordinator instance ci = (Id, i, IE, ED,DR) is the
parametric process expression defined by

ECci(•agent, •pol, •enf) =
[ (

•agent ‖ INT(α(•agent),IE)
)
\ IE ‖ CORci

‖ •enf ‖ •pol

]
\ Hci,

where

Hci =


icpt.e, sync.X, enf.ed,
lreq.e, rreq.dr , edec.ed, appv.ed,
ddec.(k, dr), rdec.(k, dr), fwd.(k, dr)

∣∣∣∣∣∣
e ∈ IE, ed ∈ ED,
dr ∈ DR,
k ∈ Id \ {i}

 ♦

The EC model is defined as a parametric process expression. Syntactically, the pa-
rameters of the EC model are split into functional ones (specified in parentheses) and
non-functional ones (specified as indices) to expose their different nature. The functional
parameters, i.e., the agent, the local policy, and the enforcer, are captured as “holes” in
the process expression, indicated by the “•”, into which the respective instances can be
plugged. This is to emphasize that the functional parameters do not constitute variables for
process expressions as first class entities in CSP, which would not be included in our CSP
fragment. The EC model composes all four components as well as the agent’s process in
parallel, as the process expression shows. Note that the structure of the process expression
in the definition reflects the architecture depicted in Figure 8.1 on page 136.

A particular technical novelty in our EC model is how the agent is combined with the
components of the EC model. The agent (•agent) is composed in parallel to the interceptor
model, with α(•agent) as shared alphabet, around which all intercepted events (IE) are
hidden. Only around this hiding, the remaining components of the ECmodel are composed
in parallel. The parallel composition of the agent and the interceptor together with the
hiding of intercepted events enables the interceptor to learn about the next event of the
agent without making intercepted events visible to the environment. Such events can
only become visible to the environment, if and when they are performed by the enforcer,
which is composed outside the hiding operator. That is, this approach to combine an agent
with a unit is rendered possible through the modular architecture of CliSeAu’s generic
ECs, which is reflected in our EC model. The approach allows the EC model to intercept
security-relevant events for cooperative decision-making without the need for a prior
transformation of the agent (e.g., by renaming the events in IE). We discuss how this
approach relates to other process-algebraic specifications of enforcement mechanisms in
Section 9.7.

Note that the alphabet of an EC model indeed establishes the narrow interface between
an ECmodel and its environment as depicted in Figure 8.1. All unit-internal communication
events of the interceptor and the enforcer (first line in the definition of Hci) as well as of
the local policy (second and third line in the definition) are hidden from the environment
of the EC model. That is, the local policy and the interceptor cannot communicate directly
with the environment of the EC model; the coordinator can only communicate via the
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linki,k channels; and the enforcer can only communicate via the events contained in its
parameter EE, i.e., the events that are also intended to be visible to the environment of the
EC model.

Remark 8.1. In CliSeAu, an enforcer can perform operations on the agent that have side-
effects and can thereby influence the future behavior of the agent. Our model does not
allow the enforcer to use events from set IE to influence the agent, because the hiding of IE
prevents any synchronization. That is, an enforcer model cannot alter the future behavior
of the agent, e.g., by inserting events from IE. In this regard, our model resembles the
edit automata model [LBW09], which also does not capture feedback of the enforcement
mechanism on the agent through inserted events. ♦

Remark 8.2. In CliSeAu, it is possible to intercept operations of an agent that send data
to another agent as well as to intercept operations that receive data from another agent.
Our model allows this only for the sending agent, unless the communication shall always
be prohibited and could, thus, be excluded from EE. That is, events of an agent that model
input from the environment must not be in IE. This is because at the receiving agent, the
communication event would synchronize with the enforcer model and the latter cannot
influence the agent via events in IE, as pointed out in Remark 8.1. A simple way around
this limitation is to not intercept the input events directly but rather events that model
the further processing of the inputs. ♦

Remark 8.3. Our EC model comprises two parametric functional components. This devi-
ates in the parametricity of CliSeAu’s generic ECs in two regards. Firstly, we deliberately
do not include a counterpart to the CliSeAu’s event factory. This is because the purpose of
this component in CliSeAu is a design that separates an agent’s structure of intercepted
operations from the event objects used by the local policy. In the formal model, such
separation would not offer any advantage as the agents can be modeled suitably for the
respective local policy in the first place. Secondly, in our formal model, the enforcer model
captures what in CliSeAu is split into the enforcer factory and the countermeasure objects.
We do not introduce this split explicitly in our model, as our model shall primarily serve
to faithfully capture the cooperation and as where desired, the enforcer models could
be composed of two components that model the enforcer factory and, respectively, the
countermeasure objects. ♦

The target In our formal model, we capture distributed targets as processes that are
composed of the individual agents of the target. Formally, we capture this as follows.

Definition 8.16. A decomposed target model is a family (AGENT i)i∈I of process expres-
sions along with a set EQ of process equations. EachAGENT i models an agent of the target.
The target model for a decomposed target model is the parallel composition ‖i∈I AGENT i
of its agents. ♦

The definition makes the individual agents of a distributed target explicit. The parallel
composition of the agents is the natural choice in CSP to specify autonomous components
that, yet, have the possibility to communicate with each other.
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The encapsulated target We now lift the encapsulation from a single agent to a distributed
target. As a preparatory step, we first combine the parameters of the EC models to a model
of a CoDSPL policy.

A CoDSPL policy specifies the target whose agents shall be encapsulated as well as
the parameters of the units that encapsulate these agents. We capture the corresponding
entity for our formal model as follows.

Definition 8.17. A policy model of our formal model is a tuple

pm = (Id, (AGENT i)i∈Id , (IEi, EEi, EDi, POLi, ENF i)i∈Id ,DR, EQ),

where Id is a finite set of all identifiers of monitored components, (AGENT i)i∈Id is a
decomposed target model, and for each unit identifier i ∈ Id , IEi is a set of intercepted
events, EEi is a set of effectable events, EDi is a set of decisions, POLi is a local policy
model for (Id, i, IEi, EDi,DR), ENF i is an enforcer model for EDi and EEi . Finally, DR is
a set of possible delegation requests and responses and EQ is a set of process equations
defining all process names that occur in AGENT i , POLi , and ENF i . ♦

The policy model subsumes all parameters of the individual components of an EC model.
It shares with CoDSPL policies the specification of unit identifiers, agents, local policies,
and enforcers. The set of process equations conceptually corresponds to the classpaths in
CoDSPL policies and the set of intercepted events corresponds to the pointcuts in CliSeAu.
The sets of effectable events, decisions, and delegation requests and responses have no
counterpart in CoDSPL policies: In CoDSPL, a universe for these sets is established through
abstract classes and interfaces that are part of CoDSPL’s definition. Conversely, the policy
model does not comprise IP addresses and network ports, as the coordinator models uses
identifiers to unambiguously select the communication channels to other EC models.

The policy model, as introduced in Definition 8.17, allows some of its components to be
defined in a way that violates the architecture of EC models introduced in Figure 8.1 on
page 136. We capture those policy models that adhere to the architecture as follows.

Definition 8.18. We say that a policy model

pm = (Id, (AGENT i)i∈Id , (IEi, EEi, EDi, POLi, ENF i)i∈Id ,DR, EQ)

is proper , if and only if for each i ∈ Id the following the following conditions hold:

(a) (α(AGENT i) ∪ EEi) ∩ (H(Id,i,IEi,EDi,DR) ∪ {linkj,k.dr | j, k ∈ Id ∧ dr ∈ DR}) = ∅
(b) IEi ⊆ α(AGENT i)
(c) EEi ⊇ IEi ♦

Definition 8.18 (a) captures that the events of an agent may not interfere with the internal
events of an EC model (introduced in Definition 8.15) as well as with the communication
events between EC models (link channels). It furthermore captures that also the effectable
events, EEi , of the enforcer model may not interfere with the internal events of the EC
model. Definition 8.18 (b) constrains that the set of intercepted events must indeed be
events of the respective agent. This ensures, together with Definition 8.18 (a) that the
hiding operator around the agent and the interceptor in the EC model does not hide the
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channels of the interceptor model to the coordinator model and the enforcer model. The
two conditions imposed by proper policy models suffice to exclude undesired interferences
that would violate the architecture of EC models. In particular, the sets EDi and DR need
not be constrained, as they are only used for messages on channels that belong to the
architecture. Finally, Definition 8.18 (c) ensures that the alphabet of every EC model
subsumes the alphabet of the encapsulated agent, which preserves the shared alphabet
between the (encapsulated) agent and its environment.

With the above definitions, we now have all the ingredients to model an encapsulated
target.

Definition 8.19. Let a proper policy model

pm = (Id, (AGENT i)i∈Id , (IEi, EEi, EDi, POLi, ENF i)i∈Id ,DR, EQ)

be given. Then the encapsulated target model for pm is the process expression

ET pm = ‖
i∈Id

EC(Id,i,IEi,EDi,DR)(AGENT i, POLi, ENF i)

along with the set

EQpm = EQ ∪
⋃
i∈Id

EQCOR
(Id,i,IEi,EDi,DR) ∪

⋃
i∈Id

EQINT
(α(AGENT i),IEi)

of process equations. ♦

An encapsulated target model is defined as the parallel composition of the individual
EC models, instantiated with a given policy model. The parallel composition captures
that the individual EC models run autonomously and can yet communicate via shared
events (established by the link channels). The set of process equations combines all process
equations of the policy model with the equations belonging to the fixed components of
our formal model. That is, all process names used by the encapsulated target model are
also defined by an equation in this set.

Overall, our formal model captures the modular architecture and the parametricity of
CliSeAu’s generic ECs. The EC models support cooperation via channels between their
coordinator models, like with CliSeAu’s generic ECs. Finally, regarding our focus on the
cooperation, we particularly modeled the interface between the coordinator model and
the local policy model to closely capture the interface in CliSeAu’s generic ECs.

8.4. Soundness Notion in CSP

In earlier chapters, we have already captured security properties as sets of security-
compliant sequences of events. Themodel of encapsulated targets introduced in Section 8.3
provides the remaining entity for a formal verification of sound enforcement of a security
property. In this section, we make use of our the models of encapsulated target and of
security properties to formalize soundness.

We have previously introduced soundness informally as the condition that the security
property is never violated when the enforcement mechanism is applied to the target. Since
in our formal model the encapsulated target is unambiguously determined by a policy
model, we formalize soundness in terms of policy models.
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Definition 8.20. Let

pm = (Id, (AGENT i)i∈Id , (IEi, EEi, EDi, POLi, ENF i)i∈Id ,DR, EQ)

be a policy model and let P ⊆ α(ET pm)
∗ be a security property. We say that pm is a sound

policy model for P if and only if ET pm sat P holds under set EQpm of process equations. ♦

In the definition, security properties are modeled as sets of security-compliant sequences
of events. Concretely, security properties are expressed on the events of the whole
encapsulated target model, i.e., the events of the target’s agents, effectable events of
enforcers that are not events of the agents, and events used for the cooperation among EC
models. This model of security properties, firstly, allows the security property to capture
security requirements on the distributed target as a whole, including localizable as well as
concerted security properties; Secondly it, allows the security property to speak about
events introduced by the units of the distributed enforcement mechanism. Soundness with
respect to a security property is then mainly captured through the “satisfies” predicate
ET pm sat P . That is, all traces of the encapsulated target model must be included in P
and, thus, be security-compliant. Conversely, the security property is not violated by any
of the possible runs of the encapsulated target model for the policy model. That is, the
definition faithfully captures the condition of when the encapsulated target model for a
policy model soundly enforces a security property.

Note that, by definition of the trace semantics of CSP, the set of possible traces of a
process specified in CSP is prefix-closed. In consequence security properties that are
safety properties can be captured well by the satisfies predicate in trace semantics, as also
pointed out, e.g., by Roscoe [Ros05, p. 45].

Remark 8.4. According to Roscoe [Ros05], the trace semantics of CSP is inadequate for
reasoning about liveness properties of process expressions. Where liveness properties
are of concern, Roscoe advocates the failures/divergences semantics of CSP to give “the
most satisfactory representation of a process” [Ros05, p. 211]. These semantics as well as
liveness properties, however, are outside the scope of this chapter. ♦

Remark 8.5. In this chapter, our goal is a model that allows one to verify sound enforce-
ment. As captured in Definition 8.20, soundness is concerned only with the outcomes of
the enforcement mechanism, not the behaviors of the target that leads to these outcomes.
In that regard, soundness differs from transparency [LBW09], i.e., the property that the
enforcement mechanism does not alter the behavior of the target when it behaves security-
compliant. Transparency, thus, is concerned with a relationship between the target’s
behaviors and the respective outcomes of the enforcementmechanism. Due to this inherent
difference between soundness and transparency, transparency cannot be captured simi-
larly to soundness in our model. In particular, traces(‖i∈Id AGENT i) ∩ P ⊆ traces(ET pm)
constitutes only a necessary condition for transparency, as all security-compliant runs
of the target are still possible. However, this condition is not sufficient in general, as it
permits the enforcement mechanism to alter the security-compliant runs as long as the
collection of all security-compliant runs of the target is preserved. ♦

Along with the semantics of CSP introduced in Section 8.2, the definition of a sound
policy model provided in this section enables one to formally verify soundness (Require-
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ment (Req-2)). We demonstrate this with a concrete example in the following section.

8.5. Application of the Model

In this section, we apply the formal model introduced in this chapter for modeling a
CoDSPL policy and formally verifying that the resulting policy model is sound. The
application scenario we employ for this purpose is the same as in Section 7.4: a distributed
storage service in which a Chinese Wall Security Policy shall be enforced.

We proceed as follows. Firstly, we introduce our model of the target and our formal-
ization of the security property. Secondly, we provide a model of the CoDSPL policy of
ChESt. Finally, we show that our policy model indeed is sound.

8.5.1. Target and Security Property

We model the target, a distributed storage service as follows. The storage service consists
of a set of m ∈ N agents, SP = {1, . . . ,m}, which we refer to as the service providers. It
offers its services to the k ∈ N users U = {u1, . . . , uk} who can store files at the storage
service and retrieve files from the service.

When a user requests a file from one of the service providers, this service provider first
checks whether the file exists and the user has sufficient permissions to retrieve the file. If
this is the case, then the service provider returns the file to the user. Otherwise, the service
provider signals to the user that the access to the file is denied. We model the successful
accesses by events of the form e = (u, sp, o), where u ∈ U is the requesting user, sp ∈ SP
is the service provider, and o ∈ O is the object representing the requested file’s content.
We model the unsuccessful responses by events of the form e = (u, sp, denied), where
denied /∈ O is a special symbol that is distinct from any file content. We capture all the
response events involving a service provider sp by the set AEsp = U × {sp} × O and
denote the service provider for an event e by sp(e) = U × SP ×O. We denote the union of
these sets for all service providers by AE and refer to the events in the set as access events.

We model the individual service providers by the underspecified process expressions
(SP sp)sp∈SP and set EQsp of process equations with AEsp ⊆ α(SP sp) and such that the
internal and external channels of the EC model (see Figure 8.1) are not used by the
processes that model the service providers.

The files in our scenario may belong to competing companies. We say that such files
are in conflict (of interest) and capture the conflicts between files by an irreflexive and
symmetric relation COI ⊆ O × O on objects, called the conflict of interest relation. We lift
the conflict relation on objects to access events with the relation ⊗ ⊆ AE ×AE defined by
(u, sp, o) ⊗ (u′, sp′, o′) if and only if u = u′ and (o, o′) ∈ COI . Based on the previously
introduced concepts, we formalize the Chinese Wall Security Policy [BN89] as follows.

Definition 8.21. For a given set E ⊇ AE, the Chinese Wall security property is the security
property ChW(E) defined by

ChW(E) = {tr ∈ E∗ | ¬∃e1, e2 ∈ AE : (e1 / tr ∧ e2 / tr ∧ e1 ⊗ e2)} ♦

We capture the Chinese Wall Security Policy by a set of sequences over a parametric
set of possible events. The condition for a sequence to be in this set constrains only
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the access events contained in the sequence: No two access events that are in conflict
may be contained within one and the same sequence. All non-access events, such as
user authentication or directory browsing, which we do not model explicitly, are not
constrained by the property.

8.5.2. Policy Model

We develop a policy model for enforcing the Chinese Wall security property on the
distributed storage service. Our goal is a policy model by which each service provider
in encapsulated with an EC model. We begin by specifying the enforcer model and
subsequently specify the local policy model.

Enforcer model We aim to enforce the security property by replacing access events
that would violate the Chinese Wall security property by the corresponding denying
events. That is, if the occurrence of an access event (u, sp, o) violates the security property,
it shall be replaced by the access event (u, sp, denied). We capture this replacement
by total function deny : AE → AE, defined by deny((u, sp, o)) = (u, sp, denied) and
deny((u, sp, denied)) = (u, sp, denied). That is, denied accesses remain unchanged by the
function. Note that for any sp ∈ SP and e ∈ AEsp , we have deny(e) ∈ AEsp .

