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Abstract

This thesis explores Joint Autoregressive Moving-Average (JARMA) models for in-

dependent replicated univariate time series with common ARMA coefficients whose

innovations variances are either in common, unique to each series or vary with the

series mean. The constraint of a common variance is also applied to vector ARMA

processes. Interleaving is shown to represent replicated series with a common vari-

ance as one series from the same process. The time and frequency domain prop-

erties of interleaved replicated stationary and invertible processes are established.

As an aid to identification, hypothesis tests for comparing series are reviewed and

several new tests are presented and explored along with a graphical method for

identification. Unconditional maximum likelihood estimates of the parameters of

various JARMA processes are derived using the methods of joint likelihood and

interleaving. The properties of the estimators are examined using simulation and

asymptotics. Finally JARMA models are fitted to over 60 years of daily univariate

and bivariate temperature data to estimate differences in level due to location and

climate change.

”He who loves practice without theory is like the sailor who boards ship with-

out a rudder and compass. He does not know where he may be cast.” - Leonardo

da Vinci
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Chapter 1

Introduction

This thesis addresses the specification, identification, estimation and application of

joint independent stationary and invertible autoregressive moving average (ARMA)

and vector ARMA (VARMA) time series processes where some or all of the param-

eters are in common.

In analysing ARMA time series, it is typically assumed that only one realization

is available for model fitting. However, there are many circumstances where multiple

independent realisations of the same ARMA process are available. Examples can be

found in replicated experiments on evolving chemical processes, repeated measures

on “individuals” recorded at fixed time intervals (in panel and longitudinal studies)

and daily weather data for the same season over many years.

A common ARMA generating mechanism is likely to apply to each realization

(possibly differing in mean level) with one model to be fitted to all realizations

simultaneously. This could apply equally well to multivariate time series such as

daily maximum and minimum temperatures (see Chapter 7).

It is also possible that the generating process has the same ARMA parameters

for each series but the innovations variances may vary reflecting differing levels of

variation for each series. Furthermore the variances could be proportional to each

series mean as is often encountered in observed data (for example, in quarterly Gross

Domestic Product values by country). Models with differences in the variance are

candidates for a generalised model to simulate daily solar radiation readings across

a range of sites. These solar models have been explored in a preliminary sense

1



CHAPTER 1. INTRODUCTION 2

by Graham et al. [1988] and could be extended to encompass the relationship to

sunshine fraction as investigated by the author of this dissertation in Suehrcke,

Bowden, and Hollands [2013]1.

This thesis develops and compares the methods of joint likelihood and inter-

leaving (Bowden and Clarke [2012]) to simultaneously model time series that have

the same ARMA parameters but whose innovations variances are either the same,

unique to each series or proportional to the series mean. The time and frequency

domain properties of interleaved stationary and invertible processes are established

to better understand the effects of interleaving.

Models for replicated independent time series are discussed in Chapter 2 along

with interleaving. To aid in identification, in Chapter 3, hypothesis tests for com-

paring time series are reviewed and several new tests are presented. The size and

power of the tests are compared and a graphical method for identifying the appro-

priate model for joint processes is proposed.

Unconditional maximum likelihood estimates of the parameters of joint ARMA

processes are derived and explored in Chapter 4. The estimation makes minimal

use of bespoke programming by incorporating existing software in deriving joint

and interleaved likelihood functions. The properties of the estimators are examined

using both asymptotic methods and simulation (for the latter, see Chapter 5). Two

published papers co-authored by the writer of this thesis (Bowden and Clarke [2012]

and Bowden and Clarke [2017]) are included (Chapters 6 and 7) that fit ARMA

and VARMA models to (replicated) daily maximum and minimum temperature

data for Perth, Western Australia. The analysis is used to measure changes in

mean temperature due to climate change and movements in recording site. Finally

Chapter 8 contains conclusions and recommendations.

In this thesis, the main reference texts used are Priestley [1981] and Brock-

well and Davis [1991] along with Jenkins and Watts [1968], Chatfield [2003] and

Shumway and Stoffer [2011]. All vectors are column vectors and all matrices and

vectors are shown in bold font. In selected parts of this thesis (see, for example,

Section 2.4) the time series designation, {..}, say {yt}, is used as a form of {..}nt=1,

that is, of {yt}nt=1 but where t ranges across all integers. The term “likelihood”

herein refers to unconditional likelihood.

1Awarded “2013 Best Paper” by the journal, Solar Energy.
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The statistical package used for data analysis was chosen in order that it be well-

known, programmable, provides excellent graphical capabilities, creates reasonably

fast code, is easily documented, is associated with an extensive library of time series

routines and has available an efficient IDE (Integrated Development Environment).

R (Version 3.3.1) (R Development Core Team [2010]) is the candidate of choice in

this regard especially given its time series capabilities (see McLeod et al. [2012]).

All the fitting routines used the “BFGS” (Broyden, Fletcher, Goldfarb and Shanno)

quasi-Newton optimisation method (see the optim function in R).

The next chapter defines various joint time series models and explores the prop-

erties of interleaved ARMA and VARMA processes.



Chapter 2

Joint ARMA Processes

A Joint ARMA process (that is, a JARMA process) is defined in this thesis as a set

of independent stationary and invertible ARMA processes with common ARMA

coefficients.

The simplest JARMA model assumes repeated independent realisations of the

same univariate stationary and invertible ARMA process (that is, with common

ARMA coefficients and innovations variances). To generalise this model, the com-

ponent processes, although having the same ARMA parameters, may differ in their

innovations variances. This could be the case for example in simultaneous mod-

elling of the outputs from independent physical processes. These could have the

same autocorrelation structure but the processes may have varying levels of random

disturbance represented by different innovations variances. In this the mean level

could also vary and the variance may be proportional to the mean level of each

series presenting another form of JARMA process.

Formal definitions of the these models, which are the focus of this thesis, are

presented in this chapter.

It is also possible that the ARMA coefficients as well as the innovations variances

may vary between series reflecting processes with independent likelihood functions.

This is shown in Section 2.5 to be equivalent, after interleaving, to a single-series pe-

riodic ARMA (that is, PARMA) process with parameter constraints (that is, some

parameters equal to zero). Finally, parameters between the independent replicated

series may be related by some functional form. These processes and the PARMA

4



CHAPTER 2. JOINT ARMA PROCESSES 5

processes just described will not be estimated in this thesis but can be fitted using

a generalisation of the joint likelihood approach (see, for example, Section 4.1).

2.1 Univariate Joint ARMA Process

Let the m stationary and invertible independent univariate time series, {yi,t}ni

t=1,

i = 1, . . . ,m, be generated by

φ(B)(yi,t − β>zi,t) = θ(B)εi,t, (2.1.1)

where each element of the series has a linear mean, β>zi,t, with β = (β1, . . . , βk)
>

and zi,t = (z1,i,t, . . . , zk,i,t)
> and where the φ(B) and θ(B) are polynomials in B, the

backshift operator, of orders p and q, that is, φ(B) = 1+φ1B+. . .+φpB
p and θ(B) =

1 + θ1B + . . . + θqB
q. Also {εi,t}ni

t=1 is the ith independent identically distributed

time series with E(εi,t) = 0, Var(εi,t) = σ2
εi

and E(εi,tεi,t−κ) = 0 for all κ 6= 0.

The regression coefficients can be assumed to be unique to each series and then

combined with the use of additional dummy regressor variables into one common

β for specification purposes.

This process comprising m independent time series is defined here as a JARMA

process and either,

1. there is one common innovations variance, σ2
εi
= σ2

ε for all i. This is called a

Replicated ARMA (RARMA) process of order (p, q,m), that is, a RARMA(p,q,m)

process. The standard single-series ARMAmodel corresponds to the RARMA

model withm = 1. It has been shown (see Theorem 1 and Bowden and Clarke

[2012] (see Chapter 6)) that a RARMA process can be represented by one in-

terleaved ARMA series with certain ARMA coefficients set to zero.

2. there are unique innovations variances per series,
{
σ2
εi

}m
i=1

. This process,

comprising m independent time series with the same ARMA parameters but

differing variances, is called an Almost Identical ARMA (AIARMA) process.

3. as a special case of an AIARMA process, the innovations standard deviations

are proportional to each series mean, that is, σεi = cµi where E(yi,t) = µi.

This is called a Conditional Almost Identical ARMA (CAIARMA) Process.
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As an example of a JARMA process, consider two independent identically dis-

tributed time series (m = 2) of length 100 (n1 = n2 = 100) which are each gener-

ated as an ARMA(1,1) process. The generating mechanisms share the same ARMA

coefficients (φ1 = −0.4 and θ1 = 0.3). However the first series has mean, µ1 = 1,

and innovations variance, σ2
ε1

= 1, whilst the second has mean, µ2 = 2, and inno-

vations variance, σ2
ε2
= 4. This is an AIARMA process but can also be represented

as a CAIARMA process with c = 1.

Hence the CAIARMA generating model for the two independent identically

distributed series, {yi,t}100t=1 , i = 1, 2 , is,

(1− 0.4B)(yi,t − β>zi,t) = (1 + 0.3B)εi,t,

where β = (1, 2)> and c = 1, with z1,t = (1, 0)>and z2,t = (0, 1)> for all t.

The next section reviews the literature on univariate joint ARMA models.

2.1.1 Literature Review for Joint Univariate Time Series

An original reference on simultaneous estimation in a repeated measures environ-

ment is Yates [1960]. He presents a correction for first order autocorrelation in

the analysis of repeated measures in sample surveys and this is further explored in

Scott and Smith [1974].

Azzalini [1981] examines the fitting of a single model to replicated series from

an autoregressive process of order one or two. The emphasis is on asymptotic

efficiency where the number of replications (as opposed to the length of each series)

tends to infinity. The conditional and unconditional maximum likelihood results are

derived and compared. The latter are shown to be a substantially superior result

especially near the stationarity boundary. Azzalini [1984] enhances the modelling

to incorporate what is effectively time series modelling in a random-effects two-way

ANOVA setting. The results are applied to the plasma citrate concentration of

n=10 subjects measured at 14 equal time points to detect changes in the plasma

readings during the day.

Wong et al. [2002], in an extension of Wong and Miller [1990], model repeated

realisations of ARMA processes where the error variance and the number of reali-

sations are allowed to vary over time. Also each repeated realisation is assumed to
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be a combination of an underlying ARIMA process and an additional independent

error term (ARIMAN process)1. The model differs from those considered in this

thesis because (a) the current models do not employ the additional noise term and

(b) Wong et al. [2002] constrain the underlying ARIMA process (i.e. without noise)

to not only have the same parameters but the same underlying ARIMA realisation.

Without this constraint the model with noise wouldn’t be identifiable from the au-

tocorrelation function. Wong et al. [2002] fit the ARIMAN model using maximum

likelihood in a state space representation.

Based on extensions of repeated measures models, Diggle et al. [2002] look

at the consequences of autocorrelation amongst the errors of these processes but

limited their analysis to AR(1) models which are fitted using least squares. Shi

and Chaganty [2004], in a similar context, compare maximum likelihood, Yule-

Walker and quasi-least squares estimates for autoregressive models for errors within

regression models. Browne and Zhang [2007] discuss fitting modified univariate AR

models of order p to observations taken over time on a number of individuals. An

independent error term for each observation on each individual is added to the

standard AR model which also incorporates an initialisation of the process for the

first p observations using a so-called initial state vector. If specified a priori, this

effectively transforms the system into a conditional model. A comparison of the

maximum likelihood fit of conditional and unconditional models in the context of

differences between individuals indicates that the latter is a superior result.

Peiris et al. [2003] working with short time series (of, say, medical observations

on individuals) discuss the maximum likelihood fits to a replicated AR(1) process,

each realisation being of equal length. They derive the conditional and exact like-

lihood function for the AR(1) model, provide the asymptotic variance matrix of

the estimates and run a simulation study to assess bias and efficiency. They con-

clude that the conditional and exact maximum likelihood estimates are unbiased

and efficient.

1ARMA processes with added noise are a particular form of aggregated ARMA process as
discussed by Box and Jenkins [1970], Anderson [1975] and Granger and Morris [1976]. See also
Ansley et al. [1976], Engel [1984] and Granger [1988]. The sum of ARMA processes are themselves
ARMA processes of higher but finite order which is proved in an elegant manner by Anderson
[1975] (for MA processes) and Granger and Morris [1976] (for ARMA processes). This result is
used by Anderson [1976] to show how ARMA processes of higher order can eventuate when it
may be difficult to find a clear generating mechanism using, say, economic theory.
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Quinn [2006] discusses the maximum likelihood estimation of common AR mod-

els in the context of testing for spectrum change. Quinn’s approach allows the

innovations variance to vary between the series.

For additional references on replicated time series, see also Ledolter and Chang-

Soo [1993], Nandram and Petruccelli [1997] and Cipra [1999] who adopt state space

and Bayesian approaches to fitting time series models to replicated series.

Camacho et al. [1987a] and Camacho et al. [1987b] explore a form of parallel uni-

variate time series model, the so-called Contemporaneous ARMA model, where the

ARMA coefficients for each series are unique to the series but the contemporaneous

error terms are correlated. This is in comparison to the Replicated ARMA models

defined in Section 2.1 where the series are independent but share their ARMA coef-

ficients and innovations variances. The likelihood function of the CARMA process

is derived and the asymptotic distribution of the maximum likelihood estimators is

obtained. The models are applied to hydrological data.

A natural area for the use of Joint ARMA models is the modelling of panel

or longitudinal data where data is collected on individuals or groups over time.

Cameron and Trivedi [2005] provide an overview of econometrics in general and its

application to panel data and time series.

There are two main uses of time series in panel data, ARMA models for error

terms and so-called dynamic models. The latter, over and above the use of ARMA

error models, applies what is effectively an autoregressive model to the observed

dependent variable. This could be said to multiplicatively add a polynomial in B to

the error term’s autoregressive polynomial. The standard econometric approach to

dynamic model fitting is the use of the Arellano-Bond estimator (see Cameron and

Trivedi [2005] p. 765) which is a generalised method of moments approach based

on first differences.

Baltagi [2005] provide a more targeted overview of panel data analysis in general

and of time series in particular (p. 84-104). Estimation using generalised least

squares is presented for various AR and MA models of the error term in panel data

models. The estimation routines are adjusted to take advantage of the particular

form of the autocovariance matrix. Quasi, approximate and limited information

maximum likelihood estimation methods are addressed in MaCurdy [1982], Chen

[2006] and Moral-Benito et al. [2017] respectively.
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2.2 Multivariate Joint ARMA Process

The univariate JARMA process definition can be extended to the multivariate case.

Let the m stationary and invertible independent multivariate time series, {yi,t}ni

t=1,

i = 1, . . . ,m, of dimension T with linear mean vector, β>zi,t, be generated by

φ(B)(yi,t − β>zi,t) = θ(B)εi,t, (2.2.1)

where the φ(B) and θ(B) are matrix polynomials in B of order p and q, that is,

φ(B) = I + φ1B + . . . + φpB
p and θ(B) = I + θ1B + . . . + θqB

q. The process,

{εi,t}nt=1, is the ith independent T -dimensional identically-distributed multivariate

time series with E(εi,t) = 0, Var(εi,t) =
∑

εi
and E(εi,tεi,t−κ) = 0 for all κ 6= 0. The

vector, β>zi,t, is defined with β as a k×T matrix of regression coefficients and zi,t

as the vector from (2.1.1). Only the Replicated VARMA (RVARMA) process with

a constant error variance matrix,
∑

εi
=
∑

ε for all i (that is, a RVARMA(p,q,m)

process), is modeled in this thesis, being a natural generalisation of the univariate

RARMA process.

As an example of a RVARMA process, consider two (m = 2) independent

realisations of the same bivariate VAR(1) (vector autoregressive of order one) time

series process each of length 100 (T = 2 and n1 = n2 = n = 100) with common

autoregressive coefficient matrix, φ1 =

[
0.1 0.4

0.3 0.2

]
, mean vectors, µ1 =

[
1

2

]

and µ2 =

[
4

6

]
, and common innovations variance matrix,

∑
ε =

[
0.6 0.4

0.4 1.2

]
.

Hence the RVARMA generating model for the two independent identically dis-

tributed bivariate series,
{
yi,t

}100
t=1

, i = 1, 2 , (with yi,t = (y1,i,t,, y2,i,t,)
>) is,(

I +

[
0.1 0.4

0.3 0.2

]
B

)([
y1,i,t

y2,i,t

]
− β>zi,t

)
=

[
ε1,i,t

ε2,i,t

]
,

where β =

[
1 2

4 6

]
and

∑
ε =

[
0.6 0.4

0.4 1.2

]
with z1,t =

[
1

0

]
and z2,t =

[
0

1

]
for all t.
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The next section reviews the (rather scarce) literature on multivariate joint

ARMA models.

2.2.1 Literature Review for Joint Multivariate Time Series

Anderson [1978] considered the case of first order vector AR models where the

available time series are short in length but have multiple realisations. In that

paper, maximum likelihood parameter estimates are derived where the parameters

are either constant over time or allowed to vary by time interval and by process

(i.e. treatment). The latter makes use of the multiple observations on each time

interval.

Browne and Nesselroade [2005] discuss the modelling of replicated VARMA

processes from a psychometric perspective. The authors initially use a generalised

mean and covariance matrix for the moments of the time series vector. This is then

reduced to a restricted set of parameters using a VARMA model and a result from

du Toit and Browne [2007]. In the latter the covariance matrix of the vector time

series is represented as a closed-form function of the autoregressive matrices, of the

variance of the initial (unobserved) system state and of the covariance matrix of

the one-step ahead forecasting errors. This then facilitates estimation of the model

parameters using maximum likelihood. The mean of the process is modelled using

Gompertz trend curves.

Feder [2001] modelled repeated multivariate time series data from sample sur-

veys. The author employs conventional state space models and incorporates sample

survey error (see also Beck [2001] and Abraham and Vijayan [1992]).

2.3 The Interleaved Representation of a Repli-

cated Time Series

This section will present theorems setting out the representation of replicated in-

dependent univariate and multivariate series by one interleaved (V)ARMA series

with constraints on the (V)ARMA coefficients. It provides a somewhat counter

intuitive but equivalent representation of several independent (stationary and in-

vertible) time series as one (stationary and invertible) series. Significantly this
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permits the use of standard time series routines to find simultaneous maximum

likelihood parameter estimates. It also leads to a simple spectral interpretation of

a RARMA (and RVARMA) process (see Section 2.4).

2.3.1 The Interleaved Representation of a RARMA Pro-

cess

The following Univariate Interleaving Theorem and proof are from Bowden and

Clarke [2012] (see Chapter 6).

Theorem 1. Let {yi,t}nt=1 , i = 1, . . . ,m, be a RARMA(p,q,m) process from

Section 2.1, and let,
xm(t−1)+i = yi,t

wm(t−1)+i = zi,t and

em(t−1)+i = εi,t .

Then, φ(Bm)(xs − β>ws) = θ(Bm)es, (2.3.1)

where E(es) = 0, Var(es) = σ2
ε and E(eser) = 0, s 6= r. That is, the interleaved

series, {xs}mn
s=1, is an ARMA process of order (mp,mq).

Proof. Given {xs}, {ws} and {es} from (2.3.1) and for a constant i from

(1, ...,m), let s = m(t−1)+ i, t = 1, ..., n,. The difference equation (2.3.1) can then

be expressed as,

φ(B)(yi,t − β>zi,t) = θ(B)εi,t ,

where t = 1, ..., n. It is also known that, for s = i, m + i, 2m + i, ..., E(es) =

E(εi,t) = 0, and Var(es) = Var(εi,t) = σ2
ε . Also, for r = i, m + i, 2m + i, ..., where

r 6= s, then E(eser) = E(εi,tεi,u) = 0 , t 6= u. Finally , for s = i, m+i, 2m+i, ... and

r∗ = j, m+ j, 2m+ j, ...,2 and (s | m) 6= (r∗ | m) ,3 then E(eser∗) = E(εi,tεj,u) = 0,

i 6= j, that is, that the replicated univariate time series are independent, Hence the

interleaved process (2.3.1) leads to the RARMA process.

The above formulation permits m independent ARMA(p,q) processes, each

2When used in a subscript, j is an integer. Otherwise j =
√
−1.

3 “|” is the modulus operator.
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of length n, with identical parameters to be modelled as a single (univariate)

ARMA(pm, qm) process of length, nm. Given that the component series are as-

sumed to be stationary and invertible, so too will be the interleaved series, that is,

if the roots of φ(B) = 0 and of θ(B) = 0 all lie outside the unit circle, then so too

will those of φ(Bm) = 0 and of θ(Bm) = 0.

The interleaving used in Theorem 1 is illustrated in Figure 2.3.1. In this exam-

ple, it is assumed that there are, say, seven daily maximum temperature values of

sequential integers available for the first week in the year for two years, 1946 and

1947. The two series are interleaved to create a final single series of length fourteen.

Figure 2.3.1 – Univariate Interleaving of Two Artificial Bivariate Series (“1946” and
“1947”) of Length Seven Containing Sequential Integers to Produce One Interleaved
Univariate Series of Length Fourteen.

As an example of a RARMA process, let there be m = 10 realisations of a

zero-mean ARMA(2,1) time series process with AR and MA polynomials in B of

φ(B) = (1 + φ1B + φ2B
2) and θ(B) = (1 + θ1B) and each series is of length 25.

After interleaving the ten series to create a new zero-mean series of length 250, the

interleaved model is of the form, ARMA(20,10), with AR and MA polynomials in

B as follows,

φ(B10) = (1 + φ1B
10 + φ2B

20) and θ(B10) = (1 + θ1B
10) .
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The interleaving representation of a RARMA process permits the use of readily

available software routines in say R, SAS or GAUSS to estimate the parameters of

RARMA processes. The routine must permit the fixing of selected coefficients to

zero. In the example above, the autoregressive lags of 1 to 9 and 11 to 19 are fixed

at zero as are the moving average lags of 1 to 9. Also to accommodate non-uniform

series lengths, {ni}mi=1, the routine must be able to accept missing values, added to

make all series the same length.

It is possible to combine the replicated series in ways other than interleaving

such as simple concatenation to create one series for joint modelling. However

Bowden and Clarke [2012] show that these alternatives result in biased or inefficient

parameter estimates.

The interleaving approach is adopted in Chapter 6 to model daily maximum

temperature readings for Perth, Western Australia, by week-in-the-year from 1943

to 2009.

2.3.2 The Interleaved Representation of a RVARMA Pro-

cess

This section will now state and prove a multivariate extension of the Univariate

Interleaving Theorem (called the Multivariate Interleaving Theorem) that reduces

the apparent dimensionality of a RVARMA process withm vector series (see Section

2.2) by a factor of m.

Theorem 2. Let the replicated T -dimensional series {yi,t}nt=1, i = 1, ...,m, be a

RVARMA(p,q,m) process, and let,
xm(t−1)+i = yi,t,

wm(t−1)+i = zi,t and

em(t−1)+i = εi,t . (2.3.2)

Then, φ(Bm)(xs − β>ws) = θ(Bm)es, (2.3.3)

where E(es) = 0, Var(es) = Σε and E(ese
>
r ) = 0, s 6= r. That is, the interleaved
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series, {xs}mn
s=1, is a T -dimensional VARMA process of order (mp,mq).

Proof. Given {xs}, {ws} and {es} from (2.3.2) and for a constant i from

(1, ...,m), let s = m(t− 1)+ i, t = 1, ..., n. The difference equation (2.3.3) can then

be expressed as,

φ(B)(yi,t − β>zi,t) = θ(B)εi,t ,

where t = 1, ..., n. It is also known that, for s = i, m + i, 2m + i, ..., E(es) =

E(εi,t) = 0, and Var(es) = Var(εi,t) = Σε. Also, for r = i, m+ i, 2m+ i, ..., where

r 6= s, then E(ese
>
r ) = E(εi,tε

>
i,u) = 0 , t 6= u. Finally, for s = i, m+i, 2m+i, ... and

r∗ = j, m + j, 2m + j, ..., and (s | m) 6= (r∗ | m) , then E(ese
>
r∗) = E(εi,tε

>
j,u) = 0,

i 6= j, that is, that the replicated multivariate time series are independent, Hence

the interleaved process (2.3.3) leads to the RVARMA process.

To paraphrase Theorem 2, anym replicated independent T -dimensional VARMA(p, q)

time series, each of length n, can be represented by one T -dimensional VARMA(mp,mq)

process of length mn. This equivalence is achieved by interleaving the m series and

by ensuring that AR and MA parameters are only non-zero at orders that are mul-

tiples of m. The interleaving is illustrated in Figure 2.3.2 for two artificial bivariate

series (being sequential integers), each of length seven.

As in the univariate case, given that the component series are assumed to be

stationary and invertible, so too will be the interleaved series. That is, if the roots

of det(φ(B)) = 0 and of det(θ(B)) = 0 all lie outside the unit circle, then so too

will those of det(φ(Bm)) = 0 and of det(θ(Bm)) = 0.

As an extension of the univariate example from Section 2.3.1, let there bem = 10

realisations of a bivariate VARMA(2,1) time series process, each of length 25. After

interleaving the series, a single bivariate series of length 250 is created and the

interleaved model to be fitted is of the form, VARMA(20,10), with,

φ(B10) = (1 + φ1B
10 + φ2B

20) and θ(B10) = (1 + θ1B
10) .

The interleaving (to create one multivariate series) and the associated con-

straints on the VARMA model allows the use of existing software to estimate the

parameters of RVARMA models. In R, a RVARMA model can be fitted via max-

imum likelihood to the interleaved VARMA series using the package, dse (Gilbert

[2006]), which allows for the relevant AR and MA matrices to be fixed to zero. The
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RVARMA estimation is discussed further in Chapter 7 and follows a similar process

to the RARMA interleaved estimation described in Section 4.2.

Figure 2.3.2 – Multivariate Interleaving of Two Artificial Bivariate Series (“1946”
and “1947”) of Length Seven Containing Sequential Integers to Produce One Inter-
leaved Bivariate Series of Length Fourteen.

2.4 Properties of an Interleaved Replicated Time

Series Process

This section will explore the time domain and spectral properties of interleaved

replicated stationary and invertible univariate and multivariate time series processes

(that is, RARMA and RVARMA processes) to better understand the effects of

interleaving. The influence of interleaving on the periodogram and of compressing

the spectrum of a continuous process have also been derived but, to limit the length

of this thesis, will be explored in a future paper.

As defined in Section 2.3, an interleaved process is created by the merging of

two or more univariate or multivariate series through sequentially interspersing the

scalar or vector elements of the respective series.
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2.4.1 Spectral Theory

To recall some spectral theory (see Priestley [1981] p. 225) in the context of a

set of replicated time series, if {yi,t}4 is the ith independent replicated real zero-

mean (without loss of generality) stationary and invertible time series process (i =

1, 2, . . . ,m), each with common autocovariance function, {Ry(r) = E(yi,tyi,t−r), r =

0, 1, 2, . . .}, then the common non-normalised spectral density function (for each

series) is,

hy(ω) =
1

2π

∞∑
r=−∞

Ry(r)e
−jrω, −π ≤ ω ≤ π (2.4.1)

=
σ2
y

2π
+

1

π

∞∑
r=1

Ry(r) cos rω, −π ≤ ω ≤ π, (2.4.2)

where j =
√
−1 and σ2

y is the variance of {yi,t}.
Given hy(ω) and Ry(r) are real (because {yi,t} is real), then

Ry(r) =

∫ π

−π

ejωrhy(ω)dω, r ∈ N (2.4.3)

= 2

∫ π

0

cos (ωr)hy(ω)dω, r ∈ N (2.4.4)

In the multivariate case, let {yi,t, t = 0,±1,±2, . . .} be the ith replicated (and

independent) stationary and invertible real vector time series process (i = 1, 2, . . . ,m)

of dimension, T , that is, yi,t = (y1,i,t, . . . , yT,i,t)
>, each with autocovariance matrix,

Ry(s), s = 0,±1,±2, . . ., then its common (non-normalised) spectral density func-

tion is (see Priestley [1981] p. 667),

hy(w) =
1

2π

∞∑
s=−∞

Ry(s)e
−jsω. (2.4.5)

4See the end of Chapter 1 for the explanation of this series representation.
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2.4.2 Compressed Spectral Density from an Interleaved Pro-

cess

Here the effect of interleaving on the univariate and multivariate autocovariance

and spectral density functions is derived.

Univariate Interleaving. The interleaved univariate stationary and invertible

discrete parameter time series, {xs}, is derived from the m stationary and invertible

time series, {yi,t}, i = 1, 2, . . . ,m, as follows,

x(m−1)t+i = yi,t, t = 0,±1,±2, . . . and i = 1, . . . ,m.

Given that each of the series, {yi,t}, are independent of each other, then the

autocovariance function of {xs} is ,

Rx(r) =

Ry(
r
m
) r|m = 0

0 r|m 6= 0
(2.4.6)

and r ∈ N. In this thesis, “critical lags” are defined as the lags which are multiples

of the number of interleaved series. Hence Rx(r) will be zero at all non-critical lags.

Now using the formula (2.4.2) for the spectral density of {xs}, the following is

derived,

hx(ω) =
σ2
x

2π
+

1

π

∞∑
r=1

Rx(r) cos rω, −π ≤ ω ≤ π

=
σ2
x

2π
+

1

π

∞∑
r=mbym

Rx(r) cos rω, −π ≤ ω ≤ π

=
σ2
y

2π
+

1

π

∞∑
s=1

Ry(s) cosmsω, −π ≤ ω ≤ π

= hy(mω),

where “r = mbym” reads as “r from m in multiples of m”, σ2
x = σ2

y and hx(ω) =

hx(ω + 2π/m) because hy(ω) = hy(ω + 2π).

Hence the spectral density of the interleaved process is of the same form as

for the component series but with the frequencies “compressed” by a factor, m.

The new spectral density is periodic with period, 2π/m. This result can be seen
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heuristically by noting that the length of each of the interleaved series is effectively

extended by a factor of m. Hence the periods of the associated spectral density are

increased by the same factor and the frequencies are reduced (or compressed) by a

factor of 1/m.

For an MA(1) process with θ1 = 0.5 and σ2
ε = 1 the spectral density is the solid

line in Figure 2.4.1 (that is, hy(ω) = (2π)−1 (1.25 + cosω)). Of course, because

the series is real, the spectrum is symmetric around zero. If, say m = 2, that is,

there are two replicated interleaved MA(1) series, the spectral density is given by

the dashed line (that is, hx(ω) = (2π)−1 (1.25 + cos 2ω)). If the series is complex-

valued, the only change is that the initial spectral density is not symmetric around

zero. So, interleaving creates the phenomenon of a compressed spectral density,

periodic with period, 2π
2
= π.

To explore the reverse relationship, that is, the time series that is associated

with a compressed spectral density, the autocovariance function from a compressed

spectral density is first derived. The compressed spectral density is the spectrum

of {xs} defined from the spectrum of {yt} as follows,

hx(ω) = hy(mω), −π ≤ ω ≤ π, (2.4.7)

where m is a positive integer.

The formula for deriving the autocovariance function from the spectral density

(that is, (2.4.4)) is,
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Figure 2.4.1 – Spectral Density for an Interleaved First Order Real Moving Average
Process (θ1 = 0.5). The solid line is the original spectral density (m = 1) and the
dashed line is after interleaving two replicated series (m = 2).
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= 2

∫ π
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∫ π
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{
σ2
y

2π
+

1

π

∞∑
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Ry(s) cos(msω)

}
dω, r ∈ N

= 2

∫ π

0

cos (ωr)
σ2
y

2π
dω

+
2

π

∫ π

0

cos (ωr)
∞∑
s=1

Ry(s) cos(msω)dω, r ∈ N

=
σ2
y

π

∫ π

0

cos (ωr) dω

+
2

π

∞∑
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∫ π

0

cos (ωr) cos(msω)dω, r ∈ N
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Now, on the right hand side of the equation, the first integral is zero and the

second integral is only non-zero (that is, it only equals π
2
) when r = ms (remem-

bering that r, m and s are all integers). Hence Rx(r) is also only non-zero (that

is, it equals Ry(
r
m
)) when r is a multiple of m (that is, when r is a critical lag)

and therefore (2.4.6) is the autocovariance of the interleaved process. Accordingly

if (2.4.7) is assumed then the sparse autocovariance function (2.4.6) is the result.

Hence a compressed periodic spectral density with period 2π/m has an autoco-

variance function that has zero values at all non-critical lags (that is, that are not

multiples of m).

Multivariate Interleaving As in the univariate case, the m stationary and in-

vertible (vector) time series,
{
yi,t

}
, i = 1, 2, . . . ,m, are interleaved to create the

stationary and invertible (vector) series {xs} using,

x(m−1)t+i = yi,t, t = 0,±1,±2, . . . , i = 1, . . . ,m,

where xs = (x1,s, . . . , xT,s)
>. Immediately it is noted that,

Rx(s) =

Ry(
r
m
) r|m = 0

0 r|m 6= 0.

Hence, from (2.4.5),

hx(w) =
1

2π

∞∑
s=−∞

Ry(s)e
−jmsω

= hy(mw). (2.4.8)

This is a compressed version of the spectral density of each of the time series,

{yi,t}. The marginal spectral densities of each of the scalar time series components,{xj,s},
of {xs} are the same as shown in (2.4.7) and the cross-spectral density between

{xi,s} and {xj,s} is (see Priestley [1981] p. 657),



CHAPTER 2. JOINT ARMA PROCESSES 21

hxixj
(ω) =

σxixj

2π
+

1

π

∞∑
r=1

Rxixj
(r) cos rω, −π ≤ ω ≤ π

=
σyiyj

2π
+

1

π

∞∑
s=1

Ryiyj(s) cosmsω, −π ≤ ω ≤ π

= hyiyj(mω),

where Ruv(s) is the cross-covariance between {ut} and {vt} at lag s and σuv is

the covariance (at lag zero) between {ut} and {vt}. In other words, the cross-

spectral elements of the interleaved multivariate time series are the compressed

cross-spectral elements of the original multivariate series.

2.5 Joint ARMA Processes with Unique Coeffi-

cients and Innovations Variances

Let {yi,t}ni

t=1 , i = 1, . . . ,m, be a set of m independent stationary and invertible

univariate time series, each with unique ARMA orders and coefficients, unique

levels of the mean, {µi}mi=1, and unique innovations variances,
{
σ2
εi

}m
i=1

where

φi(B)(yi,t − µi) = θi(B)εi,t (2.5.1)

with E(εi,t) = 0, V ar(εi,t) = σ2
εi
, E(εi,tεi,t−κ) = 0 for all κ 6= 0, E(yi,t) = µi and

E(εi,tεj,t−κ) = 0 for all i 6= j, and all κ. This is a generalisation of the Joint RARMA

process. An alternative specification for these processes is now derived.

Using interleaving, let

x(i−1)m+t = yi,t, i = 1, . . . ,m

and

ε(i−1)m+t = εi,t, i = 1, . . . ,m.

Therefore
φ((s−1)|m)+1(B

m)(xs − η((s−1)|m)+1) = θ((s−1)|m)+1(B
m)εs,
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where {εs} is independent identically distributed with Var(εs) = σ2
ε((s−1)|m)+1

and

η((s−1)|m)+1 = E(xs) = µ((s−1)|m)+1. The series, {xs}, is a periodic ARMA (PARMA)

process (see Parzen and Pagano [1979]) of period m with non-critical ARMA pa-

rameters set to zero.

Hence m independent ARMA processes, each with unique ARMA coefficients

and innovations variances, can be represented after interleaving by a single PARMA

process of period m with coefficient constraints. The proof of this follows directly

from Theorem 1. This model has been presented for completeness but will not be

pursued further in this thesis.

Chapter 3, to follow, will allow for RARMA, AIARMA and CAIARMA process

identification by reviewing hypothesis tests of process equivalence from the litera-

ture, presenting some new tests and exploring their size and power using simulation.

In all the hypothesis testing and estimation in the following chapters it is as-

sumed that the innovations are normally distributed, a common assumption in time

series modelling.



Chapter 3

Empirical Identification

The purpose of this chapter is to explore hypothesis tests that could be used to

determine whether two stationary and invertible time series of equal length may be

represented by the Joint ARMA (univariate) models from Chapter 2. The current

chapter reviews the literature on testing whether two time series are generated by

the same process and presents several new tests. It introduces a graphical approach

to testing and identifying the underlying processes.

The testing can involve a number of null and alternative hypotheses. These

include whether the two processes have the same spectral density shape and, if so,

whether they have the same spectral density. This is equivalent to deciding whether

the stationary and invertible series have generating mechanisms with a common set

of ARMA coefficients and, if so, whether they also share a common innovations

variance.

Seven new tests are proposed which either may improve on an existing test or

are arguably simpler than existing tests but with comparable power. The analysis

will focus on comparing two series of equal length but it is possible to extend this

to several series of unequal length (see Chapter 8).

