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1 Introduction 

Almost two centuries ago, the element lithium was discovered. The Swedish scientist Johann 

August Arfvedson found the latter 1817 in the mineral petalite (LiAl(Si2O5)2).[1-3] Therefore, 

he named it after the Greek word for stone (λίθος), lithium. One year later William Thomas 

Brande and Sir Humphrey Davy isolated for the first time smaller amounts of the alkali metal 

element lithium by electrolysis of Li2O.[1-2] In 1855 it became possible to obtain larger 

amounts of elemental lithium by electrolysis of LiCl.[2] First, there were no obvious applica-

tions of lithium. Later, lithium was employed for the safe storage of heavy hydrogen in nu-

clear weapons as well as for the reaction to tritium. Thus, a rapidly increasing importance of 

lithium and its compounds started during World War II.[4-5] Due to question of energy man-

agement in our society this trend lasts until nowadays. The search for alternative energies 

and storage systems is indispensable. Therefore, lithium batteries moved into the focus of 

research as their efficiency makes them promising candidates for the solution of the prob-

lem of energy storage.[6-8] Lithium is also used for further applications as shown in Figure 1. 

Thus, lithium is currently one of the elements with the fastest growing demand rate. 

 

 

 

 

 

 

 

 

 Figure 1. Growth of lithium from 2009 until 2015.
[9]
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With the increasing importance of lithium Juza et al. studied the quasi binary system Li3N-

Si3N4 in 1953.[10] During this research the novel compound class of nitridosilicates was dis-

covered. Only decades later - due to the growing technological relevance of non-oxidic ma-

terials as high performance ceramics (Si3N4, AlN) - nitridosilicates and nitride compounds 

were again in the scientific focus and a systematic investigation of the latter took place.[11-13] 

Usually, there is no natural occurrence of (oxo)nitridosilicates due to the ubiquitous pres-

ence of oxygen and water in our world. Sinoite (Si2N2O) – which however has meteoritic 

origin – is the only known exception.[14-15] Typically Si-N bonding is less stable than Si-O 

bonding. Thus, most solid nitrides are thermodynamically less stable than their correspond-

ing oxides. Consequently, only kinetically hindered nitridosilicates – such with a high degree 

of condensation - are stable in air and towards hydrolysis.[13] As a general consequence, the 

bonding situation in oxo- and nitridosilicates is significantly different, although both com-

pounds are consisting of building blocks formed by SiN4 or SiO4 tetrahedra, respectively. 

From a structural point of view nitridosilicates exhibit more structural opportunities, since 

oxosilicates are restricted to terminal and simply bridging oxygen. In comparison to Si-O dis-

tances the Si-N distances are larger and less ionic, which makes threefold and even fourfold 

linkage of neighboring tetrahedral centers possible. Additionally, both edge- as well as cor-

ner-sharing of SiN4 tetrahedra exist in nitridosilicates, while SiO4 tetrahedra exclusively share 

common corners.[16-17] The only known exception is fibrous SiO2. However, its existence has 

not been unambiguously substantiated.[18] Due to the exceptional structural variety of 

nitridosilicates an extended range for the degree of condensation κ = n(Si):n(N) is given. Κ 

has a maximum value of    , e.g. in Si3N4. Corresponding to non-condensed tetrahedral ani-

ons, the values for oxosilicates reach only between     and      in SiO2.[16, 19] The mentioned 

structural opportunities of nitridosilicates lead to non-condensed,[20] one-dimensional,[21-22] 

and layer-like silicate substructures[23] as well as three-dimensional silicate frameworks, 

which can be found in EA2Si5N8 (EA = Sr, Ba) (Figure 2).[24] These examples illustrate the great 

structural variability of (oxo)nitridosilicates (chapter 2). 
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Figure 2. Silicate substructure of a) Ca4SiN4 (isolated SiN4 tetrahedra);
[20]

 b) Eu2SiN3 (non-branched single-chains 

of corner sharing SiN4 tetrahedra);
[22]

 c) BaSiN2 (sheets of corner and edge sharing SiN4 tetrahedra;
[23]

 d) 

MYbSi4N7 (M = Eu, Sr, Ba; highly condensed network of corner sharing SiN4 tetrahedra and [N(SiN3)4] building 

blocks.
[25-27]

 SiN4 tetrahedra are depicted in turquoise. 

Several interesting materials properties are connected with these structural possibilities. 

Such materials properties are of special interest since the development and use of energy-

efficient technologies is essential for our future. Especially, through the automotive sector 

and electric lighting huge energy consumption is given. Thus, the improvement of the eco-

logical footprint of these areas is of great potential. Therefore, materials scientists as well as 

solid-state chemists deal with syntheses, comprehensive structural characterizations and 

materials property investigations of novel compounds. Especially, solid-state materials, in-

cluding innovations for electric vehicles and lighting play an important role.[28-29] Li-

containing nitrides may find application as solid-state electrolytes in lithium ion-batteries 
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with a possible use in electric vehicles.[6-7, 30] For example, thoroughly investigated Li2SiN2 is a 

lithium nitridosilicate exhibiting Li-ion conductivity.[30-32] Regarding the lighting industry, sev-

eral nitridosilicates show luminescence properties upon doping with rare earth ions like Eu2+ 

or Ce3+, and are being used as luminescent materials in phosphor-converted light-emitting 

diodes (pc-LEDs).[33-40] The utilization as phosphor for pc-LEDs is the currently most important 

application of nitridosilicates, which will be discussed in chapter 3 in detail.[41-42] Next to the al-

ready mentioned applications, nitridosilicates may be used as nonlinear optic materials in com-

puter and optical signal processing devices, optical frequency conversion, and 

telecommunications.[32, 43-44] Due to their high thermal conductivity nitridosilicates can also be 

applied as heat sink materials.[45-46] Furthermore, nitridosilicates show a great hardness due to 

higher covalency of bonds, e.g. SrSi7N10 exhibits a Vickers hardness of 16.1(5) GPa.[47] Thus, 

multinary lithium (oxo)nitridosilicates might be very promising from a structural point of view as 

well as concerning applications. 

 

The objective of this thesis was the synthesis, identification and characterization of novel lithium 

(oxo)nitridosilicates in order to investigate as well as to expand the materials properties of this 

compound class. Therefore, different synthesis strategies were carried out. Crystal structure 

elucidation with single-crystal X-ray diffraction was carried out on new compounds. Moreover, 

investigations of physical properties like luminescence and lithium ion conductivity were per-

formed. The first part of this thesis deals with the synthesis and characterization of novel 

multinary lithium (oxo)nitridosilicates with different silicate substructures. In the second part 

intriguing luminescence properties of a lithium (oxo)nitridosilicatefluoride plus doping of 

Li2SiN2 with Ca2+/Mg2+ - in order to achieve an enhancement of the lithium ion conductivity – 

will be discussed. With the reported compounds an extension in the class of lithium 

(oxo)nitridosilicates was gained and observation of luminescence points out their possible 

applications. 
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2 Lithium (Oxo)nitridosilicates and their Structural 

Diversity 

2.1 Introduction 

Due to their comprehensive structures as well as their outstanding materials properties 

(Chapter 1), (oxo)nitridosilicates are in the focus of interest. Accordingly, scientists all over 

the world are continuously searching for new (oxo)nitridosilicates. Since 1953 lithium 

nitridosilicates are well-known in the quasi-binary system Li3N-Si3N4.[1] In consequence sev-

eral lithium (oxo)nitridosilicates with different structures are described in literature. Table 1 

gives an overview about known ternary lithium (oxo)nitridosilicates. These compounds have 

been studied in some depth recently due to their high mobility of lithium ions in their struc-

tures and their potential application as solid-state electrolytes (Chapter 3). 

Table 1. Known lithium (oxo)nitridosilicates and their structures. 

compound structure 

LiSi2N3
[2] wurtzite  

Li2SiN2
[3] 

two interpenetrating cristobalite type nets which 

are made up from hetero-adamantane-like 

[Si4N6]N4/2 groups 

Li5SiN3
[1] antifluorite superstructure 

Li8SiN4
[4] unknown 

Li18Si3N10
[5] unknown 

Li21Si3N11
[6] antifluorite superstructure 

LiSiON[7] wurtzite superstructure 

Li5SiN3 ∙ 2 Li2O
[1] fluorite 

Li7SiN3O
[6] antifluorite superstructure 

 

Introduction of alkaline earth metals into lithium (oxo)nitridosilicates leads to diverse lithium 

alkaline earth (oxo)nitridosilicates, which can be used as efficient host lattices for phosphors 
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in LEDs (Chapter 3). Table 2 lists noted quaternary lithium (oxo)nitridosilicates with alkaline 

earth metals Ca and Sr and their structural motifs. Quaternary lithium (oxo)nitridosilicates 

with Mg or Ba are not known until now. Only two multinary lithium nitridosilicates with 

both, Mg and Ca, namely Ca2Mg[Li4Si2N6] and Li2Ca2[Mg2Si2N6], were reported.[8]  

Table 2. Known lithium alkaline earth (oxo)nitridosilicates and their structures. 

compound structure 

LiCa3Si2N5
[9] double chain of SiN4 tetrahedra 

Li2MSi2N4 with M = Ca and Sr[10] three-dimensional network of exclusive corner-

sharing SiN4 tetrahedra 

Li2Sr4Si2N6
[11] 2D layers of vertex-sharing SiN4 tetrahedra 

Li2Sr4Si4N8O
[12] BCT zeolite-type analogous network 

Li4M3Si2N6 with M = Ca and Sr[13] Non-condensed “bow-tie” [Si2N6]
10− subunits 

 

Synthesis of ternary Li-Si-N phases was typically carried out at temperatures between 700 °C 

and 1200 °C by solid-state reaction of Li3N and Si3N4 under N2 atmosphere (Table 3). It is 

clearly visible from Table 3 that the higher the synthesis temperature the less the lithium 

content in the ternary compounds. Compounds with high lithium content, as it would be 

desirable for application as solid-state electrolyte, are formed at lower temperatures (e.g. 

Li21Si3N11 was synthesized at 800 °C). Also alternative synthesis routes have been reported, 

for example formation of crystalline Li2SiN2 has been achieved from the reaction of Li3N with 

either amorphous “Si(CN2)2” or “Si(NH)2”(Table 3). The use of these precursors in place of 

Si3N4 allows particularly reaction temperatures to be significantly reduced. Precursor ap-

proaches, which combine crystalline amide precursors and “Si(NH)2”, are well investigated 

for the synthesis of (oxo)nitridosilicates.[14] The advantage of this synthetic route is the high 

reactivity of the used amides, which leads to their decomposition into corresponding nitrides 

and imides.[15] 
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Table 3. Synthesis conditions of known lithium (oxo)nitridosilicates. 

compound synthesis temperature starting materials 

LiSi2N3
[5] 1000 °C Li3N, Si3N4 

Li2SiN2
[3,5] 730 – 1200 °C Li3N, Si3N4; 

Li, Li3N, “Si(CN2)2” or “Si(NH)2” 

Li3N, SiCl4 

Li5SiN3
[5] 1200 °C Li3N, Si3N4 

Li8SiN4
[5] 800 °C Li3N, Si3N4 

Li18Si3N10
[5] 800 °C Si3N4, Li3N 

Li21Si3N11
[6] 800 °C Si3N4, Li3N 

LiSiON[7] 1150 °C Li4SiO4, Si3N4 

Li5SiN3 ∙ 2 Li2O
[16] 1100 °C Li3N, SiO2 

Li7SiN3O
[6] 900 °C Si3N4, Li3N, Li2O 

 

Quaternary compounds were usually obtained in welded tantalum tubes under argon by 

heating typical starting materials for 12–24 h. By using either Li3N or LiN3 as lithium–nitrogen 

source the nitrogen pressure is tailored inside the tantalum ampoule. Hence, different de-

grees of condensation were accessible in the resulting quaternary phase structures (see Ta-

ble 2 and 4). For instance, the compounds Li2MSi2N4 (M = Ca, Sr), both with three-

dimensional nitridosilicate substructures, were synthesized using LiN3, which undergoes an 

explosive decomposition above ~ 115 °C to produce Li3N and N2 gas.[17] Low dimensional 

(oxo)nitridosilicates, however, such as Li4M3Si2N6 (M = Ca, Sr) and LiCa3Si2N5, were synthe-

sized using Li3N. Also flux techniques utilizing metallic Li, like applied for example for synthe-

sis of Li2MSi2N4 with M = Ca and Sr (Table 4), are successfully synthetic approaches for 

(oxo)nitridosilicates. With this approach a variety of inorganic salts, complex anions and 

metals can be solved.[18,19] Also an enhanced solubility of nitrogen is given when alkali metals 

were inserting to the reaction mixture. This is a decisive aspect for the synthesis of nitrides 

in liquid alkali metals. Additionally, this approach enables access to several 

(oxo)nitridosilicates at temperatures lower than 1000 °C (Table 4).[12,20] 
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Table 4. Synthesis conditions of known lithium alkaline earth (oxo)nitridosilicates. 

compound synthesis temperature starting materials 

LiCa3Si2N5
[9] 900 °C Ca, “Si(NH)2”, Li3N 

Li2MSi2N4 with M = Ca and Sr[10] 900 °C Li, Ca/Sr, “Si(NH)2“, LiN3 

Li2Sr4Si2N6
[11] 900 °C Sr, “Si(NH)2“, LiN3 

Li2Sr4Si4N8O
[12] 900 °C Li, Sr, “Si(NH)2“, LiN3, Li2O 

Li4M3Si2N6 with M = Ca and Sr[13] 900 °C Ca/Sr, “Si(NH)2“, Li3N 

 

In summary, it can be stated that in literature reports on ternary lithium nitridosilicates 

LiSi2N3, Li2SiN2, Li5SiN3, Li18Si3N10 and Li21Si3N11 exists. However, up to now only two of it, 

namely LiSi2N3 and Li2SiN2, have been completely characterized by single crystal data (Figure 

1). For the other above mentioned Li/Si/N compounds single crystal data are still needed. To 

gain information about their solid state structures and thereby again about their ion conduc-

tivities these data are indispensable.  

 

 

 

 

 

 

 

 

Figure 1. Crystal structure of LiSi2N3, view along [001] (left); branch of the cristobalite network in Li2SiN2 (right); SiN4 

tetrahedra turquoise, LiN4 terahedra yellow. 
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Although quaternary lithium alkaline earth (oxo)nitridosilicates with Ca and Sr are accessible, 

the respective compounds as well as new compounds in the system Li/Ba/Si/N are still miss-

ing. Therefore it is the responsibility of scientists to search for new synthetic pathways that 

put forth crystalline products and also new compounds to obtain possibly new functional 

materials. In the course of this work, several synthetic pathways were investigated with the 

goal to synthesize and characterize hitherto unknown representatives of the mentioned 

compound classes. First of all, chapter 2.2 gives an overview about different efforts on the 

synthesis of ternary lithium (oxo)nitridosilicates as well as quaternary lithium 

(oxo)nitridosilicates with Ba and their general results. During this work a metathesis reaction 

was established in order to avoid thermodynamic sinks and the synthesis of already known 

compositions in the Li/Si/(O)/N system. This reaction mechanism is based on an similar syn-

thetic approach developed by Durach et al. for a large number of new lanthanum 

(oxo)nitridosilicates.[21-24] This type of solid-state metathesis reaction was consistently per-

formed in tungsten crucibles heated inductively with a radio-frequency furnace and based 

on the decomposition of an alkaline earth hydride EAH2 with EA = Sr and Ba (e.g. decomposi-

tion of BaH2 at 675 °C)[25] and its reaction with LiF to EAF2. The latter resublimates at the 

cooled reactor wall of the furnace and the remaining EA2+ reacts with the preorganized start-

ing materials “Si(NH)2” or Si3N4 and LiNH2 (Scheme 1).  

Scheme 1: 

”Si(NH)2“/Si3N4 + LiNH2 + LiF + EAH2 → LivEAwSixNy(F)z + EAF2↑ + H2 (EA=Sr, Ba) 

 

Through this developed metathesis reaction it was possible to obtain the novel lithium 

(oxo)nitridosilicates Ba32[Li15Si9W16N67O5] (chapter 2.3), LiCa4Si4N8F as well as LiSr4Si4N8F 

(chapter 2.4) and the new phosphor material Li24Sr12Si24N47OF:Eu2+ (chapter 3.2). 
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2.2 Investigations into the Synthesis of Ternary and Quaternary 

Lithium (Oxo)nitridosilicates 

2.2.1 Introduction 

Nitridosilicates represent an intriguing class of materials with various materials properties, 

and are typically made up of highly condensed tetrahedral network structures. Especially, 

lithium-containing nitridosilicates have high potential for Li+ ion conductivity, and alkaline 

earth nitridosilicates emerged as promising host materials for Eu2+-doped luminophores, 

which find broad application in phosphor-converted (pc)-LEDs (chapter 1). However, reports 

on lithium nitridosilicates, and also Ba-containing lithium nitridosilicates are quite rare or 

rather do not exist. As already stated, these compounds are of great importance regarding 

their materials properties and play a significant role in current research in nitride chemistry. 

