UNIVERSITI TEKNOLOGI MARA

ELECTRICITY LOAD PROFILE DETERMINATION BY USING FUZZY C-MEANS AND PROBABILITY NEURAL NETWORK

NORHASNELLY BINTI ANUAR

Thesis submitted in fulfilment of the requirement for the degree of **Master of Science**

Faculty of Electrical Engineering

April 2015

ACKNOWLEDGEMENTS

First and foremost, I am grateful to Allah SWT for giving me the opportunity and strength to complete this thesis. Without the blessing and compassion, the completion of this thesis would be impossible.

I would like to express my special appreciation and thanks to my advisor Assoc. Prof Dr Zuhaina Zakaria, who have been a tremendous mentor for me. I would like to thank you for encouraging my research. Her support, advices, guidance, valuable comments, suggestions and provisions have been priceless and have helped me in the completion and success of this study. Indeed, without her guidance, I would not be able to put the study together.

A special thanks to my beloved husband, Mahathir Norman. I can't be grateful enough for his unconditional support and for the sacrifices that he has made on my behalf.

Last but not least, I would like to thank my parent, Anuar Abdul Jalil and Rossazannah Omar for the support they provided me through my entire life. Without their countless prayers and morale support, I would have not been able to finish this course.

ABSTRACT

Information from load profile is useful for electricity suppliers to plan their generation, improving their market strategies and load balancing. Consumers in the new liberalized market have the opportunity of choosing their electricity suppliers between several suppliers and the possibility to access to new products and services from them. Hence they need the knowledge of load profile to help them choose their electricity supplier. On the suppliers' side, power market becomes competitive and energy commercializers are becoming more interested in the development of new suitable strategies and products to be offered to each of their different user or to find new market opportunities. A lot of efforts have been made to investigate methodologies to form optimal efficiency in determining typical load profiles (TLPs), derived from various clustering and classification techniques. Methodologies proposed in previous work have disadvantages such as time consuming, expensive, poor performance over large scale simulation and produced overlapped data in the obtained TLPs. To overcome these problems this project proposes a methodology for determining consumers' TLPs by using fuzzy C-means (FCM) clustering method and probability neural networks (PNN) classification techniques. FCM is used in this study as it allows one data to belong to more than one group by assigning the membership function according to the distance of the data with the cluster center. This method will give the best result when clustering the overlapped data in load profile. PNN is a fast training process to do the classification activities. As compared with the backpropagation method in literature review, it gives better result when classifying large data sets. The objectives of this project are to use FCM as the clustering algorithm to establish TLPs. The optimal number of cluster for FCM is obtained through cluster validity analysis. Furthermore the best value of 'fuzzification' parameter, m of FCM will be determined. Next PNN is used to classify load profile according to its group. Results obtained show that FCM algorithm can be used as the clustering method to obtained TLPs and PNN is proven to be reliable to allocate the measured load profiles accurately according to their type of consumers.

TABLE OF CONTENTS

Page

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF NOMENCLATURE	xii

CHAPTER ONE: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statements	3
1.3 Research Objectives	5
1.4 Scope and Limitations of Study	5
1.5 Significance of Study	6

CHAPTER TWO: LITERATURE REVIEW82.1 Introduction82.2 Load Profiling82.3 Review of Load Profiling Techniques102.4 Fuzzy C-Means Clustering Algorithm122.5 Cluster Validity Indices15

2.6 Introduction to Artificial Neural Network	20
2.7 Probability Neural Network	21
2.8 Conclusion	24

CHAPTER THREE: METHODOLOGY	27
3.1 Introduction	27
3.2 Research Design	27
3.3 Clustering Analysis	31
3.3.1 Types of Data	31
3.3.2 Similarity Measures	32
3.4 Fuzzy Clustering	34
3.4.1 Hard Partition	34
3.4.2 Fuzzy Partition	36
3.5 Fuzzy C-Means Clustering	37
3.5.1 Fuzzy C-Means Functional	38
3.5.2 Parameters of the FCM	40
3.6 Cluster Validity Indices	42
3.6.1 Xie-Beni Index	43
3.6.2 Non-Fuzzy Index	43
3.6.3 Davies Bouldin Index	43
3.7 K-Means Algorithm	44
3.8 Comparative Analysis of Fuzzy C-Means and K-Means Algorithm	45
3.9 Probabilty Neural Network	46
3.10 Quantile-quantile Plot (Q-Q Plot) in Matlab	58
3.11 Conclusion	59
CHAPTER FOUR: RESULTS AND DISCUSSION	50
4.1 Introduction	50
4.2 Input Data – Measured Load Profiles	50
4.3 Fuzzy C-Means Clustering	51
4.3.1 Variation of Number of Cluster, c	54
4.3.2 Cluster Validity Analysis	60
4.3.3 Optimization of Fuzziness Parameter, <i>m</i> in FCM	62
4.4 K-Means Clustering	64
4.4.1 Variation of Number of Cluster, k	65
4.4.2 Determination of Number of Cluster, k by using Silhouette Analysis	69
4.5 Comparative AnalysisFuzzy C-Means and K-Means	74