3.1 Background

It is assumed that the first time series, {y1,t}nt=1, has been been generated by a

stationary and invertible ARMA model of the form, φ1(B)y1,t = θ1(B)ε1,t with

23
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spectral density,

h1(ω) =
|θ1(e−jω)|2

|φ1(e−jω)|2
σ2
ε1
,

where ω ∈ [−π, π] is the frequency and σ2
ε1
is the variance of the normal identically-

distributed independent innovations series, {ε1,t}nt=1. Similarly, {y2,t}nt=1 is an in-

dependent stationary and invertible time series with normal identically-distributed

independent innovations, {ε2,t}nt=1, innovations variance, σ2
ε2
, generating process,

φ2(B)y2,t = θ2(B)ε2,t and spectral density,

h2(ω) =
|θ2(e−jω)|2

|φ2(e−jω)|2
σ2
ε2
.

The periodogram ordinates of {yk,t}nt=1 , k = 1, 2, are
{
ĥk(ωi)

}N

i=1
where n is

assumed to be even (for convenience), N = n
2
and ωi = πi/N (see Priestley [1981]

p. 395). The ratio of the two spectral densities at each frequency, ωi, i = 1, . . . , N ,

is

αi =
h2(ωi)

h1(ωi)

and

α̂i =
ĥ2(ωi)

ĥ1(ωi)

is an estimate of each αi using the ratio of the periodogram ordinates for the

series {y1,t}nt=1 and {y2,t}nt=1. In the following the ratio can be inverted without

loss of generality. A review of distributional theory for periodograms and ratios of

periodogram ordinates is presented in Appendix B.

The literature on hypothesis tests for comparing the generating processes for two

(or, in some cases, more) time series is reviewed in Section 3.2, followed by a sum-

mary of the published size and power studies. The current chapter then continues

with the introduction of several new tests (Section 3.3), presents a simulation-based

size and power analysis of the new and already published tests (Section 3.4) and fi-

nally suggests a graphical approach to identification of AIARMA processes (Section

3.5).
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3.2 Tests of Process Equivalence from the Liter-

ature

This section reviews the main tests from the literature and compares their size and

power from published simulation studies.

For the two independent stationary and invertible series, {y1,t}nt=1 and {y2,t}nt=1,

the five hypotheses that are typically present in the literature are defined below,

1. HB1 : αi = 1 for all i (The two series have identical generating processes),

2. HB2 : αi = α 6= 1 for all i (The two series have the same spectral shape but

different innovations variances),

3. HB : αi = α for all i (The two series have the same spectral shape),

4. HC : αi 6= α for some i (The two series have different spectral shapes (versus

HB)) and

5. HD : αi 6= 1for some i (The two series have different spectral densities (versus

HB1)).

The null versus alternative hypotheses that are most commonly tested in the liter-

ature are:

1. HB1 vHB2 , that is, the series have the same spectral densities versus the same

spectral shapes but different variances,

2. HB v HC , that is, the series have the same versus different spectral shapes,

and

3. HB1 v HD, that is, the series have the same versus different spectral densities.

The same spectral shape implies αi = α for all i (that is, the ratio of the spectral

densities is constant across all frequencies) because,

αi =
h2(ωi)

h1(ωi)
=

|θ(−jωi)|2/|φ(−jωi)|2σ2
ε2

|θ(−jωi)|2/|φ(−jωi)|2σ2
ε1

=
σ2
ε2

σ2
ε1

= α. (3.2.1)

Further to what hypotheses are involved, the tests in the literature can be

categorised according to whether the periodogram, autocovariance function or other
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statistic is involved. The periodogram tests can be subdivided into whether they

are regression-based, use a single-parameter likelihood ratio test or a distance-based

measure. Furthermore some tests can readily use either the non-normalised or

normalised periodogram or the sample autocovariance or autocorrelation function.

Effectively these address the scale or shape of the spectral density.

Priestley [1981] p. 479 summarises a number of tests for single spectral den-

sities including those that test for white noise. An important test here which is

used in the process comparison literature (see Coates and Diggle [1986]) employs

the fact that, for a normally distributed time series under the white noise assump-

tion, the periodogram ordinates are exponentially distributed and the cumulative

periodogram ordinates divided by the sum of the periodogram ordinates are dis-

tributed as an ordered uniform random variable on [0, 1]. This permits the use of

the Kolmogorov-Smirnov statistic to test for white noise, as the ordinates of the

re-scaled cumulative periodogram behave as if they were an empirical distribution

function.

A table summarising every test identified in the literature is included as Ap-

pendix A (see also Grant [2015], Chapter 2) along with a table detailing the design

of the associated simulation studies.

3.2.1 Regression-Based Likelihood Ratio Tests using Peri-

odograms

The tests in this group all employ some form of regression model explaining the

logarithms of the ratio of the non-normalized periodogram ordinates in terms of

the associated frequencies (versus an hypothesis of a common α for all frequencies).

The models are fitted using maximum likelihood and then employ the likelihood

ratio test.

Coates and Diggle [1986] suggest a quadratic function which is of the form

λ1 + λ2ωi + λ3ω
2
i and they test λ1 = λ2 = λ3 = 0 versus λ1 6= 0, λ2 6= 0 , λ3 6= 0,

and λ1 = λ2 = λ3 = 0 versus λ1 6= 0, λ2 6= 0, λ3 = 0. These correspond to

testing HB1 v HC . Jin [2011], Vassiliadis and Rigas [2009], Fokianos and Savvides

[2008] and Lu and Li [2013] use Lagrangian polynomials, generalised linear models,

cosine terms and Fourier models respectively, all with similar constraints and tests
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to Coates and Diggle [1986].

3.2.2 Single-Parameter Likelihood Ratio Tests Using Peri-

odograms

Both Lund et al. [2009] and Tugnait [2013] employ a pooled estimate of the peri-

odogram ordinates by frequency. The distribution of the test statistic (a likelihood

ratio value but distinct from that in Section 3.3.4) is obtained using the Cen-

tral Limit Theorem and likelihood ratio theory respectively. Both tests examine

HB1 vHD.

3.2.3 Distance-Based Tests for Periodograms and Other Pe-

riodogram Tests

In the literature there are several distance-based tests for comparing periodograms.

These all involve some aggregate measure of the gap between the periodogram

ordinates and all except one compare HB1 v HD. Chik [2002], Diggle and Fisher

[1991], Caiado et al. [2006] and Luengo et al. [2006] employ distance measures which

can be used with either non-normalised or normalised periodograms and hence allow

expansion for testing of either HB1 v HD or HB v HC . Coates and Diggle [1986]

(with two tests), Lund et al. [2009], Jentsch and Pauly [2012] (two tests), Hidalgo

and Souza [2014], and Jentsch and Pauly [2015] all test only HB1 vHD. Also Coates

and Diggle [1986] contain an additional test that uses only the range of the log of

the ratios of the periodogram ordinates to compare HB vHC .

In addition to the above periodogram tests, there is also Lund et al. [2009] based

on a count of the number of ordinate ratios outside certain bounds and Dette et al.

[2011] which uses the sum of squares and cross-products of the ordinates. Both

these test HB1 vHD .

3.2.4 Autocovariance-Based Tests

There are a number of tests based on the sample autocovariances and autocor-

relations. Caiado et al. [2006], Alonso and Maharaj [2005], and Maharaj [2000]

employ distances between each series’ sample autocovariances and test HB1 v HD.
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This approach can be modified using sample autocorrelations to also test HB v HC

(see Section 3.3.2). Lund et al. [2009] employ Bartlett’s formulae for the asymptotic

mean, variance/covariance structure and distribution of the sample autocovariances

to derive a χ2 test statistic of the distance between the two processes. Jin and Wang

[2016] use a test statistic that is the maximum over all lags of a linear function of

the sample autocorrelations (in order to ensure a consistent test).

3.2.5 Other Tests

Quinn [2006] uses a likelihood test to compare an autoregressive model of the same

order fitted to each series and allows for a mixed spectral process. Tunno [2015]

compare various measures of the length of the line segments connecting the points

of each series (including the sum of square of the first differences) and Decowski

and Li [2015] compares wavelet models fitted to each series.

Cox and Solomon [1988], Peiris and Rao [2004] and Perera et al. [2008] develop

tests for the first lag autocorrelation from time series panel data and these results

could be adapted to testing for differences in the autocorrelations between series.

3.2.6 Summary of Power Studies

The shortage of simulation studies and the lack of design consistency makes it

difficult to conclude which of the existing tests have the highest power. Tests

with relatively high power are Coates and Diggle [1986] polynomial and Jin [2011]

Lagrangian regression tests. Several randomisation and bootstrapping tests (Alonso

and Maharaj [2005], Maharaj [2000] and Jin and Wang [2016]) also show good

power. On the other hand some tests show especially low power including Lund

et al. [2009] likelihood ratio and Central Limit Theorem tests and Coates and Diggle

[1986] range and extrema tests.

3.3 New Tests of Process Equivalence

This section will introduce seven new approaches for testing the equivalence of time

series processes, four for HB v HC , the spectral “shape decision”, and then, given
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HB, three for HB1 v HB2 , the spectral “scale decision”. Also the likelihood ratio

test of scale from Coates and Diggle [1986] is further explored but is based here

on the untransformed ratios, not their logs. The transformation doesn’t, of course,

change the maximum likelihood estimate but the interpretation of the estimation

algorithm is different (see Section 3.3.4).

The testing method proceeds in sequence (see Section 3.4.2) to firstly test the

spectral density for shape equivalence and then, if a common shape is accepted, for

scale equivalence. This spectral testing nomenclature can be said to apply even to

testing (of “shape”) using the sample autocorrelations (see Section 3.3.2) because

of the symmetry between time- and frequency-domain models of time series.

As mentioned previously, in some circumstances there will be a need to compare

several time series simultaneously to determine whether at least one has a different

spectral shape to the others, and then, if they are shown to all have the same shape,

whether they all have the same innovations variance. There is also the circumstance

of differing series lengths. These issues are discussed in Section 8.2.

The following sections will introduce the differences-of-logs (two tests), auto-

correlation and variance shape tests, explore the likelihood ratio scale test and

introduce the Wald, mean log and Central Limit Theorem scale tests.

3.3.1 Goodness-of-Fit Test using the Differences of the Log-

arithms of the Periodogram Ratios (Shape Test)

The relatively simple differencing test for shape introduced in this section removes

the dependence of the test statistic on the population value of logα (under the null

hypothesis, HB) by differencing the sample ratios. This also permits the use of

more powerful test statistics than the Kolmogorov-Smirnov statistic employed by

Coates and Diggle [1986] (see the discussion later in this section) who remove the

dependence on logα by using the range of the sample ratios as the test statistic.

It is known that each {log(α̂i)}Ni=1 is asymptotically distributed as an indepen-

dent identically distributed logistic random variable with parameters, log(αi) and

one. That is, each has the density function,

p(log(α̂i)) =
e−(log(α̂i)−log(αi))

(1 + e−(log(α̂i)−log(αi)))2
for log(α̂i) ∈ (−∞,∞). (3.3.1)
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Now if the differences of each pair of values are taken, k lags apart, that is,

d
(k)
i = log(α̂i)− log(α̂i−k) , i = k + 1, . . . , N

then d
(k)
i =log (αiζi) − log (αi−kζi−k) where asymptotically {ζi}Ni=1 are independent

identically distributed F2,2-distributed random variables. Under HB, αi = α for all

ωi so d
(k)
i = log (αζi)−log (αζi−k) = log (ζi)−log (ζi−k). So underHB the differences

of the logarithms of the ratios are asymptotically distributed as the differences

between two independent logistic-distributed random variables with mean zero and

unit scale.

Now the logistic distributed random variables, {log(ζi)}Ni=1, can be represented

as the difference between the logarithms of independent logged χ2-distributed ran-

dom variables with two degrees of freedom. Hence d
(k)
i = (u3−u4)−(u1−u2) where

uj ∼ log vj, vj ∼ χ2
2. Re-arranging the difference gives d

(k)
i = (u2−u1)+(u3−u4) and

the result becomes the sum of the difference between two independent χ2-distributed

random variables with two degrees of freedom. This is equivalent to the sum of two

independent logistic random variables of zero mean and unit scale (see (3.3.2) for

the associated distribution function from del Castillo [2016] p. 112 and Wästlund

[2006] p. 35). Note that in general any random variable that is the difference of

the difference of independent identically distributed random variables has the same

distribution as sum of the difference of similar independent identically distributed

random variables.

This sequence of sums, d
(k)
i , i = k + 1, . . . , N , across all {α̂i}Ni=1 is a set of

identically-distributed random variables with marginal distribution function,

Fd(d
(k)
i = d) =

ed
(
ed − 1− d

)
(1− ed)2

(3.3.2)

(again see del Castillo [2016] p. 112 and Wästlund [2006] p. 35). However the sums

(that is, the differences) are not in general independent. Nevertheless asymptotic

independence for a subset of the differences can be ensured by retaining only those

differences that have no common {log(α̂i)}Ni=1 in the calculation of the
{
d
(k)
i

}
.

The distribution of this set of asymptotically-independent identically-distributed

differences is then suitable for testing against (3.3.2).
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For a differencing lag of ℵ, let ξ = dN/(2ℵ)e where dxe is the largest integer less
than or equal to x. Then the number of asymptotically independent differences is

at least ℵξ illustrated by Figure 3.3.1 which details the outcome for ℵ= 3, 4 and

5 and N = 32. Using Figure 3.3.1 it is clear that the ratios, α̂1 to α̂2ℵ, represent

a “cycle” which contains ℵ asymptotically independent differences and there are

dN/(2ℵ)e of these in the dataset. So the total number of independent differences

is at least ℵdN/(2ℵ)e.
In general if two comparative differencing lags, ℵ1 and ℵ2, are both factors of

N (and N is even for convenience) then the number of asymptotically independent

differences is ℵidN/(2ℵi)e = N/2 for both lags. To express this another way, in this

circumstance, each ratio is used once only in a pair of differenced ratios to create

the set of asymptotically independent differences. Of course if the chosen lag isn’t

a factor then there is some “spillage” of differences at the end of the series as shown

in Figure 3.3.1.

The use of one of these potential differencing choices, the alternate first differ-

ences ( ℵ = 1), will now be explored for testing HB v HC .

First Proposed Difference Test: Alternate First Differences The alter-

nate first differences are
{
d
(1)
2k

}dN/2e

k=1
where, again, dhe is the largest integer less

than or equal to h. These differences are asymptotically independent identically-

distributed under HB with a fully specified distribution (that is, (3.3.2)). They

can be used in a classical goodness-of-fit test of the difference of the logarithms

of the ratio of the periodogram ordinates against the assumed distribution (under

HB) of the differences of a logistic random variable (with mean zero and unit scale).

The Kolmogorov-Smirnov, Cramér-Von Mises or Anderson-Darling statistics can be

used although Razali and Wah [2011] show that in general the Anderson-Darling

test is more powerful than the Kolmogorov-Smirnov in testing distributional fit and

is employed here.

Second Proposed Difference Test: Half Length Differences The above

first difference test could exhibit low power if the spectral densities of the two

processes change slowly with increasing frequency as would be the case for typical

low order autoregressive, moving average or ARMA processes. The first differences
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Figure 3.3.1 – Retained Differences for Asymptotically Independent Logged Peri-
odogram Ratios by Differencing Lags of 3, 4 and 5 for N=32 (that is, n = 64). The
“x” symbols indicate the indices of the ratios employed in the differencing whose in-
terval is printed above each table. The tables which would normally extend out to
the right are a compact representation of the span of the differences.

3             4 5

1 x 1 x 1 x

2 l x 2 l x 2 l x

3 l l x 3 l l x 3 l l x

4 x l l 4 l l l x 4 l l l x

5 x l 5 x l l l 5 l l l l x

6 x 6 x l l 6 x l l l l

7 x 7 x l 7 x l l l

8 l x 8 x 8 x l l

9 l l x 9 x 9 x l

10 x l l 10 l x 10 x

11 x l 11 l l x 11 x

12 x 12 l l l x 12 l x

13 x 13 x l l l 13 l l x

14 l x 14 x l l 14 l l l x

15 l l x 15 x l 15 l l l l x

16 x l l 16 x 16 x l l l l

17 x l 17 x 17 x l l l

18 x 18 l x 18 x l l

19 x 19 l l x 19 x l

20 l x 20 l l l x 20 x

21 l l x 21 x l l l 21 x

22 x l l 22 x l l 22 l x

23 x l 23 x l 23 l l x

24 x 24 x 24 l l l x

25 x 25 x 25 l l l l x

26 l x 26 l x 26 x l l l l

27 l l x 27 l l x 27 x l l l

28 x l l 28 l l l x 28 x l l

29 x l 29 x l l l 29 x l

30 x 30 x l l 30 x

31 31 x l 31

32 32 x 32
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of the logged ratio of the respective spectral densities show only relatively minor

aberrations from zero. In this circumstance it would be difficult to detect changes

in the distribution of the first differences, compared to the distribution under the

null hypothesis.

If the lag in the differences is extended to a larger number of frequencies in

the periodogram the level of the differences under these typical models become

much more pronounced. Hence the “Alternative First Differences” test statistic

can arguably be improved by taking differences across a larger gap than just one

time point whilst still avoiding any differences with shared ratios of periodogram

ordinates. A possible candidate is to use a gap equivalent to half the number of

periodogram ordinates (that is, ℵ = dN/2e). Assuming N/2 is a whole number

(and using (N − 1) /2 if not),

d
(N/2)
i = log(α̂i)− log(α̂i−(N/2)) , i = N/2 + 1, . . . , N.

This again can be compared using the Anderson-Darling test against the distri-

bution function, (3.3.2).

3.3.2 Test using the Sum of Squares of the Differences be-

tween the Sample Autocorrelations (Shape Test)

Using sample moments from the time domain, the shape test introduced here is

based on the sampling distribution of the weighted sum of the squared differences

between the sample autocorrelations. This is an extension of Lund et al. [2009] who

use sample autocovariances but the proposed test allows a more specific test of HB

v HC (compared to HB1 v HD).

Let ρ̂u(k) be the sample autocorrelation function for the stationary and invert-

ible series, {ut}nt=1, with autocorrelation function, ρu(k). For normally distributed

data, it is known that, to the first order,
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cov(ρ̂u(r), ρ̂u(r + ν)) ≈ 1

n

∞∑
m=−∞

[ρu(m)ρu(m+ ν)

+ ρu(m+ r + ν)ρu(m− r)

+ 2ρu(r)ρu(r + ν)ρ2u(m)

− 2ρu(r)ρu(m)ρu(m− r − ν)

− 2ρu(r + ν)ρu(m)ρu(m− r)] . (3.3.3)

(see Priestley [1981] p. 332).

Letting ρu(L) = (ρu(1), . . . , ρu(L))
> and ρ̂u(L) = (ρ̂u(1), . . . , ρ̂u(L))

> for a

given maximum lag, L, then it is also known that

ρ̂u(L)
d−→ N(ρu(L),

1
n
W)

(Priestley [1981] p. 339) where W is an L × L matrix with elements, wij =

n cov(ρ̂u(i), ρ̂u(j)). It therefore follows that, under HB,

4ρ̂y2y1(L) =
(
ρ̂y2(L)− ρ̂y1(L)

) d−→ N(0,
2

n
W),

being the difference between two independent multivariate normal random variables

with common distribution, N(ρu(L),
1
n
W).

Hence, under HB,

n

2

(
4ρ̂>

y2y1
(L)
)
W−1

(
4ρ̂y2y1(L)

) d−→ χ2
L,

where χ2
L denotes a chi-squared random variable with L degrees of freedom. In this

(under the null common-shape hypothesis, HB) for some suitably large kmax > L,

the average of {ρ̂y1(k)}
kmax

k=1 and {ρ̂y2(k)}
kmax

k=1 by lag, k, are used as an approximation

for the population autocorrelations in (3.3.3). That is,

ρy(k) ' 1

2
(ρ̂y1(k) + ρ̂y2(k)) , k = 1, . . . kmax.

The statistic,

D = n
2

(
4ρ̂>

y2y1
(L)
)
W−1

(
4ρ̂y2y1(L)

)
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provides a test value to be compared to the critical values of the chi-squared (χ2
L)

distribution. If the population autocorrelations differ between series then the dif-

ference between the sample autocorrelations will exhibit increased variation and

hence D will tend to increase leading to a (one-sided) test of HB v HC .

3.3.3 Variance Test (Shape Test)

The shape test of HB v HC described here involves the distribution of the sample

variance of the logged ratios and is simple to calculate. Knowing that, under HB,

{log α̂i}Ni=1 are asymptotically distributed as independent identically-distributed lo-

gistic random variables with mean, log(α), and scale, 1, define the sample variance

of the log of the periodogram ordinate ratios, {log α̂i}Ni=1 as,

gN =
1

N − 1

N∑
i=1

(
log(α̂i)− log(α̂i)

)2
, (3.3.4)

where log(α̂i) =
1
N

∑N
i=1 log(α̂i).

Now, under HB, (log(α̂i) − log(α̂i)) has the same asymptotic distribution as(
ẑi − ẑ

)
where ẑi = log(α̂i) − logα and ẑ = 1

N

∑N
i=1 ẑi. Hence for this ratio, if

log(α̂i) is asymptotically distributed as a logistic random variable with mean, logα,

and scale, 1, then for the purposes of (3.3.4), without loss of generality, it can also

be said to be asymptotically distributed as a logistic random variable with mean, 0,

and scale, 1. This provides a measure of the asymptotic distribution of the sample

ratio under HB, independent of α. That is, it has the asymptotic distribution of

the sample variance of an independent identically-distributed set of logistic random

variables with zero mean and unit scale.

Given the alternative hypothesis, HC , that is, that αi is not constant across all

i, then the log of the sample periodogram ratios will diverge from their assumed

distribution and will show greater variation (and gN) providing a one-sided test

statistic. The critical values of gN can be determined by simulation noting that,

under HB, the distribution of the variance of the logged periodogram ratios is

independent of α. The critical values have been tabulated for an hypothesis test

(of HB versus HC) for a range of test sizes and sample counts in Table 3.1 (10,000

repetitions).
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Table 3.1 – Critical Values for the Variance Test of Shape. The series lengths (per
series, that is, n) include the lengths for the series used in the simulations.

n
Size

10% 5% 2.5% 1%

25 5.541 6.557 7.611 9.102
50 4.867 5.500 6.094 6.891
64 4.674 5.222 5.730 6.396
75 4.572 5.067 5.556 6.165
100 4.401 4.803 5.189 5.681
150 4.191 4.504 4.804 5.165
200 4.067 4.337 4.580 4.904
256 3.974 4.211 4.428 4.684
300 3.921 4.127 4.319 4.554
500 3.779 3.937 4.079 4.244
1000 3.634 3.740 3.834 3.946
1024 3.628 3.732 3.826 3.938

3.3.4 Likelihood Ratio Test of the Ratio of the Periodogram

Ordinates (Scale Test)

A maximum likelihood estimate of α allows for a likelihood ratio test of HB1 vHB2

(scale test). In this section the maximum likelihood estimate is derived following but

expanding on Coates and Diggle [1986] who use the maximum likelihood estimate

of logα in a test of HB1 vHC (and ultimately HB1 vHB2 and HB vHC). For the first

time, the uniqueness of the estimate is proven thereby simplifying its interpretation.

Maximum Likelihood Estimate of α Consider the ratio of the ordinates of

the periodograms of the two series,

α̂i =
ĥ2(ωi)

ĥ1(ωi)
, i = 1, . . . , N.

Under HB, {α̂i}Ni=1 have the asymptotic probability density function (see Appendix

B) given by,

p(α̂i) =
1

αi

f(α̂i/α, 2, 2),
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where f(x, n1, n2) is the probability density function for x being an F(n1,n2) dis-

tributed random variable.

Hence, the joint likelihood under HB is,

L1 =
1

αN

N∏
i=1

(
1 +

α̂i

α

)−2

.

So, the log likelihood, LL1, is,

LL1 = logL1 = −N logα− 2
N∑
i=1

log

(
1 +

α̂i

α

)
.

Now, to find the maximum likelihood estimate, α̃ 1, the first derivative with

respect to α is derived as,

∂LL1

∂α
= −N

α
− 2

N∑
i=1

1

(1 + α̂i

α
)
(−α̂iα

−2)

and solved for α̃ when set equal to zero,

−N

α̃
− 2

N∑
i=1

1

(1 + α̂i

α̃
)
(−α̂iα̃

−2) = 0.

So,
N∑
i=1

[
1

( α̃
α̂i

+ 1)
− 1

2

]
= 0

N∑
i=1

[
α̂i

(α̃ + α̂i)
− 1

2

]
= 0

N∑
i=1

[
(α̂i − α̃)

(α̂i + α̃)

]
= 0∑N

i=1(α̂i − α̃)
∏N

j=16=i(α̂j + α̃)∏M
i=1(α̂i + α̃)

= 0

N∑
i=1

(α̂i − α̃)
N∏

j=16=i

(α̂j + α̃) = 0. (3.3.5)

That is, the maximum likelihood estimate, α̃, will endeavour to be as close as

1Note that α̃ is distinct from {α̂i}Ni=1 which are the ratios of the periodogram ordinates.
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possible to every α̂i to make the (weighted) summation equal to zero.

Equation 3.3.5 is a polynomial in α̃ of order, N , which potentially has N roots.

This arguably presents issues of selection because of the multiple solutions. However

it can be shown (see Theorem C.1 in Appendix C) that, knowing all {α̂i > 0}Ni=1, the

polynomial in (3.3.5) has coefficients that, when sorted in order of their descending

orders of α̃, have only one change in their signs. Hence by Descartes Rule of Signs

only one of the solutions is positive and hence lies in the feasible region. This

makes the calculation and interpretation of a maximum likelihood estimate more

straightforward by establishing that there is only one solution in the (positive)

feasible region.

To derive the asymptotic variance of α̃, the second derivative of the log likelihood

is,

∂2LL1

∂2α
=

N

α2
− 2

N∑
i=1

∂

[
1

(1 + α̂i

α
)
(−α̂iα

−2)

]
/∂α

=
N

α2
+ 2

N∑
i=1

∂

[
α̂i

(α2 + αα̂i)

]
/∂α

=
N

α2
− 2

N∑
i=1

[
α̂i (2α + α̂i)

(α2 + αα̂i)2

]
.

The expected value of the negative of the Hessian is,

E

(
−∂2LL1

∂2α

)
= −E

(
N

α2
− 2

N∑
i=1

[
α̂i (2α + α̂i)

(α2 + αα̂i)2

])

= −N

α2
+ 2E

(
N∑
i=1

[
α̂i (2α + α̂i)

(α2 + αα̂i)2

])

= −N

α2
+ 2

N∑
i=1

E

[
α̂i (2α + α̂i)

(α2 + αα̂i)2

]
.

Hence the asymptotic variance of α̃ is,

V ar (α̃) = E
(
−∂2LL1

∂2α

)−1

=

(
−N

α2
+ 2

N∑
i=1

E

[
α̂i (2α + α̂i)

(α2 + αα̂i)2

])−1

. (3.3.6)
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This can be calculated setting α ≈ α̃ in (3.3.6) and dropping the expectation (see

Section 4.1). Alternatively the negative inverse of the gradient can be numerically

derived from the log likelihood at α = α̃.

Likelihood Ratio Tests To prepare a likelihood ratio (scale) test of HB1 vHB2 ,

under HB1the log likelihood is,

LL2 =
N∑
i=1

−2 log (1 + α̂i) .

The statistic for the likelihood ratio test of HB2 versus HB1 is,

LL12 = 2(LL1 − LL2),

where LL1 is evaluated at α = α̃. This statistic will be asymptotically distributed

as a χ2 random variable with one degree of freedom.

To test HB versus HC (a shape test) the likelihood under HC requires estimation

of a unique ratio for each frequency, that is, {αi}Ni=1. Hence the likelihood is,

L0 =
N∏
j=1

1

αi

(
1 +

α̂i

αi

)−2

and the log likelihood becomes,

LL0 =
N∑
i=1

[
− log(αi)− 2 log

(
1 +

α̂i

αi

)]
.

The maximum likelihood estimates of {αi}Ni=1 are simply {α̂i}Ni=1. Hence the

likelihood ratio statistic is,

LL01 = 2(LL0 − LL1)

= 2

(
N∑
i=1

[− log(α̂i)− 2 log 2]− LL1

)

= 2

(
N∑
i=1

[− log(α̂i)]−N log 4− LL1

)
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which will be asymptotically distributed as a χ2 random variable with N−1 degrees

of freedom.

This test is unlikely to have high power given the large critical values of LL01

associated with the high N−1 degrees of freedom and is not pursued further in this

thesis. However it is possible to approximate a unique ratio for each frequency by

representing the log of the ratios by say a quadratic in the frequencies as suggested

by Coates and Diggle [1986]. This is undertaken in the size and power studies

reported in Section 3.4 as the reference shape test from the literature. None of the

multiple sets of 10,000 simulations (for either the model of constant {αi = α}Ni=1 or

the quadratic model) showed any convergence issues (using R’s optim function).

3.3.5 Wald Test using the Maximum Likelihood Estimate

of the Ratio of the Spectral Densities (Scale Test)

Assuming that the shape test, that is, HB v HC , has concluded that the two

processes have the same spectral shape and that the maximum likelihood value of

α has been derived, the Wald test can then be used to test whether the ratio of the

two spectral densities (that is, the ratio of the innovations variances) equals one,

that is HB1 v HB2 . This allows a simple scale test to be formed from the outcome

of the maximum likelihood estimation.

In the present circumstance the Wald test statistic, based on the maximum

likelihood estimate for α, α̃, is,

W =
(α̃− 1)

σ̂α̃

,

where σ̂α̃ is the square root of the estimated variance of α̃ (using the Hessian).

Under HB1 , W is asymptotically distributed as a normal random variable with

mean zero and standard deviation of one. This suggests the use of W in a two-

sided scale test.

3.3.6 Test for the Mean Log Ratio (Scale Tests)

In line with the simplicity and ease of calculation of the variance test (Section 3.3.3),

the scale test, HB1 v HB2 , can be undertaken by using the mean logged ratio in the
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statistic,

QN = (log α̂− logα), (3.3.7)

where log α̂ is the sample mean of the N logged periodogram ratios. Under HB1 the

log α̂i are asymptotically distributed as independent identically distributed logistic

random variables with mean zero (logα = log 1 = 0) and scale of one, so QN has

the form,

QN = log α̂ . (3.3.8)

QN is asymptotically distributed as ¯̂zN where ¯̂zN is the sample mean of N (asymp-

totically) independent identically distributed logistic random variables with mean

zero and scale of one.

The sample mean of the untransformed {α̂i}Ni=1is not used because asymptot-

ically they are distributed as F2,2 independent random variables which have an

undefined population mean.

This Mean-Log-Ratio scale test is a two-sided test for equivalence of the expected

value of the log of the ratios of the periodograms to 0. If α is not equal to one, then

QN will tend to diverge from its expected distribution with values that are too high

or too low. QN can be employed as a two-sided test statistic using finite sample

critical values from Table 3.2. These were derived using simulation employing the

mean of independent random variables from a logistic distribution with mean zero

and unit scale (10,000 simulations).

An analytical result exists for the mean (that is, the sum) of independent iden-

tically distributed logistic random variables (see George and Mudholkar [1983] and

Ojo [2003]). However the formula is complex and involves the summation of an

infinite number of derivatives of increasing degree.

3.3.7 Central Limit Theorem Test (Scale Test)

Under HB1 and using the Central Limit Theorem, QN will asymptotically converge

in distribution to the zero-mean normal with variance π2

3N
(see Appendix B) with

associated (two-sided) normal-distribution critical values. The critical values are

very similar to those for the Mean-Log-Ratio test.

The approximate power of this mean log ratio test can be expressed analytically.
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Table 3.2 – Critical Values for the Mean Log Ratio Test (Simulated) and Central
Limit Theorem Test of Scale (Two-Sided). The series lengths (per series, that is, n)
include the lengths for the series used in the simulations.

n

Size

99.5% 97.5% 95% 5% 2.5% 0.5%

CLT Sim. CLT Sim. CLT Sim. CLT Sim. CLT Sim. CLT Sim.

25 -1.321 -1.382 -1.006 -1.032 -0.844 -0.862 0.844 0.862 1.006 1.032 1.321 1.382

50 -0.934 -0.938 -0.711 -0.711 -0.597 -0.595 0.597 0.595 0.711 0.711 0.934 0.938

64 -0.826 -0.839 -0.628 -0.630 -0.527 -0.528 0.527 0.528 0.628 0.630 0.826 0.839

75 -0.763 -0.774 -0.581 -0.585 -0.487 -0.489 0.487 0.489 0.581 0.585 0.763 0.774

100 -0.661 -0.668 -0.503 -0.501 -0.422 -0.420 0.422 0.420 0.503 0.501 0.661 0.668

150 -0.539 -0.541 -0.410 -0.409 -0.344 -0.343 0.344 0.343 0.410 0.409 0.539 0.541

200 -0.467 -0.467 -0.355 -0.356 -0.298 -0.298 0.298 0.298 0.355 0.356 0.467 0.467

256 -0.413 -0.416 -0.314 -0.315 -0.264 -0.264 0.264 0.264 0.314 0.315 0.413 0.416

300 -0.381 -0.380 -0.290 -0.289 -0.244 -0.243 0.244 0.243 0.290 0.289 0.381 0.380

500 -0.295 -0.291 -0.225 -0.224 -0.189 -0.189 0.189 0.189 0.225 0.224 0.295 0.291

1000 -0.209 -0.210 -0.159 -0.160 -0.133 -0.134 0.133 0.134 0.159 0.160 0.209 0.210

1024 -0.206 -0.207 -0.157 -0.157 -0.132 -0.132 0.132 0.132 0.157 0.157 0.206 0.207

If, under HB2 , the actual population logged ratio is `, then the asymptotic power

of the test assuming size, v, becomes β = P (|z| > qN(µ = 0, σ2 = π2

3N
, 1− υ

2
)) where

qN(µ, σ
2, 1 − υ

2
) is the 1 − υ

2
quantile of a normal random variable with mean, µ,

and variance, σ2, and z is distributed as a normal random variable with mean `

and variance, π2

3N
. That is,

β = 1−N(x = qN(µ = 0, σ2 =
π2

3N
, 1− υ

2
), µ = `, σ2 =

π2

3N
)

+N(x = −qN(µ = 0, σ2 =
π2

3N
, 1− υ

2
), µ = `, σ2 =

π2

3N
), (3.3.9)

where N(x, µ, σ2) is the normal distribution function for random variable, x, with

mean µ and variance σ2. The power of the test for a range of ` for three sample

sizes is plotted in Figure 3.3.2 with the results of the simulation of power from the

Central Limit Theorem scale test (from Table 3.8) plotted as large red dots with a

horizontal reference line at 0.05.
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Figure 3.3.2 – Power of the Central Limit Theorem Scale Test for 5% Significance
(Horizontal Reference Line) with the Simulated Power Plotted as Red Dots.
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3.4 Size and Power Analysis

In this section, simulation methods are used to explore the size (that is, the prob-

ability of a Type I error) and power (that is, the probability of avoiding a Type II

error) of the shape and scale tests proposed in Section 3.3 for comparing two series.

From the discussion of testing in the introduction to Section 3.3, it is logical

to consider firstly whether two series have a common generating mechanism but

possibly different innovations variance. That is, do they have the same shape in

their spectral densities (the shape decision)? If so, do they have the same inno-

vations variance (the scale decision)? This is reflected in Diggle and Fisher [1991]

and effectively encompasses all the hypotheses in the literature although some tests

examine in one step whether the two series have the same shape and scale. This

unfortunately puts aside the possibility of more detailed conclusions.

Hence the approach used in the current simulation studies will firstly test

whether two series have the same spectral shape (or equivalently the same au-
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tocorrelation function) and then, if accepted, if they have the same scale (that is,

the same innovations variance).

When deciding on the models and model parameters to be used in the simulation

work, there are some characteristics of the shape and scale testing which suggest

the choice of the underlying time series processes. In investigating the shape tests

for size, the probability is explored of rejecting the null hypothesis that the series

have the same spectral shape given this is true. However the shape tests introduced

here are all invariant under a constant multiplicative transformation of either series

and hence are invariant to scale. Hence without loss of generality the size review of

the shape tests can use two series with the same innovations variance (say, unity),

as well as the same spectral shape as required under the null hypothesis.

The scale tests don’t exhibit a similar invariance with respect to spectral shape.

This is because the ratios of the periodogram ordinates of two series are not invariant

if a common filter is applied to both series, as opposed to the effect of the filtering on

the ratios of the population spectral densities. This invariance can be demonstrated

with a single simulation (not shown). However, given that the scale tests are only

used if a common spectral shape is accepted then both series will be generated

using the same process mechanism. Hence when investigating the scale tests for

size, they will be explored under the null hypothesis of the same scale (that is, say,

common unit innovations variance) and using various common ARMA models.

As a representative of existing tests, the likelihood ratio shape test of Coates

and Diggle [1986] (based on a quadratic approximation to the shape of the log of

the ratios against the frequencies) was included along with an extension of their

likelihood ratio test as a scale test.

The shape tests considered in the current size and power study are (along with

their abbreviations):

1. LRT 2: Likelihood ratio test using a second order polynomial in the logged

ratios (from Coates and Diggle [1986]).