In contrast to common strategies of preparing nitridosilicates, different synthetic approach-

es were performed to avoid thermodynamic sinks and to synthesize novel compounds. 

Therefore, both starting materials and reaction conditions were modified. In the following, 

syntheses strategies and their results are discussed in detail. 

2.2.2 Experimental Part 

2.2.2.1 General 

Owing to the sensitivity to air and moisture of the starting materials, all manipulations were 

performed in flame-dried Schlenk-type glassware attached to a vacuum line (10-3 mbar) and 

in an argon-filled glovebox (Unilab, MBraun, Garching, O2 <1 ppm, H2O <1 ppm). 

2.2.2.2 Ampoule reactions 

For ampoule reactions, the starting materials were ground under argon atmosphere in a 

glovebox. The mixtures were placed in tantalum ampoules. The ampoules were arc-welded 

under Ar atmosphere and water cooling to prevent hydrolysis and chemical reactions during 

welding. The ampoules were placed in a silica tube and then heated in a tube furnace under 

vacuum. The reaction mixtures were heated to temperatures up to 1000 °C and the temper-

ature was maintained for 4 - 24 h. Subsequently, the ampoule was cooled down to 350 °C at 

different rates, and finally quenched to room temperature by switching off the furnace. 
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2.2.2.3 Crucible reactions 

Further high-temperature reactions were investigated by using a radio-frequency furnace 

(rf-furnace) (type IG 10/200, frequency 200 kHz, max electrical output 12 kW, Hüttinger, 

Freiburg).[1] The finely ground reaction mixtures were placed in a tungsten crucible under 

argon atmosphere (glove box) and then transferred into a water-cooled quartz reactor of a 

rf-furnace under nitrogen atmosphere. The temperature was raised to maximum 1500 °C, 

kept for varying times, cooled with different cooling rates and subsequently quenched to 

room temperature by switching off the rf-furnace. 

2.2.2.4 High-pressure reactions 

Different reactions of Li-N-sources (Li3N, LiN3, LiNH2) with Si3N4 or “Si(NH)2” under high-

pressure and high-temperature were investigated by employing the multianvil technique in a 

Walker-type module (Voggenreiter, Mainleus) combined with a 1000 t press.[2-6] Syntheses 

were performed at 800 °C and 6 GPa. 

2.2.2.5 Elemental Analysis 

The chemical composition of some obtained products was investigated by energy dispersive 

X-ray (EDX) spectroscopy. For this purpose, a JSM-6500F scanning electron microscope (SEM, 

Jeol) containing a Si/Li EDX detector (Oxford Instruments, model 7418) was used. 

2.2.2.6 Powder X-ray Diffraction 

Most reaction products were obtained as bulk samples and investigated by powder X-ray 

diffraction (PXRD). Therefore, a STOE STADI P diffractometer (Cu-Kα1 or Mo-Kα1 radiation, 

Ge(111) monochromator, Mythen1K detector) in Debye-Scherrer geometry was used. 
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2.2.2 Results and Discussion 

Ampoule and crucible reactions 

Over the last years, several syntheses strategies for (oxo)nitridosilicates have been elaborat-

ed, such as high-temperature reactions, precursor routes and flux methods. Thereby, it was 

the aim to find new synthetic pathways leading to crystalline products, particularly in the 

field of ternary lithium (oxo)nitridosilicates, as well as novel representatives of the Li/Si/N 

and Li/Ba/Si/N compound classes. Thus, advanced functional materials may be obtained. In 

this thesis, different new approaches to novel lithium oxonitridosilicates were investigated. 

These include high temperature reactions in tantalum ampoules and tungsten crucibles as 

well as high-pressure reactions. Thereby, various starting materials in varying molecular rati-

os were used as well as different temperatures, reaction times and cooling rates were inves-

tigated. All products were characterized by powder X-ray diffraction. Table 1 gives an 

overview of most promising reaction conditions and products.  

Table 1. Reaction conditions and products for the synthesis of lithium (oxo)nitridosilicates. 

starting materials reaction vessel temperature [ °C] time [h] products 

lithium silicides tantalum ampoule 

tungsten crucible 

 

700 – 1300 °C 5h known Li/Si or 

Li/Si/N compounds 

Li2SiN2 tantalum ampoule 

tungsten crucible 

800 °C 

 

10 - 24h known Li/Si/N 

compounds, 

microcrystalline 

products, no reac-

tion 

Si:Li3N tantalum ampoule 500 - 900 °C 4 – 8h microcrystalline 

Li8SiN4 

Si-precursors tantalum ampoule 

tungsten crucible 

700 – 1500 °C 

 

5 - 24h microcrystalline 

products, known 

Li/Si/N compounds, 

lithium tanta-

lum/tungsten ni-

trides 

(Li7TaN4/Li6WN4) 
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Most ternary Li/Si/N phases are typically accessed by solid state reaction of the binary ni-

trides Li3N and Si3N4. The investigated synthetic pathways include, among others, reactions 

starting from specially synthesized compounds - namely Li2SiN2, Li7Si3 and Li12Si7 - in order to 

verify their suitability as starting materials. According to Gruber et al. phase-pure samples of 

Li7Si3 and Li12Si7 were obtained by heating stoichiometric amounts of Li and Si in hermetically 

sealed Ta ampoules at 750 °C.[7] The respective diffraction patterns are depicted in Figure 1 

and 2. A detailed description for the synthesis of phase-pure samples of Li2SiN2 is given in 

chapter 3.3. 

 

Figure 1. Characteristic section of the experimental powder diffraction pattern (Cu-Kα1 radiation, black) of the 

sample containing Li7Si3. Red lines describe the simulation of the structural model obtained from single-crystal 

structure of Li7Si3. 
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Figure 2. Characteristic section of the experimental powder diffraction pattern (Cu-Kα1 radiation, black) of the 

sample containing Li12Si7. Red lines describe the simulation of the structural model obtained from single-crystal 

structure of Li12Si7. 

By reaction of the synthesized lithium silicides with Li-N-sources like Li3N, LiN3 or LiNH2, part-

ly in combination with metallic Li as flux, formation of lithium silicides with an elevated Li-

content (reaction products Li12Si7 and Li22Si5) compared to starting materials Li7Si3 and Li12Si7, 

and known lithium nitridosilicates (LiSi2N3, Li2SiN2) started at 800 °C. For reactions at 900 °C 

and above, complete formation to lithium nitridosilicates (LiSi2N3, Li2SiN2, Li18Si3N10) was ob-

served. All experiments starting from Li2SiN2 led either to microcrystalline products of known 

lithium nitridosilicates (Li5SiN3, Li21Si3N11) or a further reaction of Li2SiN2 has not taken place.  

In 2013, synthesis of the nitridogermanate Li8GeN4 was reported by Aoyama et al.[8] The lat-

ter was synthesized by reaction of Ge and Li3N in a molar ratio of 1:2.5 at 700 °C in sealed Ta 

ampoules. An analogous solid-state reaction was performed in the system Li/Si/N. By reac-
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tion of Si and Li3N in a molar ration of 1:2.5, a microcrystalline sample containing Li8SiN4 was 

obtained. Corresponding powder X-ray diffraction pattern is shown in Figure 3. Due to small 

crystal sizes, structure determination by using single-crystal X-ray diffraction data is not pos-

sible yet. 

Furthermore, the reactive precursors “Si(NH)2”, “Si2(NH)3” and “Si(CN2)2” were also investi-

gated as starting materials. Their reaction with different Li-N-compounds (Li3N, LiN3, LiNH2, 

LiH) and fluxing agents (Li, LiCl) often yielded microcrystalline or metallic reaction products 

containing known lithium nitridosilicates (e.g. Li2SiN2) or lithium tantalum and tungsten ni-

trides (e.g. Li7TaN4, Li6WN4) depending on the used reaction vessel. 

 
In summary, the experiments mentioned above indicate that a synthetic access to novel 

compositions and structures of this compound class could not be achieved with the tried 

reactions.  

High-pressure reactions 

In order to investigate further synthetic approaches to lithium nitridosilicates, high-pressure 

reactions were performed. These included reactions of different Li-N-sources (Li3N, LiN3, 

LiNH2) and Si3N4 or “Si(NH)2” at 6 GPa and 800 °C in h-BN crucibles by employing the multi-

anvil technique. In summary, Li3BN2 was the main product of nearly all reactions. For one 

approach the formation of Li2SiN2 was observed. This suggested that, despite the thermody-

namically preferred formation of the stable compound Li3BN2, also an incorporation of Li in 

the target compound is possible. Additionally, through a further approach starting from 

15 mg (0.11 mmol)Si3N4, 26.06 mg (0.75 mmol) Li3N and 15.70 mg (0.32 mmol) LiN3 yielded a 

colorless powder, which was characterized by EDX measurements and by PXRD (Fig. 3).  
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Figure 3. Experimental PXRD data (Cu-Kα1 radiation) of the high-pressure synthesis of “Li8SiN4”. No reflections 

could be assigned to known phases. 

 

Screening of numerous databases yielded no match with any known phase(s). The experi-

mental powder pattern exhibits both sharp and broad reflections with different intensities, 

and less intensive reflections, which indicates the formation of more than one phase. Index-

ing by using the charge-flipping algorithm did not lead to unambiguous results. For further 

characterization of the reaction product, phase purity of the sample has to be improved, or 

larger single crystals for single-crystal analyses are necessary. EDX measurements also con-

firm a new composition of a ternary lithium nitridosilicate since no other elements than Si 

and N were detectable; also no SixNy compound was identifiable in the powder diffraction 

pattern. The presence of Li cannot be determined by EDX measurements, thus, further ex-

periments for an accurate determination of the composition is needed.  
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Reactions with Ba 

A variety of barium nitridosilicates and lithium nitridosilicates with Mg, Ca and Sr, e.g 

Li2Ca2[Mg2Si2N6], Li4Sr3Si2N6, Li2MSi2N4 (M = Ca, Sr) or Li4Ca3Si2N6 are existent.[9-10] Therefore, 

synthesis of barium lithium nitridosilicates may also exist. This assumption is confirmed by 

the phase diagram of Ba-Li. As can be seen in Fig. 4 solely a liquid phase is present above 

727 °C. At compositions of 50 mol-% Li and more the liquid phase begins already above 

300 °C.[11] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Ba-Li phase diagram. 
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For this reason, several reactions of usual Si sources (SDI, Si3N4 and TIDS) with different Li (Li, 

Li3N and LiN3) and Ba compounds (Ba, BaF2, BaH2, BaCl2) were investigated. All of these reac-

tions were performed in tantalum ampoules between 900 and 1000 °C with varying molar 

ratios. In general, no quaternary barium lithium nitridosilicate was obtained. The reaction 

samples often yielded amorphous or heterogeneous products containing microcrystalline 

compounds. The characterization of these compounds was not possible, as conventional 

single-crystal X-ray diffraction of crystals smaller than 1000 µm3 is unfeasible. Since the 

powder patterns indicate the presence of different phases, also powder X-ray diffraction 

analyses are inadequate for structure elucidation. Next to unidentifiable reaction samples, 

the formation of already known compounds was observed. One example is the formation of 

BaSiN2 and LiSi2N3 or Li2SiN2, resulting from reactions of SDI and Ba with LiN3 or Li3N. Moreo-

ver, reactions of SDI, Ba, Li and Li3N yielded conglomerations of BaSiN2, Li7TaN4, LiSi2N3, 

Li2SiN2, and LiBaH3. The exchange of SDI against Si3N4 led to reaction mixtures of BaSiN2, 

Li7TaN4 as well as Li2SiN2. With TIDS as Si precursor, only amorphous products were ob-

tained, which, according to EDX measurements, do not include all three elements Ba, Si, and 

N.  

In summary, the investigated reactions indicate that for a synthetic access to barium lithium 

nitridosilicates the used starting materials and reaction conditions had to be further opti-

mized. Even though the formation of unknown barium lithium nitridosilicates seems reason-

able by the use of lithium flux, an incorporation of Ba into the system Li/Si/N was not 

observed up to now. One explanation might be the larger ionic radius of Ba2+ (1.35 Å) com-

pared to Ca2+ (1.00 Å), Sr2+ (1.18 Å), or also Mg2+ (0.57 Å). In combination with the small Si4+ 

ion (0.26 Å), structures containing Ba, Si, and N might be too unstable and interstructural 

voids may be too small for incorporation of Ba2+.[12] 
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2.2.3 Conclusion 

The synthesis of novel nitridosilicates by common (high-temperature) syntheses routes is 

more and more challenging. In this section, diverse efforts to synthesize crystalline lithium 

nitridosilicates or novel compositions and structures of this compound class as well as lithi-

um nitridosilicates with Ba were reported reaching from uncommon starting materials to 

novel reaction conditions. In conclusion, with all of these investigations and conditions, no 

unknown or compounds with a good enough crystallinity were obtained. Nevertheless, high-

pressure high-temperature reactions seem to be promising since reactions indicated the 

formation of an unknown Li/Si/N compound. Therefore, these harsh conditions should defi-

nitely be pursued in further works. They can help in avoiding thermodynamic sinks, for ex-

ample, the very stable compound Li2SiN2. The difficulties in structural characterization of the 

obtained products could be circumvented by the addition of NH4Cl as a mineralizer leading 

to an increase of crystallinity. Thereby, a number of novel nitridophosphate compounds, e.g. 

b-PN(NH)[13] or b- and g-P4N6(NH),[14-15] have been structurally elucidated by high-pressure 

reactions. Thus, it can be expected that the high-pressure high-temperature method will be 

in the focus of interest for further researches, also for the synthesis of novel lithium 

nitridosilicates. Another possibility to obtain novel compounds could be alternative synthetic 

routes by switching, for example, from common bottom-up syntheses to top-down synthe-

ses. Thus, for example, Li2BaxSr1-xSi2N, may be synthesized by addition of Ba2+ into already 

known lithium nitridosilicates. Furthermore, crystallinity of ternary lithium nitridosilicates 

may be optimized for accurate structural elucidation. 
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Abstract: The oxonitridolithotungstosilicate Ba32[Li15Si9W16N67O5] was synthesized by me-

tathesis reaction of the reactive starting compounds Si(NH)2, LiNH2, LiF and BaH2 in a radio-

frequency furnace at 1000 °C using tungsten crucibles. Single crystals of  

Ba32[Li15Si9W16N67O5] were received as byproduct from reaction of the 

starting materials with the crucible. The crystal structure 

(P21/n (no. 14), a = 8.3402(3), b = 8.5465(3), c = 16.6736(6) Å, 

β = 99.1950(10)°, Z = 1, R1(all) = 0.0302) was solved and refined 

on the basis of single-crystal X-ray diffraction data. 

Ba32[Li15Si9W16N67O5] is the first oxonitridolithotungstosilicate 

containing a three-dimensional network of vertex- (WN4) and edge-sharing 

(LiN3O, Li/SiN3O and SiN3O) tetrahedra with Ba2+ ions which fill the voids of the structure. 

The network is characterized by channels of fünfer rings running along [100] as well as of 

sechser and achter rings along [010]. Magnetic measurements prove the oxidation state +VI 

of W. X-ray spectroscopy, lattice energy calculations with MAPLE and X-ray diffraction con-

firm the chemical composition and the structural model of Ba32[Li15Si9W16N67O5]. IR spectra 

corroborate absence of N-H bonds. The optical band gap of Ba32[Li15Si9W16N67O5] has been 

determined by UV-Vis spectroscopy. 
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2.3.1 Introduction 

Nitrides show outstanding structures and materials properties. Therefore, the search for 

new compounds, structures and properties has been pursued frequently in this compound 

class.[1-2] Formally, (oxo)nitridosilicates are structurally related with oxosilicates by exchang-

ing all or a part of O by N. (Oxo)nitridosilicates are typically built up from Si(O,N)4 tetrahedra. 

