
WCET-Aware Parallelization of Model-Based
Applications for Multi-Cores: the ARGO Approach

Steven Derrien∗, Isabelle Puaut∗, Panayiotis Alefragis†, Marcus Bednara‡, Harald Bucher§,
Clément David¶, Yann Debray¶, Umut Durak ‖, Imen Fassi∗, Christian Ferdinand∗∗,

Damien Hardy∗, Angeliki Kritikakou∗, Gerard Rauwerda††, Simon Reder§, Martin Sicks∗∗,
Timo Stripf§, Kim Sunesen††, Timon ter Braak††, Nikolaos Voros†, Jürgen Becker§

∗Université de Rennes I (UR1)
†Technological Educational Institute of Western Greece (TWG)

‡Fraunhofer IIS (IIS)
§Karlsruhe Institute of Technology (KIT)

¶Scilab Enterprises (SCILAB)
‖Deutsches Zentrum fur Luft-Und Raumfahrt (DLR)
∗∗Absint Angewandte Informatik GmbH (ABSINT)

††Recore Systems B.V. (RS)

Abstract—Parallel architectures are nowadays not only con-
fined to the domain of high performance computing, they are
also increasingly used in embedded time-critical systems. The
ARGO H2020 project1 provides a programming paradigm and
associated tool flow to exploit the full potential of architectures in
terms of development productivity, time-to-market, exploitation
of the platform computing power and guaranteed real-time
performance. In this paper we give an overview of the objectives
of ARGO and explore the challenges introduced by our approach.

I. INTRODUCTION

Increased performance at reduced cost, while maintaining
real-time reliability and programmability, are key demands in
several domains such as aerospace and automotive industries.
Driven by the technology restrictions in chip design, the end of
exponential growth of clock speeds, and the increasing request
for computing performance, even the most powerful embedded
processors cannot cope with these demands, leading to the
increasing use of multi- and many-core architectures.

Embedded systems interact with their environment. Thus,
in general they must react within time limits under an ap-
propriate level of safety. These real-time requirements limit
the processor and communication hardware to deterministic
components. In the past, time-critical applications were typi-
cally mapped to deterministic single core processors. Single-
core processors are not capable anymore of offering sufficient
performance for the constantly increasing computational de-
mands. While in non-critical environments the usage of multi-
core processors with complex cores is state-of-the-art, these
complex processors cannot be used safely for time-critical
applications because they are not deterministic enough to meet
strict timing guarantees. Solving the computational demands
of next generation time-critical applications on deterministic
components is a major challenge of this decade.

For time-critical applications, deadlines are guaranteed to
be met in all circumstances by calculating the application’s
worst-case execution time, or WCET [1]. To be safe, WCET
estimates have to be higher than or equal to any possible

1ARGO (http://www.argo-project.eu/) is funded by the European Commis-
sion under Horizon 2020 Research and Innovation Action, Grant Agreement
Number 688131.

execution time. In addition, to be useful they have to be as
close as possible to the actual WCET (tightness). The prereq-
uisite for calculating tight WCET is a deterministic hardware
architecture that avoids dynamic, hard-to-predict calculations
at run-time. Moreover, accesses to shared resources, such as
main memory must be organized to guarantee a worst-case
access time under any circumstances. The challenge here is to
avoid over-pessimistic WCET estimates for multi-cores.

Furthermore, parallel programming of embedded applica-
tions for multiprocessors suffers from a complex program-
ming process, often reserved to High Performance Computing
(HPC) experts. The problems are the absence of standards
for parallel programming, the indeterminism of the architec-
tures during debugging, deadlocks, etc. This makes paral-
lel programming notoriously much harder, error-prone, time-
consuming and in consequence costly compared to sequential
programming. The usage of model-based development tech-
niques, combined with automatic parallelization, is capable of
hiding most of these problems to the end users, but suffers
from a lack of suitable and generic parallelization tool-chains.

The ARGO proposal intends to provide a cross-layer pro-
gramming approach for exploiting the full potential of next
generation heterogeneous parallel embedded systems under
real-time constraints. The ARGO cross-layer programming
combines the following technologies in a holistic approach:

• Model-based development and testing, to increase pro-
ductivity, shorten time-to-market and reduce porting ef-
forts;

• Cross-layer programming user interface and WCET-
aware automatic parallelization, to improve the worst-
case execution time and reduce the gap between the
worst-case and average-case execution time;

• WCET-analysis for heterogeneous multi- and many-core
architectures to provide strict upper bounds of the sys-
tem’s worst-case execution time.