2. ∆1: Alternate first differences of the logged ratios.

3. ∆
N
2 : Differences with a lag equal to half the number of ratios.
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4. ACF: Weighted sum of the squared differences between the sample autocor-

relations.

5. Var.: Variance-of-ratios test.

The scale tests are:

1. LRT 0: Likelihood ratio test using the untransformed ratios (after Coates and

Diggle [1986] but they employ the logged ratios).

2. Wald: Wald test using the maximum likelihood estimate of the ratio.

3. Log: Test using the sample mean of the logged ratios.

4. CLT: Test employing the Central Limit Theorem to obtain the asymptotic

distribution of the sample mean of the logged ratios.

3.4.1 Simulation Design

The simulation design process defined in Paxton et al. [2001] is followed here.

As mentioned earlier, the measures used to assess the performance of each of

the tests for a given pair of ARMA models, ratios of spectral densities and set of

series lengths, are size (the probability of rejecting the null hypothesis when it’s

true) and power (the probability of rejecting the null hypothesis when it’s false).

Candidate Representative Models Processes selected for shape and scale

comparison are simple models deemed to be most useful in applied work. AR(1)

and MA(1) processes are selected for shape and scale size exploration with the pa-

rameter set at 0.5 and -0.5 (see Table 3.5). White noise is also used. For shape

power analysis, white noise is tested against a range of AR(1) and MA(1) processes

(see Table 3.7); a comparison is also undertaken of AR(1) versus AR(1) series. For

scale power analysis,
√
α values from 1.00 to 3.00 are used along with the same AR

and MA processes employed in the shape and scale size analysis (see Table 3.8).
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Simulations Simulations are undertaken for series lengths which most closely

matched those used in the literature (see Table A.4), being n = 64, 256 and 1024.

These also present a substantial range of sample sizes. Ten thousand simulations

are undertaken for each scenario.

The simulation results have an associated approximate confidence interval of

±1.96
√

psim(1−psim)
nsim

where nsim is the number of simulation cycles and psim is the

associated test size or power. For the nominal 5% significance level and 10,000

simulations, the confidence intervals for the simulated size results are approximately

±0.004. For the power studies for 10,000 simulations, the confidence intervals are

at most ±0.010.

The analysis will firstly address the verification of test size followed by power

studies. However a discussion of the sequential nature of the testing will be under-

taken beforehand.

3.4.2 Shape and Scale Hypothesis Tests in Sequence

Independent size and power analyses don’t address the fact that the shape and scale

tests are designed to be undertaken in sequence. A scale test is only undertaken

if the hypothesis of a common shape has been accepted. The nature of this rela-

tionship is shown in Tables 3.3 and 3.4. Table 3.3 relates the shape test outcome

to the true shape hypothesis and illustrates that the testing only proceeds to the

scale test after the shape null hypothesis has been accepted. Table 3.4 shows the

veracity of the combined shape and scale testing outcome given the true hypothesis

and further illustrates the dependent nature of the size and power outcomes for the

scale test. This is discussed below.

Table 3.3 – Shape Hypothesis Testing in Sequence

Test Outcome

Accept HSh Reject HSh

True Shape
Hypothesis

HSh Correct ⇒ Test HSc Incorrect⇒ Halt
Not HSh Incorrect⇒ Test HSc Correct⇒ Halt
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Table 3.4 – Shape and Scale Hypothesis Testing Outcomes

Tests Outcome

Reject
HSh

Accept
HSh and
Accept
HSc

Accept
HSh and

Reject HSc

True Hypothesis
Not HSh Correct Incorrect Incorrect

HSh and HSc
Incor-
rect

Correct Incorrect

HSh and Not HSc
Incor-
rect

Incorrect Correct

Size of the Shape and Scale Tests For linked shape and scale tests, the size

for any of the shape tests is unaffected by sequential testing given its the first test.

The actual size of the shape test is therefore simply the nominal size of the shape

test.

However, for the scale test, the size of the test is the probability that the scale

test rejects the null hypothesis of a common scale given that there is actually

a common scale. This test also assumes that there is a common shape (otherwise

testing for scale without a common shape is nonsensical) whether there is a common

scale or not. Moreover it would typically only follow a shape test that had accepted

the null hypothesis of a common shape.

So for the scale test there is an assumption for the size calculation that the two

series share both a common shape and a common scale. However the scale test

is only undertaken if the shape test accepts the null hypothesis test of a common

shape. This has a chance of being falsely rejected which would then also reject the

scale test by not leading to it.

Hence the final size of the scale test is the probability of incorrectly rejecting

a common shape given there is a common shape plus the probability of correctly

accepting a common shape given a common shape times the probability of rejecting

a common scale given a common shape and scale (see (3.4.1)). The events involved

here correspond to the outcomes in the second row (that is, “HSh and HSc”) in

Table 3.4.

Note that, under the assumption of a common shape, the test outcome of ac-



CHAPTER 3. EMPIRICAL IDENTIFICATION 48

cepting a common shape has no effect on the probability of a common scale other

than shown in (3.4.1) because, under the assumption of a common shape, the scale

of the series doesn’t affect the shape tests used here. Hence the outcome of ac-

cepting a common shape doesn’t affect the probability of accepting (or rejecting) a

common scale.

Following the logic above, the overall size of the scale test following the shape

test can be expressed as,

υSc = υSh + (1− υSh) ∗ υSc|Sh, (3.4.1)

where υSc is the resultant final size of the scale test, υSh is the size of the shape

test, and υSc|Sh is the size of the scale test (after the shape test has correctly

concluded a common shape). Typically then, if the objective is υSc = 0.05 and

letting υSh = υSc|Sh, then υSc|Sh = 1−
√
1− υSc ≈ υSc

2
for small υSc. Hence for an

overall 5% significance level for the scale test, this requires approximately a notional

2.5% level for both the shape test and the subsequent scale test. For this reason

the studies in this thesis on size and power include a 2.5% significance level.

Power of the Shape and Scale Tests The powers of the shape and scale tests

reflect a similar issue to the size of the tests. The power of any test is the probability

of rejecting the null hypothesis when the alternative hypothesis is true. Given that

it’s undertaken first, the shape test has a power that’s unaffected in sequential

testing.

However the power of the scale test following the shape test is affected. The

power definition used here is the probability that the scale and shape test in se-

quence will produce a decision in favour of a difference in scale after a decision in

favour of a common shape, given that there is a common shape but difference in

scale (any other shape assumption for the power derivation would be nonsensical as

with the size assessment). This is the outcome of choosing a common shape (given

a common shape) and of then choosing a difference in scale (given a difference in

scale and a common shape). If a common shape is not chosen, then the scale test

can’t be executed to reject the null hypothesis and hence the power of the scale

test is lower.
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Hence the power outcome for the scale test becomes,

βSc = (1− υSh)βSc|Sh,

where βSc is the overall power of the scale test, υSh is the size of the shape test

and βSc|Sh is the power of the scale test after the shape test correctly concludes

a common shape. Given that say υSh = 0.025 (from the size discussion) then

the resultant effect on the power of the scale test will be quite modest (that is,

0.975βSc|Sh).

3.4.3 Size Verification

Tables 3.5 and 3.6 show the simulated sizes for the shape (first five) and scale (last

four) tests for nominal sizes of 10% and 5% and 2.5% (to accommodate testing in

sequence from Section 3.4.2) and 1% respectively. Figure 3.4.1 plots the results for

sizes of 10% (blue), 5% (red) and 1% (green) by the generating process and sample

sizes (64, 256 and 1024 per series) for each of the two series. “WN” refers to white

noise.

In general the simulated sizes are somewhat larger than the nominal size but

typically converge to the nominal values as n → ∞. The simulated sizes are

relatively consistent between generating processes for the same test and sample

size.

Amongst the shape tests, the likelihood ratio and variance tests show actual

sizes that are roughly 2-3% above the nominal values for small n. The 1st and N
2

th

difference tests are consistently close to the nominal value. The size for the test

based on the difference in the autocorrelations varies between generating processes.

For the scale tests, the likelihood ratio, mean log and Central Limit Theorem

tests are close to the nominal size for all n whilst the Wald test shows somewhat

higher sizes than the nominal values for small n.

3.4.4 Power of the Shape Tests

Table 3.7 and Figure 3.4.2 present the power of the two-series shape tests at 5%

significance level for sample sizes of 64, 256 and 1024 per series. The tests are
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Table 3.5 – Verification of Hypothesis Test Size for Two Series (Nominal Sizes of
0.10 and 0.05) for Shape and Scale Tests

Size n Process LRT 2 ∆1 ∆
N
2 ACF Var. LRT 0 Wald Log CLT

0.10 64 AR(0.5) 0.130 0.105 0.109 0.078 0.147 0.111 0.110 0.116 0.116

0.10 64 WN 0.124 0.106 0.104 0.113 0.147 0.100 0.103 0.105 0.106

0.10 64 AR(-0.5) 0.132 0.108 0.112 0.121 0.144 0.109 0.106 0.114 0.114

0.10 64 MA(0.5) 0.131 0.108 0.110 0.098 0.141 0.108 0.109 0.115 0.115

0.10 64 MA(-0.5) 0.140 0.107 0.113 0.104 0.143 0.107 0.108 0.114 0.115

0.10 256 AR(0.5) 0.104 0.102 0.097 0.080 0.122 0.099 0.098 0.100 0.100

0.10 256 WN 0.105 0.098 0.106 0.104 0.125 0.103 0.104 0.105 0.104

0.10 256 AR(-0.5) 0.104 0.103 0.102 0.114 0.120 0.100 0.100 0.103 0.102

0.10 256 MA(0.5) 0.108 0.104 0.101 0.094 0.127 0.100 0.100 0.102 0.102

0.10 256 MA(-0.5) 0.111 0.094 0.103 0.114 0.123 0.102 0.098 0.104 0.103

0.10 1024 AR(0.5) 0.098 0.099 0.095 0.096 0.108 0.100 0.098 0.102 0.101

0.10 1024 WN 0.097 0.102 0.101 0.103 0.108 0.100 0.100 0.102 0.101

0.10 1024 AR(-0.5) 0.101 0.097 0.104 0.123 0.106 0.106 0.105 0.107 0.106

0.10 1024 MA(0.5) 0.104 0.102 0.102 0.096 0.114 0.097 0.097 0.094 0.094

0.10 1024 MA(-0.5) 0.102 0.104 0.098 0.116 0.108 0.103 0.104 0.103 0.102

0.05 64 AR(0.5) 0.071 0.053 0.058 0.036 0.086 0.057 0.072 0.061 0.061

0.05 64 WN 0.065 0.058 0.052 0.066 0.082 0.051 0.064 0.055 0.056

0.05 64 AR(-0.5) 0.071 0.054 0.058 0.079 0.080 0.055 0.070 0.058 0.059

0.05 64 MA(0.5) 0.071 0.058 0.056 0.052 0.077 0.055 0.069 0.058 0.058

0.05 64 MA(-0.5) 0.076 0.056 0.061 0.062 0.079 0.054 0.067 0.059 0.060

0.05 256 AR(0.5) 0.055 0.053 0.049 0.036 0.063 0.049 0.052 0.050 0.049

0.05 256 WN 0.054 0.053 0.053 0.054 0.066 0.055 0.059 0.053 0.052

0.05 256 AR(-0.5) 0.055 0.051 0.050 0.072 0.062 0.052 0.053 0.052 0.052

0.05 256 MA(0.5) 0.054 0.049 0.048 0.049 0.067 0.048 0.054 0.050 0.050

0.05 256 MA(-0.5) 0.055 0.049 0.050 0.074 0.064 0.050 0.053 0.050 0.050

0.05 1024 AR(0.5) 0.048 0.051 0.048 0.044 0.056 0.053 0.052 0.052 0.051

0.05 1024 WN 0.050 0.050 0.045 0.051 0.055 0.051 0.051 0.054 0.052

0.05 1024 AR(-0.5) 0.053 0.049 0.051 0.076 0.055 0.055 0.054 0.054 0.052

0.05 1024 MA(0.5) 0.054 0.051 0.051 0.048 0.064 0.048 0.047 0.050 0.048

0.05 1024 MA(-0.5) 0.050 0.052 0.048 0.071 0.054 0.051 0.053 0.058 0.056
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Table 3.6 – Verification of Hypothesis Test Size for Two Series (Nominal Sizes of
0.025 and 0.01) for Shape and Scale Tests

Size n Process LRT 2 ∆1 ∆
N
2 ACF Var. LRT 0 Wald Log CLT

0.025 64 AR(0.5) 0.040 0.027 0.028 0.019 0.050 0.028 0.051 0.033 0.032

0.025 64 WN 0.035 0.029 0.027 0.041 0.046 0.024 0.042 0.029 0.029

0.025 64 AR(-0.5) 0.038 0.027 0.029 0.056 0.046 0.027 0.049 0.029 0.029

0.025 64 MA(0.5) 0.039 0.028 0.030 0.031 0.044 0.030 0.047 0.032 0.032

0.025 64 MA(-0.5) 0.039 0.029 0.030 0.044 0.045 0.026 0.045 0.032 0.032

0.025 256 AR(0.5) 0.029 0.028 0.024 0.016 0.033 0.025 0.029 0.026 0.026

0.025 256 WN 0.029 0.027 0.028 0.032 0.034 0.026 0.035 0.025 0.025

0.025 256 AR(-0.5) 0.028 0.024 0.023 0.048 0.033 0.025 0.030 0.025 0.026

0.025 256 MA(0.5) 0.028 0.024 0.023 0.025 0.037 0.026 0.029 0.026 0.026

0.025 256 MA(-0.5) 0.031 0.025 0.028 0.050 0.033 0.027 0.030 0.026 0.027

0.025 1024 AR(0.5) 0.023 0.027 0.023 0.021 0.032 0.027 0.030 0.028 0.027

0.025 1024 WN 0.026 0.024 0.023 0.028 0.026 0.026 0.027 0.029 0.028

0.025 1024 AR(-0.5) 0.027 0.023 0.027 0.050 0.029 0.027 0.028 0.028 0.027

0.025 1024 MA(0.5) 0.026 0.025 0.025 0.024 0.034 0.024 0.025 0.026 0.025

0.025 1024 MA(-0.5) 0.026 0.027 0.023 0.047 0.028 0.026 0.028 0.028 0.027

0.01 64 AR(0.5) 0.017 0.011 0.011 0.009 0.026 0.012 0.035 0.013 0.013

0.01 64 WN 0.016 0.011 0.012 0.026 0.025 0.010 0.029 0.012 0.012

0.01 64 AR(-0.5) 0.016 0.012 0.013 0.041 0.023 0.011 0.033 0.012 0.012

0.01 64 MA(0.5) 0.018 0.011 0.012 0.017 0.022 0.013 0.030 0.016 0.016

0.01 64 MA(-0.5) 0.017 0.012 0.012 0.029 0.022 0.012 0.032 0.014 0.015

0.01 256 AR(0.5) 0.011 0.011 0.007 0.006 0.016 0.011 0.015 0.009 0.009

0.01 256 WN 0.012 0.013 0.012 0.018 0.015 0.010 0.018 0.011 0.011

0.01 256 AR(-0.5) 0.012 0.010 0.009 0.033 0.015 0.010 0.016 0.010 0.011

0.01 256 MA(0.5) 0.013 0.009 0.009 0.011 0.017 0.011 0.014 0.010 0.011

0.01 256 MA(-0.5) 0.013 0.010 0.013 0.033 0.016 0.012 0.015 0.011 0.011

0.01 1024 AR(0.5) 0.008 0.010 0.009 0.008 0.014 0.010 0.013 0.011 0.011

0.01 1024 WN 0.010 0.009 0.009 0.012 0.011 0.012 0.012 0.012 0.012

0.01 1024 AR(-0.5) 0.012 0.010 0.010 0.032 0.012 0.012 0.013 0.012 0.012

0.01 1024 MA(0.5) 0.010 0.010 0.010 0.008 0.014 0.010 0.011 0.012 0.012

0.01 1024 MA(-0.5) 0.010 0.011 0.010 0.032 0.012 0.011 0.012 0.010 0.010
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Figure 3.4.1 – Verification of Hypothesis Test Size (Scale and Shape Tests) for Two
Series (Significance Levels of 10% (blue), 5% (red) and 1% (green)). The vertical
lines differentiate the sample size values and ARMA processes. The x-axis labels
show the type of ARMA model and parameterisation employed.
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examined for power using white noise (WN) versus lag-one autoregressive process

with ranges of parameters from -0.75 to 0.75. The modelling also compares two

autoregressive processes and WN versus moving average processes. Some of these

power results effectively show the size of the test by testing shape for processes with

the same ARMA coefficients. This is to demonstrate the continuum of results for

comparison purposes.

Whilst noting the discussion of sequential testing from Section 3.4.2, for ease of

comparison against other power studies and to retain reader familiarity, the studies

use a test size of 5%.

Across the process comparisons and sample sizes for shape tests, the likelihood

ratio and autocorrelation tests have comparable power which is also the highest of

all the shape tests. The first difference test (see column “41”) shows low power in

all circumstances reflecting the slow and smooth change in the population spectral

densities of the two processes. However if the lag in the differences is extended to

half the number of frequencies in the periodogram (see column “4N
2 ”) the power

becomes much larger and is very close to that of the likelihood ratio and auto-

correlation tests especially for moderate to large sample size (n ≥ 256); it is also

arguably simpler to use. It could even be said to be superior to the likelihood ratio

test given that the N/2th difference test has a closer match to its nominal size than

the likelihood ratio test (see Table 3.5). The latter has a higher actual size.

The variance test has quite low power for all sample sizes and processes. For

all tests, for the autoregressive versus white noise processes, the power increases as

the absolute value of the autoregressive coefficient increases towards one.

3.4.5 Power of the Scale Tests

The power of the two-series scale tests at 5% significance level for sample sizes of

64 and 256 per series are presented in Table 3.8 and Figure 3.4.3. The results for

n = 1024 are not shown as the power for α > 1 was always 1.000. Ratios of 1.00

versus 1.00, 1.25, 1.50 and 3.00 (being
√
α) have been employed for various common

AR and MA generating processes. Again as with the shape tests, some of the power

results show the size of the tests by testing the scale for processes with the same

innovations variance. As with the shape tests, for ease of comparison against other
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Table 3.7 – Power of Hypothesis Tests for Shape for Two Series (5% Test Size)

n 1st 2nd LRT 2 ∆1 ∆
N
2 ACF Var.

64 WN AR(0.75) 0.898 0.061 0.760 0.909 0.315
64 WN AR(0.50) 0.540 0.058 0.459 0.482 0.155
64 WN AR(0.25) 0.185 0.054 0.165 0.140 0.097
64 WN AR(0.00) 0.068 0.054 0.053 0.064 0.075
64 WN AR(-0.25) 0.191 0.054 0.173 0.144 0.094
64 WN AR(-0.50) 0.565 0.055 0.495 0.487 0.161
64 WN AR(-0.75) 0.917 0.064 0.815 0.903 0.366
64 WN MA(0.50) 0.548 0.057 0.487 0.455 0.159
64 WN MA(-0.50) 0.534 0.059 0.446 0.439 0.154
64 AR(0.50) AR(0.50) 0.070 0.054 0.056 0.037 0.082
64 AR(0.50) AR(-0.50) 0.982 0.059 0.964 0.986 0.521

256 WN AR(0.75) 1.000 0.050 1.000 1.000 0.746
256 WN AR(0.50) 0.992 0.052 0.969 0.993 0.268
256 WN AR(0.25) 0.533 0.049 0.496 0.458 0.100
256 WN AR(0.00) 0.056 0.052 0.049 0.057 0.063
256 WN AR(-0.25) 0.529 0.053 0.488 0.454 0.091
256 WN AR(-0.50) 0.991 0.051 0.973 0.982 0.267
256 WN AR(-0.75) 1.000 0.051 1.000 0.997 0.769
256 WN MA(0.50) 0.990 0.051 0.971 0.990 0.266
256 WN MA(-0.50) 0.993 0.053 0.973 0.976 0.259
256 AR(0.50) AR(0.50) 0.054 0.049 0.052 0.041 0.064
256 AR(0.50) AR(-0.50) 1.000 0.052 1.000 0.999 0.959

1024 WN AR(0.75) 1.000 0.049 1.000 1.000 0.999
1024 WN AR(0.50) 1.000 0.050 1.000 1.000 0.633
1024 WN AR(0.25) 0.990 0.050 0.977 0.984 0.131
1024 WN AR(0.00) 0.049 0.049 0.052 0.050 0.059
1024 WN AR(-0.25) 0.989 0.051 0.976 0.983 0.129
1024 WN AR(-0.50) 1.000 0.051 1.000 0.999 0.635
1024 WN AR(-0.75) 1.000 0.050 1.000 0.999 0.999
1024 WN MA(0.50) 1.000 0.047 1.000 1.000 0.634
1024 WN MA(-0.50) 1.000 0.051 1.000 0.998 0.632
1024 AR(0.50) AR(0.50) 0.055 0.047 0.051 0.042 0.055
1024 AR(0.50) AR(-0.50) 1.000 0.050 1.000 1.000 1.000
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Figure 3.4.2 – Power Results for Shape Tests for Two Series (5% Test Size). The
vertical lines differentiate the sample size values and ARMA processes. The x-axis
labels show the pairs of ARMA models and parameterisations employed.
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power studies and to retain reader familiarity, the studies use a significance level of

5%.

The power for all tests except the Wald test is at or over 80% for sample sizes

greater than or equal to 256. The mean log test is comparable to the likelihood ratio

test in power across all processes, sample sizes and ratios of innovations variances

and is much simpler to implement. The Central Limit Theorem test has almost

exactly the same power as both of the tests and is even simpler to use. Figure

3.3.2 shows that the power of the Central Limit Theorem test agrees very closely

with the analytical approximation from (3.3.9). The Wald test shows substantially

reduced power compared to the other tests (note the very low power of <10% for
√
α = 1.25 and n = 64) but the gap closes with increased sample size. In general

all tests show relatively good power for sample sizes greater than or equal to 256.

A phenomenon evident in the tables for all the scale test powers is that, for

the same α value and sample size, the power for all scenarios is roughly the same

irrespective of the common ARMA process.

3.4.6 Conclusions

The simulated sizes for all shape and scale tests for all generating processes are

typically slightly greater than the nominal sizes but reduce to the nominal values

with increasing series length.

When testing shape, the likelihood ratio, autocorrelation and N
2

th
difference

tests show the highest power with the latter having the most consistent test size.

The literature review in this thesis (see Section 3.2) suggests that the likelihood

ratio test is amongst the best performing of the existing tests and hence the new

shape tests show promise especially given their simplicity.

For the scale tests, the mean log test even when incorporating the Central Limit

Theorem is at least as powerful as the other tests and is very easy to deploy.

As well as their use in generally comparing two processes, these shape and scale

tests can form the basis of a graphical tool for comparing and identifying processes

as presented in the next section.
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Table 3.8 – Power of Hypothesis Tests for Scale for Two Series with n = 64 and
256 per Series where α is the Ratio of the Innovations Variances (5% Test Size). For
n = 1024, all powers were 100% except at α = 1.

n=64 n=256

Process
√
α LRT 0 Wald Log CLT LRT 0 Wald Log CLT

AR(0.5) 1.00 0.056 0.063 0.059 0.060 0.051 0.054 0.052 0.051
AR(0.5) 1.25 0.316 0.074 0.294 0.295 0.828 0.722 0.795 0.794
AR(0.5) 1.50 0.752 0.376 0.713 0.714 0.999 0.998 0.999 0.999
AR(0.5) 3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

WN 1.00 0.054 0.070 0.058 0.058 0.049 0.054 0.051 0.050
WN 1.25 0.309 0.068 0.291 0.292 0.835 0.732 0.801 0.801
WN 1.50 0.748 0.367 0.709 0.710 0.999 0.998 0.999 0.999
WN 3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AR(-0.5) 1.00 0.051 0.069 0.058 0.058 0.053 0.054 0.054 0.054
AR(-0.5) 1.25 0.306 0.067 0.283 0.284 0.825 0.716 0.794 0.794
AR(-0.5) 1.50 0.744 0.367 0.705 0.706 1.000 0.999 0.999 0.999
AR(-0.5) 3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MA(0.5) 1.00 0.056 0.067 0.058 0.058 0.052 0.058 0.055 0.055
MA(0.5) 1.25 0.308 0.069 0.285 0.286 0.834 0.719 0.797 0.797
MA(0.5) 1.50 0.744 0.361 0.706 0.708 1.000 0.999 0.999 0.999
MA(0.5) 3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MA(-0.5) 1.00 0.051 0.062 0.056 0.056 0.052 0.053 0.054 0.054
MA(-0.5) 1.25 0.310 0.068 0.288 0.289 0.834 0.730 0.799 0.799
MA(-0.5) 1.50 0.752 0.373 0.714 0.715 1.000 0.998 0.999 0.999
MA(-0.5) 3.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 3.4.3 – Power Results for Scale Tests for Two Series (5% Test Size). The
vertical lines differentiate the sample size values, ARMA processes and population
spectral ratios. The x-axis labels show the square root of the population spectral
ratio and the common ARMA process. For n = 1024, all powers were 100% except
at α = 1.
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3.5 Graphical Identification Method

The objective of this section is to propose a graphical method to explore whether

two processes have the same spectral shape. If they do, then the method tests

whether they have the same innovations variance and determines the order of their

common ARMA representation.

The approach prepares plots of the logged ratios of the periodogram ordinates

against frequency and plots of the merged sample autocorrelations and partial au-

tocorrelations. This therefore presents both a frequency and time domain image of

the data.

A shape test based on the count of individual ratio values outside critical limits

which could be readily implemented graphically was initially investigated for size

and power. However the test proved to have low power (which is perhaps not

surprising given its similarity to a non-parametric test) and was deemed unsuitable.

As a substitute the likelihood ratio test from Coates and Diggle [1986] using a

quadratic approximation to the spectral density is undertaken before plotting the

fitted model (quadratic or a horizontal line) overlayed on the plot of logged ratios.

If the null hypothesis of no difference in spectral shape is rejected using Coates

and Diggle [1986], then the resulting quadratic is plotted. Figure 3.5.1 demonstrates

this outcome for two autoregressive processes of length 256 with parameters φ1 =

0.5 and φ1 = −0.5 respectively. The shape of the curve (and the position of the

plotted individual ratios) suggests the form of the relationship between the spectra

of the two processes. The graphing proceeds no further.

If the processes are shown to have the same spectral shape via the likelihood

ratio test (that is, the null hypothesis is not rejected), then, instead of the quadratic,

a line of the simple mean of the logged ratios is overlayed on the ratios plot and

a graphical test of significance of α = 1 is constructed. This employs parallel

horizontal lines which are a confidence interval around the sample mean. The

Central Limit Theorem is used to devise the confidence limits (see Section 3.3.7).

Figure 3.5.2 demonstrates this approach for two simulated AR(2) processes with

common parameter (φ1 = 0.25) and innovations variances of 1 and 2.25. The plot

was produced because the test from Coates and Diggle [1986] didn’t reject the null

hypothesis of a common spectral shape. If the confidence limits do not encompass
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one as is the case with Figure 3.5.2 , then it is concluded that α 6= 1.

Figure 3.5.1 – Plot of the Logged Ratios for the Shape Test. The processes employed
(AR(φ1 = 0.5 v φ1 = −0.5)) reflecting α = 1 and n = 256 with the plot showing
a fitted quadratic (after rejecting the null hypothesis of a common shape using the
likelihood ratio test from Coates and Diggle [1986]). The reference line is at α = 1.
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The use of the quadratic test from Coates and Diggle [1986] is not to suggest

that the variance, log difference and autocorrelation tests proposed in this thesis do

not have merit. However the quadratic likelihood ratio test is arguably more suited

to a graphical presentation by indicating the form of the relationship between the

two spectral densities.

Finally if the processes are shown to have at least the same spectral shape

a sample autocorrelation and partial autocorrelation plot of the combined data

can be constructed (Figure 3.5.3). The construction involves finding the sample

autocorrelations and partial autocorrelations for each series separately and then

averaging each of them by their respective lags. Given that the two series are

assumed independent the standard errors of the averaged correlations under the

assumption of two white noise processes can be readily calculated using 1
2

√
1
n
+ 1

n
=√

1
2n

(for identification purposes, white noise is assumed for the confidence limits).

Empirical identification of the order of the ARMA process proceeds as with the

Box-Jenkins methodology.

The correlation plots could also be used for shape testing. In the shape testing
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Figure 3.5.2 – Plot of the Logged Ratios for the Graphical Scale Test. Each process
with α = 2.25 and n = 256 used a common AR(φ1 = 0.5) model (after accepting the
null hypothesis of a common shape using the likelihood ratio test from Coates and
Diggle [1986]). There are reference lines at α = 1, at the mean logged ratio and at
the 95% confidence limits.
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the two sets (that is, from the two series) of autocorrelation and partial autocor-

relation values are plotted by lag. They have confidence intervals constructed for

each value and overlayed on the plots such that the confidence intervals only over-

lap if the respective autocorrelation and partial autocorrelation are different. This

will require some development of the theory of the lag-by-lag confidence intervals

beyond the material in this thesis but would present a similar graphical style to

that used for ARMA identification.
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Figure 3.5.3 – Merged Sample Autocorrelation and Partial Autocorrelation Func-
tions for (AR(φ1 = 0.5 v φ1 = 0.5)) Processes with α = 2.25 , n = 256 and White
Noise 95% Confidence Intervals.
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Chapter 4

Maximum Likelihood Estimation

In this chapter the unconditional maximum likelihood estimation of the parameters

of single-series ARMA (for reference and comparison), RARMA, AIARMA and

CAIARMA processes, all with extraneous variables for maximum model flexibility,

is explored. Unconditional maximum likelihood estimation is chosen because of the

relative ease of implementation with current computer programs (see Section 4.1.2)

and because of the typically superior properties of its estimates (see Chatfield [2003]

p. 65) under standard conditions.

Three methods of calculating the maximum likelihood estimates are presented:

two joint likelihood algorithms (that is, with and without stationarity and invertibil-

ity constraints) and an interleaving approach. The comparison allows assessment of

the stability of the three estimation methods. The maximum likelihood estimates

and their associated asymptotic distributions are derived.

4.1 Single-Series ARMA Process

Firstly some known results for single-series ARMA model estimation (with extrane-

ous variables) will be stated that will be used later in this chapter. In addition the

presentation of these single-series results allows immediate comparison with new

results for RARMA, AIARMA and CAIARMA processes.

Let y = {yt}nt=1 be a single-series ARMA process, whose tth entry has expected

value, β>zt (where zt = (zi,t, . . . , zk,t)
> is the vector of extraneous variables at

63
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time, t), with ARMA parameters, (φ, θ), and with innovations variance, σ2
ε . That

is, the process has ARMA and regression coefficients,

Λ = (φ>, θ>, β>)> = (φ1, . . . , φp, θ1, . . . , θq, β1, . . . , βk)
>,

and the vector of all parameters is ς =
(
Λ>, σ2

ε

)>. The unconditional (full) likeli-

hood for y given z = {zt}nt=1, is ,

LARMA(y,Λ,z, σ2
ε ) = (2πσ2

ε )
−n/2

[
n∏

t=1

rt(φ,θ)

]−1/2

× exp

[
−S(y,Λ,z)

2σ2
ε

]
(4.1.1)

(see Shumway and Stoffer [2011] p. 1271) where rt(φ,θ) are functions of (φ1, . . . , φp, θ1, . . . , θq)

only, and

S(y,Λ,z) =
n∑

t=1

[
((yt − β>zt)− (yt − β>zt)

t−1)2

rt(φ,θ)

]
,

where
(
yt − β>zt

)t−1
is the conditional mean of (yt−β>zt) given ((yt−1−β>zt−1), . . . , (y1−

β>z1)) and is a linear function of
{
ys − β>zs

}t−1

s=1
only (with no additional intercept

term) and does not involve σ2
ε . So the log likelihood is,

LLARMA(y,Λ,z,σ2
ε ) = −n

2
log(2πσ2

ε )−
1

2

n∑
t=1

log rt(φ,θ)

−S(y,Λ,z)

2σ2
ε

. (4.1.2)

The unconditional maximum likelihood estimate of σ2
ε is

σ̂2
ε =

S(y, Λ̂, z)

n
, (4.1.3)

where Λ̂ is the unconditional maximum likelihood estimate of Λ. Given this, equa-

tion (4.1.1) becomes the “concentrated” likelihood,

1When those authors state that the rt(φ,θ) are “functions only of the regression parameters”,
they are actually referring to any parameters that are neither the innovations variance nor the
parameters for the extraneous variables, as shown in their expressions for the rt(φ,θ).
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CLARMA(y,Λ,z) = (2π
S(y,Λ, z)

n
)−n/2

[
n∏

t=1

rt(φ,θ)

]−1/2

exp
[
−n

2

]
The concentrated log likelihood is then,

CLLARMA(y,Λ,z) = −n

2
(log 2π + 1)− n

2
log

S(y,Λ, z)

n

−1

2

n∑
t=1

log rt(φ,θ). (4.1.4)

This equation can be differentiated with respect to Λ and set equal to zero

to find (numerically) the maximum likelihood estimates. Alternatively it can be

maximised directly using a purely numerical approach which is adopted here. The

maximum likelihood estimate of σ2
ε is then given by (4.1.3). Estimated asymptotic

standard errors of Λ̂ and σ̂2
ε can be obtained in the usual way from the square

root of the diagonals of the inverse of the negative Hessian matrix of the full log

likelihood at Λ̂ and σ̂2
ε , evaluated either analytically or numerically (following Efron

and Hinkley [1978]).

4.1.1 Re-Parameterisation to Ensure Stationarity and In-

vertibility

Ideally the parameters of the ARMA models returned from the fitting routines

should be constrained to be stationary and invertible given that this constraint

forms part of the model definitions for all models in this thesis. To ensure station-

arity the AR coefficients can be reparameterised before optimisation using Jones

[1980] (see also Hamilton [1994] pp. 146-148, Kitagawa [2010] p. 88 and 154, and

Prado and West [2010] pp. 75-76). The moving average coefficients are similarly

constrained to lie in their invertibility region and the general constraining approach

is set out below.

For convenience in optimisation the reparameterisation for stationarity in this

thesis uses partial autoregressive autocorrelation coefficients (see Kitagawa [2010]

p. 88). For a stationary process the partial autocorrelation coefficients must all

be (independently) between −1 and 1 thereby providing a set of simple unrelated
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constraints for each partial autocorrelation coefficient. The latter are then func-

tionally related to the autoregressive coefficients by the standard relationships (see

Kitagawa [2010] p. 88). To completely remove the constraints on the range of op-

timising variables, the p partial autocorrelation coefficients {πi}pi=1 can be derived

from p unconstrained real variables, {χi}pi=1 using say,

πi =
eχi − 1

eχi + 1
.

This reparameterisation can be applied separately to the seasonal and nonsea-

sonal components of the AR (and MA - see Jones [1980], p.393) coefficients.

4.1.2 Use of R’s arima Function

R’s arima function can be employed to derive the log likelihood and concentrated

log likelihood of a single-series ARMA process with and without constrained (to lie

in the stationary and invertible region) estimates obviating the need to create much

in the way of bespoke computer code. This approach is set out in Section 4.2.2 as

an application of arima to model multiple independent sets of univariate stationary

and invertible time series from the same process (that is, a RARMA process).

4.1.3 Asymptotic Distribution of the Maximum Likelihood

Estimates

The asymptotic distribution of parameter estimates can be very useful in under-

standing the performance of estimators especially if the distribution is shown to

hold for smaller sample sizes. The asymptotic distribution of the unconditional

maximum likelihood estimates, ς̂, of the single-series ARMA parameters, ς, is,

(ς̂ − ς) ∼ N(0,
σ2
ε

n
ΩARMA)

(see Pierce [1971], Hannan [1973], Brockwell and Davis [1991], p.258, Baillie [Forth-

coming] and Professor R. Baillie, pers. comm., 23rd January 2017) where
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ΩARMA =


G 0 0

0

[
C D

D> F

]
0

0 0 1
2
σ−2
ε


−1

(4.1.5)

and C = {cl,j} =
{
γu
l−j

}
l,j

and F = {fl,j} =
{
γv
l−j

}
l,j

are the p × p and q × q

autocovariance matrices for {ut} and {vt} with φ(B)ut = ωt and θ(B)vt = ωt.

Also {ωt} is an independent identically-distributed time series with variance, σ2
ε

(both the φ(B) and θ(B) filters are applied to the left-hand side of the difference

equation). Finally D = {dl,j} =
{
γuv
l−j

}
l,j

is the p × q cross-covariance matrix

between {ut} and {vt} and

G = {gl,j} =

{
lim
n→∞

n−1

n∑
t=1

(ϑl,tϑj,t) , l, j = 1, . . . , k

}
,

where ϑl,t = θ−1(B)φ(B)zl,t
2, l = 1, . . . , k. Here the limit is used instead of

expectation because strictly the elements of the vector series, z = {zt}nt=1 , l =

1, . . . , k, are not random variables.