The presence of nitrogen leads to a wide range of additional structural possibilities as nitro-

gen can bridge up to four neighboring tetrahedral centers and enables corner-sharing as well 

as edge-sharing of Si(O,N)4 tetrahedra.[3-6] So BaSi7N10 was the first highly condensed 

nitridosilicate with edge-sharing SiN4 tetrahedra.[3] On the basis of their great structural vari-

ety, diverse and outstanding materials properties arose for (oxo)nitridosilicates e.g. lumines-

cence of rare earth doped compounds, like MSi2O2N2 (M = Ca, Sr, Ba) and M2Si5N8:Eu2+ (M = 

Ca, Sr, Ba).[7-9] These materials found industrial application in phosphor-converted (pc)-LEDs 

as highly efficient luminescent materials.[4] Furthermore, lithium (oxo)nitridosilicates are 

known for their lithium conductivity properties. For example Li2SiN2, Li8SiN4 as well as 

Li14Ln5[Si11N19O5]O2F2 (with Ln = Ce and Nd) have been described as Li+ conductors, which 

makes them interesting for potential applications in lithium batteries.[10-14] In the 

(oxo)nitridosilicate compound class several representatives with Li and Ba e.g. LiSiON,[15] 

LiSi2N3,[16-17] Li2SiN2,[10-12, 18-19] Li8SiN4,[11] BaSiN2,[20] BaSi6N8,[21] BaSi7N10,[3] Ba2Si5N8,[22] 

Ba5Si2N6 and BaSi6N8O[23] have been reported.[24] Furthermore, some alkaline-earth contain-

ing lithium (oxo)nitridosilicates with Ca and Sr, e.g. Li2Sr4Si4N8O,[25] Li2CaSi2N4
[26] and 

Li2Ca2[Mg2Si2N6], have been described in literature.[27] Lithium (oxo)nitridosilicates in combi-

nation with barium have not been discovered as yet.  

For tungsten, several ternary tungsten nitrides (LiWN2),[28] tungstates (Li2WO4)[29] as well as 

nitridotungstate oxides ((OLi2Ca4)3[WN4]4)[30] with Li and alkaline earth metals (Ba, Ca) have 

been described.  

The first ternary nitrides of lithium with transition metals Cr, Mo and W have been synthe-

sized by Juza et al. by reaction of Li3N with the respective elements or their nitrides. The 

brown, moisture sensitive products had the chemical composition Li9MN5.[31-32] In addition, 

compounds like LiWN2 and Li6WN4 are also well-known. The former is a layered nitride with 
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hexagonal structure and was obtained by reaction of Li2WO4 in flowing NH3 gas at 745 °C.[28] 

Li6WN4 crystallizes in a fluorite type superstructure.[33] An analogous tungsten nitride with an 

alkaline earth metal instead of lithium is represented by the compound Ba3WN4. Its crystal 

structure can be related with the Na3As structure type. In Ba3WN4 the centers of the WN4 

tetrahedra together with Ba2+ are building an arrangement which corresponds with the hex-

agonal Na3As type.[34] The compound ((OLi2Ca4)3[WN4]4)[30] is the junction between the de-

scribed lithium and alkaline earth tungsten nitrides and is characterized by a close structural 

relationship to the Th3P4 structure type.[30] However, no comparable structural diversity of 

the above mentioned tungsten compounds is known as it has been described for 

(oxo)nitridosilicates. Such an exceedingly diverse linking pattern for Si(O,N)4 tetrahedra is 

not known for W(O,N)4 tetrahedra in the systems Li-W-N and Ba-W-N. In general, the typical 

structural feature of the named compounds are isolated [MVIN4]6− or [MVIO4]2− tetrahedral 

anions (e.g. Li6WN4, TT-Ba3[MN4], HT-Ba3[MN4] or Li2WO4).[29, 33-35] As described by R. Niewa 

and H. Jacobs only the exchange of lithium by the larger alkali metal cations results in further 

condensation of the nitridometalate tetrahedra e.g. like in Na3[WN3] or Cs5[Na{W4N10}c].[36] 

Recently, we described a synthetic approach to lanthanum nitridosilicates by metathesis 

reactions in radio-frequency furnaces. In this contribution, we applied this technique suc-

cessfully to obtain the first Ba-containing oxonitridolithotungstosilicate 

Ba32[Li15Si9W16N67O5]. The latter compound combines and expands the structural features of 

tungsten nitrides together with (oxo)nitridosilicates. The results could point to a further ex-

tension of the structural diversity of (oxo)nitridosilicates and thus could lead to interesting 

new materials properties.  
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2.3.2 Results and Discussion 

2.3.2.1 Synthesis and Chemical Analysis 

Ba32[Li15Si9W16N67O5] was obtained as a crystalline side phase by solid-state metathesis reac-

tion performed in a tungsten crucible heated inductively with a radio-frequency furnace. The 

synthesis route is based on the decomposition of an alkaline-earth hydride (decomposition 

of BaH2 at 675 °C)[37] and its reaction with LiF to BaF2. The latter resublimates at the reactor 

wall. The remaining Ba reacts with the pre-organized starting materials Si(NH)2 and LiNH2. A 

similar reaction path was already reported for the synthesis of lanthanum nitridosilicates.[38] 

The oxygen content originates assumedly from impurities of commercially acquired starting 

materials. According to earlier observations, the incorporation of tungsten can presumably 

be traced back to the oxygen contamination resulting in the formation of tungsten(VI) oxide 

on the surface of the crucible. Subsequently, WO3 may react with the reaction mixture to 

form Ba32[Li15Si9W16N67O5] (see Scheme 1, a)). But also a targeted incorporation of tungsten 

is possible. Exchange of LiF against WCl6 in the initial reaction mixture showed that 

Ba32[Li15Si9W16N67O5] is also formed. Probably, in this case the decomposition of BaH2 in con-

junction with WCl6 leads to the formation of BaCl2 (Scheme 1, b)). Subsequently, the remain-

ing Ba and W react with the residual starting materials to the title compound as orange 

powder amongst other, partly unknown, phases. Ba32[Li15Si9W16N67O5] forms light orange 

block-like crystals, which are rather sensitive to air and moisture (Figure 1).  

 

Scheme 1: Mechanism of the metathesis reactions; a) tungsten from reaction with the crucible, b) tungsten 

from WCl6 as starting material. 

Through energy-dispersive X-ray spectroscopy (EDX) the elemental composition was estab-

lished. The results from the EDX analyses are, within the precision limits of this method, con-

sistent with the composition obtained from the single-crystal structure analysis. FT-IR 

spectroscopy of isolated crystals of Ba32[Li15Si9W16N67O5] (Figure S1, Supporting Information) 

confirms absence of N-H bonds and thus the absence of hydrogen. 
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To proof the oxidation state of W in the compound, magnetic measurements were per-

formed. The sample of separated crystals of Ba32[Li15Si9W16N67O5] showed diamagnetic be-

havior (Figure S2, Supporting Information). Consequently, oxidation state +VI for W in 

Ba32[Li15Si9W16N67O5] is validated. 

2.3.2.2 Single-Crystal Structure Analysis 

The novel Ba-containing nitridolithotungstosilicate crystallizes in the monoclinic space group 

P21/n (no. 14). The heavy atoms W, Ba and Si were refined anisotropically. Reflections with 

badly determined intensities, due to partial shading by the beam stop, were omitted. The 

crystallographic data are given in Table 1, the atomic coordinates and isotropic displacement 

parameters are summarized in Table 2. The anisotropic displacement parameters are listed 

in Table S1 in the Supporting Information.  

 

 

 

 

 

Figure 1. SEM image of a crystal of Ba32[Li15Si9W16N67O5]. 
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Table 1. Crystallographic data of the single-crystal structure determination of Ba32[Li15Si9W16N67O5]. 

Formula 

Crystal system 

Space group 

a [Å] 

b [Å] 

c [Å] 

β [°] 

Cell volume [Å3] 

Formula units per unit cell 

ρ [g∙cm−3] 

Crystal size [mm] 

µ [mm−1] 

T [K] 

Diffractometer 

Radiation (λ [Å]) 

F(000) 

θ range [°] 

Total no. of reflections 

Independent reflections 

Refined parameters 

Goodness of fit 

R1 (all data) 

R1 [F
2 > 2σ(F2)] 

w R2 (all data) 

w R2 [F
2 > 2σ(F2)] 

Δρmax , Δρmin [e/Å−3] 

Ba16[Li7.5Si4.5W8N33.5O2.5] 

monoclinic 

P21/n (no. 14) 

8.3402(3) 

8.5465(3) 

16.6736(6) 

99.1950(10) 

1173.21(7) 

1 

6.16458 

0.01 x 0.02 x 0.03 

32.846 

293(2) 

Bruker D8 Venture 

X-ray (λ = 0.71073 Å) 

1828 

3.436 ≤  θ  ≥ 25.349 

20556 

2139 [R(int) = 0.0563] 

109 

1.024 

0.0302 

0.0210 

0.0384 

0.0367 

1.632; −1.122 
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Table 2. Atomic coordinates, isotropic displacement parameters and side occupancies of Ba32[Li15Si9W16N67O5]. 

Atom  x y z Ueq s.o.f. 

W1 

W2 

Ba1 

Ba2 

Ba3 

Ba4 

Si1A 

Si2 

Li1A 

Li2 

O1 

N1 

N2 

N3 

N4 

N5 

N6 

N7 

N8 

N9 

 0.21581(4) 

0.75291(4) 

0.00640(6) 

0.04085(6) 

0.98206(5) 

0.82319(5) 

0.0893(11) 

0.3188(3) 

0.0893(11) 

0.1139(16) 

0.2018(6) 

0.2018(6) 

0.7469(7) 

0.0041(7) 

0.3404(8) 

0.2352(7) 

0.6595(8) 

0.2721(7) 

0.9769(8) 

0.6413(8) 

0.96349(3) 

0.50307(3) 

0.76567(5) 

1.26424(5) 

1.22563(5) 

0.49663(5) 

0.8054(10) 

1.0479(2) 

0.8054(10) 

1.1364(14) 

0.9378(6) 

0.9378(6) 

0.4974(7) 

1.0203(7) 

1.0823(7) 

0.7426(7) 

0.3190(7) 

1.014231(4) 

0.5073(7) 

0.6781(7) 

0.63882(2) 

0.62730(2) 

0.77444(3) 

0.50989(3) 

0.74732(3) 

0.91214(3) 

0.9569(5) 

0.85296(13) 

0.9569(5) 

0.9514(8) 

0.9023(3) 

0.9023(3) 

0.7381(4) 

0.6112(4) 

0.5785(4) 

0.6259(4) 

0.5820(4) 

0.7488(4) 

0.6135(4) 

0.5849(4) 

0.00454(8) 

0.00482(8) 

0.01177(11) 

0.01155(11) 

0.00948(11) 

0.00850(11) 

0.01838(19) 

0.0096(5) 

0.0183(19) 

0.013(3) 

0.0074(12) 

0.0074(12) 

0.0125(14) 

0.0088(13) 

0.0138(15) 

0.0119(14) 

0.01508(15) 

0.0106(14) 

0.0114(14) 

0.0137(15) 

1 

1 

1 

1 

1 

1 

0.125 

1 

0.875 

1 

0.625 

0.375 

1 

1 

1 

1 

1 

1 

1 

1 
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2.3.2.3 Structure Description 

The crystal structure of the title compound is depicted in Figure 2a. Ba32[Li15Si9W16N67O5] is 

built up of vertex- and edge-sharing Q4-type (LiN3O, Li/SiN3O and SiN3O tetrahedra) and ver-

tex-sharing Q3-type WN4 tetrahedra, forming a three-dimensional network with Ba2+ ions 

filling the voids of the structure. Since the network is built up of SiN3O, LiN3O, Li/SiN3O and 

WN4 tetrahedra, the compound can be classified as a oxonitridolithotungstosilicate.[39] Thus, 

the combination of the Si/N and W/N compound classes leads to a structural extension. In 

this compound the WN4 tetrahedra exhibit a broader linking pattern as they are not isolated 

as usual in the ternary tungsten nitrides mentioned above.  

 

 

Figure 2. a) Crystal structure of Ba32[Li15Si9W16N67O5], projection along [100] with Si(N,O)4 tetrahedra (tur-

quoise), Li(N,O)4 tetrahedra (yellow), LiSi(N,O)4 tetrahedra (purple), WN4 tetrahedra (gray) and Ba positions 

(orange), Ba, W and Si in ellipsoidal depiction; b) connection of SiN4 (turquoise) and WN4 (gray) tetrahedra.  
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They are part of the three-dimensional network in which WN4 tetrahedra are alternatingly 

connected with SiN4 tetrahedra in chains running along [001]. Every SiN4 tetrahedron is con-

nected with an additional WN4 group (Figure 2b). The degree of condensation 

κ = n(Li,Si,W) : n(N,O) is 0.56, indicating that Ba32[Li15Si9W16N67O5] can be considered as a 

highly condensed oxonitridolithotungstosilicate. Moreover, there are two mixed-occupied 

positions. One cation site (Li1ASi1A) is occupied by both Li and Si in an atomic ratio of      : 

 
  . This simultaneously occupation seems plausible because the completely exchange be-

tween tetrahedrally coordinated Si4+ and Mg2+ as well as Li+ is possible.[27] For example the 

first representatives of nitridomagnesosilicates are M[Mg3SiN4] (M = Ca, Sr, Eu) with a substi-

tution of Mg for Si.[40] With respect to the diagonal relationship between Mg and Li in the 

periodic table and similiar ionic radii of Mg2+ (0.57  Å)[41] and Li+ (0.59 Å)[41] consequently Si4+ 

can also partly be substituted by Li+ as demonstrated here. This kind of a mixed position of Li 

and Si is observed for the first time. The other Si site was also tested for Li, a mixed occupa-

tion cannot be found for this site. The other site (N1O1) is an anion position mixed-occupied 

with N and O in an atomic ratio of      :     . The distribution of N1O1 was done due to the 

shortest Si-N distance. Besides, it is the only crystallographic site, which has no contact to W. 

The high charge of W is better stabilized through N than O. The Li and Si positions were ini-

tially refined freely and subsequently fixed. Free refinement of Li1ASi1A was performed to 

estimate the Li content in Ba32[Li15Si9W16N67O5]. In order to achieve charge neutrality, also 

with regard to the atomic ratio O:N, a Si:Li content of 0.125:0.875 was fixed. The network 

contains two terminal, three singly bridging and three N atoms interconnecting three 

tetrahedra. The mixed-occupied N/O position reveals a bridging-motive like it is also found 

for O for example in α-Na7[H3SiW9O34] ∙ 9 H20[42] or Si6-ZAlzOzN8-Z (Z = 2.0, 2.9, 4.0).[43] The 

point symbol for the framework has been determined by TOPOS[44-45] and is 

{3.52.62.7} {32.4.52.63.7.8} {34.42.62.72} {35.44.52.62.72} {36.45.53.6}. To the best of our 

knowledge, this tetrahedra topology has not been found in any other compound so far. 

Aside from dreier and vierer rings the network is characterized by fünfer, sechser and achter 

rings forming channels along [100] and [010].[46-47] Dreier rings, themselves are linked 

through sechser rings and thus connect the fünfer ring channels. Along [010] sechser ring 
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channels, once again combined through dreier rings, alternate with achter ring channels 

(Figure 3a, b).  

 

Figure 3. Topological representation of Ba32[Li15Si9W16N67O5]; (a) fünfer ring channels (green) connected by 

dreier (pink) and sechser (blue) rings along [100]; (b) sechser rings (blue) connected by dreier (pink) rings and 

achter (gray) ring channels along [010]. 

 

The distances Si-N [1.741(7)-1.774(6) Å] and Si-O [1.665(5) Å] are in accordance with compa-

rable compounds, e.g. LiCa3Si2N5 [1.716(6)-1.807(5) Å][48] and Sr2Si5N8 [1.653(9)-

1.7865(5) Å][22] as well as LiLa5Si4N10O [1.677(3) Å][49] and Ce10[Si10O9N17]Br [1.664(4)-

1.709(7) Å].[50] The longer Li-N [2.142(14)-2.182(15) Å] and Li-O [2.069(13) Å] distances are 

also in good agreement with distances found e.g. in Li4Sr3Si2N6 [2.018(11)-2.357(10) Å][6] and 

Na10(Li2[MnO4]4) [1.91-1.956 Å][51] or Li2O [1.981 Å].[52] The W-N distances range between 

1.818(6) and 1.919(6) Å. These values are as well similar to the W-N distance in Li6WN4 

[1.914 Å][33] or Li0.84W1.16N2 [2.105(1) Å].[53] There are four crystallographically independent 

Ba2+ positions. These positions are surrounded by N and the mixed-occupied position N1O1 

(Ba1 and Ba2) with coordination numbers ranging from 6 to 8 (Figure 4). The Ba-N and Ba-

N/O [2.731(6)-3.366(6) Å] distances are also in between the reference ranges known from 

literature for similar compounds like Ba2AlSi5N9
[54] [2.547(7)-3.680(7) Å] or Ba5Si2N6 [2.61(2)-

3.40(2) Å].[24] Moreover, all distances are in good agreement with the sum of the ionic radii 

according to Shannon.[55] A comparison of the powder diffraction pattern of the sample with 
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the theoretical powder diffraction pattern, simulated on the basis of single-crystal structure 

elucidation, shows that Ba32[Li15Si9W16N67O5] occurs as a side phase of the sample amongst 

other, partly unknown, phases (Figure S3 in the Supporting Information).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Coordination spheres of the barium sites in Ba32[Li15Si9W16N67O5] (red: N1O1 mixed-occupied 

position/atom; blue N atoms). 
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2.3.2.4 Lattice-Energy Calculations (MAPLE) 

To proof the electrostatic consistency of the crystal structure MAPLE (MAdelung Part of Lat-

tice Energy)[41, 56-58] calculations have been carried out. Thereby electrostatic interactions in 

an ionic crystal are considered, which are based on the distance, charge and coordination 

spheres of the concerned ions. The results are shown in Table 3. As reference for WVI, the 

maple value of WN2 was employed. The calculated partial MAPLE values by the MAPLE soft-

ware of W, Ba, Si, Li, N and O for Ba32[Li15Si9W16N67O5] correlate well with typical ranges of 

partial MAPLE values of comparable compounds in literature (Table 3). As expected, the val-

ues of the mixed N/O and Li/Si sites range between those of N and O and Li and Si, respec-

tively. For a comparison of the total MAPLE value for Ba32[Li15Si9W16N67O5] (397721 kJ/mol), 

calculated by the MAPLE software, a theoretical reaction equation, which leads to 

Ba32[Li15Si9W16N67O5], is constructed of different nitrides and Li2O (Table 3, theoretical mod-

el). The total MAPLE values of the single nitrides and Li2O were added, appropriate to the 

theoretical reaction equation, to get a theoretical total MAPLE value for 

Ba32[Li15Si9W16N67O5] (392393 kJ/mol). The total MAPLE value corresponds well with the sum 

of the MAPLE values of the different nitrides and Li2O, which formally constitute the sum 

formula of Ba32[Li15Si9W16N67O5]. The values differ by 1.34 %, which is in the range of toler-

ance. Thus, the electrostatic consistency of the crystal structure has been confirmed. 
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Table 3. Partial MAPLE values and MAPLE sums [kJ/mol] for Ba32[Li15Si9W16N67O5]. 