For implementing the replacement, we use a replacing enforcer of Example 8.3 on
page 140 at each service provider. That is, for each service provider sp ∈ SP , we use
REPLACEAEsp,AEsp with set ChWDsp = AEsp × (AEsp ∪ {term})∗ of decisions and set AEsp
of effectable events. We denote the union of these sets of decisions for all service providers
by ChWD. While in principle these enforcer models support replacement with sequences
of events and support termination, we do not make use of these possibilities in the local
policy model we define next.

Local policy model For enforcing the Chinese Wall security property, we specify a local
policy model that applies static delegation and that exhibits a modular architecture. The
modularity follows Chapter 7 with separation of concerns for delegation, decision-making
and routing. We capture this modularity by three separate components that constitute
our local policy model.

For static delegation, the responsibility function is a central element (see Section 7.2). We
capture the responsibility function by function resp : AE → SP , which we leave partially
underspecified, requiring only that resp(e) = resp(e′) holds for e ⊗ e′. As we observed in
Conjecture 7.4 on page 120, the Chinese Wall security property is partitionable into sets
of access events that share the same user and COI class. This partition refines the induced
event partition of resp and therefore enables the responsible units to be authoritative. We
model delegation in the local policy model for the EC model with identifier i = sp at
service provider sp ∈ SP by the process expression DELi under the respective process
equations provided in Figure 8.2 on page 151. The alphabet EDELi is defined by

EDELi =

{
lreq.e, lereq.e,
rtreq.(k, e′),

∣∣∣∣ e ∈ AEi,
e′ ∈ AE, k ∈ SP \ {i}

}
.
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Intuitively, this processes receive locally intercepted events (on channel lreq) and distin-
guish whether this EC model is the responsible unit for the event or not. In the former
case, the event is sent to the decision-making component (via channel lereq) and in the
latter case, the event is sent to the routing component, together with the identifier of the
event’s responsible unit (via channel rtreq).

The decision-making component for the EC model with identifier i ∈ SP is modeled
by the process expressions DECi(q), where q ∈ P(AE), under the respective process
equations provided in Figure 8.2 on the next page. The parameter q denotes the state of
the decision-making component and models the access events that the decision-making
component has previously permitted. The alphabet EDECi is defined by

EDECi =

{
lereq.e, edec.ed,
rereq.e′, rtrsp.(k, ed ′)

∣∣∣∣ e ∈ AEi, ed ∈ ChWDi,
e′ ∈ AE, ed ′ ∈ ChWD, k ∈ SP \ {i}

}
.

Intuitively, the processes receive events for decision-making based on the respective state.
Events intercepted from the local agent are received via channel lereq and events from
remote agents are received via channel rereq. For each event received on one of the
two channels, the processes distinguish whether the event is in conflict with any of the
previously permitted events or not. For this distinction, in the process equations for DECi ,
we make use of function conf : P(AE) → P(AE) defined by conf (q) = {e ∈ AE |
∃e′ ∈ q : e ⊗ e′}. For an event e that is in conflict with a previously permitted event, the
process produces the decision (e, 〈deny(e)〉), capturing that the event shall be replaced
by the corresponding denial event deny(e). Otherwise, the process produces the decision
(e, 〈e〉), capturing that the event shall occur (i.e., be replaced by itself). If the decision is for
an event from the local agent, the process sends the decision to the coordinator model via
channel edec. Otherwise, if the decision is for a remote agent sp(e), it sends the decision
to the routing component via channel rtrsp for being routed to the EC model of that agent.

The routing component serves the purpose of determining the next EC model to send
messages with a particular destination unit. We model a static routing, in which the next
unit towards a destination does not depend on prior routing choices. We capture this form
of routing by a function nxt : SP × SP → SP , where nxt(i, j) = k models that from unit i
the next unit to destination j is k. For our application scenario, we define the function
by nxt(i, j) = j for each i, j ∈ SP , that is, the destination unit is directly connected to the
source unit and the routing makes use of this. Based on the routing, we define the set
of all delegation requests and responses by ChWDR = SP × (AE ∪ ChWD), where the
first component models the identifier of the destination unit and the second models the
request or, respectively, response. The routing component for the EC model with identifier
i ∈ SP is modeled by the process expressions SRPi , under the respective process equations
provided in Figure 8.2 on the facing page.

The alphabet ESRPi is defined by

ESRPi =


rereq.e, rtreq.(k, e),
appv.ed, rtrsp.(k, ed ′), rreq.dr ,
fwd.(k, dr), ddec.(k, dr), rdec.(k, dr)

∣∣∣∣∣∣
e ∈ AE, k ∈ SP \ {i},
ed ∈ ChWDi, ed ′ ∈ ChWD,
dr ∈ ChWDR

 .

Intuitively the process receives three kinds of inputs: remote requests coming from the
coordinator model (via channel rreq), requests from the delegation component to route
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DELi
def
=EDELi

lreq?e: {e′ ∈ AEi | resp(e′) = i}→ lereq!e → DELi

�lreq?e: {e′ ∈ AEi | resp(e′) 6= i}→ rtreq!(resp(e), e)→ DELi

DECi(q)
def
=EDECi

lereq?e: AEi ∩ conf (q)→ edec!(e, 〈deny(e)〉)→ DECi(q)

�lereq?e: AEi \ conf (q)→ edec!(e, 〈e〉)→ DECi(q ∪ {e})
�rereq?e: conf (q)→ rtrsp!(sp(e), (e, 〈deny(e)〉))→ DECi(q)

�rereq?e: AE \ conf (q)→ rtrsp!(sp(e), (e, 〈e〉))→ DECi(q ∪ {e})

SRPi
def
=ESRPi

rreq?(k, e): {i} × AE → rereq!e → SRPi

�rreq?(k, ed): {i} × ChWD → appv!ed → SRPi
�rreq?(k, x): {(k′, x ′) ∈ ChWDR | k′ 6= i}

→ fwd!(nxt(i, k), (k, x))→ SRPi
�rtreq?(k, e): SP × AE → ddec!(nxt(i, k), (k, e))→ SRPi
�rtrsp?(k, ed): SP × ChWD → rdec!(nxt(i, k), (k, ed))→ SRPi

ChWLPi
def
= (DELi ‖DECi(∅) ‖ SRPi) \ H pol

i

Figure 8.2.: Components of the local policy model for enforcing the Chinese Wall security
property

delegation requests (via channel rtreq), and requests from the decision-making component
to route delegation responses (via channel rtrsp). Incoming delegation requests and
delegation responses for the local unit (i.e., where k = i) are processed by sending the
event to the decision-making component (via channel rereq) or, respectively, sending the
decision to the coordinator model for being enforced (via channel appv). All other inputs
lead the process to send a delegation request or response to the coordinator model, using
function nxt to compute the next unit.

Note that separation of concerns between delegation, decision-making, and routing
manifests itself in the process expressions. The responsibility function resp is only used
by processes DELi . The routing function nxt is only used by processes SRPi . And the
conflicts of interest are only used by processes DECi(q).

We define the local policy model ChWLPi for the Chinese Wall security property as the
parallel composition of the three previously introduced components. In this composition,
the three components communicate with each other via their shared channels, which are
hidden from the environment through the hiding of the set H pol

i , defined by which hides
the internal communication with the set

H pol
i =

{
lereq.e, rereq.e′,
rtreq.(k, e′), rtrsp.(k, ed)

∣∣∣∣ e ∈ AEi, e′ ∈ AE
ed ∈ ChWD, k ∈ SP \ {i}

}
.

The events that are exempt from the hiding establish the communication interface between
the local policy model and the coordinator model.
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Policy model Based on the ingredients introduced before in this section as well as Sec-
tion 8.5.1, we define the policy model ChWgp for our application scenario by the tuple

ChWgp =

 SP , (SP i)i∈SP ,
(AEi,AEi,ChWDi,ChWLPi,REPLACEAEi,AEi)i∈SP ,
ChWDR, EQChW

 ,

where the set EQChW of process equations is defined as the union of the process equations
of the target, EQChW , the process equations of the replacing enforcer (see Example 8.3 on
page 140), and the process equations in Figure 8.2 for all i ∈ SP and q ∈ P(AE).

Finally, we show that the our policy model ChWgp is proper. Technically, this allows us
to apply Definition 8.19 for obtaining an encapsulated target model for ChWgp. Intuitively,
this confirms that ChWgp does not involve undesired interactions between components
that violate the modular architecture of EC models.

Theorem 8.1. ChWgp is a proper policy model. ♦

Proof. Firstly, we show that ChWgp indeed is a policy model as it is defined in Def-
inition 8.17 on page 145. Since the number of elements in the tuple ChWgp as well as
their basic mathematical type (set or process expression) are correct, what remains to be
shown are the conditions that relate these elements. Let i ∈ SP be arbitrary but fixed in
the following. Then the conditions for the EC model with identifier i are the following.

1. ChWLPi is a local policy model for (SP , i,AEi,ChWDi,ChWDR).
By definition of a local policy model, this condition is satisfied if

α(ChWLPi) =
{
lreq.e, rreq.dr , edec.ed, appv.ed,
ddec.(k, dr), rdec.(k, dr), fwd.(k, dr)

∣∣∣∣ e ∈ IE, ed ∈ ED,
dr ∈ DR, k ∈ SP\{i}

}
holds for IE = AEi , ED = ChWDi , and DR = ChWDR. The definition of ChWLPi
gives α(ChWLPi) = (EDELi ∪ EDECi ∪ ESRPi ) \ H pol

i , which by the definitions of the
four sets satisfies the condition.

2. REPLACEAEi,AEi is an enforcer model for ChWDi and AEi .
By its definition in Example 8.3, the replacing enforcer REPLACEAEi,AEi is an enforcer
model for AEi × (AEi, {term})∗ and AEi . The former of the two sets coincides with
ChWDi by its definition on Page 149. Therefore, the condition is satisfied.

3. EQChW contains a process equation for each process name that occurs in SP i ,
ChWLPi , and REPLACEAEi,AEi .
This condition is satisfied because EQChW is defined as the union of the correspond-
ing three sets of process equations.

Secondly, we show thatChWgp is proper, by showing thatChWgp satisfies the individual
conditions in Definition 8.18. For this, let i ∈ SP be arbitrary but fixed in the following.
On 8.18 (a): The intersection in the condition is empty by our definitions of SP i (Page 148)

and AEi (Page 148).
On 8.18 (b): Condition AEi ⊆ α(SP i) holds by definition of SP i .
On 8.18 (c): This condition holds because by definition of ChWgp, intercepted events and

effectable events are both equal AEi .
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Overall, the policymodel we have definedmodels the CoDSPL policy of ChESt (described
in Section 7.4) for enforcing the Chinese Wall security property on a distributed storage
service. Concretely, the model captures several key aspects. Firstly, it captures static
delegation, i.e., delegation with a static assignment of intercepted events to responsible
unit, in the particular form that two conflicting events share the same responsible unit.
Secondly, the model captures the separation of concerns delegation, decision-making, and
routing. In some of the details, the model deviates from the CoDSPL policy of ChESt.
Firstly, the ChESt uses hash maps for storing, for each user and each COI class, the
name of the company whose files the user has accessed from this COI class. In the
model, where performance and storage complexity is not our concern, we simplify this
to storing the sets of all permitted access events. Secondly, deviating from the ChESt,
the delegation requests in our model include the identifier of the responsible unit. This
merely simplifies our local policy model a bit, as it allows the routing component to
identify whether a delegation request must be forwarded to another unit or not without
invoking the delegation component. However, since the responsibility function is known
to each unit, including the responsible unit does not provide any additional information
to the cooperating units. That is, despite the named deviations, we consider our model to
faithfully capture the CoDSPL policy of ChESt.

8.5.3. Soundness Result

In the previous section, we formally modeled the components for enforcing the Chinese
Wall security property in a distributed storage service with static delegation. We can now
show that this instance of our formal model indeed soundly enforces the Chinese Wall
security property.

Theorem 8.2. ChWgp is a sound policy model for ChW(α(ETChWgp)) ♦

Proof sketch. Suppose, Theorem 8.2 does not hold. Then there exists a trace tr of ETChWgp
that contains two conflicting events e1 and e2 – i.e., with e1 ⊗ e2. The replacing enforcer
ensures that an access event is performed only after it has received a corresponding
“permitting” decision. We can show that the permission decisions for e1 and e2 must
have been made by their respective responsible units. Since e1 and e2 are in conflict, they
have the same responsible unit by the definition of function resp. This unit must hence
have permitted both events e1 and e2. However, this contradicts the decision-making
component DEC of that unit together with the definition of function conf . Hence, tr
cannot contain both conflicting events e1 and e2 and Theorem 8.2 holds.

A full formal proof of the theorem can be found in Appendix A.2.

The soundness result shows how our definitions related to soundness for our CSP
model of encapsulated targets can be instantiated for a concrete example. Moreover, the
soundness result provides strong evidence even beyond the model. Since we captured
in the model the same cooperation technique we used for enforcing the Chinese Wall
security property in the case study of Chapter 7, the soundness result further supports
our soundness observations in that chapter.



154 Chapter 8. A Formal Cooperation Model for CliSeAu

8.6. Summary

We introduced a formal model of an enforcement mechanism for distributed targets in the
process algebra CSP. The model captures the modular architecture of CliSeAu’s generic
enforcement capsules, including the communication within and between the generic ECs.
The model is parametric and its parameters reflect the CoDSPL policies that can be input to
CliSeAu. In the model, we captured also how the units of the enforcement mechanism are
combined with the agents of the target by a specific combination of parallel composition
and hiding. We provided a formal definition of sound enforcement for instances of our
model based on CSP’s “satisfies” predicate. By an example instance of the formal model,
we demonstrated for enforcing a At the example of the Chinese Wall Security Policy in a
distributed storage service, we demonstrated how the formal model can be instantiated
and how instances of the model can be proven to soundly enforce security.

Technically, our proposed technique for combining the models of units and agents
enables the units to intercept events without any effects on the environment. Previously
proposed process-algebraic models of enforcement mechanisms [BOS07; BBK12] employ
a single parallel composition between the target and the whole mechanism. As a result,
interception, decision-making, and the imposition of countermeasures take place instan-
taneously such that the only countermeasure is to block security-violating events. Our
technique allows for a wide range of countermeasures – including termination, suppression,
insertion, and replacement – to be modeled, as demonstrated in our examples. Moreover,
our technique enables units to communicate internally as well as with other units between
the point in time an event is intercepted and the point in time a countermeasure is applied.

By faithfully capturing the architecture of CliSeAu’s generic ECs and capturing instances
of the parametric model as through models of CoDSPL policies, the formal model provided
in this chapter allows one to analyze modeled CoDSPL policies with regard to sound
enforcement. Our model makes the concurrent operation of agents and units as well as the
communication between units explicit. This explicitness allows the model to capture how
information is disseminated between units while the agents keep running and particularly
allows the model to expose the effects of race conditions on the enforcement. Providing
means for the formal verification of proposed enforcement mechanisms is in line with
Anderson’s principles that an enforcement mechanism shall be subject to analysis and
testing [And72]. We are not the first to use formal modeling for distributed enforcement
[KP14; Kel16]. However, our model is the first formal model of a cooperating distributed
enforcement mechanism.
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Chapter

9
Related Work

9.1. Overview

In this chapter, we compare the contributions presented in Chapters 3 to 8 with tools,
techniques, and formal models proposed in the literature. We first compare with policy lan-
guages and instrumentation techniques used by other distributed as well as non-distributed
generic enforcement mechanisms in Sections 9.2 and 9.3. We then compare specifically
with other distributed enforcement mechanisms and particularly with delegation for coop-
eration among the units of distributed enforcement mechanisms in Sections 9.4 and 9.5.
Approaches to separation of concerns pursued in other enforcement mechanisms are
discussed in Section 9.6 and a comparison with other formal models of enforcement mech-
anisms is provided in Section 9.7. Finally, in Section 9.8, we compare with related works
on the application scenarios used in this thesis.

9.2. Policy Languages for Run-time Enforcement

The languages used in run-time enforcement that are conceptually closest to CoDSPL are
the languages used by Polymer and JavaMOP. The language used by Polymer [BLW09]
essentially consists of two parts: an action declaration file, which specifies a set of pat-
terns that match Java methods and thereby declares the operations of the target that
Polymer shall intercept, and a policy definition, which specifies a Java class derived from
a Policy base class in a variant of Java that augments Java with a switch-like construct
for distinguishing program operations by action patterns. A particularity of Polymer’s
policies is that the policies separate decisions from their enforcement, for the purpose of
making policies composable. Polymer’s action declaration file serves the same purpose
as CoDSPL’s specification of security-relevant program operations. For both tools, the
relevant operations are methods. CoDSPL’s patterns for specifying Java operations, being
based on AspectJ, are more expressive than the ones of Polymer as they allow, for instance,
specifying constraints on the calling context. Polymer’s policies have in common with
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CoDSPL policies that they are specified in the form of Java code with a certain mandatory
low-level architecture. The counterpart to Polymer’s Policy class is CoDSPL’s LocalPolicy
class. Like CoDSPL, Polymer’s policy language also supports abstracting from concrete
program operations [BLW09, Section 2.2] and also distinguishes the decision-making
from the enforcement of decisions [BLW09, Section 2.1]. There are two main conceptual
differences between CoDSPL and the policy language of Polymer. Firstly, CoDSPL policies
can specify cooperation between units, whereas Polymer does not aim at distributed targets
and, hence, does not foresee cooperation. Secondly, Polymer’s policies include means for
hierarchically composing multiple policies through logical combinators. CoDSPL does not
particularly foresee policy composition.