This paper presents the vision and the technical challenges
of ARGO. Section II first gives an overview of the ARGO
tool-chain. Section III then lists the main challenges and how
we plan to address them. Section IV describe the use cases
that are being developed to validate the ARGO approach.

286978-3-9815370-8-6/17/$31.00 c©2017 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/141489527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. OVERVIEW OF THE ARGO PROGRAMMING TOOL CHAIN

In ARGO, we address the challenge of obtaining tight
WCET estimates for multi-cores by combining WCET calcu-
lation with an automatic parallelization of application models.
Thereby, the application models are automatically parallelized,
mapped and scheduled to the multi-core hardware. During
the scheduling phase, parallel accesses to shared resources,
such as communication infrastructure and shared memory,
are considered. At any point in time, all shared resource
contenders are known and their number is reduced during
parallelization to avoid overly pessimistic WCET estimates.
The ARGO design workflow is depicted in Figure 1 and
described in the following subsections.

Fig. 1. The ARGO design workflow

A. Model Based Design specifications
In ARGO, the end users describe their applications using

a combination of dataflow modeling, using the open-source
Xcos modeling framework, and high-level programming using
Scilab2. To provide an extensible framework, the behavior
of all Xcos components used in ARGO is also described
in the Scilab language. Thanks to this approach the end-
users can both use a modeling approach and a high level
functional specification of their applications. The supported
hardware platforms are also specified using a model-based
approach thanks to the ARGO Architecture Description Lan-
guage (ADL). The proposed ADL provides all the information
required by the tool-chain (processors, memory, interconnect,
etc.) to calculate WCETs.

B. Program analysis and task level parallelization
The Xcos/Scilab models are then compiled to an interme-

diate program representation (IR) based on a subset of the C
language. This IR is used as input by the GeCoS source-to-
source transformation framework [2], which performs several
predictability enhancing program transformations (scratchpad
management for data, predictability oriented task parallelism
extraction through loop transformations, etc.).

Afterwards, a task extraction stage is applied to the program,
from which we obtain a Hierarchical Task Graph (HTG)
corresponding to the program. In a HTG, loops are enclosed in
an additional hierarchy level, resulting in a hierarchy of acyclic

2http://www.scilab.org/

task graphs. In a HTG, tasks dependencies embed information
on the variables and the buffers that need to be communicated
between tasks, while task nodes include additional information
on possible shared resource accesses (list of shared resources,
and worst case number of accesses). The HTG obtained from
the input program is then mapped on the target platform during
a scheduling/mapping stage which computes an optimized
schedule and mapping of tasks to processors.

C. Parallel program model construction
The result of the scheduling/mapping stage is used to

transform the initial program representation into an explicit
parallel program model, in which the synchronizations are
made explicit, and the final memory address mapping of the
variables and the buffers is obtained. The result of this stage is
an explicitly parallel IR, which is used to run the system-level
WCET analysis, and generate C code following the WCET-
aware programming model for the target platforms.

D. Code-level and system-level WCET analysis
Code-level and system-level WCET analysis jointly calcu-

late the multi-core WCET for the target architectures. Our
approach relies on the use of an explicitly parallel program
representation, in which information pertaining to core/code-
level and system-level WCET is exposed. Code-level WCET
estimation calculates the isolated WCET of code fragments
on one core, regardless of the core fragments assigned to the
other cores. This stage ignores the cost of resource contentions,
which is handled by the system-level WCET estimation stage.
System-level WCET estimation builds on the parallel program
representation to precisely identify resource conflicts. This
is achieved through (i) a static analysis that determine as
accurately as possible if several code snippets may happen
in parallel and (ii) a cost model of the interference derived
from the platform abstract models.