It is well known that[
C D

D> F

]
σ−2
ε =

[
C∗ D∗

D>
∗ F ∗

]
(4.1.6)

is a matrix in (φ, θ) only and does not depend on σ2
ε . That is,

σ2
ε

n
ΩARMA =

1

n


G/σ−2

ε 0 0

0

[
C∗ D∗

D>
∗ F ∗

]
0

0 0 1
2
σ−4
ε


−1

=
1

n


G−1σ2

ε 0 0

0

[
C∗ D∗

D>
∗ F ∗

]−1

0

0 0 2σ4
ε

 . (4.1.7)

2Note that φ(B)θ−1(B) = θ−1(B)φ(B).
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In this thesis the variance of the asymptotic distribution will be referred to as the

asymptotic variance.

Therefore (for later use) the expected value of the negative of the Hessian matrix

(being the inverse of the asymptotic variance matrix) is,

E(−HARMA) =
n

σ2
ε

Ω−1
ARMA. (4.1.8)

In this thesis, a sequence of random variables, (Xn, Yn), are said to be“asymptot-

ically independent” if (Xn, Yn) are possibly dependent for all finite n, but converge

in distribution to some random variables (X,Y ) which are independent. If (Xn, Yn)

converge in distribution to bivariate normal random variables, (X,Y ), with covari-

ance of zero then this implies that (X,Y ) are independent and hence (Xn, Yn) are

asymptotically independent. Hence, the fact that, in ΩARMA and except for the

diagonal matrices and scalars, the last rows and columns are all zero implies that σ̂2
ε

is asymptotically independent of (̂φ, θ̂) which are also asymptotically independent

of β̂.

4.2 Replicated ARMA (RARMA) Process

In this thesis, for RARMA time series, there are three approaches to unconditional

maximum likelihood model fitting, joint likelihood with and without stationarity

and invertibility constraints (see Section 4.1.1) and interleaving. This section ex-

plores these three approaches and derives the asymptotic distribution of the maxi-

mum likelihood parameter estimates.

4.2.1 Joint Likelihood Approach

The unconditional likelihood for a RARMA process with m series, Y = (y(1) ∪
. . . ∪ y(m)) (where “∪” is the union operator) with sample sizes, {ni}mi=1, given m

extraneous vector time series, Z =
{
z(1) ∪ . . . ∪ z(m)

}
, can be expressed as the

following joint likelihood of all the series (see 4.1.1),
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LRARMA(Y ,Λ,Z, σ2
ε ) =

m∏
i=1

LARMA(y
(i),Λ, z(i), σ2

ε ) (4.2.1)

=
m∏
i=1

(2πσ2
ε )

−ni/2

[
ni∏
t=1

rt(φ,θ)

]−1/2

exp

[
−S(y(i),Λ, z(i)))

2σ2
ε

]
= (2πσ2

ε )
−

∑m
i=1 ni/2

m∏
i=1

[ ni∏
t=1

rt(φ,θ)

]−1/2


× exp

[
−
(∑m

i=1 S(y
(i),Λ, z(i)))

2σ2
ε

)]
. (4.2.2)

So the joint log likelihood is

LLRARMA(Y ,Λ,Z, σ2
ε ) = −

(∑m
i=1 ni

2

)
log (2π)−

(∑m
i=1 ni

2

)
log
(
σ2
ε

)
−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ))

−
(∑m

i=1 S(y
(i),Λ, z(i))

2σ2
ε

)
. (4.2.3)

If the first derivative with respect to σ2
ε is taken and the result set to zero this

gives,

σ̂2
ε =

∑m
i=1 S(y

(i), Λ̂, z(i))∑m
i=1 ni

, (4.2.4)

where Λ̂ is the unconditional maximum likelihood estimate of Λ. This parallels the

result for one series (see (4.1.3)). Substituting this equality into equation (4.2.3)

gives the concentrated log likelihood,
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CLLRARMA(Y ,Λ,Z) = −
∑m

i=1 ni

2
log (2π)−

∑m
i=1 ni

2
log

(∑m
i=1 S(y

(i),Λ, z(i))∑m
i=1 ni

)
−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ))−
(∑m

i=1 ni

2

)
= −

∑m
i=1 ni

2
(log (2π) + 1)

−
∑m

i=1 ni

2
log

(∑m
i=1 S(y

(i),Λ, z(i))∑m
i=1 ni

)
−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ)). (4.2.5)

This can be numerically maximised to derive the maximum likelihood values,

Λ̂. The maximum likelihood estimate of σ2
ε is obtained from (4.2.4). Estimated

asymptotic standard errors of Λ̂ and σ̂2
ε can be derived from the Hessian matrix of

the full log likelihood at Λ̂ and σ̂2
ε .

4.2.2 Use of R’s arima Function

The above process can be facilitated by use of the arima function in R rather

than requiring the writing of fully bespoke code. The single-series modelling of

the ARMA process using this approach can be obtained by setting m = 1 in the

following.

If all values of Λ are fixed in calling arima then the function returns the as-

sociated concentrated unconditional log likelihood value (see (4.1.4)) along with

the innovations variance evaluated at the specified Λ values (see (4.1.3)). Using

(4.1.3) and (4.1.4) the components of this result can then be extracted and used

to optimise the RARMA concentrated joint likelihood (see below), with respect

to Λ leading to the unconditional maximum likelihood estimate of the innovations

variances. After optimisation these resultant estimates can be employed in arima

to derive the surface of the joint log likelihood around the maximum likelihood

estimates for evaluating the Hessian matrix and the estimated variance matrix.

Specifically, the summation of the m concentrated log likelihoods from the m

calls to arima with fixed Λ, (designated as CLLRARMA(Y ,Λ,Z)∗), gives (see
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(4.1.4)),

CLLRARMA(Y ,Λ,Z)∗ = −
∑m

i=1 ni

2
(log (2π) + 1)−

m∑
i=1

(
ni

2
log

(
S(y(i),Λ, z(i))

ni

))
−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ)). (4.2.6)

Hence, the concentrated log likelihood for a RARMA process can be derived

via,

CLLRARMA(Y ,Λ,Z) = CLLRARMA(Y ,Λ,Z)∗

+
m∑
i=1

(
ni

2
log

(
S(y(i),Λ, z(i))

ni

))
−
(∑m

i=1 ni

2

)
log

(∑m
i=1 S(y

(i),Λ, z(i))∑m
i=1 ni

)
.

Accordingly this correction can be applied to the sum of the m concentrated

log likelihood results from the m calls to arima to derive the concentrated log

likelihood for the RARMA process, that is, with a common innovations variance.

This likelihood can then be optimised with respect to Λ whereby arima provides

the values of σ̌2
ε (i) = S(y(i), Λ̂, z(i))/ni, i=1,..,m, for each of the m series (see

(4.1.3)) given the optimal Λ̂. The
{
S(y(i), Λ̂, z(i))

}m

i=1
values can be obtained via

the outputted {σ̌2
ε (i)}

m
i=1estimates. The RARMA maximum likelihood estimate of

σ̂2
ε is

σ̂2
ε =

∑m
i=1 niσ̌

2
ε (i)∑m

i=1 ni

(4.2.7)

using (4.2.4), that is, it is the weighted sum of the maximum likelihood estimates

by series assuming a common Λ.

Finally repeated calls to arima across all series centred at the maximum like-

lihood values allows numerical estimation of the Hessian matrix using as the log

likelihood,
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LLRARMA(Y ,Λ,Z, σ2
ε ) = CLLRARMA(Y ,Λ,Z) +

∑m
i=1 ni

2

+

∑m
i=1 ni

2
log

(∑m
i=1 S(y

(i),Λ, z(i))∑m
i=1 ni

)
−
(∑m

i=1 S(y
(i),Λ, z(i))

2σ2
ε

)
− 1

2

(
m∑
i=1

ni

)
log σ2

ε .

Employing the methods detailed in Section 4.1.1, the AR and MA parameters

can be constrained to ensure stationarity and invertibility, if required.

4.2.3 Estimation using an Interleaved Process

A conceptually simpler but equivalent approach to the same maximum likelihood

estimation is to use the method of interleaving. Section 2.3.1 shows that two or

more RARMA processes of the same length can be represented as a single univariate

ARMA process with certain parameters set equal to zero.

If the series are not of equal length then missing values can be added at the

end of each series to ensure that all series are of the same length. If the missing

values are incorporated in the estimation via maximum likelihood methods (see

Jones [1980]) the resulting estimates, Λ̂ and σ̂2
ε , will be maximum likelihood values.

The aim here is not to estimate the missing values but to simply account for them

in the maximum likelihood estimation, that is, in the likelihood function.

The R function arima allows for missing values in unconditional maximum like-

lihood estimation using the approach of Jones [1980]. In fitting using state space

models, Jones [1980] employs an updating of the “state” for each additional time se-

ries value and missing values simply do not update the state. The updating system

moves on to consider the next series value.

The variance matrix of the estimates can be derived directly from the Hessian

of the log likelihood of the interleaved series.
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4.2.4 Asymptotic Distribution of the Maximum Likelihood

Estimates

For a RARMA process with m series and using ς from Section 4.1 to represent the

vector of all parameters, ς = (Λ>, σ2
ε )

>, the unconditional log likelihood is (from

(4.2.1)),

LLRARMA(Y , ς,Z, ) =
m∑
i=1

LLARMA(y
(i), ς, z(i)).

Now the asymptotic variance matrix of maximum likelihood estimates is the in-

verse of the expected value of the negative of the Hessian matrix of the log likelihood

(in the current situation, the term “asymptotic” implies “ni → ∞ for all i”). The

Hessian matrix of the above log likelihood is the sum of the Hessian matrices of the

components of the aggregate log likelihood. That is, using ς = (ς1, . . . , ςk+p+q+1)
>

and given

HRARMA =

{
∂2

[
m∑
i=1

LLARMA(y
(i), ς, z(i))

]
/∂ςl∂ςj

}

=

{
m∑
i=1

[
∂2LLARMA(y

(i), ς, z(i))/∂ςl∂ςj
]}

=
m∑
i=1

HARMAi
,

where HARMAi
is the Hessian for the log likelihood for the ith series assuming

common parameters with the other m− 1 series, then,

E(−HRARMA) = E(−
m∑
i=1

HARMAi
).

From (4.1.8),

E (−HARMAi
) =

ni

σ2
ε

Ω−1
ARMAi

,

where Ω−1
ARMAi

is from (4.1.5) and where Gi, substituting for G in ΩARMAi
(see
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(4.1.5)), is evaluated for each set of extraneous time series, z(i), (that is, Gi has

elements limni→∞ n−1
i

∑ni

i=1 (ul,i,tuj,i,t) , l, j = 1, . . . , k where ul,i,t = θ−1(B)φ(B)zl,i,t

and zl,i,t is the l
th variable at the tth time point of the extraneous input vector, z(i)).

Hence

E(−HRARMA) =
1

σ2
ε

m∑
i=1

niΩ
−1
ARMAi

=
1

σ2
ε


∑m

i=1 niGi 0 0

0
∑m

i=1 ni

[
C D

D> F

]
0

0 0
∑m

i=1 ni

2
σ−2
ε



=

∑m
i=1 ni

σ2
ε


∑m

i=1
ni∑m
i=1 ni

Gi 0 0

0

[
C D

D> F

]
0

0 0 1
2
σ−2
ε

 .

Subsequently, the asymptotic variance of ς̂ is,

Var(ς̂) = E(−HRARMA)
−1

=
σ2
ε∑m

i=1 ni


(∑m

i=1
ni∑m
i=1 ni

Gi

)−1

0 0

0

[
C D

D> F

]−1

0

0 0 2σ2
ε



=
1∑m

i=1 ni


σ2
ε

(∑m
i=1

ni∑m
i=1 ni

Gi

)−1

0 0

0

[
C∗ D∗

D>
∗ F ∗

]−1

0

0 0 2σ4
ε


using (4.1.6).

Therefore, noting that the asymptotic distribution of an unconditional maxi-

mum likelihood estimate is normal with mean equal to the population parameter,

the asymptotic distribution of the maximum likelihood estimates of the parameters
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of a RARMA process is,

lim
ni→∞∀i

(ς̂ − ς) ∼ N(0, V ar(ς̂)). (4.2.8)

Note that the asymptotic condition of ni → ∞ for all i includes both finite m

and m → ∞. However the asymptotic distribution for m → ∞ and finite ni is not

encompassed here and will be pursued in future research.

The above result implies that β̂ is asymptotically independent of (φ̂, θ̂) which

is asymptotically independent of σ̂2
ε .

Also, (4.2.8) implies that the estimates from a RARMA process with m series

are asymptotically equivalent to fitting the same model to one series of the same

length as the sum of the lengths of the m series. This suggests that the determining

factor in the variance of the estimators, at least asymptotically, is the total length of

all the series, rather than being primarily determined by either each series’s length

or by the number of series.

Finally the variance matrix of the regression coefficients of the extraneous vector

time series is the inverse of the weighted mean of the cross-product matrices of the

(filtered) extraneous time series for each series.

4.3 Almost Identical ARMA (AIARMA) Process

As with the RARMA modelling, there are three approaches to AIARMA model

fitting employing the constrained versus unconstrained joint likelihood approaches

and the interleaving method. This section shows how to use these procedures

and determines the asymptotic distribution of the maximum likelihood AIARMA

estimates.

4.3.1 Joint Likelihood Approach

The likelihood for an AIARMA process with m series and sample sizes, {ni}mi=1,

can be expressed as the following joint likelihood (see (4.1.1)),
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LAIARMA(Y ,Λ,Z, {σεi}
m
i=1) =

m∏
i=1

LARMA(y
(i),Λ, z(i), σεi) (4.3.1)

=
m∏
i=1

(2πσ2
εi
)−ni/2

[
ni∏
t=1

rt(φ,θ)

]−1/2

exp

[
−S(y(i),Λ, z(i))

2σ2
εi

]
=

m∏
i=1

(2πσ2
εi
)−ni/2

[
ni∏
t=1

rt(φ,θ)

]−1/2


×

[
exp

[
−

m∑
i=1

S(y(i),Λ, z(i))

2σ2
εi

]]
.

So the joint log likelihood is

LLAIARMA(Y ,Λ,Z, {σεi}
m
i=1) = −

(∑m
i=1 ni

2

)
log (2π)−

m∑
i=1

(ni

2
log
(
σ2
εi

))
−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ))

−
m∑
i=1

S(y(i),Λ, z(i))

2σ2
εi

. (4.3.2)

If the first derivatives with respect to σ2
i , i = 1, . . . ,m, are taken and the results

set to zero this gives,

σ̂2
i =

S(y(i), Λ̂, z(i))

ni

, i = 1, . . . ,m, (4.3.3)

where Λ̂ are the joint maximum likelihood estimates of the elements of Λ. This

again parallels the result for one series (see (4.1.3)), noting that a common set of Λ̂

is used in the estimation of all {σ̂2
i }

m
i=1. Substituting these equalities into equation

(4.3.2) gives the following concentrated log likelihood,
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CLLAIARMA(Y ,Λ,Z) = −
∑m

i=1 ni

2
log (2π)−

m∑
i=1

(
ni

2
log

(
S(y(i),Λ, z(i))

ni

))
−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ))−
∑m

i=1 ni

2

= −
∑m

i=1 ni

2
(log (2π) + 1)−

m∑
i=1

(
ni

2
log

(
S(y(i),Λ, z(i))

ni

))
−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ)). (4.3.4)

The maximum of (4.3.4) can be found using a numerical optimisation routine.

After finding Λ̂, {σ̂2
i }

m
i=1 can be calculated using (4.3.3). Estimated asymptotic

standard errors of Λ̂ and {σ̂2
i }

m
i=1 can be obtained using the Hessian matrix of the

(full) log likelihood (4.3.2) at Λ̂ and {σ̂2
i }

m
i=1.

4.3.2 Use of R’s arima Function

The above process can be facilitated by use of the arima function in R as employed

in RARMA modelling (see Section 4.2.2). If all values of Λ are fixed in calling

the function for one series then the function returns the concentrated log likelihood

value (4.1.4) along with the calculated innovations variance using (4.1.3). This

can be used to optimise the joint concentrated log likelihood, (4.3.4), with respect

to Λ thereby also providing the maximum likelihood estimates of {σ2
i }

m
i=1. These

estimates can then be employed in arima as shown below to derive the surface of

the joint log likelihood around the maximum likelihood estimates for evaluating the

Hessian matrix and hence the estimated variance matrix of the estimates.

The AIARMA concentrated log likelihood is simply the sum of the concentrated

log likelihoods for each series with common Λ, that is,

CLLAIARMA(Y ,Λ,Z) =
m∑
i=1

CLLARMA(y
(i),Λ, z(i)).

To evaluate the Hessian, the full log likelihood, LLAIARMA(Y ,Λ,Z, {σεi}
m
i=1), is

related to the concentrated log likelihood with commonΛ (that is, CLLAIARMA(Y ,Λ,Z)
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from (4.3.4)) resulting from m calls to arima) using,

LLAIARMA(Y ,Λ,Z,
{
σ2
εi

}m
i=1

) = CLLAIARMA(Y ,Λ,Z) +
1

2

m∑
i=1

ni

+
m∑
i=1

ni

2
log

(
S(y(i),Λ, z(i))

ni

)
−

m∑
i=1

(ni

2
log σ2

εi

)
−

m∑
i=1

(
S(y(i),Λ, z(i))

2σ2
εi

)
.

As with RARMA model fitting, the methods detailed in Section 4.1.1 can be

applied to the AR and MA parameters to ensure stationarity and invertibility.

4.3.3 Estimation using a Transformed Interleaved Process

From 4.3.1, the joint log likelihood of AIARMA processes with m series can be

expressed as,

LLRARMA(Y ,Λ,Z,
{
σ2
εi

}m
i=1

) =
m∑
i=1

LLARMA(y
(i),Λ, z(i), σ2

εi
)

=
m∑
i=1

LLARMA(y
(i),Λ, z(i), τ 2i σ

2
ε1
)

= −ni

2
log(2πτ 2i σ

2
ε1
)− 1

2

[
ni∑
t=1

log rt(φ,θ)

]

−
m∑
t=1

S(y(i),Λ, z(i))

2τ 2i σ
2
ε1

,

where τ 2i = σ2
εi
/σ2

ε1
, i = 2, . . . ,m and τ1 = 1. Now, noting that S(y(i),Λ, z(i)) is a

linear function in the squared and cross-product elements of
(
y(i) − β>z(i)

)
with no

intercept (see Section 4.1), the log likelihood for the ith series, LLARMA(y
(i),Λ, z(i), τ 2i σ

2
ε1
) =

LLARMA(y
(i),Λ, z(i), τ 2i , σ

2
ε1
), can be expressed as,
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LLARMA(y
(i),Λ, z(i), τ 2i , σ

2
ε1
) = −ni

2
log(2π)− ni

2
log τ 2i − ni

2
log σ2

ε1

−1

2

[
ni∑
t=1

log rt(φ,θ)

]
− S(y(i),Λ, z(i))/τ 2i

2σ2
ε1

= −ni

2
log(2π)− ni

2
log τ 2i − ni

2
log σ2

ε1

−1

2

[
ni∑
t=1

log rt(φ,θ)

]
− S(y(i)/τi,Λ, z(i)/τi)

2σ2
ε1

= LLARMA(y
(i)/τi,Λ, z(i)/τi, σ

2
ε1
)− ni log τi. (4.3.5)

This gives,

LLRARMA(Y ,Λ,Z,
{
σ2
εi

}m
i=1

) =

ni∑
i=1

[LLARMA

(
y(i)/τi,Λ, z(i)/τi, σ

2
ε1

)
−ni log(τi)]

= LLARMA(U ,Λ,W , σ2
ε1
)

−
m∑
i=2

(ni log τi) , (4.3.6)

where u(i) = y(i)/τi, w(i) = z(i)/τi, i = 1, . . . ,m, U = (u(1)∪. . . ∪ u(m)) and

W = (w(1)∪. . . ∪w(m)) .

This shows that the joint log likelihood of the m AIARMA series (that is, with

different innovations variances) can be represented as the sum of the log likelihoods

of m replicated series from a RARMA process minus the sum of the length of each

series times the log of the ratio of the innovations variance. The last term in (4.3.6)

only involves parameters, {τi}mi=2, so the maximisation of the joint log likelihood

for the transformed U and W with respect to Λ and σ2
1 conditional on {τi}mi=2 only

involves the term, LLARMA(U ,Λ,W , σ2
ε1
), in (4.3.6) (which, as noted, is the joint

log likelihood of a RARMA process). Moreover m time series assumed to be from

a RARMA process can be represented as an interleaved series.

Hence to estimate the parameters using maximum likelihood via interleaving,

the following algorithm is used:

• re-scale the last (m− 1) series by dividing the ith series and the ith set of
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extraneous variables by the respective elements of {τ̃i}mi=2, an initial guess of

the maximum likelihood values, {τ̂i}mi=2,

• interleave the m series to create one series after padding each series with

missing values to the same length as the longest (say, the first) series,

• find the maximum likelihood estimates of the ARMA coefficients (φ,θ), of

the regression coefficients (β) and of σε1 with the resultant log likelihood,

given {τ̃i}mi=2,

• correct the log likelihood by subtracting
∑m

i=2 ni log τ̃i, and

• optimise the resultant log likelihood with respect to {τ̃i}mi=2 (using say R’s

optim function) which will include redoing the four steps above.

Hence after rescaling, interleaving and fitting via maximum likelihood (with the

constraints imposed by interleaving) the resulting parameters will be maximum

likelihood values with respect to (Λ, σ2
1, {τi}

m
i=2)).

The standard errors of the estimates of Λ and {τi}mi=2 can be obtained by using

the Hessian matrix of the joint log likelihood.

In summary, the above method can be used to determine the unconditional

maximum likelihood estimates of all coefficients of the AIARMA model including

{τi}mi=2. The variance matrix of the parameter estimates can be determined from

a numerical approximation to the slope of the log likelihood around the maximum

likelihood estimates.

4.3.4 Asymptotic Distribution of the Maximum Likelihood

Estimates

The unconditional joint log likelihood for an AIARMA process with m series is,

LLAIARMA(Y ,Λ,Z,
{
σ2
εi

}m
i=1

) =
m∑
i=1

LLARMA(y
(i),Λ, z(i), σ2

εi
). (4.3.7)

The asymptotic variance matrix of the maximum likelihood estimates is the

inverse of the expected value of the negative of the Hessian matrix of the log likeli-

hood. The expected value, in the case of the above log likelihood, becomes the sum
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of the expected values of the negative of the Hessian matrices of the components

of the aggregate log likelihood. That is, letting ϕ = (Λ>,
{
σ2
εi

}m
i=1

)> = {ϕj}, the
Hessian matrix for the AIARMA process can be expressed as,

HAIARMA(ϕ) =

{
∂2

[
m∑
i=1

LLARMA(y
(i),ϕ, z(i))

]
/∂ϕl∂ϕj

}

=

{
m∑
i=1

∂2LLARMA(y
(i),ϕ, z(i))/∂ϕl∂ϕj

}

=
m∑
i=1

HARMAi
(ϕ),

where here HARMAi
(ϕ) =

{
∂2LLARMA(y

(i),ϕ, z(i))/∂ϕl∂ϕj

}
is the Hessian matrix

for the ARMA log likelihood for the ith series with unique innovations variance. The

partial derivatives for each of the m Hessians are with respect to all the parameters,{
σ2
εi

}m
i=1

, even if m− 1 of the parameters are not actually present in the respective

log likelihood. The respective elements of each Hessian are therefore zero. The

expected negative AIARMA Hessian becomes,

E(−HAIARMA(ϕ)) =
m∑
i=1

E(−HARMAi
(ϕ)). (4.3.8)

For the ith series, the expectation of the negative of the ARMA Hessian matrix

from (4.1.8) is,

E(−HARMAi
(ϕ)) =

ni

σ2
i



Gi 0 0

0

[
Ci Di

D>
i F i

]
0

0 0 1
2



0 0 · · · · · · 0

0
. . . · · · · · · ...

... · · · σ−2
εi

· · · 0

0 · · · 0
. . . 0

0 · · · 0 0 0




,

where Ci =
{
cil,j
}
=
{
γui

(l−j)

}
l,j

and F i =
{
f i
l,j

}
=
{
γvi
(l−j)

}
l,j

are the p×p and q×q
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autocovariance matrices for {ui,t} and {vi,t} with φ(B)ui,t = ωi,t, θ(B)vi,t = ωi,t and

{ωi,t} is an independent identically-distributed time series with variance, σ2
εi
. Also

Di =
{
dil,j
}
=
{
γuivi
(l−j)

}
l,j

is the p × q cross-covariance matrix between {ui,t} and

{vi,t} and Gi has the (l, j) element limni→∞ n−1
i

∑ni

i=1 (ϑl,i,tϑj,i,t) , l, j = 1, . . . , k

where ϑi,l,t = θ−1(B)φ(B)zl,i,t. Again zl,i,t is the lth variable at the tth time point

of the extraneous input vector, z(i) (that is, for the ith series). Finally the lower

right-hand matrix has the single non-zero value,
σ−2
εi

2
, at location, (i, i).

So, including all elements of ϕ including
{
σ2
εi

}m
i=1

in each of the the additive

components of the AIARMA log likelihood (whether they are all used in that com-

ponent or not) and hence in each of the additive components of the associated ex-

pected negative Hessian, the overall expected negative Hessian, E(−HAIARMA(ϕ)),

from (4.3.8) becomes,

∑m
i=1

(
ni

σ2
i
Gi

)
0 0

0
∑m

i=1

(
ni

σ2
i

[
Ci Di

D>
i F i

])
0

0 0


n1

2σ4
ε1

0 · · · 0

0
. . . 0

...
... 0

. . . 0

0 · · · 0 nm

2σ4
εm





=



∑m
i=1

(
ni

σ2
i
Gi

)
0 0

0 (
∑m

i=1 ni)

[
C∗ D∗

D>
∗ F ∗

]
0

0 0


n1

2σ4
ε1

0 · · · 0

0
. . . 0

...
... 0

. . . 0

0 · · · 0 nm

2σ4
εm




.

In the above, C∗ = Ci/σ
2
εi
, D∗ = Di/σ

2
εi
and F ∗ = F i/σ

2
εi
are constant across

all m series and are not dependent on σ2
εi
, i = 1, . . .m because each process only

differs in its innovations variance (and its mean level).

Hence the asymptotic variance of the maximum likelihood estimates, ϕ̂AIARMA,
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of the parameters of an AIARMA process with m series is,

Var(ϕ̂AIARMA)

= E(−HAIARMA(ϕ))
−1

=



(∑m
i=1

ni

σ2
εi

Gi

)
0 0

(
∑m

i=1 ni)

[
C∗ D∗

D>
∗ F ∗

]
0

0 0


n1

2σ4
ε1

0 · · · 0

0
. . . 0

...
... 0

. . . 0

0 · · · 0 nm

2σ4
εm





−1

=



(∑m
i=1

ni

σ2
εi

Gi

)−1

0 0

1∑m
i=1 ni

[
C∗ D∗

D>
∗ F ∗

]−1

0

0 0 2


σ4
ε1

n1
0 · · · 0

0
. . . 0

...
... 0

. . . 0

0 · · · 0
σ4
εm

nm




.

Hence asymptotically,

(ϕ̂AIARMA −ϕAIARMA) ∼ N (0,Var(ϕ̂AIARMA)) .

As with maximum likelihood estimates for a RARMA process, β̂ is asymptoti-

cally independent of (φ̂, θ̂) which is asymptotically independent of the elements of(
σ̂2
ε1
, . . . , σ̂2

εm

)
which in turn are asymptotically independent of each other.
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4.3.5 Asymptotic Distribution of the Estimates of the Pa-

rameters of the First Order AIARMA Process with

a Unique Mean for Each Series

As an example, the asymptotic distribution of the parameters of the AIARMA

model will be derived which reflects a common AR(1), MA(1) or ARMA(1,1) pro-

cess with unique mean and innovations variance by series.

Using the results of Section 4.3.4, the complete variance matrix of the AIARMA

parameter estimates is,

Var(ϕ̂AIARMA) =

 V R
AIARMA 0 0

0 V C
AIARMA 0

0 0 V E
AIARMA

 ,

where V R
AIARMA is the variance sub-matrix for the regression parameters, V C

AIARMA

is for the ARMA coefficients and V E
AIARMA is for the innovation variances.

The asymptotic distribution of the maximum likelihood estimates is,

(ϕ̂AIARMA −ϕAIARMA) ∼ N(0, V ar(ϕ̂AIARMA),

where the components are derived below.

Let the jth series of z(i) , for i, j = 1, . . . ,m, be defined as,

zj,i,t =


1 j = 1

1 j > 1 and i = j

0 j > 1 and i 6= j

(that is, following (2.1.1), β1 is the mean level for series 1 and βi, i > 1, is the

difference between the means for the ith and first series) and using the results from

Section 4.3.4, the variance matrix of the estimates of the regression parameters is,

V R
AIARMA =

(
m∑
i=1

(
ni/σ

2
εi

)
Gi

)−1

.

The design matrix of extraneous variables used here is commonly employed
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in regression modelling and it is straightforward to show that the m × m matrix

of cross-covariances of the filtered extraneous variables, θ−1(B)φ(B)zj,i,t for each

series, i = 1, . . . ,m, is

Gi =



(1 + θ1)
−2(1 + φ1)

2


1 0 . . . 0

0 0 0
...

... 0
. . .

0 . . . 0

 i = 1

(1 + θ1)
−2(1 + φ1)

2



1 0 . . . 0 1 0 . . . 0

0 0
...

... 0
... 0

0 0

1 0 . . . 0 1 0 . . . 0

0 0
...

... 0
... 0

0 . . . 0 0



i > 2,

where the “1”s are in the ith row and ith columns only. Hence,

V R
AIARMA = (1 + θ1)

2(1 + φ1)
−2



∑m
j=1

nj

σ2
εj

n2

σ2
ε2

. . . nm

σ2
εm

n2

σ2
ε2

n2

σ2
ε2

0
...

... 0
. . . 0

nm

σ2
εm

. . . 0 nm

σ2
εm



−1

= (1 + θ1)
2(1 + φ1)

−2



σ2
ε1

n1
. . . −σ2

ε1

n1
. . . −σ2

ε1

n1

−σ2
ε1

n1
0

(
σ2
ε1

n1
+

σ2
ε2

n2

)
0

...
... 0 0

. . . 0

−σ2
ε1

n1
0 . . . 0

(
σ2
ε1

n1
+

σ2
εm

nm

)

 .

When fitting AR(1), MA(1) or ARMA(1,1) models, the variance matrix of the
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estimates of the ARMA coefficients is,

V C
AIARMA =

(
m∑
i=1

ni

)−1



(1− φ2
1) p = 1, q = 0

(1− θ21) p = 0, q = 1 (1− φ2
1)

−1
(1− φ1θ1)

−1

(1− φ1θ1)
−1 (1− θ21)

−1

−1

p = 1, q = 1

(see Shumway and Stoffer [2011] p. 134 allowing for the difference in defining the

signs of the AR coefficients). The result for the last outcome expands to,(
m∑
i=1

ni

)−1 ((
1− φ2

1

)−1 (
1− θ21

)−1 − (1− φ1θ1)
−2
)−1

[
(1− θ21)

−1 − (1− φ1θ1)
−1

− (1− φ1θ1)
−1 (1− φ2

1)
−1

]
.

Finally the variance of the estimates of the innovations variances is,

V E
AIARMA =


2σ4

ε1

n1
0 . . . 0

0
. . . 0

...
... 0

. . . 0

0 . . . 0
2σ4

εm

nm

 .

4.4 Conditional AIARMA (CAIARMA) Process

Again, as with the RARMA and AIARMA modelling, there are three approaches

to CAIARMA model fitting employing the constrained and unconstrained joint

likelihood versus interleaving methods.

4.4.1 Joint Likelihood Approach

The unconditional likelihood for a CAIARMA process with m series and series

lengths {ni}mi=1 can be expressed as the following joint likelihood where µ = (µ1, . . . , µm)
>,

representing a simple mean per series rather than a full linear model. This is con-

sistent with the definition of CAIARMA processes from Section 2.1 where the spec-

ification of a constant mean per series is required to facilitate the assumption of an

innovations variance proportional to each series mean.
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The likelihood is (following (4.3.1)),

LCAIARMA(Y ,φ, θ,µ, c) =
m∏
i=1

LARMA(y
(i),φ,θ, µi, σεi = cµi) (4.4.1)

=
m∏
i=1

(2π(cµi)
2)−ni/2

[
ni∏
t=1

rt(φ,θ)

]−1/2

exp

[
−S(y(i),φ, θ,µi)

2(cµi)2

]
=

m∏
i=1

(2π(cµi)
2)−ni/2

[
ni∏
t=1

rt(φ,θ)

]−1/2


× exp

[
−

m∑
i=1

S(y(i),φ, θ,µi)

2(cµi)2

]
. (4.4.2)

So the joint log likelihood is

LLCAIARMA(Y ,φ, θ,µ, c) = −
∑m

i=1 ni

2
log (2π)−

m∑
i=1

ni [log c+ log µi]

−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ))

−
m∑
i=1

S(y(i),φ,θ, µi)

2(cµi)2
. (4.4.3)

If the first derivative with respect to c is taken and the result set to zero this

gives,

0 = −
m∑
i=1

ni

c
+

1

c3

(
m∑
i=1

S(y(i),φ,θ, µ̂i)

µ̂i
2

)
. (4.4.4)

That is,

ĉ =

√∑m
i=1

S(y(i),φ̂,θ̂,µ̂i)

µ̂i
2∑m

i=1 ni
, (4.4.5)

where (φ̂, θ̂) and {µ̂i}mi=1 are the unconditional maximum likelihood estimates of

(φ,θ) and {µi}mi=1. Note that if

ĉ2i =
S(y(i), φ̂, θ̂, µ̂i)

niµ̂i
2
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then

ĉ =

√∑m
i=1 niĉ2i∑m
i=1 ni

,

that is, ĉ is the square root of the weighted mean of the {ĉ2i }
m
i=1, weighted according

to the relative sample sizes. Substituting (4.4.5) into equation (4.4.3) gives the

concentrated log likelihood,

CLLCAIARMA(Y ,φ,θ, {µi}mi=1) = −
∑m

i=1 ni

2
log (2π)−

m∑
i=1

ni log µi

−1

2

(
m∑
i=1

ni

)
log

∑m
i=1

S(y(i),φ,θ,µ̂i)
µi

2∑m
i=1 ni


−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ))−
(∑m

i=1 ni

2

)
= −

∑m
i=1 ni

2
(log (2π) + 1)−

m∑
i=1

ni log µi

−1

2

(
m∑
i=1

ni

)
log

∑m
i=1

S(y(i),φ,θ,µ̂i)
µi

2∑m
i=1 ni


−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ)). (4.4.6)

This can be maximised numerically to derive the maximum likelihood values,

(φ̂, θ̂, {µ̂i}mi=1). The maximum likelihood estimate of c is then calculated using

(4.4.5). The standard errors of (φ̂, θ̂), ĉ and {µ̂i}mi=1 can be obtained using the

Hessian matrix of the full log likelihood.

4.4.2 Use of R’s arima Function

As with RARMA and AIARMA modelling, the above process can be facilitated by

use of the arima function in R. If all values of (φ,θ, {µi}mi=1) are fixed in calling

the function (m times, one for each series) then the function calls return the con-

centrated log likelihood value (separately) for each series along with the maximum
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likelihood values by series of the m innovations variances. The resultant summated

concentrated log likelihoods can then be adjusted as follows to derive the joint

concentrated log likelihood under the CAIARMA model,

m∑
i=1

CLLARMA(Y ,φ,θ, {µi}mi=1) = −
∑m

i=1 ni

2
log (2π + 1)− 1

2

m∑
i=1

ni log

(
S(y(i),φ,θ, µi)

ni

)
−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ))

= CLLCAIARMA(Y ,φ,θ, {µi}mi=1) +
m∑
i=1

ni log µi

+
1

2

(
m∑
i=1

ni

)
log

∑m
i=1

S(y(i),φ,θ,µi)
µi

2∑m
i=1 ni


−1

2

m∑
i=1

ni log

(
S(y(i),φ,θ,µi)

ni

)
. (4.4.7)

Hence,

CLLCAIARMA(Y ,φ,θ, {µi}mi=1) =
m∑
i=1

CLLARMA(Y ,φ,θ, {µi}mi=1)−
m∑
i=1

ni log µi

−1

2

(
m∑
i=1

ni

)
log

∑m
i=1

S(y(i),φ,θ,µi)
µi

2∑m
i=1 ni


+
1

2

m∑
i=1

ni log

(
S(y(i),φ,θ,µi)

ni

)
.(4.4.8)

This concentrated log likelihood, CLLCAIARMA(Y ,φ,θ, {µi}mi=1), can then be

optimised with respect to (φ,θ, {µi}mi=1) leading to the maximum likelihood esti-

mate of c using (4.4.5). This is then employed in a final call to arima to derive the

full (that is, not concentrated) log likelihood surface after an appropriate transfor-

mation of the output (see (4.4.3), (4.4.6) and (4.4.8)), that is,
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LLCAIARMA(Y ,φ, θ,µ, c) = CLLCAIARMA(Y ,φ, θ,µ)

+

∑m
i=1 ni

2

+

(∑m
i=1 ni

2

)
log

(∑m
i=1 S(y

(i),φ,θ,µi)∑m
i=1 ni

)
−

(
m∑
i=1

ni

)
log(c)−

m∑
i=1

S(y(i),φ,θ,µi)

2 (cµi)
2 .