A JavaMOP policy [MJG+12] consists of three parts: a specification of relevant program
operations, a specification of the property to be monitored by JavaMOP, and specification
of how JavaMOP shall act upon violation or satisfaction of the specified property. The
relevant program operations are specified through a syntax close to the syntax of AspectJ
pointcuts. The property to enforce can be specified in several ways, including finite-
state machines and LTL formulae. This property is bound to references of objects of
the running target or to combinations of object references. That is, individual objects
can violate or satisfy the given property. The actions to be performed upon violation
or, respectively, satisfaction of the property are specified as a Java code block. CoDSPL
shares with JavaMOP that security-relevant program operations are specified in a syntax
close to the syntax of AspectJ pointcuts. Both tools also use the semantics of AspectJ
pointcuts. Moreover, CoDSPL shares with JavaMOP that countermeasures are specified as
Java code. The difference between CoDSPL and JavaMOP is in the decision-making, in
which JavaMOP’s language allows very concise specifications but limits the expressiveness.
For instance, conditions on the value of String objects cannot be expressed. In the design
of CoDSPL, the focus is more on the expressiveness, even though it comes at the expense
of less concise specifications.

The policy language used by Clara [BH12] shows similarity to the language used by
JavaMOP. The conceptual differences are that Clara’s language keeps the specification of
operations and the corresponding countermeasure code together [BH12, Figure 4]. The
key difference between JavaMOP and Clara is that Clara uses static analysis for more
precisely identifying join point shadows based on the specified property. CliSeAu, as the
tool that applies CoDSPL policies, does not provide such a static analysis.

Automata-like specifications of enforcement mechanism behavior can be found in other
policy languages than the languages of JavaMOP and Clara. SAL [ES00b], PSLang [Erl04],
and ConSpec [AN08] are specification languages in which policy state can be captured
through a set of typed variables from a pre-defined range of types. Transitions are labeled
with program operations and the state resulting from a transition is specified via a code
block in a domain-specific language that re-assigns the state variables. While the use
of domain-specific languages for operational policy specifications generally yields more
concise policies, it also reduces expressiveness. The development from SAL to PSLang
indicates that moving towards a more expressive policy language involves adding data
types known also from general-purpose programming languages.

Mechanisms for monitoring targets with respect to properties have been proposed
[SVA+04; HPB+07; BGT09; BHK+12; HOW14; BCE+16], where the desired property is
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specified in a variant of linear-time temporal logic (LTL). These mechanisms aim at the
detection of property violations, not their prevention. PT-DTL [SVA+04] is a temporal logic
with operators for remote sub-formulas, i.e., formulas that are expected to be satisfied at
a remote agent. The logic allows a rather declarative way of specifying the cooperation
between units than CoDSPL’s operational approach. The semantics of PT-DTL, though,
is defined in a way that cooperation takes place if and when agents communicate such
that both false positives as well as false negatives cannot be prevented. The logics MFOTL
[BHK+12; BCE+16], MTL [HOW14], and PTLTLFO [BGT09], in contrast to PT-DTL, al-
low universal quantification but do not provide explicit constructs for cooperation or
distributed targets. OSL [HPB+07] is a temporal logic specifically aiming at usage control
without quantifiers but with implicit universal quantification over free variables [HPB+07,
Section 3.4].

9.3. Instrumentation-based Enforcement Mechanisms

Aspect-oriented programming forms the technical basis of several instrumentation-based
enforcement mechanisms. JavaMOP [MJG+12] and Clara [BH12] use AspectJ internally
as a back-end for instrumenting the bytecode of Java targets. JavaMOP is a generic
mechanism for monitoring and enforcement of properties on Java programs. Its policy
language incorporates parts of the AspectJ language for the specification of program
operations at the application-level [MJG+12, Figure 2]. Given a policy, JavaMOP creates
an AspectJ aspect that a user of JavaMOP can than weave into a target using the AspectJ
compiler [MJG+12, Section 2.2]. Clara uses a different policy language than JavaMOP
but its policy language also incorporates parts of the AspectJ language [BH12, Fig. 5].
Like JavaMOP, Clara also generates an AspectJ aspect for use with the AspectJ compiler.
CliSeAu follows a similar approach as JavaMOP and Clara: CliSeAu’s syntax for specifying
security-relevant program operations, introduced in Section 3.4.1 on page 30, builds on
AspectJ’s pointcut language and CliSeAu’s encapsulation tool internally generates an
AspectJ aspect. A technical difference is that the encapsulation tool rather than its user
invokes the AspectJ compiler and thereby makes AspectJ more transparent to its users than
JavaMOP an Clara do. The main architectural difference between CliSeAu and JavaMOP
as well as Clara is that the latter weave all parts of the mechanism into the agent while
CliSeAu’s cross-lining places part of the mechanism into a separate program and generates
the mechanisms in a way that establishes the interfaces between the parts.

Early versions of JavaMOP [CR07] supported the generation of so-called outline monitors,
a variant of JavaMOP monitors whose interception functionality is inlined into the code of
the target but whose decision-making and acting functionality is placed into a “standalone
process or thread” [CR07, Section 4.1]. The communication between the two parts of the
mechanism is implemented via message passing. Notably, the feature is rarely documented
and is no longer supported in recent versions of JavaMOP, particularly including the most
recent version, JavaMOP 4 [Khe]. Due to the choice of placing the acting functionality
outside the scope of the target, an outline monitor of JavaMOP “cannot access the internal
state of the monitored system, limiting its capability for error recovery” [CR07]. CliSeAu’s
cross-lining technique places the enforcer into the target, which enables countermeasures
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that modify the target’s internal state.
Other enforcement mechanisms in the literature have been proposed with dedicated

instrumentation techniques. SASI is an enforcement mechanism for targets in Java byte-
code as well as for x86 bytecode [ES00b]. In the following exposition, we focus on the
variant for Java. SASI implements the concept of security automata by instrumenting Java
targets such that automata transitions are performed before security-relevant bytecode
instructions. Erlingsson and Schneider call this technique inlined reference monitors (IRMs).
Erlingsson also proposes the Policy Enforcement Toolkit (PoET), an enforcement mech-
anism that augments SASI in multiple directions, including support for instrumenting
dynamically loaded code and instrumenting at a more coarse granularity of program
operations. Compared to CliSeAu, PoET supports instrumenting Java bytecode at a finer
granularity of program operations and generally applies more sophisticated techniques
for ensuring that the mechanism’s code cannot be circumvented by the target. In the
design and implementation of CliSeAu, the focus is a different one: providing sufficient
granularity for capturing security-relevant program operations and providing generic
means for cooperation.

Another instrumentation technique specifically developed for an enforcement mecha-
nism is the technique employed by Polymer [BLW09]. Conceptually, Polymer’s instrumen-
tation technique differs fromCliSeAu’s in twoways. Firstly, Polymer uses the Apache BCEL
library for explicitly specifying how the target’s Java bytecode is instrumented [BLW09,
Section 3.1]. This aims at more precise control over how the instrumented target behaves,
particularly that the enforcement mechanism is invoked at the specified operations and
is not circumvented by the target. Efforts in this direction have also been incorporated
into Mobile [HMS06a], an enforcement mechanism for Microsoft’s CIL language. In the
design of CliSeAu, AOP tools are employed instead of custom instrumentation techniques
mainly because these tools already have been used and stabilized for several years and
error-prone re-implementations of bytecode rewriting could be avoided. Secondly, Poly-
mer instruments the bytecode of a target from within a custom class loader at run-time,
when the code of the target is loaded. This enables Polymer to instrument code that is
not available before the target executes. CliSeAu does not support instrumentation of
dynamically loaded code.

The enforcement mechanisms discussed in this section have in common that they involve
some form of automatic modification of the target’s code. Beyond this approach, there
are also mechanisms built on modifications of the system in which the target is executed
[EGC+10; OBM10] or built on manual modifications of specific targets [KP14] or libraries
used by targets [SVA+04; BDE+08]. Such approaches are outside the scope of this thesis.

In her work, Mazaheri [Maz12] uses an earlier version of CliSeAu and provides an
extension for supporting Ruby targets. This extension is based on a JRuby program
that mediates the communication between inlined interceptor and enforcer components,
implemented in Ruby, and the decider program, implemented in Java. The support for
Ruby targets in CliSeAu presented in this thesis is built on an architecture that does not
require such a mediation component and rather uses JSON as interchange format for
objects between Ruby components and Java components. Our architecture of CliSeAu for
Ruby targets is, thus, simpler and enabled a more efficient implementation by avoiding
delays caused by the mediator component.
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9.4. Enforcement Mechanisms for Distributed Targets

In the direction of enforcement mechanisms for distributed targets, the line of work
possibly closest to this thesis is the usage control by Kelbert and Pretschner [KP12; KP13;
KP14; KP15; Kel16]. This line of work contributes a formal model of cross-system data flow
tracking [KP13; KP14], an enforcement mechanism implementing the concepts behind
the model [KP15], and empirical evaluations of the enforcement mechanism [KP15]. The
provided enforcement mechanism features a modular architecture [KP15, Fig. 3] consisting
of one or more policy enforcement points (PEP), a policy decision point (PDP), a policy
information point (PIP), and a Cassandra node. The PEP combines functionality of what
in CliSeAu’s architecture is interceptor and enforcer. The line of work builds on PEPs
specialized for particular targets or components like operating systems and interpreters
[Kel16, Section 2.2.2]. That is, how the PEP and, by transitivity, the enforcementmechanism
is applied to a given target or system is not part of this line of work. CliSeAu allows its users
to apply an enforcement mechanism to given Java and Ruby targets and to select via the
policy which operations to intercept. This enables users to enforce security properties that
are naturally formulated at an application-level granularity of operations (e.g., “download
of a file over the FTP protocol”) without implementing a specialized PEP or breaking the
operations down into low-level operations of, e.g., an operating system for which a PEP
has been implemented. PDP, PIP, and Cassandra node of Kelbert et al. together realize a
functionality conceptually similar to CliSeAu’s coordinator and local policy components:
making decisions, capturing information relevant for decision-making, and cooperation.
The approach by Kelbert et al. relies on cooperation based on information exchange via
an instance of the distributed database Cassandra [LM10]. Since Cassandra is a general-
purpose database, it trades availability and consistency of data; Configuring Cassandra to
enforce consistency, as pointed out by Kelbert [Kel16, p. 90], incurs performance penalties
through synchronization among all nodes of the distributed database, which the effectively
corresponds to a centralized database. By having the cooperation specified as part of
the policy, CliSeAu enables its users to tailor the cooperation to the respective security
property to be enforced and thereby achieve consistency without centralization, as we
demonstrate, e.g., in Chapter 7.

The law-governed architecture for distributed systems (LGAD) by Minsky [Min91] and
its implementation by the Moses toolkit [MU00] control distributed programs with a
particular focus on the interaction between agents. The Moses toolkit supports control-
ling the interaction between agents of distributed Java programs. Technically, Moses is
implemented as a middleware that agents of the controlled target are expected to use for
all cooperation among themselves [Min05]. Moses aims at enforcing properties, called
laws, on the cooperation between agents. Moses enforces laws at the level of agent com-
munication by delivering, blocking, or modifying exchanged messages. CliSeAu differs
from Moses in three main aspects. First, CliSeAu can intercept communication operations
of agents, as Moses can, but can additionally intercept computation operations of agents.
Second, CliSeAu can impose countermeasures on a target that change the communication
behavior between agents, as Moses can, but can additionally impose countermeasures that
alter internal operations of an agent. Third, CliSeAu can be applied to Java programs even
if they have not been programmed to use a particular middleware like Moses. Overall, this
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enables CliSeAu to be applied to a wider range of targets and to enforce a wider range of
security requirements than Moses.

DiAna [SVA+04] is a tool for monitoring temporal properties on snapshots of distributed
Java programs. These programs are assumed to be built on a monitoring library that is
provided by DiAna. In this sense, DiAna is similar to Moses. The DiAna intercepts the
communication operations between the agents of the target and its distributed compo-
nents exchange information among each other piggy-backed on the messages exchanged
between the agents. DiAna signals detected violations of a given property but does not
impose countermeasures. That is, DiAna performs cooperative decentralized monitoring.
The conceptual difference between CliSeAu and DiAna subsumes the three aspects in
which CliSeAu and Moses differ. Further noteworthy differences are that DiAna supports
declarative property specifications in a distributed variant of past-time temporal logic,
PT-DTL, while CliSeAu supports operational policy specifications.

Porscha [OBM10] is a mechanism for enforcing digital rights management policies
in the middleware of Android smartphones. Porscha operates as a proxy for content
like SMS and e-mail and constrains access to such content to a policy-determined set of
local or remote applications. For transmission of content, Porscha utilizes encryption
to protect the content. Moreover, Porscha transmits together with the content also the
policies that apply to the content. That is, Porscha cooperates across smartphones by
transmitting policies. CliSeAu and Porscha have in common that they support cooperative
decentralized enforcement. A key difference is that CliSeAu’s units can cooperate even
when the respective encapsulated agents are not communicating. This allows CliSeAu to
enforce security properties in which local operations (e.g., the printing of a document) can
have an impact on remote agents (e.g., the document may be printed one times less there).

Somewhat related to enforcement for distributed targets is the usage control approach
by Lovat et al. [PLB11; Lov15; LOP16]. The approach aims at performing usage control
within a single non-distributed system, across multiple layers of abstraction such as
operating system, window manager, and database. The approach makes use of a modular
enforcement mechanism consisting of a PEP, a PDP, and a PIP component for each layer,
i.e., similar to the architecture of Kelbert and Pretschner [KP15]. The layers’ mechanisms
exchange information about their state upon each intercepted event [Lov15, Algorithm 1].
The main difference between Lovat et al.’s approach and CliSeAu is that the former is based
on cooperation via shared memory while CliSeAu cooperates via message passing. How
the conceptually orthogonal approaches compare has not yet been investigated. Similar
to the approach of Kelbert et al., the work by Lovat et al. builds on PEPs specialized for
particular targets or components like operating systems and interpreters. That is, how the
enforcement mechanism is applied to a given target or system is not in the scope of this
line of work.

9.5. Cooperation by Delegation

Notions of delegation are wide-spread in computer science. The notions probably closest to
the delegation in this thesis are those from multi-agent systems and software engineering.
Inmulti-agent systems, the notion of delegation is used for “requests for action and requests
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for solutions” [Fer99, p. 332]. At a more technical level, our delegation among units also
matches notions of delegation from software engineering, such as “an implementation
mechanism in which an object forwards […] a request to another object. This delegate
carries out the request on behalf of the original object.” [GHJ+95, p. 360] At this level, the
local policies of units represent the forwarding objects and these local policies carry out
requests by making decisions.

Note that prevalent notions of delegation in computer security – e.g., “one entity
authorizes a second entity to perform functions on its behalf” [Bis03, p. 7] – are not in the
focus of our work. In our work, when units delegate, functional aspects dominate: making
a decision about an intercepted operation by involving other units that can contribute
information. For instance, the units of CReDiC, our enforcement mechanism for controlled
re-sharing in Diaspora*, trust each other in terms of making sound and transparent
decisions, retaining the information contained in delegation requests, and not abusing
their capacity to make decisions for denial of service attacks. We therefore do not build our
units on authorizations, e.g., for decision-making or for accessing units’ state. Effective
cooperation in case of distrust among units would be a topic of future work.

Enforcement mechanisms for distributed targets proposed in the literature take ap-
proaches for cooperation that focus more on exchange of information than on the del-
egation of decision-making. The mechanism by Kelbert and Pretschner [KP15], for in-
stance, use a distributed database for exchanging information, and The approach of Di-
Ana [SVA+04] for cooperation is based on information piggy-backed on the communication
between the agents of the target. Moses [MU00] is a rather generic toolkit for governing
the interaction between agents in a distributed target and its rule-based policy language
could, as we presume, be used for specifying delegation. However, to the best of our
knowledge, examples of using Moses comprise policies based on information exchange
rather than delegation. We are not aware of other enforcement mechanisms than CliSeAu
in which cooperation is realized through delegation.

Static delegation We published an instance of static delegation initially in 2012 for en-
forcing the Chinese Wall Security Policy in a decentralized fashion and formally proved
soundness of the instance [GMS12]. Technically, in ChESt, we assign responsibilities by
hash values of user names and COI classes. We published this determination of respon-
sibilities for the CWSP for the first time as part of the initial publication of the CliSeAu
implementation in 2014 [GHM14]. This approach was afterwards adopted by Decat, La-
gaisse, and Joosen [DLJ15], who propose a decentralized architecture for enforcing security
properties specified in a variant of XACML. The architecture proposed by Decat et al.
consists of several coordinator components, one for each agent of the distributed target.
Concretely, Decat et al. propose that “each subject and resource is assigned to exactly one
responsible coordinator and this coordinator manages this subject/resource for all policy
evaluations related to it. […] [T]he responsible coordinators are determined based on a
hash of the id of the subject and resource in question.” This is close to what we implement
in ChESt, except that we use the COI class in the computation of the hash value rather
than the resource (i.e., the file).