E. Iterative optimization through cross layer programming
To solve the unavoidable phase ordering problem faced

by such a tool-chain, WCET information is fed back to the
previous compilation phases to enable an iterative optimization
of the parallelization process. This process is managed through
a cross-layer programming interface, in which a graphical
interface exposes to end users at various abstraction levels
the complex optimization decisions made by the ARGO tool-
chain. The goal of this interface is to allow the end users,
who may not be compiler/parallelization experts, to interact
with the compilation process. Application bottlenecks can be
identified and the artifacts hindering an efficient parallelization
can be outlined. Furthermore, the end users can control and
influence the complex parallelization decisions. Their global
view and application know-how can be brought into good use
to enable an efficient parallelization.

III. ARGO CHALLENGES

A. Challenges in design productivity
Model based design techniques are now widely spread in

industry, and in particular in aerospace, automotive, and indus-
trial automation to face the rising complexity of systems and
platforms. In a model based design approach, the development
process is managed from an abstract point of view, in which
domain specific knowledge is exposed in the flow. Raising the
level of abstraction of the design eases specification, but also

2017 Design, Automation and Test in Europe (DATE) 287

simplifies the validation of the system behavior thanks to the
use of specialized simulation and/or validation tools. Once the
model has been validated it must be implemented on the target
platform. Here again, model based design approaches offer a
significant advantage thanks to code generation tools, which
drastically simplify the implementation stage.

However, existing tool-chains lack proper support for multi-
core systems. Although some tool-chains (such as ASCET)
support multi-core platforms, they do not perform automatic
parallelization. More importantly they currently do not address
real-time constraints. The ARGO approach aims at offering an
enabling technology to use multi- and many-core systems in
a model-based design workflow for real-time application.

B. Challenges in architecture design
A fundamental requirement for obtaining WCET estimates

using WCET analyzers, such as AbsInt’s aiT [3], is that the
timing behavior of the processor is predictable. Even in single-
core processors, predictability is compromised by speculative
hardware mechanisms such as caches or branch prediction.
On multi-core processors, hardware resources are shared for
cost, energy, and communication reasons. The additional inter-
ferences due to concurrent accesses to such shared resources
have to be considered. Even if the sharing of a resource
only slightly increases the actual execution time of a task, it
might be difficult for a static analysis to provide an upper
bound of the increase, because an exhaustive enumeration
of architectural states is practically infeasible. In ARGO, we
follow the following design guidelines for predictable multi-
core architectures:

• The multi-core architecture must be composed of time-
predictable processors. Scratchpad memories are pre-
ferred to caches because they enable more precise WCET
estimation. Any hard-to-predict mechanisms (dynamic
branch prediction, prefetch, write-buffers, cache coher-
ence) should be avoided.

• The number of shared resources between cores should be
minimized. Shared last-level caches between cores should
also be avoided or should be partitioned, as they lead to
very pessimistic WCET estimates.

• The target architecture should use a predictable inter-
connect system, for which it is possible to obtain (i)
worst-case delay for gaining access to the interconnect;
(ii) worst-case delay for copying/getting the information,
once access to the interconnect is granted.

• Fully timing compositional architecture. A system is
said to be time compositional if “the contribution of
individual components to the overall system’s timing can
be considered separately, and there exists a function to
combine the components’ respective timings”.

C. Challenges in WCET estimation
Accurate WCET analysis for multi-cores is known to be

challenging, because of concurrent accesses to shared re-
sources. Since it is impossible in general to guarantee the
absence of resource conflicts during execution, current WCET
techniques either produce pessimistic WCET estimates or
constrain the execution to enforce the absence of conflicts,
at the price of a significant hardware under-utilization.

In addition, the large majority of existing works consider
that the platform workload consists of independent tasks.
As parallel programming is the most promising solution to

improve performance, we envision that within only a few years
from now, real-time workloads will evolve toward parallel
programs. The WCET behaviour of such programs is chal-
lenging to analyze because they consist of dependent tasks
interacting through complex synchronization/communication
mechanisms. So far, very few works have addressed this
problem. A notable exception is the parMERASA European
project, which aimed, among others, at integrating synchro-
nization costs in the WCET for parallel programs. However,
the experiments carried out in the project [4] have shown that
manually parallelized programs are difficult to analyze and
may lead to very pessimistic WCET. The reasons behind this
are twofold: (i) in order to obtain an accurate WCET estimate
of the program, tools need to be able to reason about the
interactions between tasks. Without a high level knowledge
of the parallelization scheme, performing such an analysis is
not possible; (ii) Parallel programs are usually written by HPC
experts, who aim at improving average performance, and often
ignore predictability issues. This results in parallel programs
whose high level behavior is even more difficult to analyze.
As a consequence, we believe that the only viable solution
to address the parallel WCET problem is to bring together
parallelizing compilers and WCET analysis technologies into
a single flow. We expect that our approach will advance state-
of-the art WCET techniques by:

1) Defining a model offering a high-level view of the
behavior of parallel programs, enabling a precise esti-
mation of shared resource conflicts.

