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Abstract. Today the simple availability of 3D sensory data, the evo-
lution of 3D representations, and their application to object recognition
and scene analysis tasks promise to improve autonomy and flexibility
of robots in several domains. However, there has been little research
into what can be gained through the explicit inclusion of the structural
relations between parts of objects when quantifying similarity of their
shape, and hence for shape-based object category recognition. We pro-
pose a Mathematical Morphology inspired hierarchical decomposition of
3D object views into peak components at evenly spaced depth levels,
casting the 3D shape similarity problem to a tree of more elementary
similarity problems. The matching of these trees of peak components
is here compared to matching the individual components through op-
timal and greedy assignment in a simple feature space, trying to find
the maximum-weight-maximal-match assignments. The matching thus
achieved provides a metric of total shape similarity between object views.
The three matching strategies are evaluated and compared through the
category recognition accuracy on objects from a public set of 3D models.
It turns out that all three methods yield similar accuracy on the simple
features we used, while the greedy method is fastest.

Keywords: 3D shape similarity, tree matching, mathematical morphol-
ogy, object recognition, scene analysis

1 Introduction

Nowadays 3D sensing technologies provide an ever growing number of low-cost
and reliable sensors like the popular Kinectr and the Xtionr in both first and
second versions. The depth data produced by these devices come at a high frame
rate and provide a dense representation of 3D surface geometry. Speed of pro-
cessing and representational geometric quality are important aspects in robotics,
which often makes 3D sensing and processing the procedure of choice for enhanc-
ing robot autonomy and adaptivity. In particular, object recognition and scene
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analysis are increasingly based upon analysis of 3D data, and both imply match-
ing and comparing objects.

Naive pixel-based or 3D point-based global matching is intractable for the
combinatorial explosion of computations. Hence, several methods were developed
to compare object shape through an abstract representation, e.g. histograms
of local or regional descriptors on keypoints, global descriptors, or graphs of
parts and their relations. Apart from the latter approach, the vast majority of
representations has not explicitly regarded the relations of parts or components
of objects. By contrast, we are here specifically interested in the effects of those
relations when included in a structural object representation.

One particular kind of structure is the object’s topology; comparing objects
then means comparing topologies, which can be formalized as a graph match-
ing problem. However, graph matching in general can be costly, even unfeasible
for practical problems, therefore approaches like [14] take approximations and
simplifications. Efficient matching algorithms are known for the graph subclass
of trees, which are often produced as a problem approximation, e.g., by mini-
mum spanning trees. Here we propose a representation where the favorable tree
structure comes out naturally in the exact formulation.

The shape of 3D objects is here represented in a view-based fashion. Range
images of object views are decomposed into peak components, which are the
height profiles over 2D cross-sections taken at evenly spaced depth levels from
the sensor. Considering depth levels is very suitable for depth data and this
decomposition yields the inclusion relationship between each pair of such peaks:
the inclusion hierarchy. A tree structure thus naturally arises from the proposed
decomposition, the representation by a 3D shape tree.

Individual peak components, that is, the vertices of the 3D shape tree, need
to be described in some feature space. For the sake of this study, we have here
used a very simple feature space with limited descriptive capacity, thus relying on
the aggregation effect of simple components. A 3D shape metric can be obtained
by computing and quantifying a match between trees or simply between the sets
of components.

We quantify the contribution of the tree structure among the components
to the matching accuracy achieved in shape-based category recognition by a
nearest-neighbor classifier: matching is done using the tree-structural constraints
and also with structureless assignment of the components. Elaborating and com-
paring the results is the main contribution made by this work.

While intuitively one might expect that an explicit regard for structural
relations among object components should generally improve matching accuracy,
it here turns out that it does not improve similarity-based category recognition in
this particular setup. It seems hence worthwhile to always compare a structural
matching against a structureless baseline, and the latter may suffice. The analysis
of the results is presented in section 6.



2 Related work

A taxonomy of shape matching methods is proposed in [22]; there shape match-
ing methods are subdivided into feature based, graph based and geometry based.
Our method uses the ability of a tree to describe the relations among the ele-
ments, which qualifies it as a graph-based method. At the same time the target
to be described is a range image of an object taken from a given viewpoint,
which also puts it among the geometry-based methods. The proposed method
also relies on features of peak components, which makes it feature-based too.

An inspiration to our work has been the depth decomposition proposed in
[8]. They slice 3D CAD models in three orthogonal directions aligned with the
object’s bounding box, and the cross-sections produced by scanning through the
object along those directions are collected from the front to the back. The 3D
descriptor is made by a histogram computed by binning simple 2D slice features.