As discussed on on this page, other approaches for cooperative enforcement in dis-
tributed targets use different means than delegation for the cooperation among units.
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This includes the usage control mechanism by Kelbert and Pretschner [KP15] as well as
DiAna [SVA+04]. Several mechanisms for usage control in distributed targets particularly
control agent-internal events on policy-relevant data as well as events that transfer such
data between the agents of a distributed target [PHB06; ZSS08]. In these mechanisms,
agent-internal events are decided by the unit of the respective agent and transfer events
are decided by the unit of the sending agent. This approach by the mechanisms can be
seen as a “local” variant of static delegation, provided that the information about the agent
from which an event was intercepted is part of the event.

Most closely related to our definition of order-insensitive security properties (Def-
inition 7.5) might be the properties enforceable with shallow history automata. Shallow
history automata [Fon04] are a variant of security automata [Sch00], whose states record
the set of all granted events. That is, shallow history automata do not record the ordering or
multiplicity of granted events. In the following, we refer to the class of security properties
that are enforceable with a shallow history automaton as shallow history properties. The
classes of order-insensitive security properties and of shallow history properties intersect,
but none is subsumed by the other. In the intersection of the classes are properties that
are not just insensitive to ordering but also insensitive to multiplicities of occurrences.
Order-insensitive but not shallow history are properties in which the multiplicity of past
events makes a difference for the permissibility of subsequent events. An example for
such properties is P = {〈 〉, 〈e〉, 〈e, e〉, 〈e, e, e〉}, in which the event e may occur at most 3
times. Shallow history properties that are not order-insensitive exist as well. An example
for such properties is P = {t ∈ {e, e′}∗ | t = t ′.〈e′〉.t ′′ _ t ′ � {e} 6= 〈 〉} in which event
e′ may occur after and only after event e has occurred at least once. Another example is
the quota policy we discussed in Example 7.3 on page 113. That is, while order-insensitive
security properties intuitively bear similarity to Fong’s shallow history properties, the
two classes of properties are different and none of them is subsumed by the other.

9.6. Separation of Concerns

Separation of concerns is commonly used in software engineering for reducing conceptual
complexity and for increasing maintainability of software [BME+07, pp. 13–14]. To the best
of our knowledge, separation of concerns for enforcement mechanisms has been described
explicitly only in few works of the research area. Polymer’s central feature of policy
composition is based on a separation between decision-making and the implementation
of decisions made. This separation also separates the decision-making from state-keeping,
is part of the implementation of decisions. The separation proposed by Polymer has
been adopted also by other enforcement mechanisms in the literature [RHN+13]. A
similar separation between decision-making and state-keeping is also proposed by the
XACML reference architecture through its distinction of the components PDP and PIP.This
architecture, alongwith its underlying separation, has been adopted by several mechanisms
for usage control [KP15; LMM12; LOP16]. We adopted this separation between decision-
making and state-keeping in our framework for modular local policies. For our purposes,
we further refined the separation, distinguishing decision-making into subgoal selection,
subgoal realization, and routing. Enforcement mechanisms for distributed targets, such
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as DiAna, Moses or the mechanism by Kelbert and Pretschner [KP15], as far as literature
about them suggests, do not provide a more fine-grained separation of concerns than
between decision-making (PDP) and state-keeping (PIP).

9.7. Formal Models of Enforcement Mechanisms

We compare with related works in two directions. Firstly, we compare our contributions
with other models of enforcement mechanisms for distributed targets. Secondly, we
compare our contributions with other formalizations of enforcement mechanisms that
utilize the process algebra CSP.

Formal models for distributed enforcement of security Martinelli and Matteucci [MM08]
propose a framework for synthesizing centralized and, respectively decentralized mech-
anisms for enforcing security properties in distributed targets. Concretely, the security
properties for distributed targets are specified in a particular variant of modal logic. These
properties are then first decomposed into properties of the target’s components and, sec-
ond, the result is subject to one of the two proposed syntheses – a centralized one or a
decentralized one. The approach is instantiated at the example of the ChineseWall security
property. The centralized approach relies on a single mechanism and therefore does not
involve communication between mechanisms. The decentralized approach involves multi-
ple mechanisms – one for every component of the target –, but the individual mechanisms
cannot communicate with each other. In consequence, concerted security properties such
as, e.g, the Chinese Wall Security Policy as specified in Example 2.2 cannot be enforced
unless one accepts severe cuts in the effectiveness of the mechanism as, e.g., pointed out
by Martinelli and Matteucci [MM08].

Kelbert and Pretschner [KP14] and Kelbert [Kel16] propose a model for decentralized
distributed usage control. In the model, systems are captured by the sets of possible
traces of the systems’ distributed subsystems (agents in the terminology of this thesis).
The properties enforced in the proposed model are specified in OSL, a temporal logic.
The authors formalize which of the distributed enforcement mechanisms’ coordination is
required for evaluating whether a given OSL formula is satisfied or violated at a point in
time. For computing this set of mechanisms, the authors make the assumption that the
target’s clocks are synchronized and that the distribution of data to the target’s agents is
known among all the mechanisms. In our model, we do not rely on the assumption of such
dynamically changing information to be known at the units. Moreover, the line of work
by Kelbert et al. uses formal modeling for the targets as well as for the properties, but not
for the enforcement mechanism itself and does not formally verify sound enforcement.

Mazaheri [Maz12] uses a previously presented version of our model [GMS12] for formal-
izing a security property and an enforcement mechanism for the scenario of the case study
presented in Chapter 6. Based on the formal model, Mazaheri shows that the mechanism
does not soundly enforce the security property and proposes a weaker variant of the
property that can be soundly enforced. That is, Mazaheri’s work provides further evidence
that our model can be used for modeling units as well as for proving and disproving sound
enforcement.
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Formal models of enforcement mechanisms in CSP The process algebra CSP has tradition-
ally been used for the verification of security protocols with regard to properties such
as confidentiality and authenticity (e.g., [Sch96; LR97; DR10] and [Ros05, pp. 468–488]).
However, we are not the first to use CSP for modeling enforcement mechanisms and their
composition with models of targets.

Basin, Olderog, and Sevinç [BOS07] use CSP-OZ [Fis97], a variant of CSP combined
with Object Z, for formalizing enforcement mechanisms and verifying properties of con-
crete instances. Technically, the formalized enforcement mechanisms are CSP process
expressions like in our model. Basin et al. propose to specify security properties as process
expressions and consider a given combination of target and enforcement mechanism to
be sound, if the latter is a trace refinement of the former. For checking this notion of
soundness, they use the FDR model checker. In our formal model, we formalize security
properties as predicates on traces – without the indirection through processes. This allows
us to specify security properties in a more declarative rather than operational fashion, as
we exemplify with the Chinese Wall security property. Basin, Burri, and Karjoth [BBK12]
propose an approach for synthesizing enforcement mechanisms in CSP for separation of
duties [PP06, pp. 250–251] constraints expressed in a formal language called separation of
duty algebra (SoDA). The authors show that the synthesized mechanism is correct in the
sense that all it allows precisely those traces that satisfy the respective SoDA formula.

With both techniques, the enforcement mechanisms are combined with targets through
parallel composition [BOS07; BBK12]. This allows the enforcement mechanism to let
permitted event happen (by synchronizing on them), to indefinitely block security-violating
events (by not synchronizing on them), and to insert sequences of events that are not
shared between the target and the mechanism. When the events shared between the
target and the mechanism subsume the whole alphabet of the target, then the indefinite
blocking is equivalent to termination countermeasure. Suppressing selected events and
replacing an intercepted event with a sequence of events is not supported by the model.
This is due to the parallel composition without hiding, which effects the interception,
decision-making, and the permission or blocking to take place instantaneously: Once an
event is synchronized on, it immediately becomes effective in the sense of being visible to
the environment. The only way, thus, to block an event is to not synchronize on it in the
first place. First intercepting the event and then making a decision is not possible with
this form of composition between the target and the mechanism. The proposed model
does not particularly aim at distributed targets or decentralization and correspondingly
do not foresee cooperation between enforcement mechanisms.

9.8. Application Scenarios

The focus of this thesis is on a generic enforcement mechanism for distributed targets,
and we demonstrate in Chapters 6 to 8 that our generic tools, techniques, and models are
indeed applicable in concrete application scenarios. However, we are not the first to apply
generic as well as specialized approaches in these or similar application scenarios. We
discuss related works on the application scenarios in the remainder of this section.
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9.8.1. Controlled Re-sharing in DOSNs

We use the case study presented in this chapter to demonstrate that delegation can be
used with CliSeAu in a modular fashion for effectively and efficiently enforcing security
requirements in distributed targets. In the following, we discriminate our contributions
made in the case study from other works on enforcing users’ privacy is OSNs as well as
on trust models.

Probably closest to our contribution of CReDiC is the work of Mazaheri [Maz12].
Mazaheri proposes a formal model in CSP for controlled re-sharing and an implementation
of this model for Diaspora* using CliSeAu. In her work, Mazaheri uses a trust model
based on scalar trust values in which a re-share path consist of the users who shared and
re-shared the respective post. In the model, trust values are assigned to users and these
trust values are multiplied for computing path trust. This is conceptually similar to our
model. The main difference between her model and ours is that her model leaves out
the notion of categories. In that regard, our model more closely captures how DOSNs
like Diaspora* maintain relationships between users. Moreover, as part of our model,
we provide a semantics of user’s privacy policies, which we capture as compliance of
re-sharing in Definition 6.6. Our definition of this notion is independent of a DOSN system
model. This is in contrast to Mazaheri’s work, in which compliance is expressed as a trace
property of a partially underspecified DOSN. Our notion of compliance therefore achieves
to be of lower conceptual complexity and, at the same time, supports a wider design space
for the recency of users’ privacy policies.

The mechanism provided by Mazaheri [Maz12] implements the trust model discussed
above using CliSeAu. The logic proposed with Mazaheri [Maz12]’s local policy imple-
mentation for an intercepted re-share operation – first querying the re-share path, then
the sensitivity value of the post, and finally the users’ trust values along the re-share
path – served as basis for the logic in CReDiC. The distinctive feature of CReDiC is its
modular architecture, which separates the individual steps into micro-policies of lower
conceptual complexity. Technically, our implementation of CReDiC re-uses the set of
Diaspora* pointcuts and the event factory developed by Mazaheri but ports both to a
newer version of Diaspora* and substantially extends them to a trust model based on
categories.

Underlying our model of trust, presented in Section 6.4.1, are two main design decisions.
Firstly, we model trust as scalar values ranging from 0 to 1, which can be found also
elsewhere in the literature [BBK94; Gol05; KGG+06]. Alternatives found in the literature
are qualitative models of trust between users based on one or more binary relations
(e.g., [Fon11]) as well as quantitative models based on vectors of scalars (e.g., [Jøs98;
HWS09]). We build our trust model on scalar trust values, such as to give users some
means for quantifying their relationships and yet to take into account that specifying
trust vectors might be a burden users might refrain to take. Secondly, our model utilizes a
particular notion of trust concatenation and selects a single path – the re-share path – for
capturing trust of an author in a re-sharing user. Alternative models for concatenation of
scalar trust values have been proposed [Gol05; KGG+06]. These models, however, were
proposed for selecting from all paths between the respective users. Further models for
trust concatenation are based on trust vectors (e.g., [HWS09]). In defining compliance with
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users’ privacy policies based on the re-share path and no further paths between users, we
see two advantages: reduced complexity and context-dependence. By context-dependence
we mean that we consider the trust along the list of users who have actually seen, read,
and re-shared the post. We thus find that this choice of trust value reflects well the notion
of decision trust, which by definition is associated with a situational context.

The focus in our case study is controlled re-sharing in decentralized OSNs. In the
following, we discuss approaches proposed to control sharing and re-sharing for centralized
OSNs. Fong et al. [BFS+12; Fon11; FAZ09] propose a model of OSNs, a ReBAC model, and
a language for expressing ReBAC policies. In line of work, relationships between users are
modeled as binary relations on users. The policy language is a variant of modal logic on
the relationships of the OSN that allows specifying constraints on sharing, re-sharing, and
subsequent distribution. The ReBAC mechanism for OSNs by Carminati et al. [CFP09]
enforces privacy policies of authors that can specify the maximum length of re-share
paths, the minimal concatenated trust value, or relationship categories. The actual access
control is shared between the requesting user, who provides a proof of being authorized to
access the resource, and the resource provider, who checks the proof. Virtual Private Social
Networks [BCP+14; CHC13] are OSNs that build on centralized OSNs like Facebook, but
achieve privacy of user information at the client-side via a browser extension. This line
of work focuses on controlling the sharing of posts but not their subsequent distribution
through re-sharing. SCUTA [KPP+11] is a usage control mechanism for centralized OSNs.
The goal of this mechanism is not to control sharing or re-sharing in the OSN but to control,
at the client-side, what operations users can perform on received posts – including, e.g.,
viewing, saving, and printing.

In the direction of decentralized OSNs, Carminati et al. [AC14] propose an access control
mechanism for cloud-based OSNs. Like for [CFP09], the actual access control is performed
jointly by requester and provider of a resource. The proposed mechanism supports re-
sharing, but introduces centralized components, called KMS and RMS, into the DOSN for
storing keys and access rules. While the mechanism makes use of encryption for users’
keys and access rules transmitted to KMS and RMS, colluding KMS and RMS can reveal the
plain data. Our approach aims at a completely decentralized architecture which has the
benefit of avoiding a monopoly in the DOSN. Safebook [CMS09a; CMS09b] and PeerSoN
[BSV+09; BKB14] are DOSNs aiming at protecting the privacy of user data by means of
cryptography. Both DOSNs include a mechanism for controlling the sharing of posts.
Controlling re-sharing and subsequent distribution of posts is not in their scope.

D-FOAF [KGG+06] is a distributed identity management system on top of the trust
relationships between users in multiple OSNs. The system is proposed to be used for
distributed authentication of users to services external to the OSNs as well as for the
delegation of access rights at external services. For computing the trust between two
users, D-FOAF gathers all information about the paths between requester and owner at
one location. This is different from CReDiC in that CReDiC computes trust between two
users based on a single path – the re-share path – as defined by the notion of path trust.
Moreover, CReDiC computes path trust in a distributed fashion to keep users’ privacy
policies decentralized.
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9.8.2. Chinese Wall Enforcement

Distributed enforcement We are not the first to study the enforcement of Chinese Wall
Security Policies in distributed targets. In the following, we compare our chosen design
and implementation of ChESt with other works proposing enforcement mechanisms for
Chinese Walls.

Martinelli and Matteucci [MM08] propose a technique for synthesizing controllers
for enforcing security properties and apply this technique for synthesizing centralized
controllers for the ChineseWall Security Policy. As pointed out byMartinelli et al., Chinese
Walls cannot be enforced in a decentralized fashion without coordination, unless some
restricting assumptions are made. Martinelli et al., for instance, synthesize controllers for
a system in which some agents are forbidden to perform some operations from the start,
thus performing an overly conservative (intransparent) enforcement.

Minsky [Min04] shows how Chinese Wall Security Policies can be enforced in a com-
pletely decentralized approach, i.e., without coordination among the distributed compo-
nents of the enforcement mechanism. For this, Minsky imposes a restrictive assumption
on the interactions of users with the system: It assumes that users only interact with the
system via a single agent. This enables the distributed components of the mechanism
proposed by Minsky to determine locally whether an access can soundly and transparently
be granted. By utilizing cooperation, our ChESt does not require such an assumption
and, thus, allows users to interact with the system through changing client nodes (e.g., a
desktop and multiple mobile devices).

We published the core concept of ChESt, enforcing the Chinese Wall by establishing
authoritative responsible units for all operations by the same user, in 2012 [GMS12]. This
concept was adopted afterwards in further work [FS13]. Fairweather and Shin [FS13]
propose a decentralized architecture for enforcing Chinese Walls in an infrastructure-as-
a-service (IaaS) cloud and implement this architecture for the IaaS platform Eucalyptus.
The decentralized architecture includes, decision-making and state-keeping components
for domains of possibly multiple users. In our approach, we do not explicitly establish a
notion of users’ domains, but implicitly establish such domains through the sets of users
whose operations are assigned to the same responsible unit. Fairweather et al. confirm
the effectiveness of their approach by testing.

To the best of our knowledge, we were the first to propose sound and transparent en-
forcement of the ChineseWall Security Policy in a distributed target and in a decentralized
fashion.

Non-distributed enforcement The enforcement of Chinese Walls in non-distributed targets
has been subject to several works since the work of Brewer and Nash [BN89]. Since the
focus of this thesis is on distributed enforcement, we discuss here only two selected works.
Fong [Fon04] shows that the Chinese Wall Security Policy as formulated by Brewer et al.
belongs to the class of enforceable security properties. More precisely, Fong shows, that
the policy is enforceable by shallow history automata, i.e., enforcement mechanisms that
store in their state which events were granted in the past but not their order of occurrence.
In our case study, the local policy we propose is also oblivious of the ordering of event
occurrences. Our local policy is even oblivious of the actual files accessed by the events and
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rather records only the proprietor and its conflict of interest class. We compare the class
of security properties enforceable with shallow history automata to our order-insensitive
security properties in Section 9.5.