2) Exploring the interactions between parallelizing compil-
ers and WCET estimations to propose predictable paral-
lelization techniques (e.g., optimize programs avoiding
shared resource contentions).

Parallelizing a real-time application on a multi-core involves
a static scheduling and mapping stage. Such a problem is
known to be a challenging (NP-hard) combinatorial opti-
mization problem, and a large body of research work have
studied this problem in the context of embedded multi-core,
either from an average performance or worst case performance
point of view [5]. As far as the latter is concerned, most
of the existing approaches try to find an optimal parallel
schedule/mapping while avoiding shared resource conflicts
between tasks. In the ARGO project, we aim at exploring more
subtle trade-off thanks to a very fine grain task decomposition.
Because this decomposition inevitably leads to a combinatorial
explosion, we envision an approach using a combination of
exact techniques and advanced heuristics.

Efficient and predictable implementations also requires
other program transformations/optimizations that are not di-
rectly related to parallelization on multi-core. A lot of research
has been done in this direction in the past mainly for sequential
code: (i) allocation of code and data in a predictable manner,
using either cache locking or WCET-directed management of
scratchpad memory [6]; (ii) Optimization of bus schedules
to minimize WCETs [7]; (iii) Code transformations to allow
parallelism between communications and computations [8].
Despite this large effort on sequential WCET-oriented opti-
mizations, only a few works have addressed the problem of
WCET-oriented optimizations in parallelizing compilers.

The choice of the task extraction strategy in parallelizing
compilers has a huge impact on the program task graph, and
hence on the results of the scheduling/mapping stage. Al-
though many parallelizing transformations exist, they all target

288 2017 Design, Automation and Test in Europe (DATE)

average case performance. They must therefore be revisited
in the context of performance predictability. For example,
there exist optimizations that are not widely used because
they involve redundant computation [9] or complex control
code [10] whose overhead annihilate average case performance
benefits. They may however happen to be perfectly viable and
relevant in a predictable performance context.

IV. OVERVIEW OF ARGO USE CASES

To validate the ARGO approach, the tool-chain will be val-
idated against two use cases, developed by the aerospace and
industry automation experts DLR3 and Fraunhofer IIS4. We
will also use two distinct multi-core platforms from Karlsruhe
Institute of Technology5 and Recore Systems6 to demonstrate
the flexibility of the ARGO tool-chain. The overall objectives
of the use cases is to evaluate the benefits of the ARGO
approach in terms of productivity and also in performance
and predictability improvements.

A. Aerospace use case
In the aerospace domain, emerging flight control appli-

cations are becoming more and more computationally de-
manding. Two systems will be considered for implementation:
Enhanced Ground Proximity Warning System (EGPWS) and
Wake Encounter Avoidance and Advisory System (WEAA).
EGPWS is already used in current aircrafts. It provides alerts
and warnings for obstacle and terrain along the flight path.
EGPWS combines high resolution terrain databases, GPS and
other sensors to provide feedback to pilots. WEAA is a more
advanced flight system concept which is not yet commercially
available. WEAA provides guidance for tactical small-scale
evasion from wake vortices to avoid possibly hazardous wake
encounters. WEAA predicts wake vortices, performs conflict
detection and generate evasion trajectories.

B. Industrial Image Processing use case
Current trends in Industrial automation and inspection tasks

involve many innovative sensing technologies, such as polar-
ization, time-of-flight or multispectral image sensors. Such
advanced sensing technology relies on computationally de-
manding data processing algorithms, which are challenging to
implement, especially when hard-real-time constraints must be
met as for in-line inspection systems. Here again, the ability to
automatically generate and evaluate parallel implementations
on multi-cores is a key asset for designers. In ARGO, the
use case will be considered for implementation is the POLKA
polarization camera, already available as a product. POLKA
uses a novel sensor that measures the polarization of light to
detect residual stress in glass containers.