[a] Typical partial MAPLE values [kJ/mol]: 
Ba

2+
 1500 - 2000; Si

4+
 9000 - 10200; N

3-
 4300 – 6200; O

2-
 2000 – 2800; Li

+
 550 - 860; W

6+
 18979.

[4, 48]
 

 

 

 

 

Partial MAPLE values of Ba32[Li15Si9W16N67O5]
[a]

  Theoretical model  

W1 

W2 

Ba1 

Ba2 

Ba3 

Ba4 

Si1 

Li1ASi1A 

Li2 

N1O1 

N2 

N3 

N4 

N5 

N6 

N7 

N8 

N9 

17772 

18128 

1550 

1753 

1566 

2200 

9756 

1708 

885 

3066 

4858 

4907 

4634 

5690 

4588 

5965 

5733 

4689 

+ 2.5 

+ 8 

+ 16 

+ 1.25 

− 4.25 

Li2O 

WN2 

BaSiN2 

Li2SiN2 

β-Si3N4 

Sum of the partial MAPLE values ∑ = 397721    ∑ = 392393 

∆ = 1.34 % 
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2.3.2.5 UV-VIS Spectroscopy 

Determination of the optical band gap was done by means of solid-state UV-Vis spectrosco-

py. The reflectance spectrum shows a weak absorption band around 456 nm, corresponding 

to the light orange body color (Figure S4, Supporting Information). Accordingly, the band gap 

was estimated to be ~ 2.71 eV. 
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2.3.3 Conclusions 

With the synthesis of Ba32[Li15Si9W16N67O5] the first compound in the system Ba-Li-Si-W-N-O 

was obtained. As Li, Si and W are part of the network the compound can be classified as 

oxonitridolithotungstosilicate.  

It is characterized by a highly condensed framework of vertex- and edge-sharing LiN3O, 

Li/SiN3O and SiN3O tetrahedra as well as vertex-sharing WN4 units. The tetrahedra are con-

densed to different kinds of rings. Whereby fünfer, sechser and achter rings form channels 

along [100] and [010]. The cavities of the structure are filled with Ba2+ ions which are coordi-

nated by 6 to 8 anions.  

Ba32[Li15Si9W16N67O5] is the first example for a mixed cation position of Li and Si. In addition 

it is the first compound that combines the Si/N and W/N compound class which has not 

been known so far. This combination leads to a structural expansion of the W-N system, as 

the WN4 tetrahedra show a hitherto unknown linkage with SiN4 tetrahedra. The occurrence 

of linked WN4 tetrahedra in Ba32[Li15Si9W16N67O5] is an exceptional feature since in other 

tungsten nitrides with Li and Ba isolated [MVIN4]6- tetrahedra anions are common. 

Besides, the title compound shows that the mentioned metathesis route is particularly suit-

able for the synthesis of new (oxo)nitridosilicates still in other systems as La-Si-N.  
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2.3.4 Experimental Section 

2.3.4.1 General 

Most reagents and products are air and moisture sensitive, accordingly all manipulations 

were performed under inert-gas conditions. For this purpose either flame-dried glassware 

attached to a vacuum line (10−3 mbar) or an Ar-filled glove box (Unilab, MBraun, Garching; 

O2 < 1 ppm, H2O < 1 ppm) were used.  

2.3.4.2 Synthesis of Ba32[Li15Si9W16N67O5] 

Si(NH)2 (19.9 mg, 0.34 mmol, according to Winter et al.),[59] LiNH2 (31.7 mg, 1.38 mmol, Al-

drich, 95 %), LiF (35.9 mg, 1.38 mmol, Aldrich, > 99 %) and BaH2 (100.1 mg, 0.72 mmol, 

Materion, 99.7 %) were thoroughly mixed in an agate mortar and filled into a tungsten cru-

cible (Plansee, Bad Urach, 99.97 %). The oxygen content originates assumedly from impuri-

ties of commercially acquired starting materials, which implies the formation of WO3 with 

tungsten originating from the reaction vessel. To proof if the incorporation of tungsten is 

also specifically feasible, WCl6 instead of LiF has been used. Therefore Si3N4 (24.3 mg, 

0.17 mmol, UBE, 99.9 %), LiNH2 (31.6 mg, 1.38 mmol, Aldrich, 95 %), WCl6 (68.3 mg, 

0.17 mmol, Aldrich, 99.9 %) and BaH2 (75.6 mg, 0.54 mmol, Materion, 99.7 %) were thor-

oughly ground in an agate mortar and filled into a tungsten crucible (Plansee, Bad Urach, 

99.97 %). The crucibles were transferred into a water-cooled silica glass reactor of a radio-

frequency furnace (Typ AXIO 10/450, max. electrical output 10 kW, Hüttinger Elektronik, 

Freiburg).[60] Within 1h both samples were heated under purified nitrogen to 1000 °C, main-

tained for 10 h at that temperature and finally quenched to room temperature by switching 

off the furnace. The product yielded a few orange, moisture and air sensitive crystals of 

Ba32[Li15Si9W16N67O5] in an inhomogeneous sample. The synthesis approach with WCl6 in-

stead of LiF as starting compound, yielded Ba32[Li15Si9W16N67O5] as orange powder in a het-

erogeneous sample. 

2.3.4.3 SEM and EDX Spectroscopy 

To determine the morphology and the chemical composition of the title compound, a JEOL 

JSM 6500F field emission scanning electron microscope (SEM), operated at 8.5 kV, provided 

with a Si/Li EDX detector (Oxford Instruments, model 7418), was used. The obtained orange 
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crystals were prepared on conductive adhesive films and coated with carbon (BAL-TEC MED 

020, Bal Tec AG), to ensure electrical conductivity on the sample surface. Within the sensitiv-

ity range of the method these measurements exclude the presence of other elements than 

Ba, (Li), Si, W, N and O. The EDX analyses of the compound leads to an average atomic ratio 

Ba/Si/W = 22:3:10 (three measurements on the crystal used for single-crystal X-ray diffrac-

tion; the atomic content of N and O was excluded due to the air and moisture sensitivity of 

the compound; Li is not determinable). Consequently, these measurements corroborate 

within the required accuracy the defined empirical formula of Ba32[Li15Si9W16N67O5].  

2.3.4.4 Single-crystal X-ray diffraction 

Single crystals of Ba32[Li15Si9W16N67O5] were prepared under inert gas conditions using a mi-

croscope, which was integrated in a glove box. Isolated crystals of suitable quality were en-

closed in glass capillaries and sealed under argon. Single-crystal X-ray diffraction data were 

collected with a D8 Venture (Bruker, Billerica MA, USA) diffractometer with Mo-Kα radiation 

(λ = 0.71073 Å) from a rotating anode source. Indexing of the reflections was done with 

SMART.[61] The reflections of the data set of Ba32[Li15Si9W16N67O5] were integrated with 

SAINT.[62] A multi-scan absorption correction was applied using the program SADABS.[63] Sub-

sequently, the structure was solved with Direct Methods (SHELXS)[64] and refined using the 

method of full-matrix least-squares (SHELXL).[65] The crystal structure was visualized using 

DIAMOND.[66]  

Further details of the crystal structure investigations may be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49-

7247-808-666; E-Mail: crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/request for 

deposited data.html) on quoting the depository number (CSD – 432 182). 

2.3.4.5 Powder X-ray diffraction 

To verify the structural model obtained from single-crystal data, pulverized samples were 

enclosed in glass capillaries. Powder diffraction data were collected with a STOE STADI P 

diffractometer (Mo-Kα1 radiation, Ge(111) monochromator, MYTHEN 1 K detector) in Debye-

Scherrer geometry. Simulated powder diffraction patterns were generated by using the 

WinXPOW program package[67] based on the single-crystal structure data. 
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2.3.4.6 Magnetic Measurements 

For magnetic measurements a Cryogenic Vibrating Sample Magnetometer (VSM) with a cry-

ogenically-free cryostat was used (temperature range 1.6 – 400 K; magnetic field −5 – 5T).  

2.3.4.7 UV-Vis Spectroscopy 

For the reflectance spectra a JASCO V-650 UV/Vis spectrophotometer with a deuterium and 

a halogen lamp (Czerny-Turner monochromator with 1200 lines/mm concave grating, pho-

tomultiplier tube detector) was utilized. The measurements were carried out between 

200 nm and 800 nm with 1 nm step size. By drawing two line tangents to the slope of the 

reflectance curve the band gap of Ba32[Li15Si9W16N67O5] was determined. The point of inter-

section of the tangents was estimated as the value of the band gap. 

2.3.4.8 FT-IR Spectroscopy 

A Perkin-Elmer BX II spectrometer with an ATR (attenuated total reflection) setup was used 

for recording the FT-IR spectrum. 
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Abstract: LiCa4Si4N8F and LiSr4Si4N8F were synthesized 

from Si3N4, LiNH2, CaH2/SrH2 and LiF through a metathesis 

reaction in a radio-frequency furnace. The crystal struc-

tures of both compounds were solved and refined on the 

basis of single-crystal X-ray diffraction data (LiCa4Si4N8F: 

P21/c (no. 14), a = 10.5108(3), b = 9.0217(3), c = 10.3574(3) Å, β = 117.0152(10)°, R1 = 

0.0422, wR2 = 0.0724, Z = 4; LiSr4Si4N8F: P4nc (no. 104), a = 9.3118(4), b = 9.3118(4), c = 

5.5216(2) Å, R1 = 0.0160, wR2 = 0.0388, Z = 2). The silicate substructure of both compounds is 

built up of vertex sharing SiN4 tetrahedra, forming a BCT-zeolite analogous structure with 

Ca2+/Sr2+, Li+ and F− ions filling the voids. The crystal structure of LiSr4Si4N8F is homeotypic to 

that of Li2Sr4Si4N8O as it exhibits the same zeolite-analogous [SiN2]2- framework but incorpo-

rating LiF instead of Li2O. In contrast to the respective Sr compound LiCa4Si4N8F shows a dis-

tortion of the BCT-zeolite analogous network as well as an additional site for F. Both F sites 

in LiCa4Si4N8F exhibit different coordination spheres compared with LiSr4Si4N8F. The title 

compounds are the first lithium alkaline earth nitridosilicates containing fluorine. The crystal 

structures were confirmed by lattice-energy calculations (MAPLE), EDX measurements and 

powder X-ray diffraction. IR spectra prove absence of N-H bonds.  



2 Lithium (Oxo)nitridosilicates and their Structural Diversity 
 

 

 
 

49 
 

2.4.1 Introduction 

In view of their wide abundance in the earth’s crust, silicates are amongst the most im-

portant classes of minerals. Nearly all naturally occuring silicates are oxosilicates. A partial or 

complete exchange of O by N leads to the (oxo)nitridosilicate compound class. In the last 

decade an increasing number of (oxo)nitridosilicates has been synthesized. Due to strong Si-

N and Si-O bonds, (oxo)nitridosilicates combine high chemical and thermal stability.[1-5] Con-

sequently, a variety of industrial applications has been pursued. For example highly con-

densed networks built up from [SiN4] tetrahedra are used as high-temperature stable 

materials,[6-7] while alkaline-earth (oxo)nitridosilicates function as host lattices for rare-earth 

doped luminescent materials in phosphor-converted LEDs (pc-LEDs).[8-12] Also systematic 

investigations of lithium nitridosilicates attained a number of ternary lithium nitridosilicates 

with interesting materials properties, for example, lithium ion conductivity.[13-17] In compari-

son with oxosilicates, the exchange of O by N in the anionic substructure leads to a large 

variety of structures for (oxo)nitridosilicates, as in SiO4−xNx with x = 1 - 4 nitrogen atoms can 

interconnect up to four neighboring tetrahedral centers. Nevertheless, nitridozeolites are 

rare and the benefit of nitrogen in zeolite-like framework structures has been demonstrated 

only for a few examples. Besides zeolite-like Si-N frameworks in Li2Sr4Si4N8O (BCT type)[5] or 

Ba2Nd7Si11N23,[3] a few examples with carbodiimide or chloride ions located in the channels 

of those structures, e.g. Ba6Si6N10O2(CN2), Ba3T3N5OCl (T = Si, Ta) (both NPO type)[18-20] and 

Ba1.63La7.39Si11N23Cl0.42:Ce3+[21] have been reported. Additionally, M7Si6N15 (M = La, Ce, Pr) 

with its interrupted network exhibits a structure resembling those of zeolites.[22] But espe-

cially nitridozeolites are expected to have outstanding physical and chemical properties, like 

higher thermal stability or differing acidity/basicity. The potential of inorganic open-

framework materials for possible applications reaches e. g. from sensors to electronic or 

optical systems.[23-24] Nevertheless, the thermal and chemical stability of such microporous 

nitride compounds is not often adequately enough to make their way towards applications. 

Accordingly, it is of great interest to synthesize novel materials with three-dimensional 

framework structures built up of vertex-sharing tetrahedra. The challenge is the synthetic 

access for the formation of porous materials based on nitridosilicates. For instance flux 

methods were established to avoid problems appearing from required high reaction tem-
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peratures. As nitrogen shows a considerable solubility in liquid alkali metals (Na or Li), thus 

the reaction temperatures could be lowered significantly. Furthermore, different reactive 

starting materials like “Si(CN2)2“ and “Si(NH)2“ were employed. They turned out to be prom-

ising precursors because of their high reactivity and their decomposition at elevated tem-

peratures to metal nitrides and imides. In case of Ba6Si6N10O(CN2) the use of “Si(CN2)2“ leads 

to the formation of an open network as the carbodiimide ions might even serve as tempera-

ture-resistant templates.[5, 20]  

In this contribution, synthesis and structural characterization of the two first F-containing 

lithium alkaline-earth nitridosilicates LiEA4Si4N8F (EA = Ca, Sr) are discussed. The title com-

pounds show that the formation of zeolite-type nitride frameworks can also be achieved 

through straightforward metathesis reaction. 
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2.4.2 Results and Discussion 

2.4.2.1 Synthesis and Sample Characterization 

LiCa4Si4N8F as well as LiSr4Si4N8F have been synthesized in a solid-state metathesis reaction 

in tungsten crucibles. The presence of sufficient amounts of LiF in the reaction mixture of 

Si3N4, CaH2 (in case of LiCa4Si4N8F), SrH2 (in case of LiSr4Si4N8F) and LiNH2 resulted in the 

formation of the two new F-containing phases. The driving force behind these metathesis 

reactions seems to be the decomposition of CaH2 and SrH2 and its reaction with LiF to reac-

tive lithium and alkaline earth halides CaF2 and SrF2 (fluorine comes from LiF), respectively 

(Scheme 1). Li reacts hereinafter with remaining Ca/Sr, F and Si3N4 inter alia to colorless rods 

of LiCa4Si4N8F and LiSr4Si4N8F, which are stable against air and moisture.  

 

Scheme 1. Stoichiometric metathesis reactions; a) LiCa4Si4N8F, b) LiSr4Si4N8F. 

 

PXRD data support the suspected reaction equations (Figure S1 and S2, Supporting Infor-

mation) as both title compounds were obtained as side phases in heterogeneous reaction 

mixtures. CaF2 and Li2SrSi2N4 have been identified as side phases of the metathesis reactions. 

Due to further unknown phases in both reaction samples a structure solution from PXRD 

data was not possible.  