A popular histogram-based shape descriptor is the Viewpoint Feature His-
togram (VFH) of [19]. For any patch of points a histogram of three angular
values between all the couples of point normals is computed and extended with
the angular values between the point normals and the central viewpoint direc-
tion. A fast approximated kNN is then used to classify the objects. The methods
based on histograms as global object descriptors do not take into account any
structure among the constituent elements whose features are accumulated.

As discussed in [7], perceptual organization should be captured using models
that take account of the part structure of objects and capture the properties of
3D shapes. As argued for example by Huber [6], part-based detection has the
advantage of generalizing to unknown instances of object types. While in [6] and
for the part-based VFH (called CVFH) feature [1] objects need to be singulated
first, other part-based approaches like [13] can efficiently detect objects in clutter.
Recently, Richtsfeld et al. [18] presented a multi-level approach to fit planar or
curved surfaces to over-segment parts, and then define inter-segment relations
to decide if they should be merged or not, but the method performs best for
merging touching segments and for convex shapes.

A graph-based method is proposed in [21] where objects are matched through
their skeletons. The skeletonization is made from a voxelized object and the skele-
tal voxels are connected with a minimum spanning tree algorithm. The actual
object matching is restricted to the nearest graphs by indexing. The matching
is modeled as a modified maximum-cardinality-minimum-weight matching, and
is computed with a recursive depth-first coarse-to-fine search.

In the VRML community [27] also proposed a graph-based method. They de-
compose 3D objects in concave patches by watershed, and formulate the object
matching as a graph isomorphism between attributed graphs, a computation-
ally difficult problem without polynomial time solutions. The authors tackle the
problem by merging patches such that their number stays small.

Trees for object recognition have been used in [4,5] for human airways recog-
nition. The authors restrict the modeled trees to planted trees with bifurcations
and trifurcations; edge weights represent the distance among vertices. The node
similarity is computed from the ratio of the length of the airway to the vertex,



the branch point type, and structural similarity. The matching between their
structures minimizes a tree-edit distance, where a set of allowed matching com-
binations is previously determined to limit the NP-complexity.

An example of a histogram-based region descriptor method is the shape con-
text proposed in [2]. The authors first align the objects, and then sample a
number of points along the object contour with uniform spacing, and in each
contour point they take a distribution of the relative position of the other contour
points. Correspondences between two objects are found by solving an optimal
assignment problem; the total weight is used to estimate the similarity between
pairs of objects. This method was extended to 3D in [11] to a histogram of rel-
ative 3D point positions of all the other shape points of a patch. The object
matching goes through the optimal assignment formulation as well.

Deep learning is a class of methods of growing popularity, see [15]. The meth-
ods proposed so far are not able to process megapixel-size images and require
large amount of training data. An example of such methods is [26] where a global
object representation is learned, while in [3] a patches-representation is learned
across deformed shapes.

The structural-representation-based method here investigated exploits the
descriptiveness of geometric features of the object’s parts at multiple scales, used
along with a tree’s ability to represent the relationship among those parts, while
gearing on efficient tree matchings. This method was chosen as a promising struc-
tured matching procedure for depth data, as it is different from generic graph
methods that are mainly applied rather on a small scale and on abstract decom-
positions/labellings of the objects due to the computationally costly matching.

This approach is similar to the work done in [10] where attributed graphs are
built on a triangulation of Harris corners; they match image graphs by optimal
assignment and locally preserve structure through the heterogeneous Euclidean
overlap metric, a metric jointly considering vertex attributes, vertex degree, and
attributes of the incident vertices. We also draw on the work of [24], where they
measure the total distance between two trees with the maximum-cardinality-
maximum-weight tree isomorphism through a recursive descent which maximizes
the total accumulated similarity for different root vertex choices. They evaluate
their work on matching skeletal graphs of 2D images.

In our application of these ideas we borrow the image decomposition from
the work done in [25]. This method is based on 2D Shape-Size Pattern Spectra,
which are 2D histograms of shape (moment of inertia divided by squared area)
and size (area) of the peak components of an image. They classify images trough
decision trees of the image’s pattern spectra. Connected components and peak
components are Mathematical Morphology’s concepts which have been proven
as a valuable decomposition; in [20] we find an efficient method to extract and
store these components.