Hussein, Meredith, and Rosu [HMR12] show in an example how the JavaMOP tool can
be used for enforcing a Chinese Wall. In their example, the authors take a technically
slightly different approach than we do regarding the selection of security-relevant program
operations. Hussein et al. intercept events that initiate and end code that is executed in
the context of a particular user being active. That is, the enforcement mechanism in their
example does not rely on the active user being accessible to the enforcement mechanism
when an access operation is intercepted by the mechanism. In ChESt, we chose to access
the user behind an access operation at the time the operation is intercepted, for two
reasons: Firstly, the information about the user is available in both targets we considered
and, hence, intercepting further operations is not required for effectively enforcing the
Chinese Wall. Last but not least, reducing the number of operations intercepted by the
enforcement mechanism improves the efficiency of the mechanism.
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Chapter

10
Conclusion and Outlook

10.1. Conclusions

We presented a framework for enforcing security in distributed programs that integrates
tools and techniques for the specification, enforcement, and verification of security policies
for distributed programs. The framework builds on run-time enforcement and on generic
enforcement mechanisms whose distributed units can cooperate with each other. With
the framework, we lift the state of the art regarding generic enforcement mechanisms
from non-distributed programs to distributed programs. The framework can be used by
service providers for securing their distributed services against malicious users.

For the specification of security policies, the framework provides the policy language
CoDSPL (Chapter 3). A CoDSPL policy specifies which units shall constitute the dis-
tributed enforcement mechanism, which operations are security-relevant to the individual
units, and how decisions for security-relevant operations shall be made, possibly with
cooperation. Using Java as a sub-language for deciding, CoDSPL enables policies to ex-
press a wide range of decision-making algorithms. In CoDSPL, the policy can specify also
which units cooperate and when they cooperate using the expressive power of Java. This
expressive power enables policies to avoid cooperation when it is not needed, to cooperate
in a centralized fashion, or to cooperate in a decentralized fashion. With static delegation,
we presented a technique for a simple decentralized cooperation that can be used for
effectively enforcing order-insensitive partitionable security properties (Chapter 7). For
specifying more complex forms of cooperation, we presented an extension of CoDSPL
that allows for modular policy specifications through separation of concerns (Chapter 6).

For enforcing security requirements on distributed programs, the framework provides
the tool CliSeAu (Chapter 5). CliSeAu consists of an implementation of a distributed
enforcement mechanism and a tool that can apply the mechanism to a given distributed
target implemented in Java or in Ruby. The mechanism is parametric and is instantiated
by CliSeAu for enforcing a given CoDSPL policy. The modular design of CliSeAu follows
principles of object-oriented design, and the implementation of CliSeAu has successfully
been checked by static code analysis tools against incorrect and inefficient code. For
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applying a distributed enforcement mechanism to a distributed target, CliSeAu builds
on the cross-lining technique (Chapter 4). The technique employs, on the one hand,
program instrumentation for enabling the mechanism to use programming-language and
application-level abstractions for controlling a distributed target at run-time. On the other
hand, cross-lining establishes a part of the mechanism’s units to run in parallel to the
agents of the distributed target such that a unit can cooperate even when its agent is idle,
terminated, or performing security-irrelevant actions.

For verifying distributed enforcement mechanisms that use cooperation, the framework
provides a formal model of the framework’s enforcement mechanism in the process algebra
CSP (Chapter 8). The model captures the modular architecture of the mechanism, the
parametric components of the mechanism, and the cooperation between the mechanism’s
units. The model is complemented by a notion of sound enforcement that allows one to
verify whether a given CoDSPL policy indeed enforces a given safety property. Since
our model makes the concurrent operation of agents and units as well as the cooperation
among units explicit, the verification can particularly also capture potential race conditions
between security-relevant actions of a target. In a non-trivial example, we demonstrated
the instantiation of the model for a concrete policy as well as the formal verification of
sound enforcement.

In two concrete case studies, we used the framework for developing the enforcement
mechanisms CReDiC (Chapter 6) and ChESt (Chapter 7), which enforce security in two
distributed programs. CReDiC enforces users’ privacy policies in the re-sharing of mes-
sages in the decentralized online social network Diaspora*. ChESt enforces a Chinese Wall
Security Policy in a distributed storage service. Both mechanisms are specified as CoDSPL
policies and applied to the respective system with CliSeAu. Experiments with selected test
cases suggest that the mechanisms effectively enforce the respective security requirements
of the case study. Performance evaluations show that both of our mechanisms enforce the
respective security requirements with moderate performance overhead of below 13ms
even when the mechanisms use cooperation.

10.2. Outlook

The contributions presented in this thesis constitute a basis for further investigating the
enforcement of security in distributed programs. In the following, we discuss several
directions.

Broadening the range of stakeholders In this thesis, we focus on the requirements of service
providers as the users of our proposed framework. With the focus on this stakeholder, we
assume that the design and implementation of the distributed target has already completed
when the mechanism is applied. However, CliSeAu could also be employed already by
the developers of the distributed target as a tool for achieving separation between the
functionality of the target and security. Such separation could simplify the design and
implementation of the target and make the target more flexible with respect to changes in
the security requirements after the initial deployment of the target. Alternatively, instead
of using CliSeAu themselves for securing a target, the developers could also design and
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implement the target in a way that facilitates the subsequent use of CliSeAu, e.g., by service
providers.

Broadening the range of adversaries In the design of our framework, the focus was on
malicious users as the adversaries against whom security shall be enforced. For the
sake of this focus, techniques against other adversaries that were already investigated
in the literature about run-time enforcement, were not incorporated into the framework.
For a security enforcement tool against a broader range of adversaries, possibilities for
integrating such techniques into the framework could be investigated. For instance, when
an adversary has (partial) control over the code of the target, then more fine-grained
control over the instrumentation of the target might be necessary such that attempts
of the target to disable or circumvent the mechanism could be defeated. Enforcement
mechanisms like Polymer already pursue this approach by restricting, for instance, how
the target can use Java’s reflection API. Orthogonally, when an adversary has control over
the computers on which some of the target’s agents run, then the adversary could not
only disable the CliSeAu-generated units at these computers but also, by manipulating
the cooperation among units before encryption takes place, tamper with the enforcement
of other units. Such an adversary could be an insider at the service provider [PHN07;
PHG+10]. As technical means for countering such an adversary, an investigation of trusted
computing technology could be promising.

Composing security policies In the design of our framework’s enforcement mechanism,
the separation between decisions and their realization in the form of countermeasures
was inspired by Polymer [BLW09]. In Polymer, this separation serves the purpose of
enabling the composition of policies through so-called combinators. These combinators
select a decision from the suggested decisions of the combinators’ sub-policies and only
the selected decision is subsequently implemented. We expect that such combinators
could be transferred from Polymer’s non-distributed enforcement mechanism to the
distributed enforcement mechanism of our framework in a naïve fashion with moderate
implementation effort. However, such a naïve approach easily leads to inefficient policies.
For instance, a conjunctive combinator of many sub-policies, of which each can perform
cooperation for providing a suggested decision, might lead to a high communication
overhead. An understanding of efficient policy combinators for distributed enforcement
mechanisms would, thus, be desirable.

Domain-specific policy language support In CoDSPL, essential parts of a policy are speci-
fied in the general-purpose programming language Java. This provides the developer of a
security policy for CliSeAu with a rich language for specifying, e.g., what data structures
are used for state-keeping and how the delegation is implemented. Moreover, as Java is
one of today’s most popular programming languages, CoDSPL might be quickly compre-
hensible to many programmers. However, being a general-purpose language, Java might
require more specification effort than necessary for security requirements in specific do-
mains. In unpublished work, preliminary support for d3log, a distributed variant of datalog
[JS01], has already been developed and evaluated [Sch13] for an earlier version of CliSeAu
and showed that this language allows rather concise policy specifications. Variants of
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temporal logics, such as the language PT-DTL used by the DiAna mechanism, might be
further promising candidates. We expect that support for additional policy languages could
be realized even without modification of CoDSPL or CliSeAu in two alternative forms:
through static translation into CoDSPL policies or through interpretation at run-time by
an extension library for CoDSPL, in the shape of the extensions we propose in Chapters 6
and 7.
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Appendix

A
Proofs

A.1. Cooperative Enforcement with Authoritative Delegates

In this appendix, we present formal proofs for Chapter 7 that are omitted in the main part
of the thesis.

Theorem 7.1. Let E be a set of events and let P be a security property over E.
(a) P is partitionable into (Ei)i∈{>} where E> = E.
(b) Let E = (Ei)i∈I and E ′ = (E′j)j∈J be partitions of E such that E is a refinement of E ′

and P is partitionable into E . Then P is also partitionable into E ′. ♦

Proof. Let E be an arbitrary but fixed set of events and let P be an arbitrary but fixed
security property over E. In the following, we show the individual parts of the theorem.

On 7.1 (a): Let E> = E. We will show that P is partitionable into (Ei)i∈{>}. For this, it
suffices to show that there exists a family of security properties (Pi)i∈{>} such that

P = {t ∈ E∗ | ∀i ∈ {>} : ((t � Ei) ∈ Pi)}

holds. To show this constructively, let P> = P . Then we obtain

{t ∈ E∗ | ∀i ∈ {>} : ((t � Ei) ∈ Pi)} ={t ∈ E∗ | (t � E>) ∈ P>}
={t ∈ E∗ | (t � E) ∈ P}
={t ∈ E∗ | t ∈ P} = P

as it was to be shown.

On 7.1 (b): Let E = (Ei)i∈I and E ′ = (E′j)j∈J be partitions of E such that E is a refinement
of E ′ and P is partitionable into E .
We will show that P is also partitionable into E ′. We show this constructively, by
defining the family (P ′

j )j∈J of security properties as

P ′
j = {t ∈ (E′j)

∗ | ∀i ∈ I : ((f (i) = j) _ (t � Ei) ∈ P)},
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where f : I → J is defined by f (i) = j if Ei ⊆ E′j . The function f is well-defined
(because E ′ is a partition) and total (because E is a refinement of E ′).

To complete the proof that P is partitionable into E ′, For this, it suffices to show that

P = {t ∈ E∗ | ∀j ∈ J : ((t � E′j) ∈ P ′
j )}

holds. We provide the evidence through the following sequence of equations:

{t ∈ E∗ | ∀j ∈ J : ((t � E′j) ∈ P ′
j )}

= by definition of P ′
j{

t ∈ E∗
∣∣∣∣ ∀j ∈ J : (t � E′j) ∈

{
t ∈ (E′j)

∗
∣∣∣∣∀i ∈ I : ( (f (i) = j)

_ (t � Ei) ∈ P)

}}
= by simplification of the nested intensional set

{t ∈ E∗ | ∀j ∈ J : ∀i ∈ I : ((f (i) = j) _ ((t � E′j) � Ei) ∈ P)}
= utilizing that by definition of f , f (i) = j implies Ei ⊆ E′f (i)

{t ∈ E∗ | ∀j ∈ J : ∀i ∈ I : ((f (i) = j) _ (t � Ei) ∈ P)}
= by the fact that f is a total function

{t ∈ E∗ | ∀i ∈ I : ((t � Ei) ∈ P)}
= by the prerequisite that P is partitionable into E
P

as it was to be shown.

A.2. A Formal Cooperation Model for CliSeAu

In this appendix, we present formal proofs for Chapter 8 that are omitted in the main
part of the thesis. The proof for the soundness theorem can be found at the end of this
appendix on page 200. To increase the readability of the proof, we show major steps of
the proof in separate lemmas:

• Definition A.1 on the facing page introduces several abbreviations used in the proofs.
• Definition A.2 on the next page specifies a renaming on events and an encapsulated
target model without hiding. This removal of the hiding simplifies the reasoning
about the events that are hidden in ETChWgp .

• Lemma A.1 on page 192 states that the renaming is injective, a property we exploit
in the proofs whenever we make use of Lemma 8.1. Lemma A.2 on page 193 states
that the hiding in the definitions of the EC models and our local policy model can be
moved outside of the encapsulated target model, if local channels are renamed to be
unique. The prerequisites of both lemmas are covered in the proof of Theorem 8.2.

• Lemma A.3 on page 194 states that certain events cannot occur in traces of the
encapsulated target model: decisions are not sent on channel ddec, delegation
requests are not sent on channel rdec, delegation requests and decisions are not
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forwarded, remote decisions are not approved for locally decidable events, and local
enforcement decisions are not sent to an enforcer for events that have a remote
responsible node.

• Lemma A.4 on page 196 states that the replacing enforcer performs an effectable
event only after it has received a corresponding decision.

• Lemma A.5 on page 197 states that every performed access event must have ulti-
mately been permitted by its responsible unit.

• Lemma A.6 on page 199 states that no decision-making component permits two
conflicting events in a single trace.

In the remainder of this appendix, we make use of some short-hand notation to improve
the legibility of the lemmas and proofs.

Definition A.1. For each i ∈ SP , we abbreviate
(a) COR(SP ,i,AEi,ChWDi,ChWDR) by CORi ,
(b) H(SP ,i,AEi,ChWDi,ChWDR) by Hi ,
(c) INT(α(SP i),AEi) by INTi ,
(d) REPLACEAEi,AEi by REPLACEi ,
(e) REPLAEi,AEi(t) by REPLi(t),
(f) EC(SP ,i,AEi,ChWDi,ChWDR)(SP i,ChWLPi,REPLACEi) by ECi , and
(g) the set of all denying access events by DENY = {e ∈ AE | deny(e) = e}. ♦

Definition A.2.

(a) For each identifier i ∈ SP of a unit in our policy model, let ρi : REi → (REi ∪{ci.m |
c.m ∈ Hi ∪ H pol

i }) be the renaming function on

REi =α((SP i ‖ INTi) \ AEi) ∪ α(CORi)

∪ α(REPLACEi) ∪ α(DELi) ∪ α(DECi(∅)) ∪ α(SRPi)

defined by

ρi(e) =

{
ci.m if e ∈ Hi ∪ H pol

i with e = c.m,
e otherwise.

We lift the renaming functions from events to three further entities:

• Firstly, we abuse notation and lift the renaming functions from events to sets
of events.

• Secondly, we lift the renaming functions from events to process expressions as
in [Hoa85, Section 2.6], by applying the renaming to all events occurring in
the respective process expression. In lifting a renaming function ρi to process
expressions, in addition to renaming all events in the process expression, we
furthermore translate each occurring process name NAME to a process name
uniquely identified by NAME and i.

• Based on the previous liftings of the renaming functions, we finally lift the
renaming functions also to sets of process equations by applying the renaming
functions to the respective left-hand side, right-hand side, and alphabet of each
process equation in the set.
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(b) The set of all renamed hidden events is defined as HEI =
⋃

i∈SP ρi(Hi ∪ H pol
i ).

(c) The encapsulated target with internals is the process expression EI , defined by

EI = ‖
i∈SP

(
ρi((SP i ‖ INTi) \ AEi) ‖ ρi(CORi)

‖ ρi(REPLACEi) ‖ ρi(DELi) ‖ ρi(DECi(∅)) ‖ ρi(SRPi)

)
along with the set EQEI =

⋃
i∈SP ρi(EQChW ) of process equations. Note that, from

how we lifted the renaming functions to process equations, the set union in the def-
inition of EQEI does not introduce contradictory process equations. In the remainder
of this proof, unless explicitly mentioned otherwise, we implicitly use EQEI as the
set of process equations that determines the semantics of process expressions. ♦

Lemma A.1. For each identifier i ∈ SP, if α(SP i) ∩ ρi(Hi ∪ H pol
i ) = ∅ holds, then ρi is an

injective function. ♦

Proof. Let i ∈ SP be arbitrary but fixed. We show that ρi is injective, i.e., for each
e, e′ ∈ REi , if ρi(e) = ρi(e′), then e = e′.

Firstly, by the definitions of REi , Hi (on Page 191 and, as Hci , on Page 143), and H pol
i (on

Page 151), it holds that

REi = Hi ∪ H pol
i ∪ {linki,k.dr , linkk,i.dr | dr ∈ ChWDR ∧ k ∈ SP \ {i}} ∪ α(SP i). (A.1)

Now let e, e′ ∈ REi be arbitrary but fixed such that ρi(e) = ρi(e′) holds. In the following,
to complete the proof, we show that e = e′ holds. With the following three cases, we
perform a complete case distinction:

1. e, e′ ∈ Hi ∪ H pol
i :

By the definitions of Hi and H pol
i , we have that e = c.m and e′ = c′.m′ for channels

c and c′ and messages m and m′. By the prerequisite ρi(e) = ρi(e′), we get ci.m =
c′i .m

′ and, hence, ci = c′i and m = m′, which, in turn, shows that e = e′ holds.

2. e, e′ /∈ Hi ∪ H pol
i :

In this case, by definition of ρi , we have ρi(e) = e and ρi(e′) = e′. By the prerequisite
ρi(e) = ρi(e′) we, thus, immediately get e = e′.