To define the morphology and the elemental composition of the title compounds Energy-

dispersive X-ray spectroscopy (EDX) was used (Figure 1). The results from the EDX analyses 

are consistent with the composition obtained from the single-crystal structure analysis. An 

atomic ratio of Ca,Sr/Si/N/F 4:4:8:1 agrees well with the formula LiEA4Si4N8F (EA = Ca, Sr), 

whereas Li is not determinable by EDX. 
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Because of the usage of N/H containing starting materials FT-IR spectra (Figure S3 and S4, 

Supporting Information) of both compounds were recorded to prove the absence of N-H 

bonds and thus the absence of hydrogen.  

2.4.2.2 Single-Crystal Structure Analyses and Structure Description 

The novel F-containing nitridosilicates crystallize in the monoclinic space group P21/c 

(LiCa4Si4N8F) and the tetragonal space group P4nc (LiSr4Si4N8F), respectively. The heavy at-

oms were refined anisotropically. Details of the structure determination and crystallographic 

data are given in Table 1. Atomic coordinates as well as isotropic displacement parameters 

are shown in Table 2. Table S1 in the Supporting Information lists the anisotropic displace-

ment parameters. 

 

 

 

 

 

 

Figure 1. SEM images of crystals of LiCa4Si4N8F (a) and LiSr4Si4N8F (b). 
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Table 1. Crystallographic data of the single-crystal structure determination of LiCa4Si4N8F and LiSr4Si4N8F. 

Formula 

Crystal system 

Space group 

a [Å] 

b [Å] 

c [Å] 

β [°] 

Cell volume [Å3] 

Formula units per unit cell 

ρ [g∙cm−3] 

Crystal size [mm3] 

µ [mm−1] 

T [K] 

Diffractometer 

Radiation (λ [Å] ) 

F(000) 

θ range [°] 

Total no. of reflections 

Independent reflections 

Refined parameters 

Goodness of fit 

R1 (all data) 

R1 [F
2 > 2σ(F2)] 

wR2 (all data) 

wR2 [F
2 > 2σ(F2)] 

Δρmax , Δρmin [e/Å−3] 

LiCa4Si4N8F  

monoclinic  

P21/c (no. 14) 

10.5108(3) 

9.0217(3) 

10.3574(3) 

117.0150(10) 

874.98(5) 

4 

3.118 

0.01 x 0.01 x 0.04 

3.022 

293(2) 

Bruker D8 Venture  

X-ray (λ = 0.71073) 

816 

8.835 ≤  2θ  ≤ 66.33 

9791 

2554 [R(int) = 0.0367] 

166 

1.209 

0.0422 

0.0354 

0.0743 

0.0724 

0.664, −0.546 

LiSr4Si4N8F  

tetragonal 

P4nc (no. 104) 

9.3118(4) 

9.3118(4) 

5.5216(2) 

 

478.78(4) 

2 

4.168 

0.03 x 0.04 x 0.13 

22.662 

293(2) 

Bruker D8 Venture  

X-ray (λ = 0.71073) 

552 

8.582 ≤  2θ  ≤ 54.81 

9041 

512 [R(int) = 0.0329] 

34 

1.075 

0.0169 

0.0160 

0.0392 

0.0388 

1.543, −0.493 
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Table 2. Atomic coordinates, isotropic displacement parameters and site occupancies of LiCa4Si4N8F and 

LiSr4Si4N8F with standard deviations in parentheses.  

  

Atom Wyckoff symbol x y z Ueq s.o.f. 

LiCa4Si4N8F       

Ca1 

Ca2 

Ca3 

Ca4 

Si1 

Si2 

Si3 

Si4 

F1 

F2 

N1 

N2 

N3 

N4 

N5 

N6 

N7 

N8 

Li1 

4e 

4e 

4e 

4e 

4e 

4e 

4e 

4e 

2b 

2c 

4e 

4e 

4e 

4e 

4e 

4e 

4e 

4e 

4e 

0.36741(6) 

0.48213(6) 

0.05026(6) 

0.11468(7) 

0.36263(8) 

0.14203(8) 

0.18953(8) 

0.30972(8)  

1/2 

0 

0.2561(3) 

0.0263(3) 

0.1567(3) 

0.3622(3) 

0.1835(3) 

0.2915(3) 

0.2757(3) 

0.5388(3)  

0.6837(6) 

0.93978(7) 

1.28982(7) 

0.74069(7) 

1.06114(7) 

0.59964(9) 

1.11804(9) 

0.76547(9) 

1.25362(9) 

1 

1/2 

1.2115(3) 

0.6881(3) 

0.9280(3) 

0.4147(3) 

1.1461(3) 

0.7909(3) 

0.6414(3) 

0.6461(3) 

0.9949(6) 

0.14072(6)  

0.04237(7)  

0.98904(6) 

0.31605(8)  

0.13105(8)  

0.09865(9) 

0.90135(8) 

0.21892(8)  

0 

0 

0.8526(3) 

0.7028(3) 

0.8823(3) 

0.1672(3)  

0.0833(3)  

0.7244(3) 

0.9496(3) 

0.1961(3) 

0.1731(6) 

0.00759(13) 

0.00880(13) 

0.00758(13) 

0.01335(14) 

0.00364(15) 

0.00382(15) 

0.00381(15) 

0.00374(15) 

0.0132(5) 

0.0265(8) 

0.0067(5) 

0.0072(5) 

0.0062(5) 

0.0076(5) 

0.0062(5) 

0.0055(4) 

0.0068(5) 

0.0076(5) 

0.0117(11) 

1 

1 

1 

1 

1 

1 

1 

1 

1/2 

1/2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

LiSr4Si4N8F        

Sr1 

Si1 

F1 

N1 

N2 

Li1 

8c 

8c 

2a 

8c 

8c 

2a 

0.44336(3) 

0.11931(10) 

1/2 

0.1747(19) 

0.936(3) 

1/2 

0.23358(3) 

0.23038(10) 

1/2 

0.3272(19) 

0.2077(3) 

1/2 

0.8985(4) 

0.9031(9) 

0.907(6) 

0.647(4) 

0.901(4) 

1.264(4) 

0.00600(17) 

0.0025(2) 

0.0171(13) 

0.0054(6) 

0.0062(6) 

0.020(4) 

1 

1 

1/4 

1 

1 

1/4 
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Both compounds represent nitridosilicates with the same BCT-zeolite analogous network, 

which is exclusively built up of vertex-sharing SiN4 tetrahedra with a degree of condensation 

κ = n(Si):n(N) = 0.50. As calculated by TOPOS[25] the point symbol for the framework is 4.6(5). 

The characteristic feature of the network are vierer[26] and achter[26] rings along [001] to-

gether with sechser[26] rings along [100] and [010]. LiCa4Si4N8F and LiSr4Si4N8F are 

homeotypic to Li2Sr4Si4N8O.[5] In the sense of a group-subgroup relation there is no direct 

correlation between the structure of the title compounds. In LiCa4Si4N8F the network is dis-

torted compared to the [SiN2]2− network of Li2Sr4Si4N8O and LiSr4Si4N8F (see Figure 2 and 

Figure 3), because both Sr-containing compounds crystallize in higher symmetric tetragonal 

space groups. Ca2+ ions or Sr2+ ions as well as Li+ ions together with F- ions are incorporated 

into the voids of the structure.  

 

 

 

 

 

 

 

 

 

 

Figure 2. Crystal structure of LiCa4Si4N8F (a) and LiSr4Si4N8F (b) view along [001]; SiN4 tetrahedra turquoise, Ca and Sr 

orange, F green, Li yellow. 
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The respective lithium position is for both compounds identical and in analogy with 

Li2Sr4Si4N8O surrounded by four N and one F atom, which replaces in the case of LiSr4Si4N8F 

the O atom of Li2Sr4Si4N8O. The striking difference of LiCa4Si4N8F and LiSr4Si4N8F are the dif-

fering F sites. For LiSr4Si4N8F one F position is found. The fluorine atoms are located in chan-

nels together with one Li atom forming linear LiF units (see Figure 3) aligned in the vierer[26] 

ring channels along [001]. Therefore, the compound can also be formulated as LiF@[SrSiN2]4.  

 

 

 

 

 

 

 

 

 

 

 

 

Thus, the Li2O units in Li2O@[SrSiN2]4 are substituted through LiF units (see Figure 4). 

Whereas for LiCa4Si4N8F two fluorine sites, each half occupied, are present. Moreover, both 

fluorine sites are coordinated differently as compared with the F site in LiSr4Si4N8F (see Fig-

ure 4). In the latter compound the single F site is coordinated by one Li+ and Sr2+ while in 

LiCa4Si4N8F the one F site is coordinated by two Li+ as well as Ca2+. The second F site is exclu-

sively coordinated by Ca2+. Ca2+ and Sr2+ atoms are located for both phases in the sechser[26] 

Figure 3. Crystal structure of LiCa4Si4N8F (a) and LiSr4Si4N8F (b) view along [010]; SiN4 tetrahedra turquoise, 

Ca and Sr orange, F green, Li yellow, LiF units (b) highlighted with blue bonds. 
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ring channels. The observation that Ca phases are structurally different to their analogous 

alkaline earth phases of the heavier homologues Sr and Ba atoms is already made for EASiN2 

(EA = Ca, Sr, Ba) and EA2Si5N8 (EA = Ca, Sr, Ba). Accordingly, LiEA4Si4N8F (EA = Ca, Sr) shows 

also the diverse coordination behavior of EA2+ ions. The Si-N distances range from 1.68 and 

1.76 Å and correspond well with the sum of the ionic radii[27-28] as well as with typical dis-

tances (e.g. Li2Sr4Si4N8O,[29] Si-N: 1.71-1.76 Å and Ba1.63La7.39Si11N23Cl0.42:Ce3+,[21] Si-N: 1.68-

1.77 Å). The bonding distances Ca-N and Sr-N reach from 2.40 to 2.62 Å and 2.59 to 2.98 Å, 

which is in the typical range. Similar values were also observed in Ca2Si5N8
[30] (Ca-N: 2.32 to 

2.84 Å). The Li-N (2.02 Å to 2.17 Å) and Li-F bond lengths (1.94 Å to 1.98 Å) are also in good 

agreement with the interatomic distances in Li3N, LiCaN or Li3SrTaN4
[31-33] and LiF.[34] Espe-

cially, the bonding distances of Li-O and Li-F also corroborate the structural interpretation 

with incorporated F instead of O atoms in the nitridosilicate framework, as the Li-F distances 

are longer than typical Li-O distances (e.g. 1.84 Å in Li2Sr2Al2Ta2N8O[35] or 1.78 Å in 

Li2Sr4Si4N8O[29]). 

 

 

 

 

 

 

 

 

The addition of EuF3 (2 mol %) to the reaction mixtures leads to a red body color of the crys-

tals of LiCa4Si4N8F:Eu2+ and LiSr4Si4N8F:Eu2+. However, luminescence under UV irradiation at 

room temperature was not observed. Also lithium ion conductivity would be a conceivable 

Figure 4. Coordination spheres of the fluorine sites in LiCa4Si4N8F (b,c) and LiSr4Si4N8F (a). 
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material property of the title compounds. But for this investigation a larger quantity of 

phase-pure samples would be necessary.  

2.4.2.3 Lattice-Energy Calculations (MAPLE) 

MAPLE (MAdelung Part of Lattice Energy)[27, 36-38] calculations of the lattice energy have been 

performed to proof the electrostatic consistency of both crystal structures (see Table 3). 

Therefore, electrostatic interactions, which depend on the charge, distance as well as the 

coordination spheres of the particular ions, were considered. These calculations are particu-

larly helpful to differentiate F-, N3- and O2- as these atoms could not be distinguished solely 

by X-ray diffraction owing to their nearly identical scattering factors. The partial MAPLE val-

ues of all individual atoms are in good agreement with reference values and confirm once 

again the incorporated F atoms. By comparing MAPLE sums of different nitrides and LiF with 

the MAPLE values of LiEA4Si4N8F (EA = Ca, Sr) the electrostatic consistency of the refined 

crystal structures has been verified. The values differ by 2.05 and 1.95 %, which is unusual 

for nitride compounds but has been yet observed in Li2Sr4Si4N8O (2.08 %)[29] or other zeolite-

type structures like Ba3Si3N5OCl (2 %)[39] and Zn8P12N24O2 (3.05 %).[40] Thus, it is likely that 

inorganic substructures as zeolite-like frameworks lead to larger MAPLE deviations.  
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Table 3. Partial MAPLE values and MAPLE sums [kJ/mol] for LiCa4Si4N8F and LiSr4Si4N8F. 

 LiCa4Si4N8F LiSr4Si4N8F 

Li+ 632 628 

Ca2+ 1888-1964 - 

Sr2+ - 1782 

Si4+ 9994-10145 10217 

N3− 5334-5518 5321-5345 

F− 578-632 607 

Total 92597 91727 

∆ 2.05 % 1.95 % 

Total MAPLE; LiCa4Si4N8F:     x Ca3N2 +     x Si3N4 + LiF = 90738 kJ/mol;  

LiSr4Si4N8F: 4 x SrSiN2 + LiF = 89942 kJ/mol 

[a] Typical MAPLE values [kJ/mol], for Ca2+: 1700-2200; Sr2+: 1500-2100; Si4+: 9000-10200; N3−: 4300-

6200; F−: 465-599; Li+: 550-860.[5, 41-42] 
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2.4.3 Conclusions 

We have synthesized LiCa4Si4N8F and LiSr4Si4N8F, which are not only the first F-containing 

lithium alkaline earth nitridosilicates but also the first multinary nitride-fluorides consisting 

of a zeolite-related framework (BTC-type) as well. In correlation to the Sr-compound 

LiCa4Si4N8F shows a distortion of this framework along with different crystallographic sites 

and coordinations for fluorine. This demonstrates one more time the diverse coordination 

behavior and thereby the formation of slightly modified structures for Ca compared to the 

analogous Sr and Ba compounds. LiSr4Si4N8F, however, is structurally almost identical to 

Li2Sr4Si4N8O. The only distinction is found in different molecular entities (LiF instead of Li2O) 

hosted in the cavities of these structures. This shows the broad flexibility of this nitride net-

work to embed diverse sorts of atoms or units. Furthermore, the title compounds are addi-

tional examples for the benefits of the engaged metathesis route, which was initially 

established for a variety of lanthanum (oxo)nitridosilicates.[41, 43-44] This reaction mechanism 

leads on the one hand to the first compounds in the system Li-EA-Si-N-F (EA = Ca, Sr). On the 

other hand it enabled the synthesis of new porous nitridosilicates also without any particular 

precursors (“Si(CN2)2“, “Si(NH)2“ or “Si2(NH)3∙6NH4Cl”)[21, 45] and in addition the formation of 

a zeolite-type nitride framework at moderate temperatures. These circumstances underline 

the versatility of the applied reaction mechanism. Thus, it appears to be a promising route 

which might lead to the discovery of further new (oxo)nitridosilicates with further structural 

features. The title compounds are stable against air and moisture at ambient temperature 

and include cavities, so substitution and ion exchange are conceivable. Particularly, lithium 

ion conductivity experiments seem to be promising for these compounds. Consequently, the 

presented combination of nitridosilicates and zeolite-like frameworks could possibly lead to 

intriguing materials properties.  
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2.4.4 Experimental Section 

2.4.4.1 General 

Because of the air and moisture sensitivity of most starting materials all manipulations were 

performed under rigorous exclusion of oxygen and moisture. Therefore, either flame-dried 

glassware attached to a vacuum line (10−3 mbar) or an argon-filled glove box (Unilab, 

MBraun, Garching; O2 < 1 ppm, H2O < 1 ppm) were used.  

2.4.4.2 Synthesis of LiCa4Si4N8F 

By the reaction of Si3N4 (20.0 mg, 0.14 mmol, UBE, 99.9 %), LiNH2 (20.0 mg, 0.87 mmol, Al-

drich, 95 %), CaH2 (105.0 mg, 2.49 mmol, Aldrich, 99.99 %) and LiF (104.0 mg, 4.01 mmol, 

Aldrich, > 99 %) single crystals of LiCa4Si4N8F were obtained. The starting materials were 

mixed and filled into a tungsten crucible under argon atmosphere in a glove box. The sample 

was heated in a radio-frequency furnace (Typ AXIO 10/450, max. electrical output 10 kW, 

Hüttinger Elektronik, Freiburg)[46] under purified nitrogen within 1h to 1000 °C, maintained 

for 10 h at that temperature and finally quenched to room temperature by switching off the 

furnace. The reaction yielded an inhomogeneous powder with colorless rods of LiCa4Si4N8F. 