C. Target architectures
The application use cases will target embedded multi- and

many-core architectures from academia and industry. The
target architectures serve a threefold purpose: implementation
of application use cases, demonstration and verification of
ARGO tool-chain, and research and development of pro-
grammable customized and time-critical embedded computing
architectures.

Recore and KIT will both provide their heterogeneous
many-core systems. Recore will provide a flexible hetero-
geneous IP agnostic many-core platform7 implementing a
distributed multi-board system including the Xentium pro-
cessor [11] and supporting more than hundred processors
and accelerator cores. The platform will be prototyped on
dedicated FPGA boards.

KIT will provide a heterogeneous tile-based many-core ar-
chitecture that consists of compute tiles featuring either multi-
core processor sub-systems based on the Leon3 processor8,
or custom application accelerators. The tile level interconnect
will be based on the invasive Network–on-chip (iNoC) [12],
which is capable to manage data transfers effectively between
hundreds or even thousands of tiles. The iNoC provides
bandwidth and latency guarantees, which is required for
accurate system-level WCET analysis. The platform will be
implemented on dedicated FPGA boards.

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem – overview of methods and survey of tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, pp. 36:1–36:53, May 2008.

[2] A. Floch, T. Yuki, A. E. Moussawi, A. Morvan, K. Martin, M. Naullet,
M. Alle, L. L’Hours, N. Simon, S. Derrien, F. Charot, C. Wolinski, and
O. Sentieys, “Gecos: A framework for prototyping custom hardware
design flows,” in 13th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2013, Eindhoven, Netherlands,
September 22-23, 2013, pp. 100–105, 2013.

[3] C. Ferdinand and R. Heckmann, “aiT: worst case execution time pre-
diction by static program analysis,” in Building the Information Society,
IFIP 18th World Computer Congress, Topical Sessions, 22-27 August
2004, Toulouse, France, pp. 377–383, 2004.

[4] H. Ozaktas, C. Rochange, and P. Sainrat, “Minimizing the cost of
synchronisations in the WCET of real-time parallel programs,” in
17th International Workshop on Software and Compilers for Embedded
Systems, SCOPES ’14, Sankt Goar, Germany, June 10-11, 2014, pp. 98–
107, 2014.

[5] H. Ding, Y. Liang, and T. Mitra, “Shared cache aware task mapping for
WCRT minimization,” in 18th Asia and South Pacific Design Automation
Conference, ASP-DAC 2013, Yokohama, Japan, January 22-25, 2013,
pp. 735–740, 2013.

[6] S. Chattopadhyay and A. Roychoudhury, “Static bus schedule aware
scratchpad allocation in multiprocessors,” in Proceedings of the ACM
SIGPLAN/SIGBED 2011 conference on Languages, compilers, and tools
for embedded systems, LCTES 2011, Chicago, IL, USA, April 11-14,
2011, pp. 11–20, 2011.

[7] T. Kelter, H. Borghorst, and P. Marwedel, “WCET-aware scheduling
optimizations for multi-core real-time systems,” in XIVth International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation, SAMOS 2014, Agios Konstantinos, Samos, Greece, July
14-17, 2014, pp. 67–74, 2014.

[8] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2011, Chicago, Illinois, USA, 11-14
April 2011, pp. 269–279, 2011.

[9] W. Pugh and E. Rosser, “Iteration Space Slicing and Its Application
to Communication Optimization,” in Proceedings of the 11th Interna-
tional Conference on Supercomputing, ICS ’97, (New York, NY, USA),
pp. 221–228, ACM, 1997.

[10] M. Griebl, P. Feautrier, and C. Lengauer, “Index set splitting,” Int. J.
Parallel Program., vol. 28, pp. 607–631, Dec. 2000.

[11] Recore Systems, “Xentium R© DSP Core.”
www.recoresystems.com/technology/, 2016.

[12] J. Heißwolf, R. König, and J. Becker, “A Scalable NoC Router Design
Providing QoS Support Using Weighted Round Robin Scheduling,” in
2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications, pp. 625–632, July 2012.

2017 Design, Automation and Test in Europe (DATE) 289

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