3. e ∈ Hi ∪ H pol
i and e′ /∈ Hi ∪ H pol

i (inverse case analogous):

In this case, by definition of ρi , we have ρi(e′) = e′ and, thus, ρi(e) = e′. By
Equation (A.1), we distinguish two cases for e′:

• e′ ∈ {linki,k.dr , linkk,i.dr | dr ∈ ChWDR ∧ k ∈ SP \ {i}}: This case cannot
satisfy the condition ρi(e) = e′ because by the definitions of Hi and H pol

i , no
channel in Hi ∪ H pol

i can be renamed to then coincide with link.
• e′ ∈ α(SP i): This case cannot satisfy the condition ρi(e) = e′ because of the
prerequisite α(SP i) ∩ ρi(Hi ∪ H pol

i ) = ∅.

Hence, for all possible cases of ρi(e) = ρi(e′) we have shown that e = e′ holds. Thus, ρi is
injective.
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Lemma A.2. If α(SP i) ∩ (HEI ∪ H pol
i ) = ∅ holds for each identifier i ∈ SP, then EI \

HEI EQEI
≡EQChW ETChWgp . ♦

Proof. We first make two observations that we make use of afterwards
1. For each identifier j ∈ SP , the definition of each process expression

P ∈ {CORi,DELi,DECi(∅), SRPi | i ∈ SP \ {j}}

under set EQChW of process equations ensures α(P) ∩ ρj(Hj ∪ H pol
j ) = ∅.

2. For each j ∈ SP and each Q ∈ {REPLACEi, (SP i ‖ INTi) \ AEi | i ∈ SP \ {j}},
the precondition α(SP i) ∩ (HEI ∪ H pol

i ) = ∅ together with AEi ⊆ α(SP i) from
Theorem 8.1 and the definitions of the process names REPLACEi and INTi under set
EQChW of process equations implies α(Q) ∩ ρj(Hj ∪ H pol

j ) = ∅.
We denote the above two observations as (†) in the following sequence of equivalence
transformations that shows the claim made by the lemma.

EI \ HEI

≡ by Definition A.2 (c) and Lemma 8.1 (a)(
‖

i∈SP
ρi

(
(SP i ‖ INTi) \ AEi ‖CORi

‖ REPLACEi ‖DELi ‖DECi(∅) ‖ SRPi

))
\ HEI

≡ by Definition A.2 (b), Lemma 8.1 (c), and observations (†)

‖
i∈SP

(
ρi

(
(SP i ‖ INTi) \ AEi ‖CORi

‖ REPLACEi ‖DELi ‖DECi(∅) ‖ SRPi

)
\ ρi(Hi ∪ H pol

i )

)
≡ by Lemma 8.1 (d)

‖
i∈SP

ρi

((
(SP i ‖ INTi) \ AEi ‖CORi

‖ REPLACEi ‖DELi ‖DECi(∅) ‖ SRPi

)
\ (Hi ∪ H pol

i )

)
EQEI

≡EQChW by Definition A.2 (a), which gives ρi(e) = e for all e /∈ Hi ∪ H pol
i

‖
i∈SP

((
(SP i ‖ INTi) \ AEi ‖CORi

‖ REPLACEi ‖DELi ‖DECi(∅) ‖ SRPi

)
\ (Hi ∪ H pol

i )

)
≡ by Lemma 8.1 (b); by precondition α(SP i) ∩ H pol

i = ∅;
by the fact that for each i ∈ SP and P ∈ {INTi,REPLACEi,CORi},
α(P) ∩ H pol

i = ∅ holds according to the process equation for P ;
and by definition of ChWLPi

‖
i∈SP

((
(SP i ‖ INTi) \ AEi ‖CORi

‖ REPLACEi ‖ChWLPi

)
\ Hi

)
≡ by Definitions 8.15 and A.1 (f)

‖
i∈SP

ECi

≡ by Definition 8.19

ETChWgp
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Remark A.1. In the following, we repeatedly make use of the following patterns of
reasoning.

• Let tr ∈ traces(EI ) be a trace, P and Q be process expressions such that EI ≡ P ‖Q
holds, and e ∈ α(Q) be an event. Then from e / tr we can follow that e / tr �
α(Q) ∧ tr � α(Q) ∈ traces(Q). We indicate this reasoning by (∗)

=⇒.
• Let Q be a process expression, e ∈ α(Q) be an event that never occurs at the
beginning of a trace of Q, trQ be a sequence, and E ⊆ α(Q) be the set of immediate
predecessors of e in process expression Q. Then from e / trQ ∧ trQ ∈ traces(Q) we
can conclude that

∨
e′∈E(e

′ / trQ) holds. We use (∗∗)
=⇒ to indicate this reasoning.

• We often combine the above steps in the form e/tr (∗)
=⇒ e/trQ∧trQ ∈ traces(Q) (∗∗)

=⇒∨
e′∈E(e

′ / trQ) =⇒
∨

e′∈E(e
′ / tr) for trQ = tr � α(Q). The last implication trivially

holds. In the remainder of this appendix, we abbreviate such chains of reasoning by
e / tr

Q
=⇒

∨
e′∈E(e

′ / tr). ♦

LemmaA.3. Let AEldi = {e ∈ AEi | sp(e) = resp(e)} be the set of “locally decidable” access
events at service provider i ∈ SP. Then for all traces tr ∈ EI , service providers i, j, k ∈ SP
with j 6= i, access events e ∈ AE, and decisions ed ∈ ChWD, the following holds:
(a) ddeci.(j, (k, ed)) 6 tr
(b) rdeci.(j, (k, e)) 6 tr
(c) fwdj .(i, (i, e)) 6 tr and fwdj .(i, (i, ed)) 6 tr
(d) if ed = (e′, t) for some e′ ∈ AEldi and t, then appvi.ed 6 tr
(e) if ed = (e′, t) for some e′ ∈ AEi \ AEldi and t, then edeci.ed 6 tr ♦

Proof. Let the trace tr ∈ traces(EI ) be arbitrary but fixed.

On A.3 (a): Let identifiers i, j, k ∈ SP with i 6= j and decision ed ∈ ChWD be arbitrary
but fixed. We show the claim by contradiction and assume that ddeci.(j, (k, ed))/ tr
holds.

(∗)
=⇒ ddeci.(j, (k, ed)) / tr � α(ρi(SRPi))

∧ tr � α(ρi(SRPi)) ∈ traces(ρi(SRPi))

=⇒ by definition of SRPi (line 4)

(k, ed) ∈ SP × AE

=⇒ by the definitions of AE and ChWD, which imply AE ∩ ChWD = ∅
(k, ed) /∈ SP × ChWD

This contradicts the preconditions k ∈ SP and ed ∈ ChWD. Hence, the assumption
of ddeci.(j, (k, ed)) / tr is wrong and ddeci.(j, (k, ed)) 6 tr holds.

On A.3 (b): The proof goes along the lines of the one for the previous part, with ChWD
exchanged by AE and ddec exchanged by rdec.

On A.3 (c): We show the claim by contradiction and assume that there exist x ∈ AE ∪
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ChWD and i, j ∈ SP with j 6= i, such that fwdj .(i, (i, x)) / tr holds.

ρj(SRPj)
====⇒rreqj .(i, x) / tr
ρj(CORj)
=====⇒linkk,j .(i, x) / tr for some service provider k 6= j
ρk(CORk)
=====⇒ddeck.(j, (i, x)) / tr ∨ rdeck.(j, (i, x)) / tr ∨ fwdk.(j, (i, x)) / tr

(∗)
=⇒ (ddeck.(j, (i, x)) / tr � α(ρk(SRPk))

∧ tr � α(ρk(SRPk)) ∈ traces(ρk(SRPk)))

∨ (rdeck.(j, (i, x)) / tr � α(ρk(SRPk))

∧ tr � α(ρk(SRPk)) ∈ traces(ρk(SRPk)))

∨ (fwdk.(j, (i, x)) / tr � α(ρk(SRPk))

∧ tr � α(ρk(SRPk)) ∈ traces(ρk(SRPk)))

=⇒ by definition of SRPk
j = nxt(k, i)

=⇒ by definition of nxt

j = nxt(k, i) = i

The last equation contradicts the initial assumption of i 6= j. Hence, the assumption
fwdj .(i, (i, x)) / tr cannot hold, i.e., fwdj .(i, (i, x)) 6 tr holds for all j 6= i.

On A.3 (d): We show the claim by contradiction and assume there exists an identifier
i ∈ SP and a decision ed = (e′, t) ∈ ChWD for some e′ ∈ AEld

i such that appvi.ed/tr
holds.

ρi(SRPi)
====⇒rreqi.(i, ed) / tr

ρi(CORi)
=====⇒ linkj,i.(i, ed) / tr for some identifier j 6= i

ρj(CORj)
=====⇒ddecj .(i, (i, ed)) / tr ∨ fwdj .(i, (i, ed)) / tr ∨ rdecj .(i, (i, ed)) / tr

=⇒ by Lemma A.3 (a) and Lemma A.3 (c)

rdecj .(i, (i, ed)) / tr
ρj(SRPj)
====⇒rtrspj .(i, ed) / tr

ρj(DECj(∅))
======⇒ rereqj .e

′ / tr
ρj(SRPj)
====⇒ rreqj .(j, e

′) / tr
ρj(CORj)
=====⇒linkk,j .(j, e′) / tr for some identifier k 6= j
ρk(CORk)
=====⇒ddeck.(j, (j, e′)) / tr ∨ fwdk.(j, (j, e′)) / tr ∨ rdeck.(j, (j, e′)) / tr

=⇒ by Lemma A.3 (b) and Lemma A.3 (c)

ddeck.(j, (j, e′)) / tr
ρk(SRPk)
=====⇒rtreqk.(j, e

′) / tr
(∗)
=⇒ rtreqk.(j, e

′) / tr � α(ρk(DELk))

∧ tr � α(ρk(DELk)) ∈ traces(ρk(DELk))

=⇒ by definition of DELk , according to which rtreq.(j, e′)
can only occur if e′ ∈ {e′′ ∈ AEk | k 6= resp(e′′)} holds
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e′ ∈ AEk ∧ k 6= resp(e′)

=⇒ by definition of function sp on access events

sp(e′) 6= resp(e)

=⇒ by definition of AEld
i

e′ /∈ AEld
i

Hence, the assumption appvi.ed / tr leads to a contradiction to the precondition
e′ ∈ AEld

i . Therefore, appvi.ed 6 tr holds, as it was to be shown.

On A.3 (e): Let identifier i ∈ SP and decision ed = (e′, t) ∈ ChWD with e′ ∈ AEi \ AEld
i

be arbitrary but fixed. We show the claim by contradiction and assume edeci.ed / tr
holds.

ρi(DECi(∅))
======⇒lereqi.e

′ / tr
(∗)
=⇒ lereqi.e

′ / tr � α(ρi(DELi)) ∧ tr � α(ρi(DELi)) ∈ traces(ρi(DELi))

=⇒ by definition of DELi , according to which lereq.e′
can only occur if e′ ∈ {e′′ ∈ AEi | i = resp(e′′)}
i = resp(e′)

=⇒ by the precondition that e′ ∈ AEi and by definition of AEld
i

e′ ∈ AEld
i

Hence, the assumption edeci.ed / tr leads to a contradiction to the precondition
e′ /∈ AEld

i . Therefore, edeci.ed 6 tr holds, as it was to be shown.

Lemma A.4. For each access event e ∈ AE and each trace tr ∈ traces(EI ) with e / tr , there
exists a decision ed = (e′, t) ∈ ChWDsp(e) with e / t and enfsp(e).(e′, t) / tr . ♦

Proof. Let e ∈ AE be an access event and tr ∈ traces(EI ) be a trace with e / tr . Let
i = sp(e).

(∗)
=⇒ with e ∈ AEsp(e) = AEi by definition of sp,

AEi ⊆ α(REPLACEi) by definition of ρi(REPLACEi),
and ρi(e) = e according to Definition A.2 (a)

e / tr � α(ρi(REPLACEi)) ∧ tr � α(ρi(REPLACEi)) ∈ traces(ρi(REPLACEi))

⇐⇒ with trr = tr � α(ρi(REPLACEi))

e / trr ∧ trr ∈ traces(ρi(REPLACEi))
(†)
=⇒enfi.(e′, t) / trr for some (e′, t) ∈ ChWDi with e / t

=⇒ with i = sp(e) and trr = tr � α(ρi(REPLACEi))

enfsp(e).(e
′, e) / tr

Below, we prove the correctness of the implication labeled (†) above. For this, we first
show by induction over the length of tr2 that if tr1.tr2 ∈ traces(ρi(REPLACEi)) holds
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for tr2 ∈ AEi∗ \ {〈 〉} and tr1 that does not end with an event from AEi , then tr1 =
tr ′1.〈enfi.(e′, tr2.t ′)〉 and ρi(REPLACEi) /(tr1.tr2) ≡ ρi(REPLi(t ′)) for some event e′ ∈
AEi and some sequence t ′.

base case (|tr2| = 1): In this case, we have tr2 = 〈e〉 for some e ∈ AEi . From the
definitions of ρi(REPLACEi) and ρi(REPLi), where there is only one possible posi-
tion in the process expressions at which access event e can occur, it follows that
ρi(REPLACEi) / tr1 ≡ ρi(REPLi(tr2.t ′)) for some t ′. By the prerequisite that tr1 does
not end with an event from AEi , it follows from the definition of ρi(REPLACEi) that
tr1 = tr ′1.〈enfi.(e′, tr2.t ′)〉 for some e′ ∈ AEi and some t ′. Moreover, by Lemma 8.1 (e)
it follows that ρi(REPLACEi) /(tr1.tr2) ≡ ρi(REPLi(t ′)).

step case (|tr2| > 1): In this case, we have tr2 = tr ′2.〈e〉 for some e ∈ AEi . The in-
duction hypothesis for tr ′2 gives, firstly, tr1 = tr ′1.〈enfi.(e′, tr ′2.t ′)〉 and, secondly,
ρi(REPLACEi) /(tr1.tr ′2) ≡ ρi(REPLi(t ′)) for some event e′ ∈ AEi and some sequence
t ′. From the process equivalence together with tr1.tr ′2.〈e〉 ∈ traces(ρi(REPLACEi)) and
Lemma 8.1 (e) it follows that 〈e〉 ∈ traces(ρi(REPLi(t ′))). By definition of ρi(REPLi), it
then has to hold that t ′ = 〈e〉.t ′′. We therefore conclude that tr1 = tr ′1.〈enfi.(e′, tr2.t ′′)〉
and ρi(REPLACEi) /(tr1.tr2) ≡ ρi(REPLi(t ′′)) for some event e′ ∈ AEi and some se-
quence t ′′.

Secondly, we make use of the previously shown claim to show the implication labeled (†).
From e / trr and trr ∈ traces(ρi(REPLACEi)) if follows that there are sequences t1, t ′1, t2
with t ′1 ∈ AEi such that trr = t1.t ′1.〈e〉.t2 holds. It follows that enfi.(e′, tr2.t) / t1 for some
event e′ ∈ AEi and some sequence t . Hence, in particular enfi.(e′, tr2.t) / trr

Lemma A.5. Let e ∈ AE \DENY be a successful access event and tr ∈ traces(EI ) with e / tr
be a trace. Then edecresp(e).(e, 〈e〉) / tr or rtrspresp(e).(sp(e), (e, 〈e〉)) / tr holds true. ♦

Proof. Let e ∈ AE \ DENY be a successful access event and tr ∈ traces(EI ) with e / tr be
a trace. Let i = sp(e).

=⇒ by Lemma A.4

enfi.(e′, t) / tr for some event e′ ∈ AEi and sequence t with e / t
ρi(CORi)
=====⇒edeci.(e′, t) / tr ∨ appvi.(e

′, t) / tr

=⇒ by Lemmas A.3 (d) and A.3 (e)

(edeci.(e′, t) / tr ∧ sp(e′) = resp(e′))

∨ (appvi.(e
′, t) / tr ∧ sp(e′) 6= resp(e′))

In the following, we show the claim for both disjunct cases separately.
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1. case edeci.(e′, t) / tr ∧ sp(e′) = resp(e′):

(∗)
=⇒ edeci.(e′, t) / tr � α(ρj(DECi(∅)))

∧ tr � α(ρj(DECi(∅))) ∈ traces(ρj(DECi(∅)))
=⇒ by definition of DECi(∅)

edeci.(e′, t) / tr ∧ (t = 〈e′〉 ∨ t = 〈deny(e′)〉)
=⇒ by e / t and the preconditions e ∈ AE \ DENY and deny(e′) ∈ DENY

edeci.(e′, t) / tr ∧ t = 〈e〉 ∧ e′ = e

=⇒ by the preconditions i = sp(e) and sp(e′) = resp(e′)

edecresp(e).(e, 〈e〉) / tr

2. case appvi.(e′, t) / tr ∧ sp(e′) 6= resp(e′): Let ed = (e′, t).