This is used to evaluate the Hessian matrix and derive the estimated standard

errors of the estimates.

As with RARMA and AIARMA model fitting, the methods detailed in Section

4.1.1 can be applied to the AR and MA parameters to ensure stationarity and

invertibility.

4.4.3 Estimation using a Re-Scaled Zero-Mean Interleaved

Process

In order to use interleaving to fit a CAIARMA process, the log likelihood of the

CAIARMA model (4.4.3) can be expressed as,
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LLCAIARMA(Y,φ,θ,µ, c) = − log (2π)

2

m∑
i=1

ni −
m∑
i=1

(
1

2
ni log c

2 +
1

2
ni log µ

2
i

)
−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ))

−

(
m∑
i=1

S(y(i),φ,θ,E(y(i)) = µi)/µ
2
i

2c2

)

= − log (2π)

2

m∑
i=1

ni −
m∑
i=1

(
1

2
ni log c

2 +
1

2
ni log µ

2
i

)
−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ))

−

(
m∑
i=1

S(y(i)/µi,φ,θ,E(y(i)/µi) =
µi

µi
= 1)

2c2

)

= − log (2π)

2

m∑
i=1

ni −
log c2

2

m∑
i=1

ni

−1

2

m∑
i=1

ni∑
t=1

log(rt(φ,θ))

−

(
m∑
i=1

S(y(i)/µi,φ,θ, E(y(i)/µi) = 1)

2c2

)

−1

2

m∑
i=1

ni log µ
2
i

=
m∑
i=1

LLARMA(u
(i),φ,θ, σ2

ε = c2, E(u(i)) = 0)

−
m∑
i=1

ni log µi, (4.4.9)

where u(i) = y(i)/µi− 1 and noting as mentioned previously that S(y(i),φ,θ, µi) is

a linear function of squared and cross-product values of the elements of (y(i) − µi)

(with no intercept). Hence the above transformation can be used to create series

with the same innovations variance (and zero mean). These can be modeled as a

RARMA process with m series using interleaving (and missing values as required

to equalise the series lengths) and then employing the appropriate log likelihood
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modification as shown in (4.4.9).

Hence the maximum likelihood estimates of all the parameters can be achieved

by

• rescaling each series by initial estimates, {µ̃i}mi=1, of {µ̂i}mi=1,

• subtracting one from each rescaled series to give a population mean of zero,

• interleaving the re-scaled and re-located series padded with missing values to

equalise the series’s lengths,

• estimating the coefficients of the resulting interleaved process with zero mean

(conditional on {µ̃i}mi=1),

• correcting the resultant log likelihood to derive the final log likelihood by

subtracting
∑m

i=1 ni log µ̃i and

• converging on the maximised log likelihood with respect to {µ̃i}mi=1 .

The maximum likelihood estimates of (φ,θ) and c (being what is now the square

root of the innovations variance of the transformed series) are available from the

fourth step above and, of {µi}mi=1, from the result of the final step. The standard

errors of the coefficients and mean estimates and of ĉ can be got from the inverse

of the negative of the Hessian matrix of the full log likelihood at the maximum

likelihood values using empirical methods.

4.4.4 Asymptotic Distribution of the Maximum Likelihood

Estimates

In this section the asymptotic distribution of the unconditional maximum likelihood

estimates of the parameters of a CAIARMA process are derived.

The expected value of the negative of the Hessian matrix for the log likelihood

of a single-series ARMA model with a constant mean, µ, is (see (4.1.8)),

E(−HARMA) =


n
σε

2 θ(1)
−2φ(1)2 0 0

0 nP 0

0 0 n
2σε

4

 , (4.4.10)
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where P =

[
C∗ D∗

D>
∗ F∗

]
from (4.1.6). Also note that, following Section 4.1.3, the

filter θ−1(B)φ(B) applied to the series of all 1’s (representing the mean) results in

the series of equal values, θ(1)−1φ(1), the mean of the square of which is θ(1)−2φ(1)2.

The parameter transformations, µ = µ, {φi = φi}pi=1, {θi = θi}qi=1 and c =√
σ2
ε/µ are now undertaken. If the original parameters are {κi}1+p+q+1

i=1 and the

transformed parameters as a function of {κi}1+p+q+1
i=1 are

{
δj
(
{κi}1+p+q+1

i=1

)}1+p+q+1

j=1
,

the Jacobian matrix, J , of the transformation of the parameters with elements,

{Ji,j = ∂δi/∂κj}1+p+q+1
i,j=1 , is,

J =


1 0 0

0 I 0

−
√

σ2
ε

µ2 0 1

2
√

σ2
εµ

 =

 1 0 0

0 I 0

− c
µ

0 1
2cµ2

 .

This definition of the Jacobian matrix uses rows for the partial derivatives of

each function (whilst some authors use columns). Also, substituting into (4.4.10),

E(−HARMA) =


n

c2µ2 θ(1)
−2φ(1)2 0 0

0 nP 0

0 0 n
2c4µ4

 . (4.4.11)

Now it is well known that, if a set of multivariate parameters are functionally

transformed, then the maximum likelihood estimates of the transformed parameters

are the original maximum likelihood estimates transformed in the same way (given

certain regularity conditions). Hence the expected value of the negative Hessian of

the log likelihood of the new parameters (that is, E(−H∗
ARMA)) can be derived as

follows using the Multivariate Delta Method (see Taboga [2010]),

Ξ∗ = J Ξ J>,

where Ξ is the variance matrix of the estimates of the original parameters and Ξ∗

is the variance matrix of the estimates of the transformed parameters. That is,
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E(−H∗
ARMA)

−1 = J .E(−HARMA)
−1J>.

Hence, E(−H∗
ARMA) =

[
J E(−HARMA)

−1 J>]−1

= (J−1)>E(−HARMA)J
−1

=

 1 0 2c2µ

0 I 0

0 0 2cµ2

E(−HARMA)

 1 0 0

0 I 0

2c2µ 0 2cµ2



=


(2c2+a)n

c2µ2 0 2n
cµ

0 nP 0
2n
cµ

0 2n
c2

 ,

where a = θ(1)−2φ(1)2.

This result is for one series (with one mean). It can be readily extend to m

series with m unique means and a common c following the approach in Section

4.2.4 which reflects m unique means and a common σ2
ε . The ith expected negative

Hessian, that is, for the ith series, (with respect to all of the m means, {µi}mi=1, c

and the ARMA coefficients) has the following form,

E(−H∗
ARMAi

) =



0 · · · 0 · · · 0 0
...

. . .
... 0

...
...

0 0 0 0
... 0

... 0 (2c2+a)ni

c2µi
2 0 0 2ni

cµi

0 · · · 0
. . . 0 0

0 0 0 0 niP 0

0 · · · 2ni

cµi
· · · 0 2ni

c2


,

where the upper left hand m×m matrix only has a non-zero element at (i, i). Note

also that any elements involving partial derivatives with respect to {µj}mj=16=iare zero

values as these m− 1 parameters are not included in the associated log likelihood

for the ith series.

When combined as the sum of the expected negative Hessians, the following

expected negative Hessian of the CAIARMA process results,
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E(−H∗
CAIARMA) =

m∑
i=1

E(−H∗
ARMAi

)

=



(2c2+a)n1

c2µ1
2 0 0 0 2n1

cµ1

0
. . .

...
...

...
... 0 (2c2+a)nm

c2µm
2 0 2nm

cµm

0 0 0 (
∑m

i=1 ni)P 0
2n1

cµ1
· · · 2nm

cµm
0

2
∑m

i=1 ni

c2


.

Setting n∗ =
∑m

j=1 nj, the inverse of this expected negative Hessian (that

is, E(−H∗
CAIARMA)

−1) provides the variance, V ar(η̂CAIARMA), of the uncondi-

tional maximum likelihood estimates of the CAIARMA parameters, ηCAIARMA =

(η1, . . . , ηm+p+q+1)
> = ({µi}mi=1 ,φ

>,θ>, c)>,

Var(η̂CAIARMA) =



(
an∗+2n1c2

)
c2µ1

2

(an∗)n1(2 c2+a)
2c4µ1µ2

(an∗)(2 c2+a)
· · · 2c4µ1µm

(an∗)(2 c2+a)
0 − c3µ1

an∗

2c4µ2µ1

(an∗)(2 c2+a)

. . . 2c4µ2µm

(an∗)(2 c2+a)

...
...

...
. . .

...
...

...
2c4µmµ1

(an∗)(2 c2+a)
2c4µmµ2

(an∗)(2 c2+a)
· · ·

(
an∗+2nmc2

)
c2µm

2

(an∗)nm(2 c2+a)
0 − c3µm

an∗

0 · · · · · · 0 n−1
∗ P−1 0

− c3µ1

an∗
· · · · · · − c3µm

an∗
0

(
2 c2+a

)
c2

2an∗


.

(4.4.12)

Note that the asymptotic variance of c is not dependent on the series means but

the asymptotic variance of the estimated means is dependent on c and their own

population value.

Hence, the asymptotic distribution of the maximum likelihood estimates, η̂i, is,

(η̂CAIARMA − ηCAIARMA) ∼ N(0,Var(η̂CAIARMA)).

As an example of this asymptotic result, for a two-series CAIARMA process with

first order autoregressive generating mechanism, the matrix, n−1
∗ P−1 = V C

AIARMA,

from Section 4.3.5 can be substituted into (4.4.12) giving the asymptotic variance
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matrix, 
(
an∗+2n1c2

)
c2µ1

2

(an∗)n1(2 c2+a)
2c4µ1µ2

(an∗)(2 c2+a)
0 − c3µ1

an∗
2c4µ2µ1

(an∗)(2 c2+a)

(
an∗+2n2c2

)
c2µ2

2

(an∗)n2(2 c2+a)
0 − c3µ2

an∗

0 0
(
1−φ2

1

)
n∗

0

− c3µ1

an∗
− c3µ2

an∗
0

(
2 c2+a

)
c2

2an∗

 . (4.4.13)

Note that the asymptotic variance of the ARMA parameter doesn’t depend on c.

In general, for any single-series ARMA, RARMA, AIARMA or CAIRMA process,

the variances of the ARMA parameters don’t depend on the innovations variance

either directly or through c.



Chapter 5

Simulation Studies of the

Estimates

The purpose of this chapter is to explore the finite sample properties of the maxi-

mum likelihood estimators from Chapter 4. The simulation method used to assess

the small sample properties of the unconditional maximum likelihood estimators

(MLEs) is described. This is then applied in the first instance to single-series

ARMA processes (for reference and comparison purposes) and then extended to

RARMA, AIARMA and CAIARMA processes.

5.1 Simulation Design

As with the hypothesis testing in Chapter 3, the simulation design process defined

in Paxton et al. [2001] is followed. The measures to assess the performance of the

maximum likelihood estimator, say, ς̂, of a population parameter, ς, estimated for

a given model and set of series lengths, are:

1. Finite-sample bias, that is, Bias(ς̂) = E (ς̂ − ς). Here the estimated bias is

defined as B̂ias(ς̂) = 1
nsim

nsim∑
j=1

(ς̂j − ς) where ς̂j is the jth simulated estimate

out of nsim simulations.

2. The finite-sample standard error, that is, SE(ς̂) =
√
V ar(ς̂) =

√
E[(ς̂ − E(ς̂))2].

The estimated standard error is defined here as,

97



CHAPTER 5. SIMULATION STUDIES OF THE ESTIMATES 98

ŜE(ς̂) =

√√√√ 1

nsim − 1

nsim∑
j=1

(
ς̂j −

1

nsim

nsim∑
j=1

ς̂j

)2

.

The Mean Square Error (MSE) (that is, E[(ς̂ − ς)2]) will not be addressed as

it can be derived from the combination of bias and standard error.

3. Coverage of the confidence interval which uses the estimated asymptotic stan-

dard errors, that is, P

((
ς̂ − 1.96

√
V̂ ar(ς̂), ς̂ + 1.96

√
V̂ ar(ς̂)

)
3 ς

)
where

V̂ ar(ς̂) is the estimate of the variance of ς̂ derived from the inverse of the

negative of the Hessian matrix of the realised log likelihood function. This

measures the ability of the derived standard errors for each estimator to ac-

curately provide confidence intervals and ultimately to act as inputs to Wald

hypothesis testing. Coverage is estimated using,

1

nsim

nsim∑
i=1

[(
ς̂j − 1.96

√
V̂ ar(ς̂j), ς̂j + 1.96

√
V̂ ar(ς̂j)

)
3 ς

]
,

where “[. . .]” is the Iverson bracket.

For each model this chapter will also report on the alignment of the simulations

with the asymptotic distribution which involves a combined assessment based on

finite sample bias, variance and coverage. Alignment is useful in at least two ways.

Firstly it suggests the use of the asymptotic distribution in understanding the finite

sample properties of the estimates. Secondly it helps validate the conventional

confidence intervals in assessing the variability of the estimates.

The simulations also investigate:

• Stability of the estimation process. The convergence behaviour of the estima-

tion routines is reported for each type of Joint ARMA model. This provides

some indication of the numerical stability of the model fitting.

• Agreement of results with published studies on properties of estimators of

standard single-series ARMA models. This helps verify the simulations on

those models and the extension to other models.

• Intervention ARMA (ARMAX) models as a commonly used extension to stan-

dard ARMA models. This permits the introduction of external explanatory



CHAPTER 5. SIMULATION STUDIES OF THE ESTIMATES 99

variables.

• Models close to the invertibility region (overdifferencing) and stationarity re-

gion (requires differencing). This explores model fitting in circumstances often

encountered in econometrics and other disciplines (for example, see Hamilton

[1994] Chapter 15).

Mis-specified models and non-normal data were not considered as the current work

is focused on the performance of the estimation routines under standard conditions.

5.1.1 Candidate Representative Models

Models were chosen for simulations that most closely resemble those used in practice

or are of most interest to researchers. This is inevitably a judgement decision. The

following processes were deemed the most appropriate from a casual sampling of

the applied literature and from the author’s own experience:

1. The single-series equivalents of Joint ARMA models with the same total series

length. This allowed comparisons between estimation performance for several

series (in the current circumstance, two) and one series of the same total

length as the (two) replicated series.

2. AR(1), MA(1) and ARMA(1,1) processes. These all appear regularly in the

applied literature (see, for example, Jenkins [1979], Alfares and Nazeeruddin

[2002] and Stevenson [2003]), although perhaps ARMA less so.

3. Models with intervention variables representing differences in the series means

from the first series. This is arguably the simplest and most widely used form

of intervention model.

4. Innovations variances which are not equal between series but differ by only

a moderately-sized factor. This is likely to be the case in most practical

circumstances.

Seasonal ARMA models were not included but the results can be easily extended

to these processes.
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Table 5.1 – ARMA Models and Parameters Used in Simulations

Model φ1 θ1 Model φ1 θ1 Model φ1 θ1

1 -0.9 0.0 7 0.0 -0.9 13 -0.4 -0.9
2 -0.5 0.0 8 0.0 -0.5 14 -0.4 -0.5
3 -0.1 0.0 9 0.0 -0.1 15 -0.4 -0.1
4 0.1 0.0 10 0.0 0.1 16 -0.4 0.1
5 0.5 0.0 11 0.0 0.5 17 -0.4 0.5
6 0.9 0.0 12 0.0 0.9 18 -0.4 0.9

5.1.2 Specific Experimental Conditions

The circumstance of having a large number of series, m, but a relatively modest

series length, n, is a common problem with panel data in econometrics and with

longitudinal data in biometrics and this scenario is examined in this thesis at least

asymptotically. There is also a need to investigate the opposite, to examine the

relative efficiency of using a small number of “long” series. It is not immediately

clear whether this is less or more efficient than the reverse. Scenarios are also

examined where the lengths of the replicated series differ. In the current case for

half the scenarios, the second series length is half the first.

5.1.3 Population Parameters

The chosen models include those with AR and MA parameters close to the unit

circle. Also a range of positive and negative AR and MA parameters were selected.

For the ARMA processes, to restrict the number of runs and volume of reporting,

the AR parameter is fixed at -0.4 and the MA parameter is varied (being typically

the more difficult to estimate). The parameters chosen are shown in Table 5.1.

The innovations variances use σ2
ε = 1 for RARMA processes and, for AIARMA,

σ2
ε1

= 1 and σ2
ε2

= 4 . For CAIARMA processes, c = 0.2. Intervention terms

involved are µ1 = 5 (first series mean) and µ2 = 10 (second series mean).

5.1.4 The Simulations

It was decided to run scenarios featuring each of the following attributes:
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Table 5.2 – Sample Sizes Used in the Simulations

n1 n2 n = n1 + n2 Designation

64 32 96 Small
64 64 128 Small
256 128 384 Moderate
256 256 512 Large
1024 512 1536 Large
1024 1024 2048 Large

1. Number of independent series. The simplest scenario of two series is used to

minimise the total number of simulation runs. For 1,000 simulations, the CA-

IARMA runs took just under 19 hours elapsed time on a dedicated Windows

10 PC with an Intel i7 2.1GHz Dual Core processor having 8GB of memory

and using seven parallel processors. The simulation runs for the single-series

ARMA, RARMA and AIARMA models recorded similar execution times.

2. Length of each of the series. This parallels the lengths of the series used in

the hypothesis testing of Section 3. A further set of scenarios is run with

the second series half the length of the first to show how the routines can

handle series of unequal length. The series lengths used in this thesis are

shown in Table 5.2 with a description of the series length, being “Small”, etc.

For ARMA models with only one series, the separate sample sizes are still

relevant reflecting the point of change in series means.

The simulations are undertaken for:

• Unconstrained joint likelihood versus constrained (for stationarity and invert-

ibility) joint likelihood methods versus (unconstrained) interleaved fitting.

The latter isn’t used for the single-series ARMA modelling.

• ARMA v RARMA v AIARMA v CAIARMA models.

• 1,000 simulations to provide a reasonable level of accuracy consistent with

(recent) published studies.
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5.2 Single-Series ARMA Process

Relatively few studies have been published using simulation to understand the

finite sample properties of unconditional maximum likelihood estimators of the

parameters of single-series ARMA processes. The main results are Dent and Min

[1978], Watson and Nicholls [1992], Hauser [1999] and Krone et al. [2017] (AR(1)

only) and align with results of the current simulations. The exploration here will

follow the level of detail used for the RARMA, AIARMA and CAIARMA models

both for comparison and to enhance the existing literature.

5.2.1 Comparison of the Two Estimation Routines

The results for the estimated AR parameter are closely aligned between the con-

strained and unconstrained joint ARMA estimates (not shown but see Figure 5.2.1

for MA(1) results). Note that only two estimation methods are compared here

because, as mentioned previously, interleaving is not required for a single-series

process.

For ARMA models the AR coefficient results for the unconstrained versus con-

strained joint likelihood estimates for the ARMA model with φ1 = −0.4 and

θ1 = −0.5 diverge in a minority of cases (but stay in the stationary region), likely

because of the near cancellation of the factors in B (not shown).

For the MA parameter, the results for the unconstrained method reflect the phe-

nomenon whereby the same likelihood applies for sets of MA parameters equidistant

from the unit circle. It can be readily shown that this circumstance results in the

same autocorrelation function such as in the MA(1) case with θ(B) = (1 + θ1B)

and θ(B) = (1 + θ−1
1 B). As an illustration, Figure 5.2.1 compares the simulation

outcomes for the constrained versus unconstrained methods for θ̂1 from the MA(1)

model with θ1 = 0.5.

The points are designated such that “1” is for n = 64 + 32, “2” for n = 64 + 64,

“3” for n = 256 + 128, “4” for n = 256 + 256, “5” for n = 1, 024 + 512 and “6” for

n = 1, 024 + 1, 024 where n is the total series length being the sum of the length

with the first and second means; the line is a reference 1:1 indicator.

The estimated mean level for the first series, the estimated difference for the

second series and the estimated innovations variance show more alignment between
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Figure 5.2.1 – Comparison of Simulated θ1 Estimates (Single-Series ARMA Models
- MA(1), θ1 = 0.5). Sample size is coded as 1=(64+32) 2=(64+64) 3=(256+128)
4=(256+256) 5=(1,024+512) 6=(1,024+1,024) with a 1:1 reference line.
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the two estimation methods than for the AR or MA parameters (not shown).

In summary, the optimisation routines for the two systems show no substantial

convergence issues. Given the requirement of stationarity and invertibility and the

consistency of the two results, only the second constrained joint likelihood approach

is discussed below.

5.2.2 Bias

The average bias for φ̂1 and θ̂1 from the simulations are shown in Figure 5.2.2. The

x-axis labels indicate the (φ1, θ1) parameterisation and the coding of points follows

Figure 5.2.1.

AR Parameter. For the estimate of the AR parameter, for a pure AR(1) process,

the typically positive bias decreases as the sample size increases and as the auto-

gressive parameter increases from -0.9 to 0.9 (it is zero at approximately φ1 = 0.3).

This is in line with Cordeiro and Klein [1994] where the first order approximation

to the bias is shown to be (1− 3φ1)/n for an AR(1) process with an estimated con-

stant mean. For ARMA processes the typically positive bias in the AR parameter
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estimate is large (up to 0.14) at φ1 = −0.4, θ1 = −0.1 and θ1 = 0.1 and n ≤ 128.

MA Parameter. For the MA(1) parameter estimates, the bias is greatest (neg-

ative) at θ1 = −0.9 where, for small sample sizes, it is -0.07 declining to zero at

θ1 ≈ 0.5. This approximately agrees with Cordeiro and Klein [1994] who show that

the first order approximation to the bias is (2θ1 − 1)/n for an MA(1) process with

a estimated constant mean. The MA result for ARMA processes shows typically

large (∼ ±0.10) biases for small sample sizes ( n ≤ 128).

Other Parameters. There is no apparent bias in the estimated mean for the

first series or the estimated difference for the second series (not shown). This again

reflects the results of Cordeiro and Klein [1994] who derive a first-order zero bias in

this case. The estimate of the innovations variance shows a negative bias (∼ −0.03

for n≤ 128) which declines towards zero as n increases (again not shown in this

thesis).

Figure 5.2.2 – Simulated Bias of MLE Parameter Estimates (Single-Series ARMA
Models - φ̂1 and θ̂1 for AR v MA v ARMA Processes). Sample size is coded as
1=(64+32) 2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024).

(a) φ̂1
ARMA Model − Bias  with # of Sim. = 1000 Method :  2 

 1=(96)  2=(128)  3=(384)  4=(512)  5=(1536)  6=(2048)
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(b) θ̂1
ARMA Model − Bias  with # of Sim. = 1000 Method :  2 

 1=(96)  2=(128)  3=(384)  4=(512)  5=(1536)  6=(2048)
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5.2.3 Standard Error

The simulated standard errors for φ̂1 and θ̂1 from the simulated estimates are pre-

sented in Figure 5.2.3. For a pure AR(1) process the standard error of the AR

parameter estimate is minimised at the extremes of parameter values and is at a

maximum near zero. The standard errors are much higher for the ARMA model

and reach a peak at φ1 = −0.4 and θ1 = −0.5 likely reflecting again the near

cancellation of the AR and MA difference equation factors in B.

The results for the estimated MA parameter are very similar to those for the

AR parameter. The standard errors of the estimated mean level of the first series

and of the difference for the second series decrease with increasing φ1 and increase

with increasing θ1 (not shown). The standard errors of the estimated innovations

variance are approximately constant across all models and parameterisations (again

not shown).

Figure 5.2.3 – Simulated Standard Error of MLE Parameter Estimates (Single-
Series ARMA Models - φ̂1 and θ̂1 for AR v MA v ARMA Processes). Sample
size is coded as 1=(64+32) 2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512)
6=(1,024+1,024).

(a) φ̂1
ARMA Model − Stdev  with # of Sim. = 1000 Method :  2 

 1=(96)  2=(128)  3=(384)  4=(512)  5=(1536)  6=(2048)
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(b) θ̂1
ARMA Model − Stdev  with # of Sim. = 1000 Method :  2 

 1=(96)  2=(128)  3=(384)  4=(512)  5=(1536)  6=(2048)
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5.2.4 Coverage

The coverage for φ̂1 and θ̂1 from the simulations are plotted in Figure 5.2.4. For

the AR parameter in a pure AR process, the coverage is very close to the notional

0.95. However for the mixed process the coverage is typically lower than 0.95 and

drops to between 0.85 to 0.5 for φ1 = −0.4 and θ1 = −0.5 for even large sample

sizes of n = 1536. For the MA(1) θ1 parameter, coverage is typically below 0.95

sometimes substantially below. At θ1 = −0.9 the coverage drops to approximately

0.25 for sample sizes below 128. This also happens for the mixed model.

The coverage of the estimated mean of the first series and for the difference for

the second series (not shown) is close to 0.95 except for a substantial shortfall for

n ≤ 512 for φ1 ≤ −0.5 and θ1 ≤ −0.5. The coverage of the estimated innovations

variance confidence intervals are typically between 0.90 and 0.95 except for small

samples.

These results suggest that the empirical confidence intervals for maximum like-

lihood estimates for AR, MA and ARMA models are generally accurate.

Figure 5.2.4 – Simulated Coverage of MLE Parameter Estimates (Single-Series
ARMA Models - φ̂1 and θ̂1 for AR v MA v ARMA Processes). Sample size is coded as
1=(64+32) 2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024).
The horizontal reference line shows the 95% nominal value.

(a) φ̂1
ARMA Model − Coverage  with # of Sim. = 1000 Method :  2 
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5.2.5 Alignment to Asymptotic Distribution

Across all parameters, the standard errors from simulation (see Figure 5.2.3 and

Section 4.1.3) generally agree with the asymptotic results (not shown) albeit having

a slightly higher value (as expected). On a proportional basis the asymptotic stan-

dard errors are typically within 10% of the simulated values except for simulations

at small to moderate sample sizes (≤ 384) with large positive and negative AR and

MA coefficients and for ARMA models with factors in B that nearly cancel.

Given the reduction in bias with sample size, the agreement with the asymptotic

standard errors and the reasonably accurate coverage, it is concluded that the

asymptotic distribution can be assumed to be applicable for moderate to large

samples for single-series ARMA processes. Moreover this further suggests that the

Hessian-based empirical confidence intervals are reliable.

5.2.6 Conclusions

These results for the single-series ARMAmodels suggest that, except for parameters

near the unit circle and those with nearly cancelling factors in B, the MLEs are

“well-behaved” reflecting relatively low bias, stable standard errors and accurate

empirical confidence intervals. The constrained likelihood approach showed the

most stable MLE values.

5.3 RARMA Processes

As with single-series ARMA modelling, the following comments refer to the typical

estimator performance measures, being bias, standard error, coverage and align-

ment to the asymptotic distribution. The discussion begins with the stability of

the optimisation process from the three estimation methods including the interleav-

ing method.

5.3.1 Comparison of the Three Estimation Routines

For the AR parameter, the outcomes from the three estimation systems are very

similar for AR and ARMA processes and are typically closely aligned. There is
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some variation between the three estimation systems when the AR and MA factors

in B almost cancel. For the MA parameter, results were similar to those for single-

series ARMA processes whereby the same likelihood is realised for MA parameters

equidistant from the unit circle.

Figure 5.3.1 compares the three estimation results for θ̂1 using the MA(1) model

with θ1 = 0.5 where the line is a reference 1:1 indicator. The points are coded as

used previously, that is, the codes indicated the series lengths but, in this case, for

the first versus second series. This point designation applies also for the AIARMA

and CAIARMA results to come (see Sections 5.4.1 and 5.5.1).

The estimated mean level for the first series and the estimated difference for the

second are more stable than for the ARMA coefficients. The estimated innovations

variance varies for a substantial number of runs when the parameters are close to

the unit circle or the factors for the AR and MA difference equations in B are close

to cancelling. The optimisation routines for all three systems for “well-behaved”

parameterisations shows no substantial convergence issues.

Given the consistency of the three results and the requirement to ensure sta-

tionarity and invertibility, the constrained joint likelihood approach is chosen for

reporting the simulation analysis.

5.3.2 Bias

The mean bias for φ̂1 and θ̂1 for the simulations undertaken in this thesis are shown

in Figure 5.3.2 by process, parameterisation and sample size. The x-axis labels

indicate the (φ1, θ1) parameterisation as with the single-series ARMA plots.

For the AR parameter, the results are very similar to those from the single-series

modelling (see Figure 5.2.2a) with the largest (positive) bias for AR(1) processes

at φ1 = −0.9, and for ARMA(1,1) processes, at φ1 = −0.4 and θ1 = −0.1. For the

MA parameter, again the results are very close to those from single-series modelling

(see Figure 5.2.2b) reflecting a typically negative bias for the MA(1) process and

showing maximum bias for small total samples (≤ 128) at θ1 = −0.9 and at (φ1 =

−0.4, θ1 ≤ −0.1).

There is no apparent bias in the estimated mean for the first series or the

difference for the second (not shown). The estimate of the innovations variance
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Figure 5.3.1 – Comparison of Simulated θ1 Estimates (RARMA Models - MA(1),
θ1 = 0.5). Sample size is coded as 1=(64+32) 2=(64+64) 3=(256+128) 4=(256+256)
5=(1,024+512) 6=(1,024+1,024) with 1:1 reference line.

(a) Unconstrained versus Constrained Joint
Likelihood
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(also not shown) exhibits a small negative bias (-0.08) which declines towards zero

as n increases.

Figure 5.3.2 – Simulated Bias of MLE Parameter Estimates (RARMA Models -
φ̂1 and θ̂1 for AR v MA v ARMA Processes). Sample size is coded as 1=(64+32)
2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024).

(a) φ̂1
RARMA Model − Bias  with # of Sim. = 1000 Method :  2 

 1=(64,32)  2=(64,64)  3=(256,128)  4=(256,256)  5=(1024,512)  6=(1024,1024)
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(b) θ̂1
RARMA Model − Bias  with # of Sim. = 1000 Method :  2 
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5.3.3 Standard Error

The standard errors for the simulations are presented in Figure 5.3.3 for φ̂1 and θ̂1.

The results for the AR parameter are again very similar to those for single-series

models as suggested by the alignment of the asymptotic standard errors (that is,

comparing the analytical results from Sections 4.1.3 and 4.2.4). For a pure AR(1)

process the standard error of the AR parameter estimate is at a minimum at the

extremes of parameter values and is at a maximum near zero. The standard errors

are much higher for the ARMA model and reach a peak at φ1 = −0.4 and θ1 = −0.5

likely reflecting again the near cancellation of the AR and MA factors in B.

The results for the MA parameter are similar to those for the AR parameter

and very similar to those for the single-series modelling.

The standard errors of the estimated mean level of the first series and for the
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difference for the second series are very close to those for single-series models (not

shown). The standard errors of the estimated innovations variance are consistent

with those for the single-series models and are approximately constant across all

models and parameterisations again as suggested by the asymptotic variances.

Figure 5.3.3 – Simulated Standard Error of MLE Parameter Estimates (RARMA
Models - φ̂1 and θ̂1 for AR v MA v ARMA Processes). Sample size is coded as
1=(64+32) 2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024).

(a) φ̂1
RARMA Model − Stdev  with # of Sim. = 1000 Method :  2 
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(b) θ̂1
RARMA Model − Stdev  with # of Sim. = 1000 Method :  2 
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5.3.4 Coverage

The average coverage from the simulations for 95% confidence intervals for φ̂1 and

θ̂1 are plotted in Figure 5.3.4. The outcome for the AR parameter closely follows

the single-series results where the coverage is close to 0.95 except for the almost

cancelling factors in B. For the MA parameter, the result is also close to that for

the single-series models with coverage substantially below 0.95 for large negative θ1

in the MA(1) and ARMA(1,1) processes.

The coverage of the estimated mean of the first series and of the estimated

difference for the second series (not shown) is typically marginally below 95% with

more substantial reductions for small samples at φ1 = −0.9 and θ1 = −0.9 for AR(1)
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and MA(1) processes and for ARMA(1,1) processes at φ1 = −0.4 and θ1 = −0.5 or

−0.9.

The above suggest that the unconditional maximum likelihood confidence inter-

vals for RARMA processes are reasonably accurate for moderate to large sample

sizes (n > 128. See Table 5.2 for sample size classifications).

Figure 5.3.4 – Simulated Coverage of MLE Parameter Estimate (RARMA Models
- φ̂1 and θ̂1 for AR v MA v ARMA Processes). Sample size is coded as 1=(64+32)
2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024). The hori-
zontal reference line shows the 95% nominal value.

(a) φ̂1
RARMA Model − Coverage  with # of Sim. = 1000 Method :  2 
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(b) θ̂1
RARMA Model − Coverage  with # of Sim. = 1000 Method :  2 
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5.3.5 Alignment to Asymptotic Distribution

As with the single-series results, on a proportional basis the asymptotic standard

errors are typically within 0.10 of the simulated values (not shown) except for small

sample sizes, for large negative AR coefficients (−0.9) and for ARMA models with

nearly cancelling factors in B. Again as with single-series processes, the finite sample

bias in the maximum likelihood estimates appear to converge to zero as n → ∞
(though it is not clear what type of convergence is reflected here) and the empirical

confidence intervals and asymptotic standard errors are accurate for finite samples.



CHAPTER 5. SIMULATION STUDIES OF THE ESTIMATES 113

Hence it is concluded that the asymptotic distribution of the RARMA esti-

mates can be used as a reliable indication of estimate behaviour for moderate to

large sample behaviour. Moreover, as with single-series ARMA MLEs, this further

suggests that the Hessian-based empirical confidence intervals are reliable.

5.3.6 Comparative Efficiency of Joint versus Single-Series

Estimation

A question of some interest is whether multiple stationary and invertible series

result in joint unconditional maximum likelihood estimates which have similar finite

sample standard errors to those from one series of the same total length and same

generating mechanism.

Figure 5.3.5 shows the ratios of the simulation standard errors for φ̂1 and θ̂1

from Figures 5.2.3 and 5.3.3, that is, from one ARMA process versus two ARMA

processes with the same generating mechanism and the same total length. There is

no clear trend away from unity and this is also reflected in similar plots (not shown)

for the variance of the estimated mean of the first series, the difference in mean

for the second and the innovations variance. The asymptotic standard errors (see

(4.1.7) and (4.2.8)) suggest a similar outcome (for two or more component series).

The Interleaving Theorem (see Section 2.3.1) states that multiple independent

(stationary and invertible) series with the same generating mechanism can be rep-

resented by one (stationary and invertible) series with certain ARMA parameters

set to zero and a length equal to the total length of all of the original replicated

series. This further suggests that the unconditional maximum likelihood estimates

of the parameters of the single ARMA and the RARMA process can be considered

equivalent in efficiency for the same total series length.

Hence the simulation outcomes, the Interleaving Theorem and the asymptotic

results all lead to the same conclusion. The joint use of many series from the same

stationary and invertible process versus one series of equivalent total length with the

same generating mechanism results in unconditional maximum likelihood parameter

estimates with equivalent sampling properties, at least for moderate series lengths.
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Figure 5.3.5 – Ratio of Simulated Standard Errors of Unconditional Maximum
Likelihood Estimates of Two RARMA Processes to a Single-Series ARMA Process
(φ̂1 and θ̂1 for AR v MA v ARMA Processes). Sample size is coded as 1=(64+32)
2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024).

(a) φ̂1
RARMA Model v ARMA − Stdev  with # of Sim. = 1000 Method :  2 
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(b) θ̂1
RARMA Model v ARMA − Stdev  with # of Sim. = 1000 Method :  2 
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5.3.7 Conclusions

As argued in Section 5.2.6 for single-series ARMA models, these simulation results

for the RARMA models suggest that, except when ARMA coefficients are near the

unit circle or reflect nearly cancelling factors in B, the MLE’s are “well-behaved”

reflecting acceptable bias, stable standard errors and accurate empirical confidence

intervals. The constrained joint likelihood approach derives the most stable MLE

values. Finally for the same underlying process the joint use of multiple series versus

analysis with one series of the same total length produces maximum likelihood

estimates with very similar properties.

5.4 AIARMA Processes

As with the ARMA and RARMA modelling, the following comments refer to the

estimator performance measures listed in Section 5.1, being bias, standard error,

coverage and alignment to the asymptotic distribution as well as the stability of
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the optimisation process with a comparison of the three estimation methods. The

parameters whose results are plotted are the AR and MA coefficients and the differ-

ence between the innovations variance for the first and second series. The estimate

of the difference between the innovations variances is designated ∆̂σ2 = ̂σ2
ε2
− σ2

ε1
.