3 Method

The structural representation we investigate in this study aims at capturing
shape details as well as the coarse outline. The representation is built from
range images of objects taken from any viewpoint, either by a range sensor or
through rendering of a 3D model. The core idea is to represent a 3D shape by
a hierarchy of range image peaks, split into their connected components, and
hence yielding a tree structure.

We now explain in turn the decomposition of a range image into its peak
components and their descriptor; the construction of the tree structure; the
matching algorithm for the trees; and how a 3D shape metric is derived from a
match between two trees. The baseline of a structureless matching we compare
to is a straightforward assignment between individual peak components from
two object views.

Peak Components and Descriptors. As input we have a range image,
which is a raster of depth values D(x, y) for pixel coordinates (x, y). This raster
describes a height profile of an object from a given viewpoint, with isolines
shrinking towards the observer. Occluded parts and sides of the object are not
visible to the observer and hence no information about those is available.

Slicing or thresholding at any depth level h produces one or more peak com-
ponents Ph

i , being the connected image components of depths h and lower, such
that their union

∪iPh
i = {(x, y) |D (x, y) ≤ h} . (1)

In other words, as a sequence of decreasing depth levels are used for thresholding,
the generated peak components are the connected regions in the remaining depth
image. These are nested into each other like the isolines at the different values
for h; the largest component lies at the maximal depth and the smallest lies
closest to the sensor.

We use the same features as in [25] to describe the peak component shape,
namely area, elongation and entropy. Additionally we consider relative area (the
ratio of the peak component’s area and the root peak component’s area) and
normalized entropy (the ratio of entropy and the logarithm of the number of
pixels per peak component); see section 4 for further motivation.

The individual peak components are compared by means of Euclidean dis-
tances in a metric space. In a space of descriptive features, similar elements are
expected to be close to each other while dissimilar elements are expected to be
far apart. We map the point-wise distance to a similarity measure

s(u, v) = max(1− ‖u− v‖/r, 0) , (2)

where ‖ · ‖ denotes the Euclidean norm, u and v are descriptor vectors of peak
components, and r is a cutoff radius. In particular, the similarity is set to zero
for a distance larger than r.

3D Shape Tree. So far we have an unorganized collection of peak compo-
nents; now we represent their mutual inclusion by building the hierarchy. This
is achieved through the computation of the Max-Tree proposed in [20], a well



known data structure in the Mathematical Morphology. The Max-Tree is an
inclusion tree, which is a tree of nested connected components, where each com-
ponent includes its children. The Max-Tree represents morphological changes
across the depth in the object through branches of arbitrary degree and depth,
and through the vertex descriptors. The Max-Tree is a special level-set method.

The Max-Tree computation is linear in the number of pixels. This is achieved
through a recursive flood-fill procedure starting at the highest depth; each time a
pixel of lower depth is found, the flooding continues at the new depth level. This
way the tree vertices correspond to varying discrete depth changes, and we have
a non-uniform sampling of depth levels. We overcome this with an expansion step
where all the vertices with depth difference to the parent 4h > 1 are substituted
with a small series of 4h non-branching vertices of unit depth increase.

Structural and Structureless Matching. Once object views are trans-
formed into trees of peak component descriptors, we need a matching and com-
parison scheme defining quantitatively a 3D shape similarity. General graph
matching is costly and when done by edit-distance minimization is NP com-
plete; tree matching instead is solved efficiently in polynomial time.

We define a tree as T = (V,E) with vertices V and edges E. A matching of
the vertices of two trees without regarding the edges can be obtained straight-
forwardly through optimal assignment of the vertices. Specifically, we look for a
matching ϕ ⊂ V1 × V2 that maximizes the total similarity

W (ϕ) =
∑

(u,v)∈ϕ

s (u, v) . (3)

where ϕ represents the one-to-one vertex mapping between the two trees.
This optimal assignment is one baseline of a structureless matching we compare
to. The problem was originally solved by Kuhn [12] and Munkres [16]. The orig-
inal algorithm has O

(
n4
)
complexity for n nodes to match; instead we use the

algorithm of Jonker and Volgenant proposed in [9] which has O
(
n3
)
complexity.

In the literature greedy algorithms are known which iteratively couple labeled
vertices. We extend this approach with similarity (2), so that the correspondence
with the largest weight is selected and added to the matching; the involved ver-
tices are removed from the trees afterwards; this assignment proccess is iterated
over the complete set. The procedure is shown in algorithm 1: it requires a dis-
tance matrix between all the vertex pairs, which has quadratic time complexity,
and a sorting step on it, which gives O

(
n2 log (n)

)
total time complexity.