ρi(SRPi)
====⇒rreqi.(i, ed) / tr
ρi(CORi)
=====⇒linkj,i.(i, ed) / tr for some identifier j 6= i
ρj(CORj)
=====⇒ddecj .(i, (i, ed)) / tr ∨ fwdj .(i, (i, ed)) / tr ∨ rdecj .(i, (i, ed)) / tr

=⇒ by Lemma A.3 (a) and Lemma A.3 (c)

rdecj .(i, (i, ed)) / tr
ρj(SRPj)
====⇒rtrspj .(i, ed) / tr (†)

(∗)
=⇒ rtrspj .(i, ed) / tr � α(ρj(DECj(∅)))

∧ tr � α(ρj(DECj(∅))) ∈ traces(ρj(DECj(∅)))
(∗∗)
=⇒ by definition of DECj(∅) and ed = (e′, t)

rereqj .e
′ / tr � α(ρj(DECj(∅))) ∧ (t = 〈e′〉 ∨ t = 〈deny(e′)〉)

=⇒ by e / t and the preconditions e ∈ AE \ DENY and deny(e′) ∈ DENY

rereqj .e
′ / tr � α(ρj(DECj(∅))) ∧ t = 〈e〉 ∧ e′ = e (‡)

=⇒rereqj .e / tr
ρj(SRPj)
====⇒rreqj .(j, e) / tr
ρj(CORj)
=====⇒linkk,j .(j, e) / tr for some identifier k 6= j
ρk(CORk)
=====⇒ddeck.(j, (j, e)) / tr ∨ fwdk.(j, (j, e)) / tr ∨ rdeck.(j, (j, e)) / tr

=⇒ by Lemma A.3 (b) and Lemma A.3 (c)

ddeck.(j, (j, e)) / tr
ρk(SRPk)
=====⇒rtreqk.(j, e) / tr

(∗)
=⇒ rtreqk.(j, e) / tr � α(ρk(DELk)) ∧ tr � α(ρk(DELk)) ∈ traces(ρk(DELk))

=⇒ by definition of DELk
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j = resp(e)

=⇒ with rtrspj .(i, (e
′, t)) / tr from (†) above,

e′ = e and t = 〈e〉 from (‡) above, and precondition i = sp(e)

rtrspresp(e).(sp(e), (e, 〈e〉)) / tr

Lemma A.6. Let trace tr ∈ traces(EI ), identifier i ∈ SP, and events e, e′ ∈ AE \ DENY
with e ⊗ e′ be given. Then at least one of the following holds:

• edeci.(e, 〈e〉) 6 tr and for all identifiers j ∈ SP, rtrspi.(j, (e, 〈e〉)) 6 tr , or
• edeci.(e′, 〈e′〉) 6 tr and for all identifiers j ∈ SP, rtrspi.(j, (e

′, 〈e′〉)) 6 tr . ♦

Proof. Let trace tr ∈ traces(EI ), identifier i ∈ SP , and events e, e′ ∈ AE \ DENY with
e ⊗ e′ be arbitrary but fixed. Let, for each ē ∈ {e, e′}, the set Dē be defined by Dē =
{edeci.(ē, 〈ē〉), rtrspi.(j, (ē, 〈ē〉)) | j ∈ SP}. Note that De ∩De′ = ∅ holds, as e 6= e′ by
definition of ⊗.

To show that the lemma holds, we show that tr � De = 〈 〉 or tr � De′ = 〈 〉 holds,
which is equivalent to (tr � De 6= 〈 〉) _ (tr � De′ = 〈 〉). Thus, we assume tr � De 6= 〈 〉
and show in the following that tr � De′ = 〈 〉 holds.

tr � De 6= 〈 〉
=⇒∃x ∈ De : (x / tr)
(∗)
=⇒ x / tr � α(ρi(DECi(∅))) ∧ tr � α(ρi(DECi(∅))) ∈ traces(ρi(DECi(∅)))
⇐⇒ with trdec = tr � α(ρi(DECi(∅)))

x / trdec ∧ trdec ∈ traces(ρi(DECi(∅)))
=⇒ with x ∈ De and De ∩De′ = ∅

x / trdec ∧ trdec ∈ traces(ρi(DECi(∅))) ∧ x /∈ De′

=⇒ without loss of generality

trdec = t ′.〈x〉.t ′′ for some t ′ and t ′′ with t ′ � De′ = 〈 〉
(1)

=⇒t ′′ ∈ traces(ρi(DECi(q))) for some q ∈ P(AE) with e ∈ q
(2)

=⇒t ′′ � De′ = 〈 〉
=⇒ with t ′ � De′ = 〈 〉 and x /∈ De′ from above

trdec � De′ = (t ′.〈x〉.t ′) � De′ = 〈 〉
=⇒ by preconditions De′ ⊆ α(ρi(DECi(∅))) and trdec = tr � α(ρi(DECi(∅)))

tr � De′ = 〈 〉

Below, we prove the correctness of the implications labeled (1) and (2) above.

1. First we show by induction over the length of t that for all states q ∈ P(AE) and
non-empty traces t ∈ traces(ρi(DECi(q))) \ {〈 〉}, there are a state q′ ∈ P(AE) and
sequences t1, t2 such that t = t1.t2, t2 6= 〈 〉, |t2| ≤ 2, q′ ⊇ q, and ρi(DECi(q)) / t1 ≡
ρi(DECi(q′)) holds.
base case (0 < |t| ≤ 2): Let q ∈ P(AE) be arbitrary but fixed. The claim is trivially

satisfied by t1 = 〈 〉, t2 = t , and q′ = q.
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step case (|t| > 2): Let q ∈ P(AE) be arbitrary but fixed. Let t ′, t ′′ be sequences
with |t ′| = 2 such that t = t ′.t ′′ holds. Then by the definitions of ρi(DECi(q))
and “/” and by Lemma 8.1 (e), it follows that ρi(DECi(q)) / t ′ ≡ ρi(DECi(q′′))
holds for some q′′ ∈ P(AE) with q′′ ⊇ q. By the definition of ≡, it follows
that t ′′ ∈ traces(ρi(DECi(q′′))). Then the induction hypothesis for t ′′ (which
is non-empty but strictly shorter than t) and q′′ provides that there are a state
q′ ∈ P(AE) and sequences t ′′1 , t ′′2 such that t ′′ = t ′′1 .t

′′
2 , t ′′2 6= 〈 〉, |t ′′2 | ≤ 2, q′ ⊇ q′′,

and ρi(DECi(q′′)) / t ′′1 ≡ ρi(DECi(q′)) holds. Then t1 = t ′.t ′′1 , t2 = t ′′2 , and q′ are
the witnesses for the claim, which satisfy t = t1.t2, t2 6= 〈 〉, |t2| ≤ 2, q′ ⊇ q, and,
by Lemma 8.1 (e) for t1, ρi(DECi(q)) / t1 ≡ ρi(DECi(q′)).

Second, we use the property proved before to show that implication (1) holds.
For this, let trdec = t ′.〈x〉.t ′′ ∈ traces(ρi(DECi(∅))). It first follows that t ′.〈x〉 ∈
traces(ρi(DECi(∅))). Hence, there are a state q ∈ P(AE) and sequences t ′1, t ′2 such
that t ′.〈x〉 = t ′1.t

′
2.〈x〉, |t ′2| < 2, q′ ⊇ ∅, and ρi(DECi(∅)) / t ′1 ≡ ρi(DECi(q)) hold.

By definition of ≡ (on Page 134), it follows that t ′2.〈x〉.t ′′ ∈ traces(ρi(DECi(q)))
holds. By definition of ρi(DECi(q)) – recall firstly that x must be one of edeci.(ē, 〈ē〉)
and rtrspi.(j, (ē, 〈ē〉)) for some j ∈ SP , and, secondly, that ē /∈ DENY – it holds
that ρi(DECi(q)) /(t ′2.〈ē〉) ≡ ρi(DECi(q′)) for q′ = q ∪ {e} and, by definition of ≡,
t ′′ ∈ traces(ρi(DECi(q′))), as it was to be shown.

2. We show by induction over the length of traces t that for all states q′ ∈ P(AE) with
e ∈ q′, it holds that t ∈ traces(ρi(DECi(q′))) implies t � De′ = 〈 〉.
base case (|t| ≤ 1): By definition of DECi(q′), events fromDe′ cannot be contained

in such a trace t with length |t| ≤ 1.
step case (|t| > 1): Let t1, t2 be sequences with |t1| = 2 such that t = t1.t2 holds.

For all q′ ∈ P(AE), the definition of ρi(DECi(q′)) gives:
– An event x ′ ∈ De′ cannot be contained in t1 because of the definition of

conf on Page 150 and the precondition e′ ⊗ e; hence, we have t1 � De′ = 〈 〉.
– DECi(q′) / t1 ≡ DECi(q′′) for a state q′′ ⊇ q′; hence, the induction hypoth-

esis can be applied on q′′ and t2 to obtain t2 � De′ = 〈 〉.
It follows that t � De′ = 〈 〉.

Based on the preceding lemmas and the auxiliary definition, we can now conduct the
proof that our policy model, ChWgp, is sound for the Chinese Wall security property,
ChW(α(ETChWgp)).

Theorem 8.2. ChWgp is a sound policy model for ChW(α(ETChWgp)) ♦

Proof. We show that ChWgp is a sound policy model for ChW(α(ETChWgp)). By definition
of a sound policy model (Definition 8.20 on page 147), this is equivalent to show that
ETChWgpsat ChW(α(ETChWgp)) holds under set EQChWgp of process equations. Substituting
the definitions of sat and ChW, this is equivalent to proving that for all traces tr ∈
traces(ETChWgp) there do not exist events e1, e2 ∈ AE such that e1, e2 / tr and e1 ⊗ e2 hold.

We conduct the proof by contradiction and assume that ChWgp is not a sound policy
model for ChW(α(ETChWgp)). From this assumption follows that there exist a trace
tr ∈ traces(ETChWgp) and events e1, e2 ∈ AE such that e1, e2 / tr and e1 ⊗ e2 hold true.
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Since events e1 and e2 are in conflict, they cannot be denying events (by definition of
⊗ on Page 148). Secondly, the responsible unit for e1 and e2 must be the same, i.e.,
resp(e1) = resp(e2) (by the definition of resp on Page 149). Let k = resp(e1) be this
responsible unit.

In the following, the process expression EI (see Definition A.2 (c)) denotes the encap-
sulated target model with all CSP hiding operations removed and the internal channels
renamed to not introduce additional synchronization with the removal of hiding. We
assume, without loss of generality, that the service providers SP sp do neither make use of
internal channels of our local policy model nor make use of the renamed channels (if they
would, we could choose a different renaming). Then by Lemma A.2, we obtain the equiva-
lence EI \HEI EQEI

≡EQChW ETChWgp , where the hiding set HEI is defined in Definition A.2 (b).
It follows that there must be a trace tr ′ ∈ traces(EI ) such that tr ′ � α(ETChWgp) = tr .
Particularly, we therefore have e1, e2 / tr ′.

Applying Lemma A.5 for each event e ∈ {e1, e2}, we get that in both cases either
event edeck.(e, 〈e〉) or event rtrspk.(sp(e), (e, 〈e〉)) is contained in tr ′. This contradicts
Lemma A.6, which states that this can only hold for at most one of e1 and e2. Consequently,
the assumption that ChWgp is not a sound policy model for ChW(α(ETChWgp)) does not
hold leads to a contradiction and, thus, cannot be true. Therefore, ChWgp is a sound policy
model for ChW(α(ETChWgp)).
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Appendix

B
Selected Code Excerpts

B.1. Modular Delegation-Based Security Policies

In this appendix, we present selected code fragments for Chapter 6.

Expressiveness of the framework Listing B.1 on the next page shows an implementation
of a local policy based on the framework presented in Chapter 6. The implementation
contains the class ExpressivenessProof class that exhibits the same functionality as im-
plemented by class SomePolicy, no matter how the latter class is actually implemented.
The reasons for this equivalence is as follows. We only discuss the case of an event
object, as the case of a delegation object is analogous. When SomePolicy is invoked for
an event object, its result is the return value of method localRequest on this event object.
We argue that the return value is the same for our simulating class ExpressivenessProof:
When ExpressivenessProof is invoked for the event object, it first uses the its micro-policy
factory (here Simulator) for obtaining a micro-policy by invoking the factory method
createFromEvent of the Simulator object on the event object. The factory method uses p, its
SomePolicy object for computing the same result as SomePolicy would have returned. It
then returns a reference to itself, as Simulator also implements the MicroPolicy interface. In
consequence, the suggestPolicyResult method of the Simulator object is invoked and returns
a MicroPolicyResult object that encapsulates the previously computed result of SomePolicy.
By the implementation of ModularLocalPolicy, if the result of suggestPolicyResult is a deci-
sion object, it is returned – hence, in his case, equivalence to SomePolicy is given. If the
result is a delegation object, is is first subject to routing (which here, in line 18, returns the
destination identifier directly) and then to the delegation object to be returned. Hence,
equivalence is given in both cases.
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1 import net.cliseau.lib.policy.modular.*;
2 import net.cliseau.runtime.javacor.*;
3

4 class SomePolicy extends LocalPolicy {
5 public SomePolicy(String identifier) { super(identifier); }
6

7 public LocalPolicyResponse localRequest(Event event) {
8 return null; /* here could be any code */ }
9 public LocalPolicyResponse remoteRequest(DelegationReqResp delReqResp) {

10 return null; /* here could be any code */ }
11 }
12

13 public class ExpressivenessProof extends ModularLocalPolicy<Void,Void> {
14 public ExpressivenessProof(String identifier) {
15 super(identifier,
16 new Simulator(new SomePolicy(identifier)), null,
17 new RoutingPolicy() {
18 public String getNext(String id) { return id; }
19 });
20 }
21 static class Simulator implements MicroPolicyFactory<Void,Void>,MicroPolicy<Void,Void> {
22 private final LocalPolicy p;
23 private LocalPolicyResponse res;
24

25 public Simulator(LocalPolicy p) { this.p = p; }
26 publicMicroPolicy<Void,Void> createFromEvent(Event event) {
27 res = p.localRequest(event);
28 return this;
29 }
30 publicMicroPolicy<Void,Void> createFromDelegation(DelegationReqResp delegation) {
31 res = p.remoteRequest(delegation);
32 return this;
33 }
34 publicMicroPolicyResult suggestPolicyResult(Void ignored) {
35 if (res instanceof Decision)
36 return newMicroPolicyResult((Decision)res);
37 else
38 return newMicroPolicyResult((DelegationLocPolReturn)res);
39 }
40 public void implementSuggestion(Void ignored) { }
41 }
42 }

Listing B.1.: Local policy based on the modular framework, mimicking a local policy that
is not based on the framework
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Mathematical Notation

B

basic concepts
dom(f ) the domain of function f
f ⊕ g the overriding of f by g, i.e., the function that maps x ∈

dom(g) to g(x) and x ∈ dom(f ) \ dom(g) to f (x)

A ⇀ B set of all partial functions from A to B

A → B set of all total functions from A to B
f [x 7→ y] the total function that maps x to y and all other values x ′ to

f (x ′)

(x1, . . . , xn) the n-ary tuple consisting of elements x1 to xn
A ∩ B the intersection of the sets A and B

|A| the number of elements in the (finite) set A
{x, x ′, . . .} the (extensional) set containing the given elements x , x ′, …,

and no further elements
{t(x1, . . . , xn) ∈ A | ϕ} the (intensional) set containing the terms t(x1, . . . , xn) from

domain A satisfying condition ϕ, which may have free vari-
ables x1 to xn

A1 × . . .× An the set containing all tuples (x1, . . . , xn) with xi ∈ Ai

A ∪ B the union of the sets A and B⋃
i∈I A the finite union of all sets Ai for which i ∈ I

∅ the empty set
[x, x ′] the set of all real numbers between, including, x and x ′

[x, x ′) the set of all real numbers between x (included) and x ′

(excluded)
A \ B the set A without the elements of set B
A ⊆ B subset-or-equal relation on sets
δϕ the value 1 if formula ϕ is satisfied in the respective context

of use, and the value 0 otherwise
F(S,V ) the set of formulas in first-order logic
(xi)i∈I a family of values
ϕ ∧ ψ the logical conjunction between two formulas
¬ϕ the logical negation of a formula
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ϕ ∨ ψ the logical disjunction between two formulas
I � ϕ the satisfaction relation on interpretations and formulas
tI the valuation of a term under an interpretation
ϕ_ ψ the logical implication between two formulas
ϕ] ψ the bidirectional logical implication of two formulas
ϕ=⇒ ψ meta-level implication (each interpretation satisfying ϕ also

satisfies ψ)
ϕ⇐⇒ ψ meta-level equivalence (short-hand for ϕ=⇒ψ and ψ=⇒ϕ)
∀x : ϕ the (classical) universal quantification in first-order logic
∀x ∈ A : ϕ universal quantification in first-order logic with domain
∃x : ϕ the (classical) existential quantification in first-order logic
∃x ∈ A : ϕ existential quantification in first-order logic with domain
max{x | ϕ(x)} the maximal element (according to a total order that is sup-

posed to be clear from the context of use) from elements x
satisfying ϕ

min{x1, . . . , xn} the minimal element (according to a total order that is sup-
posed to be clear from the context of use) from elements x1
to xn

N the set of natural numbers
P(A) the powerset of A, i.e., the set of all subsets of A
R the set of real numbers
T (S,V ) the set of terms in first-order logic