5.4.1 Comparison of the Three Estimation Routines

There is a confluence of results between the three estimation systems except at

the extremes of the MA parameterisation and where the AR and MA factors in B

almost cancel. Also again there is evidence that the same likelihood is realised for

MA parameters equidistant from the unit circle. As an illustration, Figure 5.4.1

compares the three estimation results for θ̂1 using the MA(1) model with θ1 = 0.5.

Again the optimisation routines for all three systems for “well-behaved” param-

eterisations show convergence issues for only a small fraction of the runs. The

constrained joint likelihood approach is chosen for the reporting the AIARMA sim-

ulations.

5.4.2 Bias

The mean bias for φ̂1, θ̂1 and ∆̂σ2 from the AIARMA simulations are shown in

Figure 5.4.2 by process, sample size and parameterisation. For the AR parameter

for the AR(1) model, bias decreases from ∼ 0.06 at φ1 = −0.9 at low sample sizes

through zero at φ1 ≈ 0.5 closely mirroring the RARMA and single-series ARMA

results.

The estimated MA parameter follows a similar pattern again as with the single-

series ARMA and RARMA modelling.

There is no apparent bias in the estimated mean for the first series or the

difference for the second (not shown). The estimates of the innovations variances

show a negative bias which declines to zero as n increases. Again this follows

the previous model results. The bias in the difference in innovations variance (see

Figure 5.4.2c) is typically modestly negative for most generating processes (bias is

less than −0.1 for n1+n2 > 384) and decreases rapidly with increasing sample size.
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Figure 5.4.1 – Comparison of Simulated θ1 Estimates (AIARMA Models - MA(1),
θ1 = 0.5). Sample size is coded as 1=(64+32) 2=(64+64) 3=(256+128) 4=(256+256)
5=(1,024+512) 6=(1,024+1,024) with 1:1 reference line.

(a) Unconstrained versus Constrained Joint
Likelihood
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Figure 5.4.2 – Simulated Bias of MLE Parameter Estimates (AIARMA Models - φ̂1,

θ̂1 and ∆̂σ2 for AR v MA v ARMA Processes). Sample size is coded as 1=(64+32)
2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024).

(a) φ̂1
AIARMA Model − Bias  with # of Sim. = 1000 Method :  2 
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(b) θ̂1
AIARMA Model − Bias  with # of Sim. = 1000 Method :  2 
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(c) ∆̂σ2AIARMA Model − Bias  with # of Sim. = 1000 Method :  2 
 1=(64,32)  2=(64,64)  3=(256,128)  4=(256,256)  5=(1024,512)  6=(1024,1024)
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5.4.3 Standard Error

The standard errors for the simulations are presented in Figure 5.4.3 for φ̂1, θ̂1 and

∆̂σ2.

The standard errors of the estimated AR and MA parameters align closely to the

standard errors from the RARMA and single-series ARMA models. The standard

errors of the differences in the innovations variances are relatively constant across

ARMA models and parametrisations.

5.4.4 Coverage

The average coverage for φ̂1, θ̂1 and ∆̂σ2 from the simulations for 95% confidence

intervals are plotted in Figure 5.4.4. The AR and MA parameter results follow the

coverage for the RARMA and single series ARMA models with substantial lack of

coverage when θ1 = −0.9 and when the factors in B almost cancel. The coverage

for the estimated difference between the innovations variances are typically close to

95% except for n1 = 64 and n2 = 32 where it is closer to 90%.

The coverage of the estimated mean of the first series and of the estimated dif-

ference for the second series is typically marginally below 95% (as with the RARMA

and single-series ARMA processes) with more substantial reductions for small sam-

ples at θ1 = −0.9 for AR processes and for ARMA processes at φ1 = −0.4 and

θ1 = −0.5 (not shown).

5.4.5 Alignment to Asymptotic Distribution

From the asymptotic variances of the estimated innovations variance in Section

4.3.4, the asymptotic variance of the estimated difference between the second and

first innovations variances, ∆̂σ2, is readily derived as,

Var
(
∆̂σ2

)
=

2σ4
ε2

n2

+
2σ4

ε1

n1

.

This is used as the asymptotic reference value to compare to the simulation results

plotted in Figure 5.4.3c.

As with the RARMA and single-series ARMA results, on a proportional basis,
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Figure 5.4.3 – Simulated Standard Error of MLE Parameter Estimates (AIARMA

Models - φ̂1, θ̂1 and ∆̂σ2 for AR v MA v ARMA Processes). Sample size is coded as
1=(64+32) 2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024).

(a) φ̂1
AIARMA Model − Stdev  with # of Sim. = 1000 Method :  2 
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(b) θ̂1
AIARMA Model − Stdev  with # of Sim. = 1000 Method :  2 
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(c) ∆̂σ2AIARMA Model − Stdev  with # of Sim. = 1000 Method :  2 
 1=(64,32)  2=(64,64)  3=(256,128)  4=(256,256)  5=(1024,512)  6=(1024,1024)
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Figure 5.4.4 – Simulated Coverage of MLE Parameter Estimates (AIARMA Mod-

els - φ̂1, θ̂1 and ∆̂σ2 for AR v MA v ARMA Processes). Sample size is coded as
1=(64+32) 2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024).
The horizontal reference line shows the 95% nominal value.

(a) φ̂1
AIARMA Model − Coverage  with # of Sim. = 1000 Method :  2 
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(b) θ̂1
AIARMA Model − Coverage  with # of Sim. = 1000 Method :  2 
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the asymptotic standard errors are typically within 0.10 of the simulated values

except at small sample sizes, that is, n1 + n2 ≤ 128, for large AR and MA coeffi-

cients (±0.9) and for ARMA models with nearly cancelling factors in B. Again as

with RARMA and single-series ARMA processes, AIARMA maximum likelihood

estimates appear to approach their population values, have variance similar to their

asymptotic values and have accurate empirical confidence intervals.

The asymptotic distribution therefore can be used as a reliable indicator of

finite moderate to large sample behaviour. Similarly the empirical Hessian-based

confidence intervals are also reliable.

5.4.6 Conclusions

As argued for RARMA and single-series ARMA models, these simulation results

for the AIARMA models suggest that, except when ARMA coefficients are near the

unit circle or reflect nearly cancelling factors in B, the MLE’s are “well-behaved”

showing only moderate bias, stable standard errors and representative empirical

confidence intervals. Furthermore the empirical Hessian-based confidence intervals

can be used with confidence and the constrained joint likelihood approach again

produced the most stable MLE values.

As with the RARMA analysis, the simulation results (comparing Figures 5.2.3

and 5.4.3) and the asymptotic outcomes (see Section 4.3.4) suggest that AIARMA

versus single-series ARMA processes of the same total length produce (for shared

parameters and with the same underlying ARMA filter) maximum likelihood esti-

mates with very similar sampling properties, at least for moderate series lengths.

5.5 CAIARMA Processes

As with ARMA, RARMA and AIARMA modelling, the following comments refer

to the typical estimator performance measures, being bias, standard error, cover-

age and alignment to the asymptotic distribution as well as the stability of the

optimisation process with a comparison of the three estimation methods.
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5.5.1 Comparison of the Three Estimation Routines

The CAIARMA results generally reflect those for the RARMA, AIARMA and

single-series ARMA processes. There is a confluence of outcomes between uncon-

strained and constrained joint likelihood and interleaved methods except at the

extremes of the MA parameterisation and where the AR and MA factors in B al-

most cancel. Also the same likelihood is reflected for MA parameters equidistant

from the unit circle. As an illustration, Figure 5.5.1 compares the results for θ̂1

from the MA(1) process with θ1 = 0.5 where the line is a reference 1:1 indicator.

The optimisation routines show some convergence issues for the interleaving

method. Given that the constrained joint likelihood approach has no such con-

vergence issues, again it is chosen for the reporting the CAIARMA simulations.

5.5.2 Bias

The mean bias for φ̂1, θ̂1 and ĉ from the simulations are shown in Figure 5.5.2 by

process, sample size and parameterisation. Overall the bias results are very similar

to those for φ̂1, θ̂1, µ̂1 and 4̂µ = ̂(µ2 − µ1) for single-series ARMA, RARMA and

AIARMA modelling (the results for the latter two estimated parameters are not

shown). For ĉ, for small sample sizes (n1 + n2 ≤ 128) there is a small negative bias

of up to −0.01.

5.5.3 Standard Error

The standard errors for the simulations are presented in Figure 5.5.3 for φ̂1, θ̂1

and ĉ. For φ̂1 and θ̂1 the results closely follow those for RARMA, AIARMA and

single-series ARMA processes. The standard errors of the estimated c parameter

are relatively constant by sample size but show a larger value for the AR(1) process

at φ1 = −0.9.

5.5.4 Coverage

The average coverage for φ̂1, θ̂1 and ĉ from the simulations for 95% confidence

intervals are plotted in Figures 5.5.4. The coverage outcome is aligned with those
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Figure 5.5.1 – Comparison of Simulated θ1 Estimates (CAIARMA Models - MA(1),
θ1 = 0.5). Sample size is coded as 1=(64+32) 2=(64+64) 3=(256+128) 4=(256+256)
5=(1,024+512) 6=(1,024+1,024) with 1:1 reference line.

(a) Unconstrained versus Constrained Joint
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Figure 5.5.2 – Simulated Bias of MLE Parameter Estimates (CAIARMA Models -
φ̂1, θ̂1 and ĉ for AR v MA v ARMA Processes). Sample size is coded as 1=(64+32)
2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024).

(a) φ̂1
CAIARMA Model − Bias  with # of Sim. = 1000 Method :  2 

 1=(64,32)  2=(64,64)  3=(256,128)  4=(256,256)  5=(1024,512)  6=(1024,1024)
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(b) θ̂1
CAIARMA Model − Bias  with # of Sim. = 1000 Method :  2 

 1=(64,32)  2=(64,64)  3=(256,128)  4=(256,256)  5=(1024,512)  6=(1024,1024)

B
ia

s
2

2
2 2

2 2

2
2

2
2

2 2
4 4 4 4 4 4

4 4
4

4 4 4

−
0.

9,
 0

.0

−
0.

5,
 0

.0

−
0.

1,
 0

.0

0.
1,

 0
.0

0.
5,

 0
.0

0.
9,

 0
.0

0.
0,

 −
0.

9

0.
0,

 −
0.

5

0.
0,

 −
0.

1

0.
0,

 0
.1

0.
0,

 0
.5

0.
0,

 0
.9

−
0.

4,
 −

0.
9

−
0.

4,
 −

0.
5

−
0.

4,
 −

0.
1

−
0.

4,
 0

.1

−
0.

4,
 0

.5

−
0.

4,
 0

.9

φ1, θ1

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

6 6 6 6 6 6 6 6 6 6 6 6

−
0.

9,
 0

.0

−
0.

5,
 0

.0

−
0.

1,
 0

.0

0.
1,

 0
.0

0.
5,

 0
.0

0.
9,

 0
.0

0.
0,

 −
0.

9

0.
0,

 −
0.

5

0.
0,

 −
0.

1

0.
0,

 0
.1

0.
0,

 0
.5

0.
0,

 0
.9

−
0.

4,
 −

0.
9

−
0.

4,
 −

0.
5

−
0.

4,
 −

0.
1

−
0.

4,
 0

.1

−
0.

4,
 0

.5

−
0.

4,
 0

.9

φ1, θ1

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

1
1

1 1 1
1

1
1

1

1

1 1

−
0.

9,
 0

.0

−
0.

5,
 0

.0

−
0.

1,
 0

.0

0.
1,

 0
.0

0.
5,

 0
.0

0.
9,

 0
.0

0.
0,

 −
0.

9

0.
0,

 −
0.

5

0.
0,

 −
0.

1

0.
0,

 0
.1

0.
0,

 0
.5

0.
0,

 0
.9

−
0.

4,
 −

0.
9

−
0.

4,
 −

0.
5

−
0.

4,
 −

0.
1

−
0.

4,
 0

.1

−
0.

4,
 0

.5

−
0.

4,
 0

.9

φ1, θ1

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

3 3 3 3 3 3
3 3

3
3 3 3

−
0.

9,
 0

.0

−
0.

5,
 0

.0

−
0.

1,
 0

.0

0.
1,

 0
.0

0.
5,

 0
.0

0.
9,

 0
.0

0.
0,

 −
0.

9

0.
0,

 −
0.

5

0.
0,

 −
0.

1

0.
0,

 0
.1

0.
0,

 0
.5

0.
0,

 0
.9

−
0.

4,
 −

0.
9

−
0.

4,
 −

0.
5

−
0.

4,
 −

0.
1

−
0.

4,
 0

.1

−
0.

4,
 0

.5

−
0.

4,
 0

.9

φ1, θ1

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

5 5 5 5 5 5 5 5 5 5 5 5

−
0.

9,
 0

.0

−
0.

5,
 0

.0

−
0.

1,
 0

.0

0.
1,

 0
.0

0.
5,

 0
.0

0.
9,

 0
.0

0.
0,

 −
0.

9

0.
0,

 −
0.

5

0.
0,

 −
0.

1

0.
0,

 0
.1

0.
0,

 0
.5

0.
0,

 0
.9

−
0.

4,
 −

0.
9

−
0.

4,
 −

0.
5

−
0.

4,
 −

0.
1

−
0.

4,
 0

.1

−
0.

4,
 0

.5

−
0.

4,
 0

.9

φ1, θ1

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

(c) ĉCAIARMA Model − Bias  with # of Sim. = 1000 Method :  2 
 1=(64,32)  2=(64,64)  3=(256,128)  4=(256,256)  5=(1024,512)  6=(1024,1024)
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Figure 5.5.3 – Simulated Standard Error of MLE Parameter Estimates (CAIARMA
Models - φ̂1, θ̂1 and ĉ for AR v MA v ARMA Processes). Sample size is coded as
1=(64+32) 2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024).

(a) φ̂1
CAIARMA Model − Stdev  with # of Sim. = 1000 Method :  2 
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(b) θ̂1
CAIARMA Model − Stdev  with # of Sim. = 1000 Method :  2 
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reported previously in this thesis. For ĉ, coverage is typically over 90% except when

n1 + n2 ≤ 128 where it drops to 86%.

5.5.5 Alignment to Asymptotic Distribution

The standard errors from the simulations are close to the asymptotic results for

all parameters for most models (not shown). The only circumstances where there

is substantial deviation is where the AR and MA factors in B almost cancel with

n1 + n2 ≤ 128, and where |θ1| and |φ1| are close to 0.9. As expected the simulated

standard errors appear to converge to the asymtotic results as n → ∞. Also there

is some deviation for ĉ for MA processes but this reflects issues with convergence

of the θ1 estimates.

Given the results on bias, coverage and asymptotic variance, the asymptotic

distribution of the MLE CAIARMA estimates appear to be an accurate approx-

imation, at least for sample sizes above 128. This also suggests that for most

purposes the empirical Hessian-derived empirical confidence intervals are reliable.

5.5.6 Conclusions

The asymptotic distribution of the MLE CAIARMA estimates appear to be a close

approximation for moderate to large samples and the empirical Hessian-derived

empirical confidence intervals can be used with confidence. Moreover as with the

single-series ARMA, RARMA and AIARMA modelling, the constrained joint like-

lihood approach result in the most stable MLE values.

As with the RARMA and AIARMA modelling, for shared parameters and with

the same underlying ARMA filter, the simulation results (comparing Figures 5.2.3

and 5.5.3) and the asymptotic outcomes (see Section 4.4.4) suggest that CAIARMA

versus single-series ARMA processes of the same total length produce maximum

likelihood estimates with very similar sampling properties, at least for moderate to

large series lengths.
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Figure 5.5.4 – Simulated Coverage of MLE Parameter Estimates (CAIARMA Mod-
els - φ̂1, θ̂1 and ĉ for AR v MA v ARMA Processes). Sample size is coded as
1=(64+32) 2=(64+64) 3=(256+128) 4=(256+256) 5=(1,024+512) 6=(1,024+1,024).
The horizontal reference line shows the 95% nominal value.

(a) φ̂1
CAIARMA Model − Coverage  with # of Sim. = 1000 Method :  2 
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(b) θ̂1
CAIARMA Model − Coverage  with # of Sim. = 1000 Method :  2 
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(c) ĉCAIARMA Model − Coverage  with # of Sim. = 1000 Method :  2 
 1=(64,32)  2=(64,64)  3=(256,128)  4=(256,256)  5=(1024,512)  6=(1024,1024)
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Chapter 6

Application to Daily Maximum

Temperatures

This chapter contains the paper by Bowden and Clarke [2012] from the Journal of

Time Series Analysis co-authored by the author of this thesis and his supervisor,

Dr Brenton Clarke. It introduced the Univariate Interleaving Theorem (from Sec-

tion 2.3.1) and applied it to daily maximum temperature data for Perth, Western

Australia. The paper uses interleaving to capture the effect of climate and location

change on over sixty years of temperature readings by week-in-the-year. It also

illustrates the shortcomings of alternative methods of modelling replicated time se-

ries. Note that the paper shown here incorporates a slight correction to the original

(see the strike out on the second page). Also this paper uses {xt} to refer to the

original series and {yt} for the interleaved series whereas this thesis uses a reversed

designation.
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A single series representation of multiple
independent ARMA processes
Ross S. Bowdena and Brenton R. Clarkea,*,†

This article shows that multiple independent time series from the same ARMA process can be represented by a
single univariate ARMA time series through an interleaving of the original series. Using this result, existing
univariate modelling software can be used to fit a single ARMA time series model simultaneously to multiple
independent realizations of the same ARMA process. The interleaving approach and its properties will be presented
and compared with alternative estimation options. It will be applied to the modelling of 66 years of daily maximum
temperatures for Perth, Western Australia and to other time series models.

Keywords: Univariate ARMA; interleaving; simultaneous estimation; multiple time series.

1. INTRODUCTION

In analysing ARMA time series, it is typically assumed that only one realization is available for model fitting (see Anderson, 1976, p. 1).
However, there are many circumstances where multiple realizations of the same ARMA process are available. Examples can be found
in recordings from replicated experiments on evolving chemical processes, repeated measures on individuals recorded at fixed time
intervals, daily weather data for the same season over many years and annual economic growth rates for various industry sectors
over several years. A common ARMA generating mechanism is likely to apply to each realization (possibly differing in mean level)
with one model to be fitted to all realizations simultaneously.

Repeated series realizations present particular issues with ARMA model fitting. Standard time series software only allows for one
realization of the process (see PROC ARIMA in SAS/ETS (SAS, 2004), function ‘arima’ in R’s ‘stats’ package (R Development Core Team,
2010) and the ‘Forecasting’ module in SPSS (SPSS, 2008)). There are a number of alternative fitting options that could be applied
including concatenation of the series end-to-end, representation as a multiple time series (vector ARMA) process, and averaging
across each time index. As discussed in Section 3.2, these typically involve either less than fully efficient estimation, result in biased
estimation or require parameter constraints that are not commonly available in current software.

To permit fully efficient estimation, the ‘interleaving method’ is introduced. This is based on an equivalent representation of
multiple independent (identical) ARMA processes as a single univariate ARMA process. It uses readily available software (as in R and
SAS) and makes full provision for the data in all the series. It can be immediately extended to fitting one model to repeated
realisations of multiple ARMA processes. It can also incorporate intervention and other extraneous variables to model the level of the
replicated series, within and between series.

This article reviews the literature on simultaneous ARMA time series estimation in Section 2. In Section 3, the interleaving method
will be presented and compared to other estimation options. In Section 4 the method will be applied to 66 years of daily maximum
temperature readings which will be represented using AR(2) models applied separately to each week in the year. The article
concludes in Section 5 with comments on extending the method to other time series models.

2. REVIEW OF THE LITERATURE

There is a relative dearth of literature on fitting a single time series model to multiple realizations of the same ARMA process and the
articles reviewed here are from a wide variety of sources.

An original reference on simultaneous estimation in a repeated measures environment is Yates (1960). He presents a correction for
first order autocorrelation in the analysis of repeated measures in sample surveys and this is further explored in Scott and Smith
(1974).

Anderson (1978) considered the case of first-order vector AR models where the available time series are short in length but have
multiple realizations. Maximum likelihood parameter estimates are derived where the parameters are either constant over time or
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allowed to vary by time interval and by process (i.e. treatment). The latter makes use of the multiple observations on each time
interval.

Azzalini (1981) examines the fitting of a single model to replicated series from an autoregressive process of order one or two. The
emphasis is on asymptotic efficiency where the number of replications (as opposed to the length of each series) tends to infinity. The
conditional and unconditional maximum likelihood results are derived and compared. The later are shown to be a substantially
superior result especially near the stationarity boundary. Azzalini (1984) enhances the modelling to incorporate what is effectively
‘measurement-with-error’ modelling in a random-effects two-way ANOVA setting. The results are applied to the plasma citrate
concentration of n ¼ 10 subjects measured at 14 equal time points to detect changes in the plasma readings during the day.

Wong et al. (2002) in an extension of Wong and Miller (1990) model repeated realisations of ARMA processes where the error
variance and the number of realizations are allowed to vary over time. Also each repeated realization is assumed to be a combination
of a underlying ARIMA process and an additional independent error term (ARIMAN process).1 The model differs from those
considered in this article because (i) the current models do not employ the additional noise term and (ii) Wong et al. (2002) constrain
the underlying ARIMA process (i.e. without noise) to not only have the same parameters but the same underlying ARIMA realization.
Without this constraint the model with noise wouldn’t be identifiable from the autocorrelation function. Wong et al. (2002) fit the
ARIMAN model using maximum likelihood in a state space representation.

Based on extensions of repeated measures models, Diggle et al. (2002) looked at the consequences of autocorrelation amongst the
errors of these processes but limited their analysis to AR(1) models which are fitted using least squares. Shi and Chaganty (2004) in a
similar context compare maximum likelihood, Yule–Walker and quasi-least squares estimates for autoregressive models for errors
within regression models. Browne and Zhang (2007) discuss fitting modified univariate AR models of order p to observations taken
over time on a number of individuals. An independent error term for each observation on each individual is added to the standard
AR model which also incorporates an initialization of the process for the first p observations using a so-called initial state vector.
If specified a priori, this effectively transforms the system into a conditional model. A comparison of the maximum likelihood fit of
conditional and unconditional models in the context of differences between individuals indicates that the later is a superior result.

Peiris et al. (2003) working with short time series of medical observations on individuals discuss the maximum likelihood fit to a
replicated AR(1) process, each realization being of equal length but incorporating random contamination. They derive the
conditional and exact likelihood function for the AR(1) plus error term model and run a simulation study to assess bias and efficiency.
They conclude that the conditional and exact maximum likelihood estimates are unbiased. However it is likely that the results are
only asymptotically unbiased given the large sample size (n ¼ 100) and the fact that it is well-known that maximum likelihood
parameter estimates for AR models are (substantially) biased for even moderate sample sizes (see Shaman and Stine (1988)).

Quinn (2006) discusses the maximum likelihood estimation of common AR models in the context of testing for spectrum change.
Quinn’s approach differs from the models in the current article because Quinn allows the innovations variance to vary between the
series. This suggests an area of further research, into the unconditional likelihood of a replicated ARIMA process.

For additional references on replicated time series, see also Ledolter and Chang-Soo (1993), Nandram and Petruccelli (1997) and
Cipra (1999) who adopt a Bayesian approach to fitting first order autoregressive models to replicated series.

3. PARAMETER ESTIMATION

Here, we shall establish a univariate representation of multiple independent ARMA processes. This method is more convenient for
model fitting and is compared to alternative model fitting approaches.

3.1. Interleaving method

Let the ith repeated series (i ¼ 1, . . . ,m) over the time span, t ¼ 1, . . . ,n, be fxi;tgn
t¼1 and assume each series is generated by the

following ARMAX(p, q) process,

/ðBÞðxi;t � lðzi;tÞÞ ¼ hðBÞai;t; ð1Þ

where fai;tgn
i¼1 is a series of i.i.d. random errors with constant variance, r2

a, E(ai,t) ¼ 0 for all i and t, E(ai, taj,u) ¼ 0 for all t, u and i 6¼ j
and E(ai,t ai,u) ¼ 0 for all i and t 6¼ u. Also /(B) and h(B) are polynomials in B, the backshift operator, of order p and q, respectively, and

lðzi;tÞ ¼ Eðxi;t j zi;tÞ ¼
Xl

k¼1

wk zk;i;t;

where fzi;tgn
t¼1, i ¼ 1, . . . ,m, are m series of explanatory vectors with kth element, zk,i,t.

We will call this a RARMA (replicated ARMA) process i.e. RARMA(p,q,m). It has a mean which can vary with the series realization but
otherwise maintains a consistent generating process between realizations. In fact in general the mean can be any linear combination
of the extraneous vector variables, zi,t.

We now state and prove a theorem of equivalence between multiple and univariate representations of this process.
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THEOREM 1. Let xi,t be generated by the above RARMA(p,q,m) process, and let,

ymðt�1Þþi ¼ xi;t

wmðt�1Þþi ¼ zi;t and

�mðt�1Þþi ¼ ai;t:

Then,

/ðBmÞðys � lðwsÞÞ ¼ hðBmÞ�s; ð2Þ

where Eð�sÞ ¼ 0; Eð�2
s Þ ¼ r2

a and E(�s�r) ¼ 0,s 6¼ r.

PROOF. Consider the autoregressive and moving average difference equation, eqn (2) and select all s such that s | m (i.e. s modulo
m) equals some constant i. We then have ys ¼ xi,t, �s ¼ ai,t, and ws ¼ zi,t, t ¼ 1, . . . ,n, and, setting D ¼ Bm,

/ðDÞðxi;t � lðwtÞÞ ¼ hðDÞai;t; ð3Þ

where D is equivalent to a one-lag backshift operator on xi,t i.e. D(xi,t) ¼ xi,(t�1). We note that, from the specification of the interleaved
model (2) alone, E(�is) ¼ 0 i.e E(ai,t) ¼ 0, and Eð�2

s Þ ¼ r2
a i.e. Eða2

i;tÞ ¼ r2
a. If we now choose r such that r | m ¼ j 6¼ i then E(�s�r) ¼ 0

i.e. E(ai,taj,u) ¼ 0 for all i 6¼ j and all t,u. This completes the proof of equivalence between representations, eqns (2) and (1).

The above formulation permits m multiple independent ARMA(p,q) processes with identical parameters – but different realisations
– to be modelled as a single univariate ARMA(pm,qm) process. The interleaving used in Theorem 1 is illustrated in Figure 1. In this
example, it is assumed that there are daily maximum temperature values available for the first week in the year (with seven artificial
readings) for 2 years, 1946 and 1947. The two series are interleaved to create a final single series of length fourteen.2

The interleaving formulation is equivalent to eqn (1) but provides significant advantages for fitting a single ARMA model to
multiple series realizations. An ARMA(pm,qm) model can now be fitted to the data using standard time series software where the
data is interleaved placing the tth data points from each realization adjacent to each other in a consistent order. All AR and MA
parameters are set to zero for all orders apart from multiples of m, the number of realizations. The error term (as in most packages
assumed to be normally distributed) retains its original ARMA definition as do the parameter estimates.

Most ARMA packages such as R’s ‘arima’ in the ‘stats’ package allow specification of which parameters are non-zero and hence the
model expression suggested above can be presented in this form. Furthermore, standard tests of significance and standard
diagnostics can be applied to the results using lags which are multiples of m.

As an example, let there be m¼10 realizations of a time series process, each of length 25 (although see Section 5), and the model
to be fitted is ARMA(2,1). After interleaving the series to create a new series of length 250, the model to be fitted would be
ARMA(20,10) with,

/ðB10Þ ¼ ð1þ /1B10 þ /2B20Þ and hðB10Þ ¼ ð1þ h1B10Þ:

In the estimation software, the autoregressive lags of 1 – 9 and 11 – 19 are fixed at zero as are the moving average lags of 1–9.
Given the possibly large lags involved in the interleaving method, it is worth exploring whether there may be computational issues

when fitting ARMA models. The R ‘arima’ function was accessed in this regard using simulations. In the ‘arima’ code, the estimated
interleaved model is tested for stationarity using the function ‘polyroot’. For, say, an interleaved AR(1) model the polynomial,
(1 � /1Bm), in B is checked for stationary by ensuring that all the moduli of the roots of the polynomial are greater than one.

The exact moduli are all equal to 1ffiffiffiffiffiffi
jajnp and will be greater than one for all |a| less than one. For lags less than approximately 65 the

‘polyroot’ moduli converged towards one from above. However, thereafter the roots and hence moduli become unstable and some
moduli drop below one, even for values of /1 close to zero, for example, /1 ¼ 0.05. In the current modelling this was remedied by
substituting the following function for ‘polyroot’ which collapses the polynomial in Bm to one in say D involving much smaller orders
(e.g., (1 � /1D1)),

Figure 1. Interleaving of an artificial series
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polyroot <- function(x) f
indices <- which(x[�1]!¼0)
if (all (indices%%indices[1] ¼¼0))
return(base::polyroot(c(x[1],x[-1][indices]))) else
return(base::polyroot(x))
g

Over and above the false identification of non-stationarity for large m, simulations show that the R ‘arima’ package when used with
the interleaved method (m ¼ 60 and 120) converges to the true parameter values for a range of AR(2), MA(2) and ARMA(2,2)
parameterisations. Hence convergence doesn’t appear to be a major problem (this is reinforced by the results of the model fitting in
Section 4) although some memory management issues developed for very large lags (m ¼ 200).

In Section 4, the interleaving method will be used to fit one ARMA model to multiple realisations of daily weather data from 66
years of recordings. However, before proceeding we shall examine alternative methods of fitting parameters for model (1).

3.2. Alternative estimation methods

An alternative representation of a RARMA process is as a constrained VARMA model (Quenouille, 1957 and Lutkepohl, 1991) with
constraints on the parameter and error covariance matrices. To frame (1) as a multiple time series process, we form an m-dimensional
vector of ‘replicated’ observations, tt ¼ (x1,t, . . . ,xm,t). This doesn’t imply that these observations are concurrent in real time but rather
are assigned to the same time index, t, for estimation purposes. We assume that ftt:t ¼ 1, . . . ,ng follows a standard VARMA time
series process generated by:

/ðBÞðtt � pðztÞÞ ¼ hðBÞat;

where /(B) and h(B) are matrix polynomials in B, the backshift operator, fatgn
t¼1 is an m-dimensional white noise process with

covariance matrix, R, and p(zt) ¼ E(tt | zt) ¼ wzt where w is a m · r matrix of coefficients and zt is a vector of extraneous variables of
length r. To ensure unique identification of /(B) , h(B) and R from the covariance matrix of tt, the zero’th order matrices of /(B) and
h(B) are m · m identity matrices.

To model a set of replicated time series from the same ARMA process, we now constrain /(B), h(B) and R to be diagonal matrices.
This results in a set of m independent univariate ARMA processes. We further constrain each diagonal element of /(B) to equal /(B),
each diagonal element of h(B) to equal h(B) and the diagonal elements of R to equal r2

a. This completes the representation of the
fttgn

t¼1 as a set of independent time series generated using eqn (1).
This model could be fitted using appropriate VARMA modelling software if such software were available. However the ability to

constrain the VARMA model terms as required is not commonly to hand. SAS/VARMAX (the suffix ‘X’ indicates that the modelling can
incorporate extraneous explanatory variables) allows constraining of parameter values to constants but doesn’t permit specification
of linear relationships (e.g. equivalence) between parameters (SAS (2004)). SSATS in GAUSS (GAUSS, 2010) allows estimation of
VARMA models via state space models but doesn’t have facilities for parameter constraints. The package GROCER for Scilab (Scilab,
2010) provides VARMA modelling capability (which can be used within R via R/SCILAB) but with similar shortcomings to SSATS. R fits
VARMA models using the DSE package which utilizes a state space representation. Parameter constraints cannot be imposed as
required above.

Using existing univariate software, there are a number of possibilities for fitting a single time series model to replicated ARMA time
series. Perhaps the most obvious is to join the time series head-to-tail to create one long series and fit the required ARMA model to
the result (herein called the ‘concatenation method’). However, at the joins of the time series there will be a disruption to the
autocorrelation structure in the data which is not represented in the ARMA model. The fitted model’s parameters will be biased
towards zero.

Alternatively, the elements of each time series could be averaged across each time point to produce one series for analysis. That is,
a new series, fx̂tgn

t¼1, could be formed where

x̂t ¼
1

m

Xm

i¼1

xi;t; t ¼ 1; . . . ; n:

Given that each series, fxi;tgn
t¼1; i ¼ 1; . . . ;m; is assumed to be generated by the same ARMA(p,q) process, their sum will also be

generated by an ARMA(p,q) process with the same parameters except that the error variance will be 1
m times3 the original error

variance, r2
a. The suggestion here is that the reduced error variance will lead to similar reductions in the standard errors of the

parameter estimates. However, it is well known that the standard errors of the least squares and maximum likelihood parameter
estimates of an ARMA process are independent of the error variance (Anderson, 1976 and Godolphin, 1984). Moreover the bias of the
common parameter estimates are also independent of the error variance (see Shaman and Stine, 1988). Hence there is no advantage
gained by averaging the series given that this results in no reduction in either the standard errors or biases of the parameter
estimates fitted to the individual replicated series.

A final alternative method of estimation is to fit the required ARMA models independently to each replicated series in turn and
then average the results with a commensurate reduction in the standard errors of the estimates. The parameter estimates are likely to
be biased for each estimation due to the typically small sample sizes for each replication. Averaging will not correct this.
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Accordingly, the interleaving method from Section 3.1 is the only approach that allows the use of readily available software to
produce fully efficient parameter estimates for a replicated independent ARMA process. The remainder of this article will apply the
interleaving method to daily maximum temperature data, compare the results to the concatenation method and discuss the
application of the new method to other time series models.

4. AN AR MODEL FOR SIXTY-SIX YEARS OF DAILY MAXIMUM TEMPERATURES IN PERTH,
WESTERN AUSTRALIA

It is proposed to model the daily maximum temperature readings for Perth, Western Australia using the RARMA model. The time
series modelling of daily weather data can be used to better understand a number of weather-dependent activities (for example,
daily maximum electricity demand). However, such a time series process is likely to change over the year. Accordingly, it would be
useful to focus on daily data for individual weeks in deriving a model where the first week extends from the 1st to the 7th January
and succeeding weeks continue in 7 day contiguous intervals.

An historical series of daily weather readings was extracted for Perth, Western Australia, from 1944 to 2009. The interleaving
method allows the use of all years of this data simultaneously to fit a unique ARMA model for each week in the year and to derive a
set of fully efficient weekly parameter estimates. These are not likely to be substantially affected by estimation bias because of the
large combined sample size of each interleaved series (n ¼ 7 · 66 ¼ 462).

Data after 1963 were possibly affected by a change in recording site which will be investigated using the interleaving method and
intervention analysis. Initially only the data for the first week in the year will be modelled but the interleaving analysis will then be
extended to every full week of data.

We use the terminology and formulation from eqn (2) where m ¼ 66. To assess the order of the AR and MA models the daily
readings for the first week were interleaved (n ¼ 462). A logarithmic transformation was considered but the distribution of the
temperatures did not show sufficient skewness. The sample autocorrelation and partial autocorrelation functions are shown in Figure
2 and have been produced for lags up to 198 (which is effectively a 3 day lag). ACFs and PACFs at lags other than multiples of 66 can
be assumed to be zero and ignored because they represent the relationship between the lagged daily temperatures many years
apart. The standard sample PACF for lag p was derived by fitting successively higher-order AR models and extracting the pth order
autoregressive parameter. However, to strictly represent the nature of the interleaved time series, the sample PACF should only
control for AR orders corresponding to multiples of the number of series as opposed to successively fitting AR models involving all
lags up to p. Hence, the PACF for lag 132 should only use an AR model of lags 66 and 132. In general, the PACF for all lags other than
multiples of 66 should be set to zero. The sample ACF and PACF results assuming interleaving are shown in Figure 2 as circled
markers.

These diagnostics indicate that the underlying ARMA process is second-order autoregressive only. A similar analysis of data for
each week in the year indicates that an AR(2) model is appropriate, that is, in (2), h(B66) ¼ 1 and,

/ðB66Þ ¼ ð1þ /1B66 þ /2B132Þ:

Hence, we now fit a separate RAR model of order two with m ¼ 66 for each of the 52 weeks (resulting in fifty-two RARMA(2,0,66)
models) and the parameter estimates are shown in Figure 3. Diagnostic tests (again accommodating the interleaved nature of the
residuals) suggest that this model is adequate. The grey lines are 95% confidence limits.
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Figure 2. Sample ACF and PACF of the interleaved daily maximum temperatures for the first week. The circled results are the
estimates using the interleaving method
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The results indicate that the lagged relationships are significantly stronger in summer than in winter. Also the standard deviation of
the error term for summer months is higher than for winter reflecting the greater variability of summer temperatures (not shown). In
general, the fitted models suggest that the relationship between successive daily maximum temperatures persist for only 2 days at
the most and this persistence is strongest in summer.
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Figure 3. Estimated AR parameters by week for daily maximum temperature data (Perth, Western Australia, 1944–2009). The grey
lines are 95% confidence limits and the dashed lines are the estimates from the concatenation method
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Figure 4. Estimates of effect by week of change of location and of trend over time (with average annual trend)

Table 1. Change of location for Perth’s temperature recording device

Location Last date

King’s Park August 1963
Old Hale School June 1967
Wellington St May 1992
Perth Airport November 1993
Mt Lawley Current location
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Figure 3 also shows the estimates using the concatenation method (dashed line) which as expected are biased towards zero.
Unfortunately, the location of the recording device for daily maximum temperatures has changed over time (see Table 1). The

effect of this on the level (i.e. the mean) of daily maximum temperatures was modelled using intervention analysis with the
interleaving method and the results are shown in Figure 4 with 95% confidence intervals. The top left plot shows the mean daily
maximum temperature by week prior to 1963. The next four plots show the estimated change by week from that base for the four
shifts in location. Although the weekly estimates in the plot have relatively high standard errors it appears that the change of location
to both Wellington St (in the CBD) and to Mt Lawley (in the suburbs) resulted in lower daily maximum temperatures in the first few
weeks in the year compared to the initial King’s Park location. This analysis could possibly be improved using a reference site for
temperature readings such as Perth Airport where the recording device has remained in a relatively unchanged location.