The above matching methods are generic and flexible, but they disregard the
tree hierarchies and should be considered as structureless matching. For instance,
if u ∈ T1 is matched to v ∈ T2, the child u′ of umight be matched to the parent v”
of v, as there is no constraint modeled in the assignment. We consider also a tree
matching algorithm proposed in [24], which is proven to haveO

(
bn3
)
complexity,

where b is the maximum degree of the tree vertices. For any given pair of vertices,
u in T1 and v in T2, the algorithm performs a recursive descent and accumulates
the similarity between u and v plus the maximal similarity among all the pairs of
children of u and v in the matching: (u′, v′) ∈ Ch (u)×Ch(v) where Ch () gives



Algorithm 1 Sequential Greedy Match for MWMM
(w,W ) = SequentialGreedyMWMM(V1,V2) (V1,V2 vertex sets)

1. if |V1| = 0 ∨ |V2| = 0 then
2. return (0, ∅)
3. else
4. (u, v) = argmin{s(u, v) |u ∈ V1, v ∈ V2}
5. V ′

1 = V1 \ {u} ; V ′
2 = V2 \ {v}

6. (w′,W ′) = SequentialGreedyMWMM(V ′
1,V ′

2)
7. return (s (u, v) + w′, {(u, v)} ∪W ′)

the vertex children. The algorithm finds the maximal tree matching by iterating
on (u, v) ∈ {root (T1)}×T2 and (u, v) ∈ T1×{root (T2)} where root () is the tree
root. It needs a pairwise similarity s (u, v). This procedure resembles counting the
similar vertices found in a parallel descent of two trees. Such matching enforces
inclusion relationships by construction and is therefore a structural matching.

3D Shape Similarity Metric. Now a (structural or structureless) tree
matching is computed in order to find the corresponding parts of two trees rep-
resenting two object views. Let ϕ12 be the optimal mapping found through op-
timal assignment, greedy assignment or structural matching, hence maximizing
(3). The total similarity W (ϕ12) accumulated through ϕ12 is not meaningful as
such: generally matching two small trees produces a small total similarity while
matching two large trees produces a large one because of the different number
of involved vertices. In order to avoid this size bias effect, we weight W (ϕ12)
relative to the original tree sizes. For this purpose we apply the four metrics
proposed in [23], with |Vi| the number of vertices in Vi:

d1 (T1, T2) = max (|V1| , |V2|)−W (ϕ12) (4)
d2 (T1, T2) = |V1|+ |V2| − 2W (ϕ12) (5)
d3 (T1, T2) = 1−W (ϕ12) /max (|V1| , |V2|) (6)
d4 (T1, T2) = 1−W (ϕ12) / (|V1|+ |V2| −W (ϕ12)) (7)

4 Evaluation

We evaluate the structural and structureless matching variants of our trees in
an experiment on shape-based category recognition. We are interested in the
accuracy of 1NN classification using the shape metrics (4) through (7) for finding
the nearest neighbor.

Our experimental setting is similar to the one used in [2]. We take10 objects
each from 10 classes from the SHREC-2010 database [17], take four specific views
of each object (front, top, elevated back diagonal and elevated left diagonal
view) and render a total of 400 range images of 900× 1200 pixels. Each image is
rendered with the focal length of the Kinectr and with an object-to-viewpoint
distance such that the object fits in and fills the image. This set of arbitrary
views is meant to contain different and therefore discriminable representations
of the chosen objects. Example images, one for each class, are shown in figure 1.
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Fig. 1. Example range images from our evaluation set; the four views of an object from
each class. Object models taken from [17].

In this study we focus on the aspect of shape similarity and disregard the
absolute object size. Our 3D shape tree disregards absolute size by choice of the
component descriptors. Moreover, to make the representation independent of the
image size of an object as well, we investigate a version where the image area
of a peak component is quantified as the fraction of the object silhouette area.
Likewise, the entropy of a peak component is normalized by the logarithm of the
component area. Finally, a depth normalization step is applied before the peak
component decomposition in order to make the depth slicing comparable across
objects. Depending on the actual application, when object size matters real
physical units of the measures can be used for the descriptor vectors. Note that
the used features are rotationally invariant which avoids the need for sampling
of different angles around the viewing axis.