2.4.4.3 Synthesis of LiSr4Si4N8F 

For the synthesis of LiSr4Si4N8F Si3N4 (48.4 mg, 0.35 mmol, UBE, 99.9 %), LiNH2 (31.7 mg, 

1.38 mmol, Aldrich, 95 %), SrH2 (67.1 mg, 0.75 mmol, Cerac, 99.5 %) and LiF (35.8 mg, 

1.38 mmol, Aldrich, > 99 %) were weighed, ground and filled into a tungsten crucible. The 

latter was heated in a radio-frequency furnace (Typ AXIO 10/450, max. electrical output 

10 kW, Hüttinger Elektronik, Freiburg)[46] under purified nitrogen to 1000 °C within 1h, main-

tained for 10 h at that temperature and finally quenched to room temperature by switching 

off the furnace. The reaction yielded an inhomogeneous sample of a yellow powder with 

colorless rods of LiSr4Si4N8F. 

2.4.4.4 SEM and EDX Spectroscopy 

A JEOL JSM 6500F field emission scanning electron microscope (SEM), operated at 8.5 kV, 

provided with a Si/Li EDX detector (Oxford Instruments, model 7418) was used to analyze 

the chemical composition and the morphology of the title compounds. To guarantee electri-
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cal conductivity on the sample surface the obtained crystals were prepared on conductive 

adhesive films and coated with carbon (BAL-TEC MED 020, Bal Tec AG). Within the sensitivity 

range of the method these measurements exclude the presence of other elements than 

Ca/Sr, (Li), Si, N and F. An atomic ratio of Ca,Sr/Si/N/F 4:4:8:1 results from the EDX analysis 

and agrees with the composition LiCa4Si4N8F and LiSr4Si4N8F, whereas Li is not determinable 

by EDX. 

2.4.4.5 Single-crystal X-ray diffraction 

Single-crystal X-ray diffraction data were collected on a D8 Venture diffractometer (Bruker, 

Billerica MA, USA) with Mo-Kα radiation (λ = 0.71073 Å) from a rotating anode source. Index-

ing of the reflections and integration of the data set of LiCa4Si4N8F and LiSr4Si4N8F was done 

with SMART[47] and SAINT.[48] A multi-scan absorption correction using the program 

SADABS[49] was applied. Both crystal structures were solved by direct methods with the help 

of SHELXS.[50] Refinement of the structures was made with the least-squares method using 

SHELXL.[51] Visualization of the crystal structures was done with DIAMOND.[52]  

Further details of the crystal structure investigations may be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49-

7247-808-666; E-Mail: crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/request for 

deposited data.html), on quoting the depository numbers CSD-432268 and -432269. 

2.4.4.6 Powder X-ray diffraction 

Pulverized samples of LiCa4Si4N8F and LiSr4Si4N8F were enclosed in glass capillaries to collect 

powder diffraction data with a STOE STADI P diffractometer (Mo-Kα1 radiation, Ge(111) 

monochromator, MYTHEN 1 K detector) in Debye-Scherrer geometry. To verify the structural 

model simulated powder diffraction patterns, based on the single-crystal structure data, 

were generated by using the WinXPOW program package and compared with the obtained 

powder diffraction data.  

2.4.4.7 FT-IR Spectroscopy 

For recording the FT-IR spectrum a Perkin-Elmer BXII spectrometer with an ATR (attenuated 

total reflection) setup was used. 
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3 Lithium (Oxo)nitridosilicates and their Material 

Properties 

3.1 Introduction 

Light – more than just brightness. It influences our psyche and health; we can feel insecure 

or even frightened by darkness, whereas light makes us feel comfortable and calms us down. 

Due to these feelings and with special regard to reduced energy consumption, the develop-

ment of efficient light-emitting diodes (LEDs) with tunable emission colors and intensities 

plays a significant role. Meanwhile, inefficient light sources like incandescent light bulbs and 

compact fluorescent lamps are more and more replaced by the so-called phosphor-

converted (pc)-LEDs.[1-3] They find broad application in diverse areas. These include medical 

applications, lifestyle products, general indoor and outdoor lighting, as well as use in the 

field of aviation and automotive lighting. The major advantages of LEDs are their long life-

times, which decrease the maintenance costs on the one hand and, on the other hand their 

reduced energy consumptions. In 2030, energy consumption in the lighting sector is ex-

pected to be reduced by 40 % with this technology.[4] Therefore, pc-LEDs are the light 

sources of the future. Also the Nobel Prize, which was awarded to Akasaki, Amano, and 

Nakamura in 2014, “for the invention of efficient blue light emitting diodes which has ena-

bled bright and energy-saving white light sources” clearly emphasizes the fundamental im-

portance of (pc)-LEDs.[5]  

The development of efficient LEDs for general lighting was a long journey. The technical 

origin dates back to 1993, as Shuji Nakamura developed the first efficient blue LED, based on 

GaN.[6] Currently, pc-LEDs are mainly used for general illumination. They consist of a blue-

emitting (In,Al)GaN chip, which is combined with luminescent materials that are excited by 

the blue LED and emit light in the visible range. Usually, a broadband green to yellow (e.g. 

YAG:Ce3+) and an orange to red emitting phosphor (e.g. Eu2+-doped (oxo)nitridosilicates) are 

used as luminescent materials. Additive mixing of blue, green to yellow, and orange to red 
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phosphors, results in white light, color temperature thereby depending on the ratio of phos-

phors.[4, 7] 

In general, the functional principle of pc-LEDs is based on the stimulation of the emission of 

a down-conversion phosphor material by a primary light source. Luminescence can be ob-

served when energy transfer between a host lattice and an activator, for example, rare earth 

metal ions (e.g. Eu2+, Eu3+, Ce3+), is given.[8] The excited states of the activator ions have 

thereby to be located in the band gap of the host lattice material. The energetic level and 

therefore the emission wavelength can be influenced by the chemical bonding between the 

activator ion and its surrounding (see Fig. 3.1.1). With increasing covalency, the energetic 

level decreases and emission occurs at longer wavelengths, and vice versa (nephelauxetic 

effect). Equally, the stronger the crystal field splitting, the longer the emission wavelengths. 

The conversion of light in a luminescent material is based on excitation and emission pro-

cesses of activator ions, which are incorporated in the crystal structures of the host com-

pounds. During the excitation process (irradiation with UV to blue light) of Eu2+-doped 

compounds, one electron is transferred from the 4f state to the 5d (excited) state.[9] Subse-

quently, non-radiative relaxation to the lowest energy level of the excited state occurs, fol-

lowed by 5d  4f transitions under emission of photons. Due to strong interactions between 

5d levels of Eu2+ and surrounding ligands, Eu2+ typically shows broad band emission. The 

stronger the interactions, the larger the Stokes shift, which is defined as the energetic differ-

ence between the centers of excitation and emission bands (λem > λexc). In general, due to 

short decay times and spin and parity allowed 4f-5d transitions, Eu2+ is widely used as activa-

tor ion in commercially available pc-LED phosphor materials.[10]  
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In the past years, nitridosilicates and oxonitridosilicates turned out to be promising candi-

dates for host lattices for Eu2+-doping. A large number of them show highly condensed struc-

tures, which is beneficial for thermal and chemical resistance. Thus, nitridosilicates are one 

subject of current research. As (oxo)nitridosilicate phosphors MSi2O2N2:Eu2+ and 

M2Si5N8:Eu2+ (M = Ca, Sr, Ba), the latter with industrial application, have to be mentioned.[3, 7, 

11] Due to the fact that emission characteristics hardly depend on the crystal structure of the 

host lattice, more precisely on the direct surroundings of the activator ions, modifications in 

crystal structures may lead to different emission wavelengths. In the following chapters, the 

novel compound Li24Sr12[Si24N47O]F:Eu2+ and its outstanding luminescence properties are 

presented. Thereby, the influence of the incorporation of F into the crystal structure of 

Li2SrSi2N4:Eu2+ is discussed in detail.  

Moreover, there a further material properties and applications of (oxo)nitridosilicates. Addi-

tionally, lithium ion conductivity has been researched for a number of lithium 

(oxo)nitridosilicates. The ternary phases LiSi2N3,[12-13] Li2SiN2,[13-14] Li5SiN3,[15-16] Li8SiN4
[13-14] 

and Li18Si3N10,[14] reported in the quasi-binary system Li3N-Si3N4, all show lithium ion conduc-

Figure 3.1.1. Scheme of excitation and emission processes in Eu
2+

; influencing effects like the crystal field 

around the activator site and the nephelauxetic effect as well as the Stokes shift are considered. 
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tion (for example Li2SiN2: σ(400 K) = 1 x 10-3 S cm-1; Li8SiN4: σ(400 K) = 5 x 10-2 S cm-1) and 

have been discussed as candidates for Li battery applications.[13, 17-18] In order to obtain even 

better ionic conductivity values, which might be interesting for battery applications, further 

adjustments of the defect chemistry of Li2SiN2 through cation doping with Ca2+ and Mg2+ are 

also presented in the following chapter in detail.  
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Abstract: The oxonitridosilicate fluoride phosphor 

Li24Sr12[Si24N47O]F:Eu2+ was synthesized from Si3N4, 

SrH2, LiNH2, LiF and EuF3 as dopant in a radio-frequency 

furnace. The crystal structure (space group Pa  (no. 

205), a = 10.72830(10) Å, R1 = 0.0401, wR2 = 0.0885, 

Z = 1) of the host compound Li24Sr12[Si24N47O]F was solved and refined on the basis of single-

crystal X-ray diffraction data. Li24Sr12[Si24N47O]F is homeotypic with the nitridosilicate 

Li2SrSi2N4 as both compounds are characterized by the same tetrahedra network topology 

but Li24Sr12[Si24N47O]F is an oxonitridosilicate and contains an additional F site. The imple-

mented F is verified by EDX measurements as well as through calculations with PLATON. 

Besides, the electrostatic consistency of the refined crystal structure is proven by lattice en-

ergy calculations. The Eu2+-doped compound Li24Sr12[Si24N47O]F:Eu2+ shows an orange to red 

luminescence (λmax = 598 nm; FWHM = 81 nm) under excitation with blue light, which differs 

from that of Li2SrSi2N4:Eu2+ (λem = 613 nm; FWHM = 86 nm) due to the additional F site. Ac-

cording to the blue-shifted emission, application in LEDs for sectors with low CRI is conceiva-

ble. 
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3.2.1 Introduction 

With regard to their manifold structural chemistry as well as their materials properties and 

applications (oxo)nitridosilicates represent an intriguing compound class for development of 

new functional materials.[1] Due to their highly condensed network structures 

(oxo)nitridosilicates can be thermally and chemically rather inert and may be good candi-

dates as rigid host lattices for Eu2+-doping. Additionally, covalent character of the bonds be-

tween activator (dopant) and N causes a nephelauxetic effect, which is responsible for a red-

shifted photoluminescence. Hence, Eu2+-doped (oxo)nitridosilicates are well suitable as red 

emitting component in warm-white pc-LEDs. As examples the (oxo)nitridosilicate phosphors 

Li2SrSi2N4:Eu2+ or MSi2O2N2:Eu2+ and M2Si5N8:Eu2+ (M = Ca, Sr, Ba), the latter one with indus-

trial application, can be mentioned.[1-5]  

LED lighting is an essential key factor that can help to reduce electricity consumption and 

simultaneously solve environmental issues. Due to the continuous request of improved per-

formance of pc-LEDs in more and more application fields the search for new phosphor mate-

rials based on (oxo)nitridosilicates is of great importance. Incorporation of further elements 

in (oxo)nitridosilicates has shown that again and again new structures and thus new phos-

phor materials became accessible. For instance, partial or formal substitution of Si by Al 

leads to nitridoalumosilicates. The luminophor Sr[LiAl3N4]:Eu2+ as representative of the 

nitridoaluminate compound class combines e.g. an outstanding FWHM (~ 1180 cm−1) with 

excellently high QE values up to 500 K.[6-7] Considering further optimization and adjustment 

of luminescence properties, different investigations on the solid solution series Sr2-

xCaxSi5N8:Eu2+[8] or Sr1-xBaxSi2O2N2:Eu2+ were undertaken, whereby the latter shows an unex-

pected red-shifted luminescence for increasing Ba2+ content.[9-10] Thus, these phases nicely 

illustrate how subtle substitution can affect luminescence properties markedly.  

Several synthetic approaches to (oxo)nitridosilicates have been developed including high-

temperature reactions, precursor routes, ammonothermal syntheses and flux methods with 

liquid sodium.[1, 11-17] Furthermore, solid-state metathesis reactions play an important role 

since a number of ternary or higher nitrides have been synthesized recently by this ap-
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proach.[18-20] The decisive factor thereby is the application of reactive sources by coproduc-

ing a metathesis salt, whose formation acts as thermodynamic driving force of the reaction 

and which simultaneously acts as reactive flux. Recently, we also described a solid-state me-

tathesis reaction, which enables incorporation of F in existing lithium nitridosilicate struc-

tures.[21] Besides the mentioned cation substitutions, we wondered whether and how 

incorporation of fluoride can influence luminescence properties. This purpose has now been 

tested in an exemplary study on the known phosphor Li2SrSi2N4:Eu2+.[4] In this contribution, 

we describe incorporation of F in Li2SrSi2N4:Eu2+ leading to the formation of 

Li24Sr12[Si24N47O]F:Eu2+. More importantly, the modified emission characteristics and there-

fore possible luminescence tuning owing to the additional F site are discussed. The intriguing 

luminescence properties of the title compound make an application in pc-LEDs for more spe-

cialized applications, e.g. for street lighting, conceivable.  
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3.2.2 Experimental Section 

3.2.2.1 Synthesis 

For the synthesis of Li24Sr12[Si24N47O]F:Eu2+ (with 2 mol % Eu), 20.3 mg (0.14 mmol) Si3N4 

(UBE, 99.9 %), 16.4 mg (0.71 mmol) LiNH2 (Aldrich, 95 %), 44.6 mg (1.72 mmol) LiF (Aldrich, 

> 99 %), 78.8 mg (0.88 mmol) SrH2 (Cerac, 99.5 %) and 3.5 mg (0.02 mmol) EuF3 (Aldrich, 

99.99 %) as dopant were mixed in an agate mortar and filled into a tungsten crucible. All 

handlings were done under argon atmosphere in a glove box (Unilab, MBraun, Garching; O2 

< 1 ppm; H2O < 1 ppm). Subsequently, the reaction vessel was transferred into a water-

cooled silica glass reactor of a radio-frequency furnace (type AXIO 10/450, maximal electrical 

output 10 kW, Hüttinger Elektronik, Freiburg),[22] heated under N2-atmosphere to 1000 °C 

within 1 h, maintained at that temperature for 10 h and then finally quenched to room tem-

perature by switching off the furnace. The product was obtained as a heterogeneous powder 

with small aggregates of orange crystals showing orange luminescence after excitation with 

blue light. The crystals of Li24Sr12[Si24N47O]F:Eu2+ are stable against air and water. Contact 

with air and water over several days does not lead to any marked decomposition.  

3.2.2.2 SEM and EDX Spectroscopy 

To determine the elemental composition and the morphology of the obtained crystals, a 

JEOL JSM 6500F field emission scanning electron microscope (SEM), operated at 8.6 kV and 

equipped with a Si/Li EDX detector (Oxford Instruments, model 7418), was used. In order to 

ensure electrical conductivity on the sample surface the obtained crystals were prepared on 

conductive adhesive films and were coated with carbon (BAL-TEC MED 020, Bal Tec AG). 

Within the sensitivity range of the method these measurements exclude the presence of 

other elements than Sr, Si, N F and Eu. The EDX analyses of the title compound resulted in an 

average atomic ratio of Sr:Si:N:O:F:Eu = 17:28:47:5:3:0.31 (normalized according to the Sr 

content, three measurements on different crystals; Li was not determinable by EDX). 
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3.2.2.3 Single-Crystal X-ray Diffraction 

The X-ray diffraction data of Li24Sr12[Si24N47O]F were collected with a D8 Venture (Bruker, 

Billerica MA, USA) diffractometer with Mo-Kα radiation (λ = 0.71073 Å) from a rotating anode 

source. Diffraction Data were indexed with SMART[23] and integrated with SAINT.[24] A multi-

scan absorption correction was applied using the program SADABS.[25] The structure was 

solved with Direct Methods (SHELXS)[26] and refined using the method of full-matrix least-

squares (SHELXL).[27] Visualization of the crystal structure was done with the help of DIA-

MOND.[28]  

Further details of the crystal structure investigations may be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49-

7247-808-666; E-Mail: crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/request for 

deposited data.html) on quoting the depository number CSD-432550). 

3.2.2.4 Powder X-ray Diffraction 

Powder diffraction data were collected with a STOE STADI P diffractometer (Mo-Kα1 radia-

tion, Ge(111) monochromator, MYTHEN 1 K detector) in Debye-Scherrer geometry. To verify 

the structural model simulated powder diffraction patterns, based on the single-crystal 

structure data, were generated by using the WinXPOW[29] program package and were com-

pared with the measured powder diffraction data of the sample. 