As a final demonstration of the potential of the interleaving method, a constant trend was fitted through the 66 years of daily data
by week to model the effect of climate change. The annual trend estimates by week are plotted in the bottom right plot in Figure 4
with 95% confidence intervals. The average trend value shown as a reference line is +0.015�C per year (with 95% confidence bounds
of ±0.013�C) or +0.15�C per decade. Over the 66 years of data, this equates to a 0.99�C increase in daily maximum temperatures.

5. CONCLUSIONS AND FURTHER APPLICATIONS

The model specification contained in this article and its application to daily maximum temperatures by week suggest that the
interleaving technique is effective in fitting a single standard ARMA model to multiple independent realizations of a time series
process. It is simple to use and can be implemented using standard ARMA software packages. The only requirement is that the
package allows ARMA parameters to be set to zero. A problem was noted in R in checking stationarity with the ‘polyroot’ function
but this was remedied by some simple code substitution.

The interleaving technique has been applied to AR models in Section 5 but can be used with MA and ARMA models (and
extraneous variables, if required). Furthermore the technique readily extends to differenced series, seasonal ARMA models, VARMA
models and GARCH models. It can be used with fractional differencing but, instead of the formulation (1 � B)k for each series, the
interleaved series must be modelled as (1 � Bm)k (so called ‘seasonal fractional differencing’).

A constraint on the interleaving technique is that the repeated series must be of the equal length. However, each series can be
extended to the same length by adding missing values. The models can then be fitted as above (most ARMA software packages such
as R’s ‘stats’ can accept missing values within the series).
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NOTES

1. ARMA processes with added noise are a particular form of aggregated ARMA process as discussed by Box and Jenkins (1976),
Anderson (1975) and Granger and Morris [1979]. See also Ansley et al. (1976), Engel (1984) and Granger (1988). The sum of ARMA
processes are themselves ARMA processes of higher but finite order which is proved in an elegant manner by Anderson (1975) (for
MA processes) and Granger and Morris (1979) (for ARMA processes). This result is used by Anderson (1976) to show how ARMA
processes of higher order can eventuate when it may be difficult to find a clear generating mechanism using, say, economic
theory.

2. If the model’s AR or MA parameters do vary with the series realisation then this can be represented as a periodic ARMA process
(see Parzen and Pagano (1979) and Bowden (1989)) which can in turn be represented as a VARMA model.

3. That is,

1

m

Xm

i¼1

/ðBÞðxi;t � lðzi;tÞÞ ¼
1

m

Xm

i¼1

hðBÞai;t

/ðBÞðx̂t � lðẑtÞÞ ¼ hðBÞât;

wherel(.) is a linear function, ẑt ¼ 1
m

Pm
i¼1 zi;t and ât ¼ 1

m

Pm
i¼1 ai;t with VarðâtÞ ¼ r2

a

m and Eðât âuÞ ¼ 0; t 6¼ u.
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Chapter 7

Application to Daily Maximum

and Minimum Temperatures

This chapter contains the paper by Bowden and Clarke [2017] accepted for publi-

cation in the Australian and New Zealand Journal of Statistics which extends the

Univariate Interleaving Theorem from Section 2.3 to the multivariate case. Again it

was co-authored by the author of this thesis and his supervisor, Dr Brenton Clarke.

The multivariate theorem is applied to daily maximum and minimum temperature

data for Perth, Western Australia. As with Bowden and Clarke [2012] (see Chapter

6), the purpose of the modelling is to estimate the effect of climate and location

change on over sixty years of maximum and minimum temperature readings. The

marginal univariate processes corresponding to the multivariate models fitted in

this chapter are discussed in Appendix D. As with the paper in Chapter 6, this

paper uses {xt} to refer to the original series and {yt} to the interleaved series

whereas this thesis uses a reversed designation. In Bowden and Clarke [2012] it was

incorrectly reported that sixty-six years of data were analysed whereas sixty-seven

years were actually modelled.
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Using multivariate time series methods to estimate location
and climate change effects on temperature readings employed

in electricity demand simulation

Ross S. Bowden1 and Brenton R. Clarke2*

Mathematics and Statistics, School of Engineering and Information
Technology, Murdoch University

Summary

Long-term historical daily temperatures are used in electricity forecasting to
simulate the probability distribution of future demand but can be affected by
changes in recording site and climate. This paper presents a method of adjusting
for the effect of these changes on daily maximum and minimum temperatures.
The adjustment technique accommodates the autocorrelated and bivariate nature
of the temperature data which has not previously been taken into account. The
data are from Perth, Western Australia, the main electricity demand centre
for the South-West of Western Australia. The statistical modelling involves a
multivariate extension of the univariate time series “interleaving method”, which
allows fully efficient simultaneous estimation of the parameters of replicated
Vector Autoregressive Moving Average processes. Temperatures at the most recent
weather recording location in Perth are shown to be significantly lower compared
to previous sites. There is also evidence of long-term heating due to climate change
especially for minimum temperatures.

Key words: VARMA; replicated process; data correction; forecasting; maximum
likelihood

1. Introduction

This paper uses time series methods to estimate and adjust for the effect
of changes of location and climate on daily maximum and minimum temperature

data for Perth, Western Australia, as used in electricity demand simulation for the
South-West of Western Australia. In undertaking the estimation, this paper also
explores the temperature data’s stochastic generating mechanism which is one of the
primary determinants of daily electricity demand. This mechanism could be used for

temperature simulation but it is not the main purpose of this paper. Nevertheless the
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2 ESTIMATING LOCATION AND CLIMATE CHANGE EFFECTS

corrected temperature record from the current work could be used in bootstrapped
temperature simulations.

The daily maximum and minimum temperatures are modelled as a bivariate
time series while accommodating and estimating the effect of location shifts and

climate change on the daily values. The model used also incorporates the annually
replicated nature of the time series process. To accommodate this replication, the
current research analyses the daily temperature data by week-in-the-year with fully

efficient use of all available historical data, simultaneously for all years.
To date, none of the published temperature adjustment methods (as used for

example in climate change studies) appear to have employed time series or multivariate

models (see Section 1.2). In particular, the authors could identify no specific published
work on the adjustment of the historical temperature record used for estimating future
electricity demand.

Electricity systems are required to supply the daily and (resulting) annual

maximum demand on the power system (as well as providing for aggregate energy
needs). Hence there is a major focus in power supply companies on servicing the
annual peak demand from customers. To this end, $479 US billion was invested per

year on average by the world’s electricity companies from 2011 to 2013 (Wilkinson
2014).

These investment decisions are critically determined by long-term (5 to 20
year) forecasts of electricity maximum demand. Any improvement in the accuracy of

demand forecasting can result in substantial savings in capital expenditure. Moreover
an appreciation of the probability of certain future demand outcomes allows the
electricity planning staff to more exactly match the risk of plant deficit with the

variability of customer demand. This results in an improved balance of capital
expenditure with system reliability.

The underlying growth in annual electricity maximum demand is primarily driven

by economic and social factors. However the annual maximum demand is simply the
largest of the daily maximum demands which are further determined by season of
the year, day-of-the-week and public holiday effects, daily prevailing as well as lagged
weather variables, plus autocorrelated (but otherwise unexplained) random influences.

The primary weather variables which influence daily maximum demand and
which are readily available for most locations are the daily maximum and minimum
temperatures. As a point of reference, high temperatures in Western Australia in

summer have strong effects on peak demand whereas low temperatures in winter
have a less pronounced effect; in countries in higher latitudes the influence of winter
temperatures is stronger. Either way, stable historical series of daily maximum and
minimum temperatures are required for demand simulation and these depend on

adjustments that make allowance for location shift and climate change in recordings
of past data. Methods for implementing such adjustments are discussed below.

1.1. Electricity demand forecasting and weather recordings

The methods for predicting long-term maximum demand growth typically

encompass a wide variety of approaches. These include regression and econometric
models, time series analysis (including exponential smoothing), neural networks,

© 2017 Australian Statistical Publishing Association Inc.
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R S BOWDEN & B R CLARKE 3

support vector machines and knowledge-based expert systems (see Alfares &
Nazeeruddin 2002, Hahn, Meyer-Nieberg & Pickl 2009 and Feinberg & Genethliou
2005).

To some extent all these models use an estimate of the pattern of weather on

the day of the annual maximum demand. This is typically the mean of the relevant
weather variables on the maximum demand day even though there is usually little
actual data on which to base a direct estimate (with only one value per year of

strictly relevant historical daily temperatures) . Also the weather variables of interest
may include lagged and transformed values of readily available weather readings.
For example variables can be constructed representing the effect of runs of days of

relatively unchanged (but hot) weather which can see a gradual increase in electricity
demand due to the so-called heat bank effect in homes and businesses. Typically
some form of running total of weighted daily degree-days over say 35 degrees Celsius
is employed here. Hence not only will there typically be a very limited number of days

of annual maximum demand on which to base an assessment of the typical peak day
weather but there are also subtle relationships with the weather occurring on peak
and past days.

One approach to addressing these issues is illustrated in Figure 1. This is similar
to the work of Hyndman & Fan (2010) although they use daily half-hourly demand
data rather than daily maximum demands. They also employ the full daily profile
of temperatures (from two sites) rather than just the daily minimum and maximum

temperatures. The current model uses daily minimum and maximum temperatures
because the associated historical record extends back to 1943 providing over sixty
years of data. Additionally it could be argued that it is not absolutely necessary to

use the full daily temperature and demand profile to capture the main determinants
of daily and annual maximum demand alone. Nevertheless it is recognised that the
analysis of daily profile data provides additional useful information. Moreover the

multivariate interleaving method introduced in this paper could be used to correct
the daily vector time series of historical temperatures.

The method illustrated in Figure 1 forecasts both the mean and the distribution
of annual maximum demands in any future year by using a detailed and sophisticated

regression model that relates historical daily maximum electricity demand to weather
conditions (as well as other variables discussed earlier such as day-of-the-week). The
daily regression model is typically fitted using daily demand and weather data for

the past 5 to 10 years. This approach effectively allows the estimation of the (daily)
maximum demand on any day given the predictors referred to above. The model is
then used with a forecast of growth (discussed previously) and say sixty years of
year-by-year historical daily weather data (as well as simulated daily error terms)

to repeatedly generate daily electricity demands for a future year. This then results
in replications of the forecast annual maximum demand for that same future year.
Empirical distributions of those simulated future annual electricity demands (which,

of course, take as given the underlying forecast of growth) can be created.
This is particularly useful for modeling the balance of possible electricity

demand versus possible available power plant capacity because it creates an empirical

distribution of forecast annual maximum demand. Amongst other metrics, this allows

© 2017 Australian Statistical Publishing Association Inc.
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4 ESTIMATING LOCATION AND CLIMATE CHANGE EFFECTS

for the estimation of the so-called once-in-ten-year demand forecast (which, given an
accurate forecast of growth, has a 50% chance of being exceeded once every ten years).
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Figure 1. Forecasting the distribution of annual electricity maximum demand using
simulation.

A critical assumption here is that the historical weather record is stable, at least
reflecting current patterns. However this is unlikely to be true for two reasons. It is now
well established that global temperatures are increasing due to climate change. The
Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO)

conclude that “Australia’s climate has warmed by 0.9◦C since 1910” (CSIRO & BOM
2014) with similar changes for Perth, Western Australia, of between 1.0◦C and 1.5◦C.
This will likely have influenced the historical temperature record used in demand

simulation. Also recording stations often change location over time for various reasons
such as alterations in the use of the site. It is possible that this has also led to changes
in the level of recorded temperatures (see the next section).
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R S BOWDEN & B R CLARKE 5

A linear trend term was used as it was felt that the relatively subtle temperature
change for essentially only one site (Perth) would not support a more intricate trend
model. Other possible trend models will be further explored in future work.

Both the location and climate change effects will influence the long-term historical

weather record. It is estimated that a one degree Celsius increase in daily maximum
temperatures in summer can increase maximum electricity demand in the South-West
Interconnected System (SWIS) by up to 2% (Bowden & Gamble 1995) (The annual

system maximum demand in the SWIS occurs in summer when the main drivers of
demand are airconditioning and refrigeration). This temperature relationship (with
appropriate seasonal variation) is employed in electricity demand simulation.

Moreover the time series generating mechanism of the daily temperature data
should be consistent from year-to-year within the expected seasonal cycles. Such
consistency would be expected from the seasonally recurring nature of the local climate
system.

Therefore, whilst accounting for the replicated bivariate autocorrelated nature of
the data, the historical readings for Perth should be adjusted for location shift and
climate change. This paper estimates the effect of these changes on daily temperature

readings for Perth, Western Australia, which is the main centre of electricity demand
for the SWIS.

1.2. Adjustment of historical weather records for exogenous effects

The long-term daily weather data available from Europe and the USA are

reviewed in Wijngaard, Klein Tank & Können (2003) and Menne, Williams Jr. &
Palecki (2010) respectively. They conclude that adjustment of the data is required
because of the number of sites where disturbance of the historical record has resulted
in substantial data contamination. A similar conclusion for a group of US sites is

reached by Pielke Sr. et al. (2007).
To adjust for these issues, the World Meteorological Organization (WMO) has

published guidelines for undertaking so-called homogenisation of weather records for

(amongst other effects) location shifts (Aguilar et al. 2003). The WMO guidelines
focus initially on identifying so-called break-points which are suspected of initiating
a change in (at least) the level of the time series process but are of unknown date.
Once these dates are identified (which is already the case with the Perth data), the

time series is then adjusted for these interventions to match the level of the most
recent recording station so that on-going adjustment is not required (at least in the
medium term). The adjustment methods (which include averaging, site differencing

and regression) typically do not account for the autocorrelated multivariate nature of
the data.

The published methods up to 1998 are summarised in Peterson et al. (1998).

As with the WMO guidelines the authors firstly discuss detecting a change in
homogeneity and then review adjustment methods. The authors consider approaches
by country and region. In common with the WMO methods, there is little
accommodation for the autocorrelated or multivariate nature of the daily readings.

Reviews of methods for identifying change points with respect to homogeneity and for
subsequently adjusting the data series are contained in Rhoades & Salinger (1993) and

© 2017 Australian Statistical Publishing Association Inc.
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6 ESTIMATING LOCATION AND CLIMATE CHANGE EFFECTS

Guttman (1998). The adjustment methods focus on simple average differences with
respect to a relatively stable reference site. The actual site adjustments for a New
Zealand dataset from Rhoades & Salinger (1993) range from 0.02 to 1.58◦C. Similar
methods for estimating the effects of urbanisation and shift of location of recording

stations around Beijing were employed by Yan et al. (2010) with site effects varying
between 0.43 and 0.95◦C.

1.3. Statistical modelling of replicated bivariate temperature time series

The time series modelling of daily temperatures used in this paper employs the
interleaving method (see Bowden & Clarke 2012) extended herein to the multivariate

case to model replicated realisations of a multiple time series process (specifically the
Perth daily maximum and minimum temperature records since 1943). This extension
allows fully efficient estimation of locational and climate change effects as well as of
the time series coefficients. The time series analysis uses Vector Autoregressive Moving

Average (VARMA) models which are a multivariate extension of the univariate
ARMA models (see Section 2).

Section 2 in this paper provides a brief overview of VARMA models and Section

3 extends the univariate interleaving method to multivariate processes. Section
4 uses the interleaving methodology to estimate the effect of location shift and
climate change by week and season on over sixty years of daily maximum and
minimum temperatures for Perth. It also explores the time series structure which

is the generating mechanism behind one of the major day-to-day determinants of
electricity demand. The weather data used in this paper and the modelling results
are contained (as an R dataset) in the Murdoch University Research Repository at

http://researchrepository.murdoch.edu.au/27282/.
In this paper the terms VARMA and VARMAX (VARMA with exogenous

inputs) are used interchangeably. The term VARMA is employed in general to refer

to multivariate extensions of autoregressive moving average models. However, when
considered necessary to be explicit concerning exogenous inputs, the term VARMAX
will be employed.

2. VARMAX models

A Vector Autoregressive Moving Average process of order p and q with exogenous
inputs (VARMAX(p,q)), {xt}nt=1, is a k-dimensional multiple time series generated
by the model,

φ(B)(xt − µxt(zt)) = θ(B)at (1)

where {at}nt=1 is a series of k-dimensional independent identically distributed random
error vectors with constant covariance matrix, Σa, E(at) = 0 for all t and E(ata

>
u ) =

0 for all t 6=u. Alsoφ(B) and θ(B) are matrix polynomials in B, the backshift operator,

of degree p and q respectively. The roots of det(φ(B)) = 0 and det(θ(B)) = 0 all lie
outside the unit circle ensuring stationarity and invertibility respectively.

© 2017 Australian Statistical Publishing Association Inc.
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R S BOWDEN & B R CLARKE 7

Typically the zeroth order coefficient matrix in the polynomial, φ(B), is an
identity matrix and similarly for θ(B). In this case, Σa is of general symmetric
positive-definite form and this specification results in a canonical formulation for the
VARMAX model which allows for unique identification. It is often assumed that the

innovations are multivariate normal (This is not required for Theorem 1 in Section 3
although it is needed for our model fitting).

We will assume that µxt(zt) (= E(xt|zt)) = ψzt where {zt}nt=1 is a series of

explanatory (input) vectors and ψ is the matrix of regression parameters.
The foregoing is one form of standard VARMAX specification. The VARMAX

process also could be described as being generated by a seemingly-unrelated regression
model (see Johnston & Dinardo 1996) with VARMA errors in that the series mean

vector corrects the series mean level to zero before application of the VARMA filter.
However if the exogenous variables are introduced on the right hand-side of (1) their
influence on the time series vector can only be assessed with knowledge of the VAR

filter. This alternative expression for the VARMAX model is,

φ(B)xt = Υzt + θ(B)at, (2)

where Υ = φ(1)ψ, that is,

ψ = φ(1)−1Υ. (3)

This specification (2) is used by the software employed in this paper (the
R package, dse (Gilbert 2006)) to fit the replicated VARMAX model to daily

temperatures.
An alternative specification ofφ(B), θ(B) and Σa is possible which allows unique

identification (See Lütkepohl 2005, pp. 447 ff.). This uses the unique Cholesky LDL
decomposition of the innovations covariance matrix, that is, Σa = LDL> where L is

upper triangular with a unit diagonal (so-called “unitriangular”) and D is a diagonal
matrix.

This alternative specification to (1) is,

(L−1 + L−1φ1B + L−1φ2B
2 + ... + L−1φpB

p)(xt − µxt(zt))

= (I + L−1θ1LB + L−1θ2LB
2 + ... + L−1θqLB

q)ut. (4)

where ut = L−1at and hence var(ut) = D.
This now provides a representation with a diagonal innovations covariance matrix

but where the zeroth order MA matrix is an identity matrix and the zeroth order
AR matrix is upper unitriangular because L−1 is upper unitriangular. This AR

formulation explicitly makes the first entry of xt (that is, x1,t) a linear function of
elements (x2,t, ..., xk,t) as well as other elements of xt at non-zero lags. Similarly x2,t

is a linear function of (x3,t, ..., xk,t) as well as other elements of xt at non-zero lags,

and so on.

© 2017 Australian Statistical Publishing Association Inc.
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8 ESTIMATING LOCATION AND CLIMATE CHANGE EFFECTS

In the context of the bivariate application in Section 4, this formulation, which
is used in this paper, appears more natural inasmuch as the x1,t and x2,t are recorded
sequentially on the same day and is similar to that of a periodically correlated ARMA
model (see Parzen & Pagano 1979).

3. The interleaving method

In this section, we prove that replicated independent VARMAX processes can
be represented as a single VARMAX process with the same dimension as each of the

replicated series. This result allows model fitting using existing VARMAX software.

3.1. Replicated VARMAX process

Let the i th replicated k-dimensional vector series over the time span, t =
1,...,n, be {xi,t}nt=1 , i = 1, ...,m and assume each series is generated by the following
VARMAX(p,q) model,

φ(B)(xi,t − µxi,t(zi,t)) = θ(B)ai,t (5)

where {ai,t}ni=1 is a series of independent zero-mean identically-distributed random
error vectors with E(ai,ta

>
j,u) = Σa for i = j and t = u and 0 otherwise. Hence the

error vectors have a covariance matrix of general form but otherwise the vectors are
assumed to be independent between realisations at all lags and within realisations at
all non-zero lags. Also φ(B) and θ(B) are matrix polynomials in B, the backshift

operator, of degree p and q respectively.
The (conditional) mean of xi,t is,

E(xi,t|zi,t) = µxi,t(zi,t) = ψzi,t ,

where {zi,t}nt=1, i=1,...,m, are m series of explanatory vectors. It is possible to
effectively have a unique parameterisation ofψ (sayψi) for each realisation, i, through

simply expanding the dimension of the input vector, zi,t, by a factor of m.
We will call the time series (5) an RVARMA (replicated VARMA) process, that

is, RVARMA(p,q,m). It has a mean which can vary with each series realisation but it
otherwise maintains a consistent generating mechanism between realisations. In fact

the mean can be any linear combination of the exogenous vector variables, zi,t (and,
in general, can be a non-linear function of the zi,t).

3.2. Equivalent replicated VARMAX representation

We now state a theorem that reduces the apparent dimensionality of the
replicated process by a factor of m. The proof is provided in the Appendix.

© 2017 Australian Statistical Publishing Association Inc.
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Theorem 1. Let the replicated k-dimensional series {xi,t}nt=1, i = 1, ...,m, be
generated by the above RVARMA(p,q,m) process (see (5)), and let

ym(t−1)+i = xi,t,

wm(t−1)+i = zi,t and

εm(t−1)+i = ai,t . (6)

Then
φ(Bm)(ys − µys(ws)) = θ(Bm)εs (7)

where E(εs) = 0, var(εs) = Σa and E(εsε
>
r ) = 0, s 6= r. That is, the interleaved

series, {ys}mn
s=1, is a k-dimensional VARMA process of order (mp,mq).

To paraphrase Theorem 1 (henceforth called the Multivariate Interleaving
Theorem), any m replicated independent k-dimensional VARMA(p, q) time series,
each of length n, can be represented by one k-dimensional VARMA(mp,mq) process

of length mn. This equivalence is achieved by interleaving the m series and by ensuring
that AR and MA parameters are only non-zero at orders that are multiples of m.
The equivalence uses an interleaving which is illustrated in Figure 2 for two artificial

bivariate series, each of length seven.

23 24 25 26 27 28 29 33 34 35 36 37 38 39

10 11 12 13 14 15 16 20 21 22 23 24 25 26

23 33 24 34 25 35 26 36 27 37 28 38 29 39

10 20 11 21 12 22 13 23 14 24 15 25 16 26

1946 1947�
�

Figure 2. Multivariate interleaving of an artificial bivariate series.

Interleaving allows replicated independent stationary vector time series to be

modelled as one stationary series without “end of series” discontinuities, as would be
the case if say the series were merely concatenated together. Bowden & Clarke (2012)
contains a discussion of these discontinuity effects for a univariate series.
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10 ESTIMATING LOCATION AND CLIMATE CHANGE EFFECTS

By using VARMA software such as R’s dse (Gilbert 2006) and MTS (Tsay 2015)
packages, Scilab’s Grocer (Dubois & Michaux 2016) and Gauss’s Time Series MT

(GAUSS 2012) (which all allow subsets of the VAR and VMA matrix parameters to
be set to zero) the interleaving method can be employed in RVARMA model fitting

without preparing purpose-built computer programs. These packages use maximum
likelihood estimation. Of course, the interleaving method can also be applied to
estimation approaches other than those employed in this paper including robust

methods and least squares.

4. Effects of location and climate change on daily maximum and

minimum temperatures for Perth, Australia

This section deals with estimating the effect of location shift and climate change
on the daily maximum and minimum temperature readings from 1943 to 2009 for

Perth, Western Australia. The results can be used to adjust the historical record
employed in electricity demand simulation. As mentioned previously, the dse package
from R is used to fit the associated RVARMA model via (conditional) maximum

likelihood. The modelling also provides an understanding of the relationship between
maximum and minimum temperatures which is informative in forecasting daily
electricity demand up to a week ahead.

Figure 3 displays a plot of the daily maximum and minimum values for three

years and it is clear that there is a strong relationship between values on the same
day. The expected seasonal cycle is also evident as is an increase in the variability of
the maximum temperatures over summer.

Given the increased variability in summer and the known changes in weather
patterns between summer and winter it is likely that VARMA models of the bivariate
daily temperature data vary over the year. However, from year to year, the models
are likely to be unchanged for any particular part of the year. Hence the modelling

in Sections 4.1 to 4.3 was undertaken separately for each week-in-the-year of daily
data but simultaneously for all years. This provides estimates of the effect of location
shift (using binary intervention variables which are similar to dummy variables in

regression analysis (see Chatfield 2003, p. 259)) and climate change (via a trend
term) by week-in-the-year and ultimately by month and season. The five locations
where the temperature data were collected are listed in Table 1.

The use of multivariate interleaving allows one stationary vector series to
represent a week of data for all sixty-seven years without any “end of week” effects.
Moreover “end of year” effects are managed by analysing the sixty-seven years of data
for week 52 as an interleaved series separate from that for week 1.

4.1. Model identification with interleaving

To begin the RVARMA model fitting, an interleaved bivariate series by each
week-in-the-year was created using the daily maximum and minimum temperatures
from 1943 to 2009. The RVARMA model order was determined by examining the

raw sample cross-correlations (see Chatfield 2003), the prewhitened sample cross-
correlation function (see Jenkins & Alavi 1981 and Granger & Newbold 1986, pp. 237
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R S BOWDEN & B R CLARKE 11

ff.) and the sample partial lag autocorrelation function (Wei 2006, pp. 408 ff.) after
correction for all intervention effects (henceforth termed detrending) and adjusting for
interleaving. For the first week of interleaved data (n = 67× 7) these correlations are
plotted in Figures 4, 5 and 6 respectively with the 95 percent confidence intervals

delimited by dashed lines. The full (and hollow - see below) points indicate the
interleaved lags (−3× 67, ..., 3× 67) that correspond to lags -3 to 3 in the original
series.
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Figure 3. Three years of daily maximum and minimum temperatures (in degrees Celsius).
The x-axis values are the week-in-the-year. The plot reveals the seasonality in mean and
variance.

Detrending involved identifying and fitting a univariate interleaved AR(2)
model (Bowden & Clarke 2012) separately to both daily maximum and minimum

temperatures with associated intervention terms for the change in location and for
the long-term trend in temperature. The resulting intervention terms (without the
autoregressive filters) were then used to adjust the two univariate time series for

the change in location and for the long-term increase in temperatures. The resultant
zero-mean series were then prewhitened.

Prewhitening consisted of applying the AR(2) filter from the AR detrending

model for daily minimum temperatures to both the detrended daily maximum and
minimum temperatures. The sample cross-correlations were then calculated for the
two filtered series. This prewhitening took account of the constraints imposed by
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12 ESTIMATING LOCATION AND CLIMATE CHANGE EFFECTS

interleaving, that is, only parameters for AR orders corresponding to multiples of the
number of replicated series (years) were non-zero.

As mentioned above, the sample partial lag correlation matrix was also employed
in model selection (Wei 2006). The sample partial lag correlation matrix is the sample

cross correlation matrix at each lag of k time intervals after removing the (linear)
influence of the intervening lags. For an AR(p) process the correlations cut off at lag
p as is the case with the multivariate partial autoregression matrix.

To accommodate the constraints imposed by interleaving, the partial lag
correlations were derived by only fitting autoregressions to multiples of the number of
replicated series (that is, of years). In the approach of Wei (2006) for estimating the

partial lag correlations, this implies fixing the (detrended) sample cross-correlations
at zero for the other lags before using them in the estimation routine.

4.2. Identification results

In Figure 4, the sample detrended cross-correlations between maximum and

minimum temperatures for week one (as indicated by the black dots at lags that
are multiples of 67) include a number of statistically significant values. However the
sample prewhitened detrended cross-correlations (in Figure 5) have significant values

at lags 0 and -1 only (that is, lags 0 and -67 with interleaving). This demonstrates the
ability of prewhitening to substantially simplify the model selection process within an
interleaving paradigm.

Sample partial lag correlations between maximum and (lagged) minimum
temperatures are plotted in Figure 6. As with the cross-correlations the values
corresponding to lags −3 to 3 in the original replicated series are marked by full dots.
The values reveal significant correlations at lags ±1 and arguably at ±2. The hollow

dots indicate partial lag correlations calculated without setting relevant intermediate
correlations to zero.

Given that these correlation results were similar for all weeks, we decided to fit

an RVAR model of order two (that is, an RVAR(2,0,67) model) for each week. This
was undertaken using the interleaving method from Section 3 (with m=67, that is,
a total sample per week-in-the-year of 67× 7 = 469) and employing the method of
conditional maximum likelihood via the R package, dse. The residuals from the model

fits showed no consistent autocorrelation or cross-correlation structure.
The dse package uses the VARMAX representation (2) but the results in

this paper employ the representation (4), derived by applying the Cholesky LDL

transformation from Section 2 and the transformation of the process mean from
(3). Hence the VAR(2) models in this paper utilise an intervention vector that is
the (conditional) mean of the process, a zeroth order VAR matrix that is upper

unitriangular and a covariance matrix of the innovations vector that is diagonal.
This formulation permits what is arguably a simpler interpretation of the

estimates whereby the mean correction due to the intervention terms is applied
directly to the vector time series before application of the AR filter, the daily

maximum temperature is related to the (earlier) minimum temperature on the same
day and the elements of the innovation vector are independent.
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Figure 4. Detrended cross-correlations using interleaving (week 1) with 95% confidence
intervals. The black dots indicate the sample correlations at lags -3 to 3 in the original
series. The lack of prewhitening makes order selection difficult.
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Figure 5. Cross-correlations of the series which were detrended and prewhitened using
interleaving (week 1) with 95% confidence intervals. The black dots indicate the sample
correlations at lags -3 to 3 in the original series. Prewhitening is effective in simplifying the
cross-correlations.
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Figure 6. Wei’s partial lag detrended correlations using interleaving (week 1) with 95%
confidence intervals. The black dots indicate the sample correlations at lags -3 to 3 in the
original series. The circles are the same values uncorrected for assumed zero correlations at
lags that are not multiples of the number of replicated series (67 in this case). The significant
correlations (across all weeks-in-the-year) suggest an AR(2) process.

The standard errors of the sample parameter estimates for model (4) were not
immediately available from the model fits and had to be derived after transformation
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14 ESTIMATING LOCATION AND CLIMATE CHANGE EFFECTS

from the fitted model (2) using simulation (10,000 simulations). In order to carry out
this procedure, we assumed the estimated innovations covariance matrix for (2) is
independent of the other sample parameter estimates for (2). Repeated realisations
of the sample covariance matrix of the innovations from the fitted model (2) were

simulated using bootstrapping on the model’s residual vectors. The other parameter
estimates from (2) were simulated using an assumption of multivariate normality
where the mean vector consisted of the VAR and intervention parameter estimates (in

(2)) and the covariance matrix was the associated Hessian-derived covariance matrix.
Each set of combined simulated parameter estimates for (2) was transformed

using the LDL transformation from Section 2 used in model (4) and the mean

transformation (3). The empirical distribution of the resulting simulated parameters
was then used to calculate the sample covariance matrix of the parameter estimates
for (4). The square roots of the diagonal elements of this matrix were used as the
standard errors of the transformed parameter estimates shown in Figures 7, 8, 9 and

10.

4.3. Estimation of the location shift and climate change effects and of the
VARMA generating mechanism

The VAR parameters are plotted by week in Figure 7 where, for example, the top

left panel displays a plot against week-of-the-year of the parameter for the relationship
between the maximum versus the minimum temperatures at lag zero (that is, on
the same day). Similarly the bottom right panel displays a plot against week-of-
the-year of the autoregressive parameter for minimum temperatures at a lag of two

days. Note that all these plotted values are the negatives of the VAR parameters
from representation (4) which helps to reflect the use of the values in a predictive
formulation.

It is clear that the parameters change substantially and relatively smoothly over
the year with the strongest relationship between maximum temperatures and past
maximum and minimum temperatures occurring in summer and with there being

little relationship in winter. The minimum temperatures show a much weaker set of
relationships although the VAR parameters are now generally strongest in winter.

The variances of the (independent) innovations by week are shown in Figure 8.
The panels of this figure indicate that the variation of the maximum temperatures

changes substantially over the year with the greatest variance in summer. The
minimum temperatures display a relatively unchanging variance.

The RVARMA modelling by week produced estimates of the effect of location

shift and climate change. However the week-by-week results were noisier than the VAR
parameters already discussed which made application of these results difficult. Hence
the results were averaged by month (that is, by 28 days) with associated calculation of

standard errors (see below) and these were used in the effect plots that are displayed
in this paper.

Given the autocorrelated nature of the data, it is likely that the weekly
intervention estimates are autocorrelated. Hence the standard errors of the monthly

mean effect estimates were derived using the well-known result for the variance of the
mean of correlated random variables (See Cressie 1993, pp. 15 ff.). In calculating the
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Figure 7. VAR(2) parameters by week with 95% confidence intervals. There is evidence
of seasonality in the AR parameters for the maximum and, to a lesser extent, minimum
temperature models.

standard errors we assumed that only the (auto-)correlation between adjacent week’s
intervention terms is non-zero. This correlation was estimated using a simulation
procedure which employed the estimated VARMAX models to repeatedly generate
new bivariate input series. The models used in this paper were then fitted to the

simulated data and the sample week-to-week correlation of the resulting parameter
estimates was derived from the simulated estimates. These correlations increased the
standard errors of the estimated effects by approximately 10 percent compared to an

independence model.
The top left plot in Figure 9 shows the mean daily maximum temperatures by

month for the site used to 1963 and the values exhibit the expected seasonal cycle.
The next four plots show the mean difference by month between the data recorded

at each subsequent site and the initial site. The sixth plot shows the annual trend in
maximum temperatures (by month) to 2009.

Over and above climate change, the results suggest colder temperatures in

summer for the Wellington St site (1967-92) and the current Mt Lawley site (1993-
09). This implies that maximum temperatures recorded at Mt Lawley in summer are
likely to underestimate the true maximum temperature compared to the historical

record from King’s Park (pre-1963).
To accommodate the apparent variation in effects by season, we calculated the

mean maximum temperature effects by season (summer = months 1 to 3, autumn
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Figure 8. Innovation variance by week with 95% confidence intervals. Again there is evidence
of seasonality, at least for maximum temperature innovations.

= 4 to 5, winter = 6 to 8, spring = 9 to 13). These results were chosen so as
to group together months showing similar VARMA parameter estimates and mean
temperatures. Standard errors and t statistics were also calculated. The results are

displayed in Table 2. Significant effects are preceded by “*”. The seasonal standard
errors were calculated by means of the same approach as for the monthly standard
errors.

The estimated annual (positive) trend in maximum temperatures from combining
the fifty-two weeks’ results is 0.0147 ◦C (±0.0108 being 95% confidence limits). This
equates to 0.98 ◦C (±0.72) as the total increase over 67 years. There appears to be a
higher rate of increase for summer compared to other seasons.

For minimum temperatures (see Figure 10) the monthly results for locality are
similar to those for maximum temperatures although there is additional evidence of
lower minimum temperatures over the whole year at the current Mt Lawley site. To

again accommodate the apparent variation in effects by season, we display in Table
2 the mean effects by season. Over the fifty-two weeks the mean difference for the
Mt Lawley site compared to the King’s Park site is −1.84 ◦C (±0.40). The (positive)

annual trend in minimum temperatures is 0.0179 ◦C (±0.0078) or 1.20 ◦C (±0.52) as
a total over 67 years. Again, as with the maximum temperatures, there appears to be
a higher rate of increase for summer compared to other seasons.
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Figure 9. Estimates by month for maximum temperatures of the effect of change of location
and of trend over time with 95% confidence intervals. The plot of annual trend also shows the
overall mean annual change as a horizontal full line. The results suggest colder temperatures
in summer for the Wellington St site (1967-92) and the current Mt Lawley site (1993-09).
Also there is a total increase over 67 years of 0.98 ◦C (±0.72).