C

CSP
α(P) function that returns the alphabet for a given process expres-

sion P according to the trace semantics (Definition 8.6 on
page 133)

traces(P) function that returns the set of possible traces for a given
process expression according to the trace semantics (Def-
inition 8.6 on page 133)

STOPE the process with alphabet E that immediately terminates
e → P the “prefixing” of process expression P by event e
P1 � . . .� Pn the external choice of process expressions P1 to Pn
�i∈IPi the external choice over process expressions Pi
P1 u . . . u Pn the internal choice of process expressions P1 to Pn
ui∈IPi the internal choice over process expressions Pi
P EQP

≡EQQ Q equivalence of process expressions P and Q under sets EQP
and, respectively EQQ of process equations
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P1 ‖ . . . ‖ Pn the parallel composition of process expressions P1 to Pn
‖i∈I Pi the parallel composition of process expressions Pi
P / tr CSP’s “after” operator
c.m structured event modeling message m on channel c
c?x: M → P reception of message, bound by x , from set M on channel c

and then P

x: E → P choice of event, bound by x , from set E and then P

c!m→ P sending of message m on channel c and then P
P \ E the hiding of all events in E from the environment of process

expression P

NAME def
=E P a process equation

PROC the set of all processes
P sat ϕ satisfaction of unary predicate ϕ by process expression P
P [x/e] the process expression P with all free occurrences of x sub-

stituted by e [Ros05, p. 37]
CSP Model of CliSeAu

appv channel for “approval” of decisions obtained after delegation
between a local policy model and the coordinator

CORci process expression of the coordinator model for ci
ddec channel for delegation resulting from locally intercepted

events between a local policy model and the coordinator
model

ECORci alphabet of the coordinator model for ci
EINTii alphabet of the interceptor model for ii
ECci(•agent, •pol, •enf) the parametric process expression modeling a generic EC

for coordinator instance ci and the three parametric process
expressions

edec channel for decisions between a local policy model and the
coordinator model

enf channel for decisions to be enforced between the coordinator
model and an enforcer model

EQCOR
ci set of process equations for the coordinator model

EQpm the set of process equations of an encapsulated target model
for a policy model pm

EQINT
ii set of process equations for the interceptor model

ET pm the process expression of an encapsulated target model for a
policy model pm

fwd channel for forwarding delegation requests and delegation
responses between a local policy model and the coordinator
model
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Hci the set of internalized (hidden) events of an EC model for
coordinator instance ci

icpt channel for intercepted events between the interceptormodel
and the coordinator model

INTii process expression of the interceptor model for ii
linki,j channel between EC models with identifiers i and j
lreq channel for local requests between the coordinator model

and a local policy model
rdec channel for (remote) decisions to delegation requests be-

tween a local policy model and the coordinator model
rreq channel for remote requests between the coordinator model

and a local policy model
sync channel for synchronization of an enforcer model with the

interceptor model
•agent “hole” for an agent in the process expression of the EC model

•enf “hole” for an enforcer model in the process expression of the
EC model

•pol “hole” for an local policy model in the process expression of
the EC model

X symbol used as message over channel sync
CSP Model of CliSeAu: Instances

AE the set of all access events
AEsp the set of all access events of service provider sp
ChW(E) the Chinese Wall security property for set E of all events
ChWD the joined set of all decisions of the EC models for all service

providers
ChWDi the set of all decisions of the EC model with identifier i
ChWDR the set of all delegation requests and delegation responses of

the EC model
ChWgp the policy model for enforcing the Chinese Wall Security

Policy in the distributed storage service
ChWLPi process name of the local policy model at EC model i for the

Chinese Wall security property
COI ⊆ O × O the binary relation modeling conflicts on objects
e ⊗ e′ the binary relation on access events modeling conflicts be-

tween the accessed objects
conf (q) the set of all access events in conflict with state q
DECi(q) process name of the decision-making component at ECmodel

i for the Chinese Wall security property
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DELi process name of the delegation component at EC model i for
the Chinese Wall security property

denied the symbol indicating that an access was denied
deny(e) function that maps an access event e to the set of possible

traces for a given process expression according to the trace
semantics (Definition 8.6 on page 133)

EDECi the alphabet of DECi

EDELi the alphabet of DELi
EREPL alphabet of the replacing enforcer
ESecAut alphabet of the local policy model of a security automaton
ESRPi the alphabet of SRPi
ESUPP alphabet of the suppressing enforcer
ETERM alphabet of the terminating enforcer
EQChW the set of process equations of the policy model for enforcing

the Chinese Wall Security Policy in the distributed storage
service

EQsp the set of process equations of the service providers

H pol
i the alphabet of ChWLPi

lereq internal channel for local events to be decided, betweenDELi
and DECi

nxt(i, i′) the next service provider on the route from i to i′

O the set of all file objects in the application scenario
perm symbol used by some example enforcer models to indicate

that an event shall be permitted
REPLIE,EE process name of an auxiliary process for the replacing en-

forcer
REPLACEIE,EE process name of the replacing enforcer
rereq internal channel for remote events to be decided, between

SRPi and DECi

resp(e) function that maps an access event e to the responsible unit
for e

rtreq internal channel for routing delegation requests between
DELi and SRPi

rtrsp internal channel for routing delegation responses between
DECi and SRPi

SecAut process name of the local policy model of a security automa-
ton

SP sp the process expression for the service provider sp
SP the set of identifiers of service providers
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sp(e) function that maps an access event e to the service provider
it belongs

SRPi process name of the routing component at EC model i for
the Chinese Wall security property

SUPPEE process name of the suppressing enforcer
supp symbol used by some example enforcer models to indicate

that an event shall be suppressed
TERMEE process name of the terminating enforcer
term symbol used by some example enforcer models to indicate

that an agent shall be terminated
U the set of all users in the application scenario

CSP Model of CliSeAu: Proofs
AEldi the set of events that occur at and are decided at EC model i
CORi process expression of the coordinator model at EC model i
DENY set of all denying access events
ECi process expression of the EC model i
EI process expression of the encapsulated target model with

renamed channels and without hiding
EQEI the set of process equations of the encapsulated target model

with renamed channels without hiding, EI
Hi the set of internalized (hidden) events of the EC model i
HEI the set of internalized (hidden) events of the encapsulated

target model
INTi process expression of the interceptor model at EC model i
REi set of events that are subject to renaming function ρi
REPLi auxiliary process expression of the replacing enforcer at EC

model i
REPLACEi process expression of the replacing enforcer at EC model i
ρi the renaming function on internal events of the EC model i

L

languages
Σ the alphabet implicitly underlying all languages presented in

this thesis, containing alphanumeric symbols, punctuation
symbols, whitespace symbols, control symbols (such as line
breaks), and mathematical symbols

C ∈ Σ symbol modeling a line break
ε the empty word over Σ∗

w w ′ the word resulting from concatenating the words w and w ′
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W the set of all words (W = Σ∗)
WA the set of all words not containing a symbol from A, i.e.,

(WA = (Σ \ A)∗)
L(nt) the set of all words specified by the BNF non-terminal nt

M

meta-variables
A, B, A′, … meta-variables ranging over partitions of sets
A, B meta-variables ranging over sets of underspecified type
A meta-variable ranging over first-order logic structures
a meta-variable ranging over maps for function and relation

symbols in first-order logic structures
AGENT meta-variable for agents of a target model
β meta-variable ranging over assignments in first-order logic
C , C ′, C1, … meta-variables ranging over sets of category names inDOSNs

c, c′, … meta-variables ranging over category names in DOSNs
c, c′, … meta-variables ranging over channels in CSP
cat , cat ′, … meta-variables ranging over categories of a DOSN user
cdConfigs meta-variable ranging over functions mapping configuration

file names in a decider program to the content of these files,
as specified in Definition 5.3

ci meta-variable ranging over coordinator instances
cs meta-variable ranging over constant symbols
D meta-variable ranging over domains of first-order logic struc-

tures
δ meta-variable ranging over transition functions of a security

automaton
do, do′, … meta-variables ranging over decision objects, i.e., objects of

class Decision
DR meta-variable ranging over sets of delegation requests and

delegation responses
dr , dr ′, … meta-variables ranging over delegation request objects and

delegation response objects
dr , dr ′, … meta-variables ranging over delegation requests and delega-

tion responses
E , E ′, … meta-variables ranging over partitions of sets of events
E, E′, E1, … meta-variables ranging over sets of events
e, e′, e1, … meta-variables ranging over events
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ED meta-variable ranging over sets of decisions exchanged be-
tween coordinator models and enforcer models

ed , ed ′, … meta-variables ranging over L(policy)
ed , ed ′, … meta-variables ranging over decisions
EE meta-variable ranging over sets of effectable events
ENF meta-variable for enforcer models
EnF , EnF ′, … meta-variables ranging over enforcer factory class names
eo, eo′, … meta-variables ranging over event objects, i.e., objects of

class Event
EQ meta-variable ranging over sets of process equations
EvF , EvF ′, … meta-variables ranging over event factory class names
f , g meta-variables ranging over functions of underspecified type
ϕ, ψ, ϕ′, … meta-variables ranging over formulas
files meta-variable ranging over file maps of CoDSPL policies
fp meta-variable ranging over fixed points mapping process

names to processes
fs meta-variable ranging over function symbols
glob meta-variable ranging over global configurations
I , J meta-variables ranging over index sets of underspecified type
i, j, k meta-variables ranging over unit identifiers
i, j meta-variables ranging over index variables, i.e., elements of

index sets
I meta-variable ranging over first-order logic interpretations
Id meta-variable ranging over sets of unit identifiers
id , id ′, … meta-variables ranging over unit identifiers
idl, idl ′, … meta-variables ranging over lists of identifiers
Ids ⊆ L(Id) meta-variable ranging over identifier sets
IE meta-variable ranging over sets of intercepted events
ii meta-variable ranging over interceptor instances
k ∈ W meta-variable ranging over words that syntactically occur as

keys in key-value pairs of encapsulation descriptions
kv ∈ L(keyvalue) meta-variable ranging over syntactic key-value pairs of en-

capsulation descriptions
loc meta-variable ranging over local configurations
LP , LP ′, … meta-variables ranging over local policy class names
lp, lp′, … meta-variables ranging over local policy objects
M meta-variable ranging over general sets of messages for chan-

nels in CSP
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m, m′, … meta-variables ranging over messages on channels in CSP
m, m′, … meta-variables ranging over intercepted methods
N meta-variable ranging over sets of process names
NAME meta-variable ranging over process names
o, o′, … meta-variables ranging over file objects in the application

scenario of Section 8.5
o, o′, … meta-variables ranging over objects
P , Q, P ′, … meta-variables ranging over process expressions
P , P ′, Pi, … meta-variables ranging over security properties formalized

as unary predicates on sequences of events
p, p′, … meta-variables ranging over posts in DOSNs
pcname, pcname′, … meta-variables ranging over pointcut names
v ∈ L(PointcutSpec) meta-variable ranging over words from the pointcut specifi-

cation language
pd meta-variable ranging over words from the pointcut declara-

tion language
pe meta-variable ranging over words from the pointcut expres-

sion language
π, π′, … meta-variables ranging over re-share paths in DOSNs
pm meta-variable ranging over policy models
POL meta-variable for local policy models
pol ∈ POL meta-variable ranging over well-formed CoDSPL policies
pp, pp′, … meta-variables ranging over privacy policies
pps : USER⇀ PP meta-variables ranging over families of users’ privacy poli-

cies
Q, Q′ meta-variables ranging over sets of states of a security au-

tomaton
q meta-variables ranging over states of a process expression

DECi

q meta-variable ranging over individual states of a security
automaton

Q0 meta-variable ranging over sets of initial states of a security
automaton

R meta-variable ranging over n-ary relations
rel meta-variables ranging over category assignments of a DOSN

user
resp, resp′, … meta-variables for responsibility functions in static delega-

tion
rs meta-variable ranging over relation symbols
S meta-variable ranging over signatures
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s, s′, … meta-variables ranging over sensitivity values of posts in
DOSNs

sc meta-variable ranging over sensitivity coefficients for the
re-share operation in DOSNs

sf , sf ′ meta-variable ranging over substitution functions, i.e., partial
functions from words to words

sp ∈ SP meta-variables ranging over identifiers of service providers
t meta-variable ranging over terms in first-order logic
t , t ′, t1, … meta-variables ranging over sequences
Tr , Tr ′, Tr1, … meta-variables ranging over sets of possible traces of pro-

cesses
tr , tr ′, tr1, … meta-variables ranging over traces
tv meta-variables ranging over a user’s trust in categories
u, u′, … meta-variables ranging over users in the application scenario

of Section 8.5
u, u′, … meta-variables ranging over identifiers of users in DOSNs
V meta-variable ranging over sets of variable symbols
v ∈ W meta-variable ranging over words that syntactically occur as

values in key-value pairs of encapsulation descriptions
v meta-variables ranging over variable symbols in first-order

logic
w, u, v, w ′, … meta-variables ranging over words
x , y meta-variables ranging over event variables in process ex-

pressions
x , y, z meta-variables ranging over elements of underspecified type
x meta-variable ranging over variables for messages in CSP

P

privacy policies
CAT universe of all possible category names in a DOSN
PATH set of all possible re-share paths in a DOSN
PP set of all possible privacy policies in a DOSN
PPS = USER⇀ PP set of all families of users’ privacy policies
pt(pps, π, u) function computing the path trust
PC relation capturing the connected re-share paths for a family

of users’ privacy policies
USER universe of all possible identifiers of users in a DOSN
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S

semantics of CoDSPL policies
JpolK function mapping CoDSPL policies pol to encapsulated tar-

gets
JedK function mapping words ed ∈ L(policy) to their semantics
advt the advice template shown in Listing 5.1 on page 64
AspectJ partial function capturing the functionality of AspectJ when

applied to an aspect and a given JAR file
aspt the aspect template shown in Listing 5.2 on page 64
cdFixed function mapping the names of files belonging to the fixed

implementation of the decider program, i.e., of the coordi-
nator and its start-up, to the Java bytecode content of these
files

crossline(pol, id) partial function capturing cross-lining for a CoDSPL policy
pol and a unit identifier id

EA the set modeling all possible encapsulated agents
genAspect(pol, id) partial function capturing the generation of an aspect speci-

fying the interceptor and enforcer components of the unit
with unit identifier id for CoDSPL policy pol

genDecider(pol, id) partial function capturing the generation of a decider pro-
gram for the unit identifier id in CoDSPL policy pol

inst(w, sf ) total function capturing the instantiation of a template w
based on a substitution function sf

jar(files) function taking a file map, files, and returning a JAR file
containing all files in the domain of files, as implemented by
the functionality of the jar program

kvmap(ed,w) the function mapping all suffixes of keys in encapsulation
description ed prefixed with word w to their value

POL domain of well-formed CoDSPL policies
idsl(idl) function that maps a list idl of identifiers to the set of identi-

fiers in idl

sequences
〈x1, . . . , xn〉 the sequence consisting of the single elements x1 to xn
A∗ the set of all sequences over the set A
A+ the set of all non-empty sequences over the set A, i.e., A∗ \

{〈 〉}
〈 〉 the empty sequence, where the domain of 〈 〉 is determined

by the context in which the symbol is used
|t| the length of sequence t
t1. . . . .tn the sequence resulting from concatenating the sequences t1

to tn
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x / t short-hand notation for ∃t1, t2 : (t = t1.〈x〉.t2)
x 6 t short-hand notation for ¬(x / t)
t � t ′ the prefix relation on sequences (t is a prefix of t ′

t � A the projection of sequence t to set A
syntax of encapsulation descriptions

addrkey non-terminal capturing those keys in an encapsulation de-
scription for specifying units’ network addresses

‘cfg.crypto’ key for specifying whether communication between units
shall be encrypted

‘cfg.destdir’ key for holding the destination directory of the encapsulated
distributed target in encapsulation descriptions

‘cfg.units’ key for holding the list of unit identifiers in encapsulation
descriptions

classkey non-terminal capturing those keys in an encapsulation de-
scription for specifying class names

cpkey non-terminal capturing those keys in an encapsulation de-
scription for specifying classpaths containing component
implementations and their dependencies

enckey non-terminal capturing those keys in an encapsulation de-
scription for specifying how in-memory objects are encoded
when transmitted over network connections

FileContent domain of file contents
filekey non-terminal capturing those keys in an encapsulation de-

scription for referring to file names
Id non-terminal capturing a single unit identifier in an encap-

sulation description
keyvalue non-terminal capturing a key-value pair of an encapsulation

description
‘pointcuts’ key for holding the path to the file containing the specifica-

tion of security-relevant program operations
policy non-terminal capturing the language of encapsulation de-

scriptions
portkey non-terminal capturing those keys in an encapsulation de-

scription for specifying units’ network ports
‘target’ key for holding the path to the JAR file that holds the Java

bytecode of a target agent’s implementation
syntax of security-relevant program operations

PointcutDecl non-terminal capturing the language of individual pointcut
declarations

PointcutExpr non-terminal capturing the language of pointcut expressions
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PointcutSpec non-terminal capturing the language of pointcuts
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