3.2.2.5 Luminescence 

Luminescence of Li24Sr12[Si24N47O]F:Eu2+ was analyzed with a luminescence microscope, con-

sisting of a HORIBA Fluoromax4 spectrofluorimeter system attached to an Olympus BX51 

microscope via fiber optics. Excitation wavelength was chosen to 440 nm. The emission 

spectra were measured between 440 and 800 nm with 2 nm step size. Excitation spectra 

were measured between 380 and 600 nm with 2 nm step size.  

3.2.2.6 FTIR Spectroscopy 

A Perkin Elmer BXII spectrometer with an ATR (attenuated total reflection) setup was used 

for recording the FTIR spectrum. 
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3.2.3 Results and Discussion 

3.2.3.1 Synthesis and Chemical Analysis 

The synthesis is based on a metathesis reaction. The driving force of this reaction is the de-

composition of SrH2 and its reaction with LiF to form SrF2, which resublimates at the cool 

reactor wall. The remaining Sr reacts with excessive LiF, Si3N4, LiNH2 and the dopant to 

Li24Sr12[Si24N47O]F:Eu2+. The implemented O seemingly originates from contamination of 

commercially acquired reactants. 

Si3N4 + LiNH2 + LiF + SrH2 + O2 + EuF3 → Li24Sr12[Si24N47O]F:Eu2+ + SrF2↑ + H2↑ 

PXRD data support the suspected reaction mechanism (Figure S1, Supporting Information) as 

Li24Sr12[Si24N47O]F:Eu2+ is only one compound among other, partly unknown, phases in the 

sample. Li24Sr12[Si24N47O]F:Eu2+ forms block-like orange crystals. Through EDX analyses the 

morphology and the sum formula obtained from single-crystal structure refinement was 

validated (Fig. 1). Thus, the incorporation of F and Eu was confirmed. The presence of Eu is 

also proven by luminescence measurements. The cubic symmetry is also obvious from the 

SEM image as the crystal of Li24Sr12[Si24N47O]F:Eu2+ exhibits a cuboctahedral habitus. With 

respect to the usage of N-H containing reagents a FT-IR spectrum (Figure S2, Supporting In-

formation) of the title compound was recorded to confirm the absence of N-H bonds and 

thus the absence of hydrogen. Thus, the combination of EDX measurements and FTIR spec-

troscopy prove the absence of any other elements than Li, Sr, Si, N, O and F.  

 

Figure 1. SEM image of a crystal of Li24Sr12[Si24N47O]F. 
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3.2.3.2 Single-Crystal Structure Analysis 

The crystal structure of Li24Sr12[Si24N47O]F was solved by using single-crystal X-ray diffraction 

data. The solution and refinement was performed in the cubic space group Pa  (no. 205) 

with a = 10.72830(10) Å. The heavy atoms were refined anisotropically. Table 1 contains the 

crystallographic data. The atomic coordinates and isotropic displacement parameters are 

listed in Table 2. Anisotropic displacement parameters are summarized in the Supporting 

Information (Table S1). The small amount of Eu2+ was neglected in the refinement of the 

crystal structure as well as for lattice energy calculations (MAPLE) because of its insignificant 

contribution to the scattering density. 
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Table 5. Crystallographic data of the single–crystal structure determination of Li24Sr12[Si24N47O]F. 

parameter  comment 

formula Li24Sr12[Si24N47O]F 

crystal system cubic 

space group Pa  (no. 205) 

lattice parameters / Å a = 10.72830(10) 

cell volume / Å3 1234.79(3)  

formula units per unit cell 1 

crystal size / mm3 0.020 x 0.020 x 0.020 

density / g·cm–3 3.477 

µ / mm–1 13.516 

T / K 293(2) 

radiation / Å Mo Kα (λ = 0.71073) 

F(000) 1210 

θ range / ° 3.289 ≤ θ ≤ 36.338 

independent reflections 1000 [Rint = 0.0718] 

refined parameters 38 

goodness of fit 1.286 

R1  

(all data / for F2 > 2σ(F2)) 

0.0444 / 0.0401 

wR2  

(all data / for F2 > 2σ(F2)) 

0.0899 / 0.0885 

Δρmax , Δρmin (e·Å–3) 1.379, –1.347 
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Table 6. Atomic coordinates and equivalent isotropic displacement parameters (in Å
3
) of Li24Sr12[Si24N47O]F. 

atom site x y z Ueq 

Sr1 8c 0.28398(3) 0.28398(3) 0.28398(3) 0.00818(12) 

Sr2 4a 0 0 0 0.01494(17) 

Si1 24d 0.02135(8) 0.13099(8) 0.25591(8) 0.00291(15) 

N1O1 24d 0.0092(3) 0.2283(3) 0.1243(2) 0.0058(4) 

N2O2 24d 0.0621(3) 0.2309(3) 0.3755(3) 0.0090(5) 

F1 4b 1/2 1/2 1/2 0.069(14) 

Li1 24d 0.0293(8) 0.3938(8) 0.2250(8) 0.0199(15) 

 

3.2.3.3 Crystal Structure Description 

The title compound is homeotypic to Li2SrSi2N4 (Z = 12).[30] Li24Sr12[Si24N47O]F (Z = 1) consists 

of Sr2+, Li+, F- and a framework structure of vertex-sharing Q4 type Si(N/O)4 tetrahedra. As 

already reported the network of the compound contains exclusively N/O atoms bound cova-

lently to two Si atoms and crystallizes according to O’Keeffe in Net 39. This leads to a degree 

of condensation κ = n(Si):n(N/O) = 0.5 comparable with SiO2 or MSiN2 (M = Be, Mg, Ca, Sr, 

Ba, Mn, Zn).[30-34] The structural motif of the Si(N/O) framework are siebener[35] rings annu-

lated by four dreier[35] rings. Per unit cell there are twenty-four tetrahedra which are forming 

dreier[35] rings and siebener[35] rings. One part of the Li+ and Sr2+ ions is located in the chan-

nels running parallel to the crystallographic axes of the Si(N/O) network (Fig. 2), whereas the 

remaining part is distributed amongst the voids of the structure.[30] In comparison to 

Li2SrSi2N4 (Fig. 2a) an additional atom position in Li24Sr12[Si24N47O]F exists (Fig. 2c) which is 

located at the middle of the cell edges as well as the center of the unit cell and is occupied to 

one quarter with F (Fig. 2b). Another distinction between Li2SrSi2N4 and Li24Sr12[Si24N47O]F 

are the mixed positions N/O in Li24Sr12[Si24N47O]F. These sites are occupied with N and O 

(2 %) in an atomic ratio of        :      , whereas in Li2SrSi2N4 the corresponding positions are 

fully occupied with N. In view of the SiN3O tetrahedra network and the isolated F site, the 
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compound can be classified as an oxonitridosilicate fluoride. In addition the crystal structure 

contains two crystallographically independent heavy-atom sites, each coordinated by N/O. 

The coordination sphere of Sr1 is a regular trigonal prism (Fig. 3a, orange) and is located in 

the middle between three siebener[35] rings (Fig. 3c). Sr2 is coordinating two dreier[35] rings in 

the form of a distorted octahedron (Fig. 3b). In his further coordination sphere the F site is 

surrounded by six Li atoms also in a distorted octahedral way. The observed Sr-N/O 

[2.637(3)-2.791(3) Å] distances are in good agreement with those in comparable com-

pounds, such as Li2SrSi2N4 [2.631(4) – 2.791(3) Å][30] as well as with the sum of the ionic ra-

dii.[36] 
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Figure 2. Crystal structure of Li2SrSi2N4 (a) and F position at cell edges and the middle of the cell (b) leads to 

crystal structure of Li24Sr12[Si24N47O]F (c); viewing direction along [100], Sr
2+

 orange, N/O dark blue, Si
4+

 inside 

the turquoise tetrahedra, Li
+
 yellow, F

−
 green. 
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Figure 3. Coordination spheres of Sr1 (a) and Sr2 (b); Si(N/O)4 tetrahedra form dreier rings, four of them build 

up siebener rings (c). 

 

The distances Si-N,O in Li24Sr12[Si24N47O]F range between 1.728(3) and 1.760(3) Å and are 

typical for (oxo)nitridosilicates.[16] With values from 2.076(9) to 2.405(9) Å the Li-N/O dis-

tances are in the typical range. Similar values were observed in comparable compounds, e.g. 

LiCa3Si2N5 [1.998(8) – 3.044(16) Å][37] or Li2O [1.981 Å].[38] 

3.2.3.4 Investigations with PLATON 

F− represents a large ion and exhibits an ionic radius of 1.33 Å.[36] PLATON was used to con-

firm the incorporation of F into the crystal structure of Li2SrSi2N4. Both size and positions of 

the voids in the crystal structure of Li2SrSi2N4 were identified and calculated with CALC 

VOID.[39] Thereby, van der Waals radii of all atoms within the structural model (symmetry 

expanded to P1) were taken into account. Resulting voids are sufficiently large for F− and are 

located at the middle of cell edges and the center of the cell. Analysis of the electron density 

of Li24Sr12[Si24N47O]F in PLATON, plotted in P1, additionally verifies the localization of F on 

these positions (Fig. 4).  
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Figure 4. Electron density of Li24Sr12[Si24N47O]F (a), F site (1, 0, ½) enlarged (b); contour level −6.00 e∙Å
−3

 (green 

= positive electron density, red = negative electron density). 

3.2.3.5 Lattice Energy Calculations 

To prove the electrostatic consistency of the crystal structure, MAPLE calculations (MAPLE, 

Madelung part of lattice energy) were performed.[40-43] These calculations are especially use-

ful to determine the site occupancies of F, N and O, as these ions can hardly be distinguished 

by conventional X-ray diffraction owing to their similar X-ray scattering factors. The calculat-

ed partial MAPLE values of Sr, Si, Li and N/O are consistent with reference values (Table 3). 

Since both N sites in Li24Sr12[Si24N47O]F are singly bridging atoms, the O content was equally 

distributed to both sites. Other distributions resulting in MAPLE values with larger deviation, 

thus an occupation of only one N site with O is unlikely. Consideration of partly occupied 

sites is not possible with the MAPLE software, thus the value of the under-occupied F site is 

smaller than the characteristic range. But yet, by comparing the MAPLE sums of different 

nitrides, LiF and Li2O with the MAPLE values of Li24Sr12[Si24N47O]F, the electrostatic balance 

of the refined crystal structure has been verified. The values differ only by 0.70 %, which is in 

the range of tolerance. 
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Table 7. Partial MAPLE values and MAPLE sums [kJ/mol] for Li24Sr12[Si24N47O]F. 

                                    Li24Sr12[Si24N47O]F 

Li+ 716  

Sr2+ 1616-1729  

Si4+ 9785  

N3−/O2− 5384-5401  

F− 13  

Total 531089  

∆ 0.70 %  

Total MAPLE; Li24Sr12[Si24N47O]F: 1 x LiF + 1 x Li2O + 4 x Si3N4 + 12 x SrSiN2 + 7 x Li3N = 527395 kJ/mol. 

[a] Typical MAPLE values [kJ/mol] for Sr2+: 1500-2100; Si4+: 9000-10200; N3−: 4300-6200; O2- 2000–

2800; F−: 465-599; Li+: 550-860.[1, 17, 37] 

 

3.2.3.6 Luminescence 

Doping with Eu2+ yielded orange body colored samples of Li24Sr12[Si24N47O]F:Eu2+ (2 mol % 

Eu2+, nominal composition), which show intense luminescence in the orange to red spectral 

region under irradiation with blue light (Fig. 5). Luminescence investigations were performed 

for aggregates of the title compound sealed in silica glass capillaries. All particles show com-

parable orange to orange-red emission under irradiation with blue light. 
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Figure 5. Orange luminescence of Li24Sr12[Si24N47O]F:Eu
2+

 under blue light. 

Emission and excitation spectra are displayed in Figure 6. As the excitation spectrum shows a 

broad band with a maximum at ~ 470 nm, Li24Sr12[Si24N47O]F:Eu2+ can be excited very well by 

blue light originating from a (Ga,In)N-LED. Excitation of the title compound at ~ 470 nm 

yields a typical broadband emission, which can be traced back to the parity allowed 4f65d1-

4f7-transition of Eu2+. The emission band is in the red spectral region centered at 598 nm 

with a full width at half-maximum (FWHM) of 81 nm.  
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Figure 6. Smoothed excitation (blue) and emission (red) spectra of Li24Sr12[Si24N47O]F:Eu
2+

 with Gauss fit (green) 

for determination of fwhm.  

However, the Eu2+ doped compounds BaGa2S4 and BaAl2S4 also crystallizing in Net 39 show 

blue to green or blue emissions.[44-45] Due to more covalent Eu-N instead of Eu-S bonds the 

emission maximum of the compound Li24Sr12[Si24N47O]F:Eu2+ is strongly red shifted com-

pared to the mentioned sulfides. Accordingly, the title compound is a further example illus-

trating the nephelauxetic effect. Emissions similar to Li24Sr12[Si24N47O]F:Eu2+ are observed in 

comparable compounds like Li2SrSi2N4:Eu2+ (λem = 613 nm; FWHM = 86 nm),[4] 

(Ca,Sr)AlSiN3:Eu2+ (λem = 610-660 nm; FWHM = 90 nm)[46] or Sr2Si5N8:Eu2+ (λem = 609 nm; 

FWHM = 88 nm).[47-48] The latter compounds are industrially applied LED phosphor materials 

and show quite narrow emissions just as Li24Sr12[Si24N47O]F:Eu2+, caused by a small number 

of heavy atom sites and the highly symmetrical environments of this sites. These specific 

structural features such as highly symmetrical surrounding of the activator ion, an ordered 

and rigid host lattice and a small number of heavy atom sites, are beneficial for narrow band 

red emission. This has been particularly shown for various compounds crystallizing in the 
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UCr4C4-structure type, like M[Mg2Al2N4] (M = Ca, Sr, Ba, Eu)[49] or Sr[Mg3SiN4]:Eu2+.[50] In 

comparison to Li2SrSi2N4:Eu2+ Li24Sr12[Si24N47O]F:Eu2+ exhibits a blue-shifted and a slightly 

narrower emission. We assume that the starting material LiF serves not only as F source, but 

acts as fluxing agent as well, thus the synthetic process leads to an improved homogeneity of 

Li24Sr12[Si24N47O]F:Eu2+. This implicates a smaller phase width of the sample and thereby a 

narrower emission of Li24Sr12[Si24N47O]F:Eu2+ compared to that of Li2SrSi2N4:Eu2+. This is a 

benefit of the reaction mechanism since with a narrower emission of the red-emitting com-

ponent, the large portion of the emission in the infrared outside the sensitivity of the human 

eye can be reduced. The observed blue-shift can be traced back to the partially occupation 

with O of all N sites, induced to the F content, in Li24Sr12[Si24N47O]F:Eu2+. The additional O 

content results in a decrease of the nephelauxetic effect, which leads to the blue-shifting of 

the emission of Li24Sr12[Si24N47O]F:Eu2+ in comparison to Li2SrSi2N4:Eu2+. In relation to 

Li2CaSi2N4:Eu2+ (λem = 585 nm; FWHM = 79 nm)[51] the small red-shift of 

Li24Sr12[Si24N47O]F:Eu2+ is probably due to the larger Sr2+ ions in the crystal structure. A simi-

lar effect was already described in the solid solution series SrxBa1-xSi2O2N2.[52] Therefore, the 

emission behavior of the title compound is located in the middle of the end members of the 

solid solution series Li2CaxSr1-xSi2N4:Eu2+ (2 %) (λem = 585-613 nm; FWHM = 79-120 nm)[51] 

caused by the influence of the incorporated F, which leads for reason of charge neutrality to 

partial substitution of all N sites with O.  