5. Conclusions

In this paper the effects of location shift and climate change on historical
temperature recordings for Perth, Western Australia, (as employed in electricity
demand simulation) are estimated. The analysis uses multivariate time series models

and incorporates a multivariate extension of the univariate interleaving method
(Bowden & Clarke 2012). The interleaving approach allows replicated realisations
of the same VARMA process to be modelled as a single VARMA series of the same

dimension as each of the original series but with extended length. The analysis shows
that the current weather recording site for Perth has colder temperatures than the
original location and there was also evidence of rising temperatures due to climate
change.

Accordingly, in order to prepare a stable time series of daily readings for electricity
demand simulation, it is recommended that the daily historical values for maximum
and minimum temperatures be adjusted for location effects using the mean seasonal

effects described in detail above. The effects of climate change should be incorporated
by using the associated annual growth factors indexed by season. Allowing for the
effects of climate and site change alters the temperature readings for certain locations

© 2017 Australian Statistical Publishing Association Inc.
Prepared using anzsauth.cls



18 ESTIMATING LOCATION AND CLIMATE CHANGE EFFECTS

2 4 6 8 10 12

10
20

30
Mean Min. Temperatures to 1963

2 4 6 8 10 12

Estimated Mean Deviation 1963−1967

−
10

0
10

2 4 6 8 10 12

Estimated Mean Deviation 1967−92

−
10

0
10

2 4 6 8 10 12

Estimated Mean Deviation 1992−93

−
10

0
10

2 4 6 8 10 12

Estimated Mean Deviation 1993−09

−
10

0
10

2 4 6 8 10 12

Estimated Annual Trend

−
0.

10
0.

00
0.

10

Figure 10. Estimates by month for minimum temperatures of the effect of change of location
and of trend over time with 95% confidence intervals. The plot of annual trend also shows
the overall mean annual change as a horizontal full line. The total increase over 67 years is
1.20 ◦C (±0.52). There is evidence of lower temperatures over the whole year at the current
Mt Lawley site (The mean difference compared to the King’s Park site is −1.84 ◦C (±0.40)).

by over two degrees Celsius. Hence the associated simulated electricity demand
forecasts could change by up to 4% (see Section 1).

Appendix

Proof of the Multivariate Interleaving Theorem. Given {ys}, {ws} and {εs}
from (6), a constant i from (1, ...,m), and s = m(t− 1) + i, t = 1, ..., n, the difference

equation (7) can then be expressed as

φ(B)(xi,t − µxi,t
(zi,t)) = θ(B)ai,t .

where t = 1, ..., n. It is known that for s = i, m + i, 2m + i, ..., (n− 1)m + i, E(εs) =
E(ai,t) = 0, and V (εs) = V (ai,t) = Σa. Also, for r = i, m + i, 2m + i, ..., (n− 1)m +

i, where r 6= s, it is the case that E(εsε
>
r ) = E(ai,ta

>
i,u) = 0, t 6= u. We finally

note that for s = i, m + i, 2m + i, ..., (n− 1)m + i and r∗ = j, m + j, 2m + j, ..., (n−
1)m + j, and s | m 6= r∗ | m, it is the case that E(εsε

>
r∗) = E(ai,ta

>
j,u) = 0, i 6= j.
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That is, the replicated multivariate time series are independent. Consequently the
interleaved process (7) is a RVARMA process.
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Table 1. Change of location for Perth’s temperature recording device. The readings for King’s
Park begin in the current analysis on 1st January 1943.

Location Last Recording Date

King’s Park August 1963
Old Hale School June 1967

Wellington St May 1992
Perth Airport November 1993

Mt Lawley December 2009
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Table 2. Seasonal effect of location shift and of climate change (summer = months 1 to 3,
autumn = 4 to 5, winter = 6 to 8, spring = 9 to 13). Values that are statistically significant
at the 0.05 level are preceded by “*”.

Season Old Hale Wellington Perth Mt Lawley Annual

School Street Airport Trend

Maximum Temperature

Mean Effect Summer -0.19 -1.33 -1.14 -1.25 0.0270
Autumn -0.44 -0.24 -0.62 -0.01 0.0291

Winter 0.52 0.16 -0.42 0.40 0.0031
Spring 0.04 0.07 -0.24 0.66 0.0085

SE Summer 0.43 0.45 0.94 0.75 0.0146
Autumn 0.35 0.36 0.76 0.60 0.0118

Winter 0.18 0.18 0.32 0.30 0.0059
Spring 0.27 0.28 0.53 0.47 0.0092

t Value Summer -0.44 ∗-2.97 -1.21 -1.67 1.85
Autumn -1.26 -0.66 -0.81 -0.01 ∗2.47

Winter ∗2.96 0.90 -1.31 1.32 0.53
Spring 0.13 0.24 -0.45 1.39 0.92

Minimum Temperature

Mean Effect Summer -0.83 -1.38 -3.83 -3.34 0.0346

Autumn 0.05 0.26 -1.37 -1.66 0.0175
Winter 0.04 0.61 -0.38 -1.40 0.0029
Spring -0.06 0.26 -1.94 -1.29 0.0170

SE Summer 0.20 0.20 0.43 0.34 0.0066
Autumn 0.28 0.29 0.61 0.49 0.0095

Winter 0.34 0.33 0.59 0.56 0.0109

Spring 0.16 0.16 0.29 0.27 0.0052

t Value Summer ∗-4.21 ∗-6.79 ∗-8.97 ∗-9.81 ∗5.22
Autumn 0.19 0.88 ∗-2.25 ∗-3.41 1.84

Winter 0.12 1.88 -0.64 ∗-2.51 0.27
Spring -0.38 1.63 ∗-6.74 ∗-4.81 ∗3.26
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Chapter 8

Conclusions

The aim of this thesis was to define, identify, fit and apply models for replicated

stationary and invertible time series processes. A literature review on replicated

processes revealed that they are encountered in a wide range of areas including panel

and longitudinal studies in econometrics and medical statistics. However much of

the existing work uses AR(1) models only and the parameter estimation typically

employs least squares or method-of-moments approaches rather than maximum

likelihood (which is commonly used in standard time series analysis (see Chatfield

[2003] p. 65)).

8.1 Joint ARMA Processes

Replicated stationary and invertible time series are represented in this thesis by

so-called Joint ARMA or JARMA processes. These are processes that have shared

ARMA coefficients with innovations variances that are either in common (Repli-

cated ARMA or RARMA processes), vary with the series (Almost Identical ARMA

or AIARMA processes) or are proportional to the series mean (Conditional AIARMA

or CAIARMA processes). For a shared innovations variance matrix, the extension

to Joint VARMA (Replicated VARMA) processes is undertaken. All models include

extraneous variables.

In this thesis it is proven that a RARMA process can be represented by one

stationary and invertible univariate series using interleaving and this is shown to
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also apply to Replicated VARMA processes. The interleaving of the replicated se-

ries allows ARMA and VARMA models to be fitted to all series simultaneously

using readily available time series software. The spectral density of an interleaved

Replicated ARMA (and VARMA) process is shown to be a compressed version of

the shared spectral density of each of the replicated series. Conversely the auto-

correlation function is an expanded version of the shared autocorrelation function.

These properties of an interleaved process provide a simple interpretation of the

effects of interleaving.

The JARMA models could be further extended by adding an intercept term

to the variance expression for the CAIARMA model. The asymptotics of the as-

sociated maximum likelihood estimates can be derived using the methods in this

treatise and simulation studies similar to those in Chapter 5 could be undertaken.

An intercept would allow the use of this extended CAIARMA model to be employed

in likelihood ratio testing against the original CAIARMA model and the RARMA

model.

8.2 Empirical Identification

In order to identify JARMA processes, tests for comparing time series were inves-

tigated. A comprehensive review of the literature on series testing was undertaken.

The existing tests typically involve regression models of the logged ratio of the

periodogram ordinates, single-parameter likelihood ratio tests or distance-based

measures. There are also tests that employ the autocovariance function. The tests

generally assume two series of equal length (but this is discussed further at the end

of this section). Tests with relatively high power from published simulation studies

are the regression tests and randomisation and bootstrapping tests.

In this treatise, the system of testing for process equivalence begins with testing

for the same spectral shape (or, equivalently, the same autocorrelation function).

If accepting of the same shape, testing is undertaken for the same scale (that is,

the same spectral density or equivalently the same innovations variance). The

sequential nature of the shape and scale tests has not, to the author’s knowledge,

been previously addressed and requires adjustments to the size and power of the

scale test.
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To attempt to improve on the power of the existing tests and/or develop tests

that are simpler to implement, seven new tests are proposed. These tests include

four new shape tests using differences across frequencies in the logged ratio of the

periodogram ordinates (with two alternatives for the differencing), the distance

between the sample autocorrelation functions and the calculation of the sample

variance of the logged ratios. A shape test employing a count of periodogram ratios

outside critical levels was investigated but showed low power. The three new scale

tests employ the Wald test, the mean logged ratios and the Central Limit Theorem

applied to the sample mean of the logged ratios.

A likelihood ratio shape test using a quadratic regression model of the logged

ratios against frequency and a likelihood ratio scale test using the un-transformed

ratios (see Coates and Diggle [1986]) are also employed as reference tests being

amongst the most powerful from the literature. It is proven for the first time that

the maximum likelihood estimate associated with the likelihood ratio scale test has

only one feasible (that is, positive) solution thereby aiding its interpretation.

Size and power simulation studies of the new and existing tests were under-

taken. The simulations indicate that the sizes for all tests are slightly higher than

their nominal values. The most powerful shape tests for a range of alternative hy-

potheses are the autocorrelation test, the N/2th difference test and the likelihood

ratio regression test. Testing using the variance of the logged ratio and the first

difference of the logged ratios show disappointing power. Of the scale tests, the

mean logged ratio and the Central Limit Theorem tests show comparative power

with the likelihood ratio test.

On the basis of the simulations it is recommended that, for sequential time-

series testing, the N/2th difference shape test and the Central Limit Theorem scale

test be employed, being simple to implement and relatively powerful. However the

N/2th difference test is not so suitable as a graphical test and an alternative is

recommended below.

Given the popularity of the Box-Jenkins identification method, a graphical pro-

cedure has been developed that is a visual approach to exploring whether two series

have the same spectral shape and scale and to determine their common ARMA or-

der. The method uses the Coates and Diggle [1986] shape test, the Central Limit

Theorem scale test and a merging of the autocorrelation functions. As mentioned
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above, a shape test using a count of periodogram ratios outside critical levels proved

unsuitable. However the convenience of this form of count-based test suggests that

further research to improve the power is worthwhile. This is particularly the case

given that the use of the Coates and Diggle [1986] shape test is not altogether

satisfactory as a graphical tool as it results in a test outcome that is not visually

determined from the plot. However the logged ratio plot and the overlayed regres-

sion model outcome does provide valuable information on the relationship between

the two series’s processes.

In some hypothesis testing there will be a need to compare more than two time

series but this situation is not addressed in this thesis. One possible approach

could be to use the maximum likelihood estimation for RARMA, AIARMA and

single-series ARMA models in a multiple-series likelihood ratio test of shape and

of scale. The same tests may also be used for series of differing lengths which is

not considered here. The variances for the autocorrelation shape test can also be

readily modified to accommodate varying series length.

8.3 Maximum Likelihood Estimation

Unconditional maximum likelihood estimates of RARMA, AIARMA and CAIARMA

models were derived analytically and numerically using unconstrained and con-

strained (for stationarity and invertibility) joint likelihood and interleaving ap-

proaches. In the simulation estimation studies in this thesis, these three methods

all use the R function, arima, which is employed as part of the optimisation process

with some adjustment to the inputs and outputs. This avoids the preparation of

extensive bespoke coding making the modelling of replicated series much easier to

implement.

For the ARMA (single-series), RARMA, AIARMA and CAIARMA simulation

modelling, the constrained joint likelihood approach resulted in the most stable

MLE values.

The asymptotic distribution of the maximum likelihood estimates were analyti-

cally derived and show a natural progression from the known results for single-series

ARMA models. Extensive simulation studies were conducted into the properties

of the maximum likelihood estimates of the ARMA, RARMA, AIARMA and CA-
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IARMA model parameters.

Across most models, the estimates have low bias even for small samples (n ≤
96), show accurate coverage for the associated confidence intervals and follow the

asymptotic standard errors. Hence the asymptotic distribution of the estimates can

be used as a reliable indicator of estimate behaviour. Moreover, the Hessian-based

empirical confidence intervals appear to be reliable. The estimates do not perform

well when the ARMA coefficients are near the unit circle nor when the AR and MA

polynomials in B are close to cancelling.

An area of some interest in the literature is the contrast in estimator efficiency

between using a small number of long series or a large number of short series. This

was not fully explored in the current work, given that the simulations were limited

to two component series and restricted to maximum likelihood methods. However,

for RARMA, AIARMA and CAIARMA versus single-series ARMA processes, the

asymptotic and simulation results as well as the Interleaving Theorem indicate that

it is the total length of all series that is the determining factor when estimating

common parameters, at least when using joint maximum likelihood methods. This

issue could be pursued by expanding on the analytical asymptotic results presented

here (for a large number of series of finite length) and by further simulations.

The use of the models in this thesis for panel and longitudinal data could also

be further explored. This type of data commonly arises in economic, medical and

biological studies and often involves a suspected autocorrelated structure given the

sequential nature of the readings. The current Joint ARMA and VARMA models

could also be extended to incorporate random effects which are often included in

panel and longitudinal models.

The joint likelihood and interleaving methods lend themselves to use with fac-

tional differencing, non-normal innovations distributions and robust estimation

methods (for example, see trimmed likelihood in Bednarski and Clarke [1993]).

They could also be extended to the multivariate equivalent of the AIARMA and

CAIARMA models.

The process of identification and estimation of the Joint ARMA models could be

improved by pursuing research into residual checks for the adequacy of the models.

In this regard the Ljung-Box test for white noise residuals could be extended to

the case of joint time series. It would use the interleaved residuals and would be



CHAPTER 8. CONCLUSIONS 165

modified to accommodate the assumed independence between the series. With

the latter, certain population autocorrelations of the interleaved series would be

assumed to be zero.

Finally, much R code has been written for this thesis. It is the author’s intention

to develop this code into an R package for the identification and fitting of JARMA

models.

8.4 Application

The interleaving method for both univariate and multivariate time series was ap-

plied to over sixty years of daily maximum and minimum temperatures for Perth,

Western Australia (Bowden and Clarke [2012, 2017]). This shows that there have

been changes in mean temperatures due to location and climate change. The mod-

elling of interleaved daily data by day-in-the-week returns univariate and multivari-

ate results which concur with known climate change effects. The location change

estimates suggest that the current recording site, 5km north of Perth, is 1.8◦C

colder overnight than the original site at King’s Park near the city. The estimated

movements in temperature due to climate and location change can be used in cor-

recting historical weather records employed in the simulation of annual electricity

maximum demand. The demand simulations employ an estimated model (not in-

cluded here) linking daily demand to temperatures combined with a long-term daily

temperature record and a forecast of underlying demand growth.

Over and above changes in the mean, work by Vasseur et al. [2014] and others

suggest that there is evidence of movements in the distribution of temperatures due

to climate change. The current work on Perth temperatures using the models in

this thesis could be extended to investigate this phenomenon.

The Joint ARMA models can be employed in exploring time series models of

daily total solar radiation readings; these radiation models are likely to vary by

location and season. Past research suggests some common generating mechanisms

involving similar models to those developed in this thesis. Such work will likely

require further enhancements to the Joint ARMA models, allowing the coefficients

to vary with the series mean. This will build on the author’s previous research in

Suehrcke, Bowden, and Hollands [2013] which studied monthly solar radiation and
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sunshine fraction.

8.5 Personal Reflections

Given the commentary above, there are clearly many prospects for future research

into replicated time series. I hope that my own work in this area has followed the

advice of Gwilym Jenkins in his excellent 1979 book, “Practical Experiences with

Modelling and Forecasting Time Series” where he writes:

“As a profession, we, as statisticians, have a great deal to con-

tribute....To be effective in a practical context, we need to be concerned

first with the solution of problems and second with the relevance of

techniques, statistical or otherwise.”

I trust that this treatise has contributed to the research community’s knowledge of

both the applied and theoretical aspects of time series analysis.



Appendix A

Literature Review of Equivalence

Tests

The tests of process equivalence referenced in this literature review are detailed in

the tables below and can be classified according to the type of test statistic involved.

The first three tables (sorted by publication date) detail the form and performance

of the tests and the final table shows the design of any associated simulation studies.

A summary is contained in Section 3.2.

The capital letter codes described below are used in the column“T”of the tables

(with the counts of tests in brackets shown below). For the designations in columns,

H0 (the null hyypothesis), and, H1(the alternative hypothesis), see Section 3.2.

The first group of tests involves use of the periodogram and these tests can be

further sub-grouped according to :

1. R : Regression-based modelling of the log of the ratio of the periodogram

ordinates (as a function of frequency) (9)

2. L : Other likelihood ratio tests (LRT) using the periodogram (2)

3. D : Other measures of distance between periodogram ordinates (12) and

4. P : Other periodogram methods (2)

There are also methods that use sample (normalised or non-normalised) autoco-

variances (C) (5) and other approaches (O) (3) such as the difference in the lengths

of the line segments connecting the data points.
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A number of the tests below can employ either the normalised or non-normalised

estimated second-order moments (that is, the periodogram or autocovariance/auto-

correlation values) with little or no adjustment of the methodology. This typically

allows testing of either HB versus HC or HB1 versus HD respectively. These tests

are indicated by an asterisk in the “T” column. Columns “S” and “P” provide a

summary of the size and power outcomes for A(1) process (φ1 = 0.5) versus white

noise for n = 64 (when available, at least approximately). An integer below the

decimal size or power indicates a different sample size.
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Table A.1 – Hypothesis Tests of Process Equality (Periodogram-Based Regression
Tests and Other Periodogram-Based Single Parameter Likelihood Ratio Tests) with
Size (S) and Power (P) for AR(1) (φ1 = 0.5) v White Noise, n=64. For column (T)
see earlier and for H0 and H1 see Section 3.2.

Reference Description H0 H1 T S P

Coates and

Diggle [1986]

This employs the LRT using the logs of the ratio of the

non-normalised paired periodogram ordinates represented as

a quadratic in i = λ1 + λ2i+ λ3i2 where λ1 = λ2 = λ3 = 0

versus λ1 6= 0, λ2 6= 0 , λ3 6= 0

HB HC R - ∼ 0.63,
(φ1 =
−0.5),

10%

Coates and

Diggle [1986]

This employs LRT using the logs of the ratio of the

non-normalised paired periodogram ordinates represented as

a quadratic in i = λ1 + λ2i+ λ3i2 where λ1 = λ2 = λ3 = 0

versus λ1 6= 0, λ2 6= 0, λ3 = 0 .

HB1
HB2

R - -

Fokianos and

Savvides [2008]

This employs the LRT of model of the log of the ratio of the

non-normalised periodogram ordinates using cosine terms

(only the intercept is non-zero versus all parameters are

non-zero).

HB HC R - -

Fokianos and

Savvides [2008]

As above (all parameters equal zero versus intercept only is

non-zero).

HB1 HB2 R - -

Vassiliadis and

Rigas [2009]

This models the log of the ratio of the paired non-normalised

periodogram ordinates as a function of the frequency via a

generalised linear model fitted using maximum likelihood

(only the intercept is non-zero versus all parameters are

non-zero).

HB HC R - -

Vassiliadis and

Rigas [2009]

As above (all parameters equal zero versus intercept only is

non-zero).

HB1
HB2

R - -

Lund et al.

[2009]

This uses a LRT that the spectral density functions are the

same versus unique to each series. The LRT statistic via the

CLT and non-normalised periodogram theory leads to a

distribution of the statistic.

HB1 HD L 0.055

1,024

∼ 0.2

1,024

Jin [2011] This models the log of the ratio of the non-normalised paired

periodogram ordinates using orthogonal Lagrangian

polynomials and a χ2 statistic from a least square fit with an

Akaike-like criterion for order selection (only the intercept is

non-zero versus all parameters are non-zero).

HB HC R 0.055 0.59

Jin [2011] As above (all parameters equal zero versus intercept only is

non-zero).

HB1
HB2

R - -

Tugnait [2013] LRT of the smoothed non-normalised periodograms using

the Daniel window. The LRT compares averaged versus

unique periodograms finding the associated LRT asymptotic

distribution.

HB1
HD L - -

Lu and Li

[2013]

The test statistic (adaptive Neyman testing) is the squared

coefficients of a Fourier model fitted to the logged ratio of

non-normalised periodogram ordinates.

HB1
HD R 0.05

256

0.2-1.0

256
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Table A.2 – Hypothesis Tests of Process Equality (Periodogram-Based Distance
Tests) with Size (S) and Power (P) for AR(1) (φ1 = 0.5), n=64. For column (T) see
earlier and for H0 and H1 see Section 3.2.

:

Reference Description H0 H1 T S P

Coates and

Diggle [1986]

It uses the extrema of the log of the non-normalised

periodogram ratios with periodogram distribution theory.

HB1
HD D - <0.13

10%

Coates and

Diggle [1986]

It employs the range of the log periodogram ratios using

periodogram distribution theory. There is no difference

between the use of normalised or non-normalised statistics.

HB HC D - <0.16

10%

Coates and

Diggle [1986]

This exact K-S test uses ci =
∑N

i=1 log
{
1 + α̂i

−1
}
and

ci/cN with non-normalised periodogram.

HB1
HD D - <0.57

10%

Diggle and

Fisher [1991]

A K-S and CVM distance between two non-normalised

periodograms uses randomisation for probability density

function under HB1
.

HB1
HD D* 0.05 0.65

Chik [2002] A randomisation procedure derives the pdf of the K-S

measure of distance between two periodograms.

HB1
HD D* - 0.64

Caiado et al.

[2006]

Various distance measures between periodograms are used

for classification purposes.

HB1
HD D* - -

Luengo et al.

[2006]

A bootstrapped test is based on the average squared distance

between the non-normalised periodogram ordinates of two

groups of series.

HB1 HD D* - -

Lund et al.

[2009]

This uses the CLT with the mean of the absolute values of

the log ratios of the non-normalised periodogram ordinates

which under H0 is a mean of iid log-logistic random vars.

HB1 HD D 0.059

1,024

∼ 0.2

1,024

Jentsch and

Pauly [2012]

This employs a weighted (ci) sum of squares of the difference

between non-normalised periodogram ordinates distributed

as weighted sum of iid double exponential distributed

random vars.

HB1 HD D 0.09 0.42

Jentsch and

Pauly [2012]

This utilises a weighted (di) sum of squares of the squared

log of the ratio of the non-normalised periodogram ordinates

distributed as weighted sum of squared iid standard

exponential distributed random vars.

HB1
HD D 0.06 <0.10

Hidalgo and

Souza [2014]

For a large number of series, the sum of squares of the ratio

of the non-normalised periodogram ordinates and the

averaged ordinates at each frequency is employed. The

asymptotic distribution is derived.

HB1
HD D - -

Jentsch and

Pauly [2015]

The test statistic is a randomised L2-measure of the

difference between the non-normalised periodogram of a

multivariate process. The asymptotic distribution is derived.

HB1
HD D - -
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Table A.3 – Hypothesis Tests of Process Equality (Other Periodogram-Based Tests,
Autocovariance-Based Tests and Other Tests) with Size(S) and Power(P) for AR(1)
(φ1 = 0.5), n=64. For column (T) see earlier and for H0 and H1 see Section 3.2.

Reference Description H0 H1 T S P

Maharaj [2000]

See Alonso et

al.

The moving block time series bootstrap method derives the

empirical probability density function of the K-S and CVM

distances between the sample autocorrelations and partial

autocorrelations.

HB HC C* >0.05

200

0.9

200

Alonso and

Maharaj [2005]

This employs Politis and Romano’s time series bootstrapping

method to estimate the pdf of the sum of squared differences

between the sample autocorrelations.

HB HC C* ∼ 0.08

256

∼ 0.87

256

Caiado et al.

[2006]

Various distance measures between sample autocorrelations,

inverse autocorrelations and partial autocorrelations are

employed for classification purposes.

HB HC C* - -

Quinn [2006] A LRT test is utilised involving the difference between

estimated AR parameters of the two series (as a mixed

spectral model).

HB HC O - -

Lund et al.

[2009]

This test uses a count of number of ratios of non-normalised

periodogram ordinates outside binomial critical values

HB1 HD P - -

Lund et al.

[2009]

This uses the known asymptotic variances, covariances and

distribution of the sample autocovariances in a distance

measure between the sample autocovariance of the two series.

HB1
HD C 0.047

1,024

1.0

1,024

Dette et al.

[2011]

The test statistic here is essentially the sum of squares of the

non-normalised periodogram ordinates.

HB1
HD P ∼ 0.08

128

-

Jin and Wang

[2016]

The test statistic is the maximum over all lags of a linear

function of the differences in sample autocorrelations. The

asymptotic distribution is derived.

HB HC C ∼ 0.06

40

0.60

32/64

Tunno [2015] This test is based on the the asymptotic probability density

function of 1) the difference in total length of the line

segment connecting the non-normalised points, 2) of the

squared first differences and 3) of the area to the x-axis.

HB1
HD O - -

Decowski and

Li [2015]

This tests for differences in a wavelet model of each of the

non-normalised periodogram ordinates.

HB1
HD O - -
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Table A.4 – Processes and Parameters used in Simulation

Reference Type Processes n Sizes #Sim.

Coates and

Diggle [1986]

Power WN v AR(1)[0.2, 0.4, 0.6, 0.8]
WN v AR(2)[0 and above φ’s]

WN v AR(3)[-φ’s, 0, φ’s]
AR(1)[0.5] v AR(1)[0.1...0.9 by 0.1]

WN with var ratio of 1.1 and 1.2

64

1024

0.10

0.05

50

100 (Scale)

Diggle and

Fisher [1991]

Size AR(1)[0, 0.1, 0.5, 0.9]

MA(1)[0, 0.1, 0.5, 0.9]

64
256

1,024

0.10

0.05

0.01

1,000

Power WN v AR(1)[0.2, 0.4, 0.6, 0.8]
WN v AR(2)[0 and above φ’s]

WN v AR(3)[-φ’s, 0, φ’s]
AR(1)[0.5] v AR(1)[0.1...0.9 by 0.1]

WN with var ratio of 1.1 to 1.5 by 0.1

64

1,024

0.10

0.05

0.01

1,000

Lund et al.

[2009]

Size AR(1) [-0.75 to 0.75 by 0.25]

MA(1) [-2.0 to 2.0 by 0.5]

1,024 0.05 10,000

Power AR(1) v MA(1) [-0.75 to 0.75 by 0.25]

MA(1) [1.0] v MA(2)=[1.0]+ [0.10, 0.25, 0.50]

256
512

1,024

0.05 10,000

Dette et al.

[2011]

Size WN

MA(1)[0.2]

128
256
512

1,024

0.05
0.10

0.15

1,000

Power WN v MA(2)[θ1s.t.ρ = [0.1, 0.5] given

θ2 = [0, 0.5]]

128
256
512

1,024

0.05
0.10

0.15

1,000

Lu and Li

[2013]

Size AR(1)[-0.75 to 0.75 by 0.25]

MA(1)[-0.75 to 0.75 by 0.25]

1,024 0.05 10,000

Power AR(1)[-0.75 to 0.75 by 0.25] v

MA(1)[θ =
√

φ2(1− φ)2.
MA(1)= [0.1, 1.0], MA(2)=[0.1,1.0]+[0.1,0.25,0.5]

WN v Ann. Seas. AR[0.1,0.25,0.5]

1,024 0.05 10,000

Tunno [2015] Size MA but not invertible 1,000 0.05 10,000

Jentsch and

Pauly [2015]

Size AR(1)[0.5]

Unclear

50/75
200/300

800/1,200

0.01
0.05

0.10

?

Power Unclear but possibly WN v AR(1) 50/75
200/300

800/1,200

0.01
0.05

0.10

?

Jin and Wang

[2016]

Size ARMA(1,1)[(0,0), (0.8,0.0), (0.0,1.0), (0.5,0.1)] 40
120

360

0.10

0.05

1,000

Power WN v AR(1) [0.0,0.1,0.2,0.4,0.6]

AR(1) [-0.75 to 0.75 by 0.25] v MA(1) [

θ1 = sign(φ1)
√

φ1
1−φ1

]

32
64
128
256

n1 6= n2

0.05 1,000



Appendix B

Distributional Theory for

Periodograms

This appendix summaries general distributional outcomes and periodogram distri-

bution results that are used in Chapter 3.

Firstly the following probability density functions for various distributions and

the associated distributional relationships are listed:

1. Exponential distribution with parameter λ (which is designated as

Exp(λ)). fX(x, λ)= λe−λx, x ≥ 0.

2. Chi-squared distribution with two degrees of freedom. fX(x, 2)=
1
2
e−

1
2
x, x ≥ 0, that is, X ∼ Exp(1

2
).

3. F distribution with degrees of freedom (2,2) (that is, F2,2). fX(x)=

(1+x)−2, x ≥ 0. It has the same distribution as the ratio of two independent

chi-squared random variables with two degrees of freedom (that is, the ratio of

two independent Exp(1
2
) random variables). The natural logarithm of one plus

an F2,2 random variable is an exponential random variable with parameter one

(Coates and Diggle [1986] p. 10).

4. Logistic distribution with parameters µ and s. fX(x)=
e−(x−µ)/s

s(1+e−(x−µ)/s)2
, x ∈

(−∞,∞). The natural logarithm of an F2,2 random variable is a logistic ran-

dom variable with a mean 0 and a scale of 1 (see Coates and Diggle [1986] p.

8). The logistic random variable with scale of one has a variance of π2

3
.
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The distributions associated with various functions of the periodogram ordinates

is now discussed recalling that, from Section 3, αi =
h2(ωi)
h1(ωi)

, that is, αi is the ratio

of the spectral densities of the two independent series at frequency, ωi, and {α̂i}
is the estimate of the {αi} from the ratio of the periodogram ordinates for the

independent series {y1,t}nt=1 and {y2,t}nt=1, both from a stationary and invertible

normally-distributed process.

The non-normalised periodogram ordinates of {y1,t}nt=1
1 at frequencies {ωi}Ni=1,

that is,
{
ĥ1(ωi)

}N

i=1
, with N = n/2, are asymptotically independently distributed

as h1(ωi) times a chi-squared random variable with two degrees of freedom, that

is, an Exp(1
2
) random variable times h1(ωi). If the series {y1,t}nt=1 and {y2,t}nt=1

are two independent stationary and invertible series (not necessarily from the same

process), then α̂i = ĥ1(ωi)/ĥ2(ωi) is asymptotically distributed as αi times an F2,2

random variable.

Let δ̂i = log(α̂i). So δ̂i is therefore asymptotically distributed as a logistic

random variable with mean, log(αi), and scale of one. This derives from δ̂i =

log(αi) + log(y) where log(y) is asymptotically distributed as a logistic random

variable with mean zero and scale of one. Letting zi = log(1 + α̂i) and assuming

αi = 1 then zi is asymptotically distributed as an Exp(1) random variable.

1As in the main text we assume n is even for convenience sake.



Appendix C

Proof of One Positive Root

Theorem 1. Let,
N∑
j=1

(x− aj)
N∏

k=16=j

(x+ ak) = 0, (C.0.1)

where the constants aj > 0 for all j = 1, . . . , N . Of this polynomial’s N roots, only

one is a positive real number.

Proof. Consider the polynomial in (C.0.1) but, in the first summation (that is, in∑N
j=1 (x− aj). . .), let −aj =⇒ aj for all j = 1, . . . , N . Hence (C.0.1) becomes N

additive identical polynomials, each of the form,
N∏
k=1

(x+ ak) . (C.0.2)

Let this “sub-polynomial” be expanded in powers of x. For the term, xi, the

associated positive coefficient is the sum of the products of all combinations of

(N − i) of the all-positive {aj}Nj=1. So, for each xi, the coefficient is the sum of
(
N
i

)
positive additive constants, each of which are one of the unique (combinatorial)

products of N−i of the N aj’s . These
(
N
i

)
products are summed across all the sub-

polynomials to create the coefficient for xi in the polynomial (C.0.3) below, which

corresponds toN times (C.0.2) (after the−aj =⇒ aj∀j = 1, . . . , N transformation),

that is,

N

N∏
k=1

(x+ ak) . (C.0.3)
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The transformation is now reversed, letting aj =⇒ −aj in the jth sub-polynomial,

j = 1, . . . , N . For each of the additive sets of the N identical combination products

of unique form this change of sign affects only N − i of the products (see Table C.1

from the example below). Hence, of each of the N identical (positive) products,

N − i become negative. Hence the total of these N products is only negative when

N − i > i, that is, i < N/2 . This applies equally to all the unique additive products

and hence to the sum of all of them, being the coefficient of xi in (C.0.1)).

Accordingly the coefficient of xi in (C.0.1) is only negative when i < N/2 .

Similarly it is only zero when i = N/2 (that is, in general, zero coefficients only exist

when N is even) and only positive when i > N/2. This implies that there is only

one change of sign of the coefficients of (C.0.1) when sorted in order the powers of

x. Hence, by Descartes Rule of Signs, there can be only one positive (real) root.�

As an illustration of part of the detail of this proof, let N = 4 so,

(x− a1)(x+ a2)(x+ a3)(x+ a4) +

(x+ a1)(x− a2)(x+ a3)(x+ a4) +

(x+ a1)(x+ a2)(x− a3)(x+ a4) +

(x+ a1)(x+ a2)(x+ a3)(x− a4) = 0.

If −aj =⇒ aj ∀ j = 1, . . . , 4, (that is, by each sub-polynomial, j = 1, . . . , 4) then

this gives 4 identical sub-polynomials, each of the form,

(x+ a1)(x+ a2)(x+ a3)(x+ a4) .

Expanding this gives 4 identical sub-polynomials, each of the form,

x4 + (a1 + . . .+ a4)x
3 + (a1a2 + a2a4 + a2a3 + a1a4 + a1a3 + a3a4)x

2 +

(a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4)x
1 +

a1a2a3a4 .

Taking the coefficients of, say, x1 (that is, a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4)

and setting in turn, by sub-polynomial, aj =⇒ −aj ∀ j = 1, . . . , 4, the following

sub-polynomial coefficients and the aggregate (that is, “Sum”) coefficient for x1
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result,

Table C.1 – Sub-Polynomials for x1

Sub-Polynomial Sub-Polynomial Coefficients

1 −a1a2a3 − a1a2a4 − a1a3a4 + a2a3a4
2 −a1a2a3 − a1a2a4 + a1a3a4 − a2a3a4
3 −a1a2a3 + a1a2a4 − a1a3a4 − a2a3a4
4 +a1a2a3 − a1a2a4 − a1a3a4 − a2a3a4

Sum −2a1a2a3 − 2a1a2a4 − 2a1a3a4 − 2a2a3a4

In this case the negatives predominate which, given that this is the aggregate

coefficient for x1, is shown to satisfy i = 1 < 4
2
= 2.

To further illustrate this theorem, the following table shows the outcome re-

garding positive, zero and negative coefficients associated with powers of x for

polynomials of up to order six. The “Cutpoint” specifies the power of x above

which the associated coefficient is positive, at which it is zero and below which it is

negative. All these polynomials show only one change in the sign of the coefficients

when sorted in order of the powers of x.

Table C.2 – Signs of the Coefficients of xi

Polynomial
Order (N)

Sign of Coefficient of Powers of x Cutpoint
(N/2)Positive Zero Negative

2 2 1 - 1
3 3 2 - 1 0 1.5
4 4 3 2 1 0 2
5 5 4 3 - 2 1 0 2.5
6 6 5 4 3 2 1 0 3



Appendix D

Marginal ARMA Models from

Vector ARMA Processes

It is informative to compare the form of the temperature model’s VAR filter in

Bowden and Clarke [2017] (see Chapter 7) to the univariate ARMA filter from

Bowden and Clarke [2012] (see Chapter 6). Corollary 11.1.1 from Lütkepohl [2005]

can be used to show that the univariate (marginal) time series from a multivariate

VAR(2) process are ARMA(4,2).

To demonstrate this, in the current bivariate case we define a vector, F = [1, 0],

and hence M = 1 and K = 2 as used in Lütkepohl [2005] (note that Corollary

11.1.2 is not applicable as M ≯ 1). So the (univariate) process, ut = Fxt, is an

ARMA(p̃, q̃) process where p̃ ≤ Kp = 2p and q̃ ≤ (K−1)p+q = (2−1)p+q = p+q

(The inequalities accommodate the potential cancellation of AR and MA terms).

Hence with p = 2 and q = 0 (from our VARMAX(2,0) models) the marginal ARMA

models are of order at most (4, 2), that is, ARMA(4,2). This compares to the AR(2)

models identified and fitted in Bowden and Clarke [2012].

Although not undertaken here it is possible to calculate the parameters of the

univariate marginal process from the VARMA parameters by equating the auto-

covariances of the marginal ARMA models to the diagonal elements of the cross-

covariance matrix of the VARMA process.
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