We compute the accuracy of a 1NN classifier of object category on three
subsets of our range images set: a set of low-detail objects (fish, skyscraper, bottle,
mug), a set of mixed-detail objects (bird, fish, biped, single house, mug), and a
set of high-detail objects (bird, non flying insect, flying insect, biped, quadruped).
This way we evaluate the quality of the proposed descriptor and relation between
the different match procedures for different shape detail levels. Classification
accuracies are computed in a leave-one-out scheme, where each queried object
instance is left out from the database of category samples to match against. The
evaluations cover the four shape metrics (4) through (7). The cutoff radius on
similarity of peak components (cf. equation (2)) is set to a range of percentile
values (10%, 20%,..., 90%, 99%) from the full sample of distances between all
peak components. This way we adapt the parameter to the actual statistics of
occurring feature distances.

5 Results

The evaluation was performed with four different features combinations; here we
present results only for the feature set leading to the best classification accuracy,
which is the relative area, normalized entropy and elongation. The results of the
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Fig. 2. Classification experiments results: mean classification accuracies and standard
errors (bars) depending on similarity cutoff radius (cf. equation (2)). Shown is the
performance separately on low-, mixed-, and high-detail shape classes for the structural
and structureless matching methods and for the resulting shape metrics according to
equations (4) through (7), as indicated.



classification experiments are shown in figure 2. There we can see the classifi-
cation accuracy for matching the shape trees (structural match), and through
optimal and greedy assignment (structureless matches) of peak components.

All the three matching methods show a similar best classification accuracy
on the same data sets: on the low-detail shapes the greedy assignment is best
with a 87.5% accuracy, on the mixed-details shapes both the greedy and the op-
timal assignments reach 84% accuracy, while on the high-detail shapes both the
tree matching and the greedy assignment matchings show an 83% classification
accuracy. The differences of best achievable accuracy between matching meth-
ods fall within the standard error of the mean in all these cases, are hence not
significant. The overall best classification accuracy is achieved for the low-detail
classes; it is overall worst for the high-detail classes.

The accuracy differences between best achievable accuracies fall within the
standard error of the mean also across the different data sets. Nonetheless it’s
worth to note that the largest difference is between the accuracies on the low-
detail and the high-detail shape classes, showing that low-detail shapes are some-
what easier to discriminate properly in the simple descriptor space considered.
Very similar are the accuracies between different metrices within each data set:
in most cases those are very close to each other with similar dependence on
the different similarity cutoffs; only for the tree matching the Sum metric of
equation (5) does have a lower accuracy. The general trend is that accuracies
degrade for the highest similarity cutoffs, which indicates that there should be
an indifferent zero similarity set from some moderate feature distance upward.

When comparing computation times for the different levels of shape detail, we
found that low-detail classes are less computationally demanding than the high-
detail classes for all the techniques. Also we observed an increasing computation
time for both structureless matching variants when increasing the cutoff radius,
while the structural matching remains insensitive to it.

6 Discussion and Conclusions

We have introduced a tree-structured representation of 3D object views that
captures the hierarchy of peak components at different depth levels. The peak
components have been described in a simple three-dimensional space of area,
elongation, and entropy. In this setting, shape is represented by an aggregation
of simple components. We have investigated the contribution made by the tree
structure to the performance of a shape metric derived from matching these
components between objects: matchings are computed with and without explicit
regard for the edges in the tree as a structural constraint.

We have found no statistically significant difference in achievable accuracy of
shape-based category recognition for the structural and structureless matches.
When comparing the behavior for shape classes of different levels of geometric
detail, it turnes out that low-detail shapes are somewhat easier to discriminate
than high-detail shapes in our simple descriptor space. A very general conclusion
to be drawn from this study is that it is worthwhile to compare any structural



matching against a structureless baseline, such as the naive assignment. The
latter may give similar results, be easier to implement, and may even run faster
with off-the-shelf libraries.

It is interesting to understand the reason behind the somewhat counter-
intuitive result that the tree structure of the shape components doesn’t need
to be considered during matching to find a reasonable correspondence. Our hy-
pothesis is that this is due to the effect of the spatial arrangement of the peak
components in the used feature space. On visual inspection it appears that their
descriptors, as a point set in feature space, are generally laid out in the shape of
the tree they are extracted from. Hence, two structurally and vertex-wise similar
trees align quite well in feature space, such that the naive strategy of assigning
components of the one tree to the nearest component of the other tree turns out
effective and mostly does not disrupt the inclusion relationships.

As the found equivalence of structureless and structural assignments seems
tightly linked to the nature of our feature space, it seems likely that results may
turn out differently in different feature spaces. In particular, the role of structure
in shape representations based on more descriptive features will be investigated
in our research. Moreover, the structural aspect may be enhanced through, e.g.,
taking orientation relations between peak components into account.
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