Summarizing the title compound shows a narrow emission at a shorter wavelength than 

Li2SrSi2N4:Eu2+. The blue-shift results in a lower CRI. Narrowing of the FWHM should enhance 

the efficiency of Li24Sr12[Si24N47O]F:Eu2+. Due to inaccessibility of bulk samples of 

Li24Sr12[Si24N47O]F:Eu2+ quantum efficiency measurements were not possible so far. The lu-

minescence properties of Li24Sr12[Si24N47O]F:Eu2+ lead in combination with a yellow to green 

phosphor to a more efficient white LED for applications with lower CRI. 
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3.2.4 Conclusion 

In this contribution, the crystal structure and luminescence properties of a new 

oxonitridosilicate fluoride phosphor are reported. Li24Sr12[Si24N47O]F:Eu2+ represents the 

third F-containing lithium alkaline earth nitridosilicate known so far.[21] The new orange to 

orange-red emitting nitride phosphor Li24Sr12[Si24N47O]F:Eu2+ was prepared by a metathesis 

reaction. The title compound is homeotypic with Li2SrSi2N4:Eu2+ and exhibits the same type 

of tetrahedra network (Net 39) but contains an additional F site. The applied metathesis re-

action leads to an incorporation of F in the crystal structure of Li2SrSi2N4:Eu2+. Consequently, 

through the synthesis route a further structural expansion of (oxo)nitridosilicates was possi-

ble. The herein presented compound shows an interesting change of luminescence proper-

ties induced by the incorporation of F. The emission is narrower and blue-shifted 

(λem = 598 nm; FWHM = 81 nm) when compared to that of Li2SrSi2N4:Eu2+ (λem = 613 nm; 

FWHM = 86 nm). Bulk samples of Li24Sr12[Si24N47O]F:Eu2+ for quantum efficiency measure-

ments were not yet obtained. The title compound is a further example for determinability of 

luminescence properties also on heterogeneous samples as already described by Xie et al. 

for the single particle diagnosis approach.[53] The results of this investigation illustrate the 

potential of (oxo)nitridosilicates as host lattices for Eu2+-doped luminescent materials. By 

virtue of its stability towards air and moisture as well as its luminescence properties a possi-

ble application of cubic Li24Sr12[Si24N47O]F:Eu2+ as phosphor in LEDs for more specialized ap-

plications appears conceivable. Besides, by further variation of the ratio F/O luminescence 

properties of the title compound may be further modified. Hence, Li24Sr12[Si24N47O]F:Eu2+ is 

an example of a flexible system, which enables tuning of luminescence properties and wid-

ens the group of novel orange to red-emitting systems. By incorporation of F into other host 

lattices it is possible to achieve materials of specific properties, precisely tunable pursuant to 

respective application. This purpose could be feasible with the presented metathesis reac-

tion 
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3.3 Li+ ion Conductivity Investigations of Li2SiN2:Ca,Mg2+ 

3.3.1 Introduction 

In the last decades, the need for mobile power supply and efficient energy storage has con-

tinuously increased. As a consequence, rechargeable batteries have become a key technolo-

gy in modern society.[1-4] By avoiding the use of liquid electrolytes, the reliability as well as 

the safety of batteries has remarkably been improved. Thus, solid lithium ion conductors 

gain in importance and current energy storage devices comprise all-solid-state lithium bat-

teries. For their improvement, solid electrolytes with high lithium ion conductivity are essen-

tial. The variety of materials with the basic requirements for all-solid-state batteries, i.e. high 

ionic conductivity at the operating temperature and a high chemical, electrochemical, and 

thermal stability, is still very low.[5-6] Therefore, great effort has been put into the search for 

new solid electrolytes and a variety of crystalline, glassy, or composite materials have been 

considered.[1-3, 7] Especially, lithium nitridosilicates have recently been studied regarding 

their lithium ion mobility. Table 1 gives an overview of lithium ion conductivities of reported 

ternary lithium nitridosilicates. 

Table 1. Comparison of conductivities at 400 K and activation energies of selected lithium nitridosilicates. 

 σ400 K (S m-1) Ea (kJ mol-1) 

LiSi2N3 1.9 x 10-5 64 

Li2SiN2 1.1 x 10-3 53 

Li5SiN3 4.7 x 10-3 57 

Li8SiN4 5.0 x 10-2 46 

Li18Si3N10 2.9 x 10-3 55 

Li21Si3N11 8.6 x 10-4 54 

 

Furthermore, nitridosilicates show a high chemical stability combined with high decomposi-

tion temperatures as well as high mechanical strength, and are often inert to oxidation and 

corrosive environments.[8-9] Thus, ternary lithium nitridosilicates are interesting materials for 
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novel solid electrolytes. Li2SiN2, for example, shows an ion conductivity of 1.1 x 10-3 S m-1.[10-

11] But for commercial application in lithium ion batteries, an ion conductivity of 0.1 S cm-1 is 

needed.[12] Therefore, Li+ ion conductivity has to be improved, for example, by doping lithi-

um ion-conductive solid electrolytes with ions of higher charges. For instance, LiSi2N3 has 

been chemically doped with Ca3N2 by forming Li1−2xCaxSi2N3 (x = 0–0.2), which leads to an 

increase in the ion conductivity of almost four orders of magnitude higher.[13] Equally, it was 

the aim to incorporate Ca2+ or Mg2+ into the Li2SiN2 host lattice. The radii of Li+ and Ca2+ ions 

as well as Mg2+ are 0.73, 0.96 and 0.70 Å.[13] Upon doping of Li2SiN2, Li+ may be substituted 

by the dopants Ca2+ or Mg2+. Due to modification of the Li2SiN2 framework, which is caused 

by doping with Ca2+and Mg2+, interactions between the ions should decrease and, simulta-

neously, the number of defects in the structure is expected to increase, which leads to high-

er Li+ mobility. Additionally, the number of mobile Li+ ions should also be increased as the 

incorporation of aliovalent substitutional Ca2+or Mg2+ ions is expected to be accompanied by 

Li+ vacancies for reasons of charge compensation. In the following section, chemical doping 

in Li2SiN2 with the aim to further improve and optimize the Li+ ion conductivity in Li2SiN2 sol-

id electrolyte is described. 
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3.3.2 Experimental Part 

3.3.2.1 General 

With respect to air and moisture sensitivity of the starting materials and products, all ma-

nipulations were performed in flame-dried Schlenk-type glassware, which was attached to a 

vacuum line (10-3 mbar), or were performed in an argon-filled glovebox (Unilab, MBraun, 

Garching, O2 <1 ppm, H2O <1 ppm) with rigorous exclusion of oxygen and moisture. 

3.3.2.2 General Experimental Procedure 

Phase-pure samples of Li2SiN2 and Li2-2xCa/MgxSiN2 (with x = 0.1) were prepared under high-

temperature conditions under N2 atmosphere. Si3N4 (50 mg, 0.36 mmol) and Li3N (50 mg, 

1.44 mmol) or Si3N4 (46.76 mg, 0.33 mmol), Li3N (41.80 mg, 1.20 mmol) and Ca (4.00 mg, 

0.01 mmol) or MgH2 (2.63 mg, 0.08 mmol), respectively, were mixed and ground under an 

argon atmosphere, and transferred into a tungsten crucible (Plansee, Bad Urach, 99.97 %). 

Subsequently, the crucible was placed in a radio-frequency furnace (Typ AXIO 10/450, max. 

electrical output 10 kW, Hüttinger Elektronik, Freiburg)[14] and heated to 1000 °C within 1 h, 

maintained for 10 h and finally quenched to room temperature by switching off the furnace. 

The synthesis yielded colorless powders, which were sensitive to air and moisture.  

3.3.2.3 Powder X-ray diffraction 

Powder X-ray diffraction was performed to investigate the phase purity of the products. Dif-

fraction data were collected with a STOE Stadi P diffractometer (Stoe & Cie, Darmstadt, 

Germany, Ge(111) monochromator, Mythen 1K detector). The samples were enclosed in 

glass capillaries with diameters of 0.3 mm under argon atmosphere for measurement. 

Rietveld refinement was carried out using the TOPAS package.[15] 

3.3.2.4 EDX measurements 

To investigate the atomic ratio Si/N and the incorporation of Mg2+/Ca2+, the samples were 

analyzed by energy-dispersive X-ray spectroscopy. Carbon-coated samples were examined 

with a scanning electron microscope (SEM) JSM-6500F (Jeol) equipped with a Si/Li EDX de-

tector 7418 (Oxford Instruments). The determined compositions are within the typical error 

ranges and with regard to the fact that lithium cannot be detected by this method. 
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3.3.2.5 Conductivity measurements 

For the electrical conductivity measurements, a series of pellets with a diameter of 5 mm and 

thickness of ~1 mm was obtained by uniaxially cold pressing (22 kN) the Li2SiN2 and 

Li2SiN2:Ca2+/Mg2+ powders. The pellets were coated with gold thin films blocking electrodes 

(150 nm) by thermal evaporation. Impedance measurements were done by C. Dietrich (Group of 

Prof Dr. J. Janek, Institute of Physical Chemistry, Justus-Liebig-Universität Gießen, Germany) in 

the frequency range of 1 MHz to 100 mHz.  
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3.3.3 Results and Discussion 

Phase-pure samples are indispensible for impedance measurements. To perform these 

measurements, samples have to be pressed to form pellets of specific diameter and thick-

ness and even surfaces. The first step was to synthesize phase-pure samples of Li2SiN2 as a 

reference. Therefore, different starting materials in varying molar ratios, and syntheses tem-

peratures were investigated. Phase-pure samples have exclusively been obtained by using 

“Si(NH)2” and a double excess of Li3N as starting materials, and a synthesis temperature of 

1000 °C. A second synthesis optimization including the variation of different doping agents 

(CaH2, Ca3N2 and Ca) yielded phase-pure samples of Li2SiN2:Ca2+. First experiments were per-

formed under ambient conditions. But thorough investigations indicated moisture-sensitivity 

of obtained products, which is why following experiments were handled under strict exclu-

sion of air and moisture. 

The experiments resulted in different qualities of the products, depending on applied start-

ing materials. Therefore, stable pellets have only been obtained after reaction of Si3N4 and 

Li3N instead of SDI as Si-source. We expect that due to the higher density of Si3N4 compared 

to that of “Si(NH)2”, Si3N4 shows better compressibility. Last but not least, a further synthesis 

optimization for preparation of phase-pure samples of Li2SiN2 with Mg2+ was also performed 

(variation of doping agents Mg, Mg3N2, MgH2). In summary, phase-pure samples of Li2SiN2, 

Li2SiN2:Ca2+and Li2SiN2:Mg2+ were synthesized with Si3N4 and were only accessible with dou-

ble excess of Li3N and pure Ca and MgH2. For pressing pellets under inert conditions, also the 

starting material “Si(NH)2” had to be exchanged by Si3N4. 

EDX measurements were used to determine the elemental composition of the product and 

to confirm the incorporation of Ca2+/Mg2+ (see Table 2). Small amounts of oxygen were de-

tected, which can be ascribed to partial hydrolysis of the compound when exposed to air. 

The determined atomic ratio agrees well with the sum formula. Li cannot be detected by 

EDX; no further elements except Si, N, Ca, Mg (and O) were detected. 
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Table 2. EDX measurements of doped Li2SiN2 with Ca
2+

 and Mg
2+

. 

element Ø atom-% calculated atom-% 

Li - 37 

Ca/Mg 2 2 

Si 26 20 

O 7 - 

N 65 41 

 

To exclude possible side phases, powder diffraction patterns were collected. Rietveld re-

finements of the diffraction patterns showed phase purity (see Fig. 1, Li2SiN2:Mg2+as repre-

sentative example). 
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TOPOS analyses were employed to investigate structural voids and channels, in which Li+ 

ions are expected to be located. The voids in the crystal structure were calculated by em-

ploying Voronoi-Dirichet polyhedra. Each void smaller than 1.45 Å (Slater radius of Li+)[16] 

was omitted. The analysis of Li2SiN2 on the basis of the crystal structure refinement yielded 

possible 1D migration pathways along the crystallographic c-axis, as shown in Figure 2. 

Anurova et al. calculated the voids of more than 2000 known compounds containing Li+ ions 

with the TOPOS program.[17] All of the analyzed compounds exhibit infinite lithium pathways: 

Li+ ion conductivity was experimentally proven. According to these calculations, anisotropic 

lithium ion conductivity is plausible with respect to the structural chemistry of Li2SiN2. 

 

Figure 1. Characteristic section of the Rietveld profile fit for a sample of Li2SiN2:Mg
2+

: observed (black 

line) and calculated (red line) powder diffraction patterns of the sample as well as difference profile 

(green line). 



3 Lithium (Oxo)nitridosilicates and their Material Properties 
 

 

 
 

99 
 

 

 

 

 

 

 

 

 

 

 

 

To determine Li+ ion conductivity of Li2SiN2, Li2SiN2:Ca2+and Li2SiN2:Mg2+, impedance meas-

urements should have been performed. As described above, pressing pellets turned out to 

be a challenging task. During the conductivity measurements the pellets broke, presumably 

the samples were not stable enough for impedance measurements. Thus, it was not possible 

to receive values for the conductivity of Li2SiN2, Li2SiN2:Ca2+ and Li2SiN2:Mg2+. In addition, an 

alternative measurement setup was tested. Therefore, powder samples instead of pellets 

were used. However, this novel method was still in the maturing phase and does not yet 

provide incontestable results. Obtained values for Li+ ion conductivity of Li2SiN2 widely vary 

from the values known from literature. A reason may be that the thickness of measured 

samples cannot be determined unequivocally, which is an important value for determination 

of Li+ ion conductivity.  

 

Figure 2. Calculated possible Li
+
 pathways (blue) according to the voids in the structure and unit cell of 

Li2SiN2 viewing along [001]. 
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3.3.4 Conclusion 

In the previous chapter, synthesis of phase-pure samples of Li2SiN2 doped with Ca2+ and Mg2+ 

was described. The prepared pellets of phase-pure samples of Li2SiN2, Li2SiN2:Ca2+as well as 

Li2SiN2:Mg2+ were not stable during the conductivity measurements. Therefore, it has not 

been possible to determine conductivity values so far. Given that doping of Li2SiN2 with Ca2+ 

and Mg2+ was successful, only the pellets stability needs to be optimized in future researches 

to determine the lithium ion conductivity. Perhaps sintering of the samples may be helpful 

to increase their density and their hardness. In this context, it is important to recall that dop-

ing of LiSi2N3 with Ca2+ resulted in an ionic conductivity enhancement up to 4 orders of mag-

nitude while the activation energy decreased from 0.69 eV (undoped) down to 0.22 eV. 

Thus, the doped samples of Li2SiN2 with Mg2+ and Ca2+ should also show remarkably im-

proved lithium ion conductivity. 
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4 Conclusion and Outlook 

Lithium (oxo)nitridosilicates are interesting compounds, not only from a structural point of 

view but also as they show intriguing materials properties. In the course of this work various 

synthetic approaches were used in order to obtain new members of this compound class. 

Thus, the focus of this thesis was set on the finding of a synthesis route enabling access to 

novel lithium (oxo)nitridosilicates. Finally, a metathesis route was successful for the synthe-

sis of so far unknown multinary lithium (oxo)nitridosilicates. 

In general ternary lithium (oxo)nitridosilicates were synthesized between 700 °C and 1200 °C 

by solid-state reaction of Li3N and Si3N4 under N2 atmosphere. Known quaternary com-

pounds with Ca and Sr were usually obtained in welded tantalum tubes under argon by heat-

ing typical starting materials for 12–24 h at 900 °C (chapter 2). Thus, uncommon starting 

materials and novel reaction conditions were tested with the aim of preparing unknown ter-

nary lithium (oxo)nitridosilicates as well as unknown quaternary lithium (oxo)nitridosilicates 

with Ba. In conclusion, with all of these investigations – reaching from synthesized starting 

materials, high-temperature synthesis in open as well as closed systems to high-pressure 

reactions - no unknown or crystalline compounds were obtained (chapter 2.2). However, 

high-pressure reactions hold a lot of promise as they indicated the formation of an unknown 

Li/Si/N compound and therefore should be favored in future works.  

A metathesis approach combing the precursors “Si(NH)2” and La(NH2)3 with lanthanum hal-

ides (LaX3, X = F, Cl, Br) plus earth alkali hydrides (EAH2, EA = Ca, Sr, Ba) already yielded sev-

eral unknown lanthanum (oxo)nitridosilicates.[1] Consequently, this route served as a further 

starting point and was transferred to lithium (oxo)nitridosilicates. In this work, the corre-

sponding lithium compounds instead of the lanthanum compounds were used as starting 

materials and the mentioned approach was successfully applied to the system Li/Si/(O)/N. 

Furthermore, it was also possible to exchange “Si(NH)2” and “Si2(NH)3 ∙ 6NH4Cl” against Si3N4 

within this approach, which is of great advantage as Si3N4 is commercially available. All novel 

compounds of this work were exclusively obtained with this type of reaction. Thermodynam-
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ic sinks and the synthesis of already known compounds were avoid with this route as the 

decomposition of the EAH2 around 600 °C (CaH2: 600 °C, BaH2/SrH2: 675 °C)[2] and its reac-

tion to EAX2 - with the halide originating from LiX - acts as driving force for the reaction. Next 

to further intermediates, presumably finely dispersed and reactive Li metal is formed, which 

reacts with the remaining EA, LiX, LiNH2 and Si3N4. Oxygen contents originating assumedly 

from impurities of commercially acquired starting materials. EuF3 was added to all reactions 

as doping agent. Furthermore, it has to be mentioned that this approach leads to a good 

crystallinity of the reaction products, which was not observed for the other routes but is 

necessary for a structure elucidation by single–crystal X-ray diffraction.  

With this synthesis route four so far unknown multinary lithium (oxo)nitridosilicates – name-

ly Ba32[Li15Si9W16N67O5] (chapter 2.3), LiCa4Si4N8F as well as LiSr4Si4N8F (chapter 2.4) plus 

Li24Sr12Si24N47OF:Eu2+ (chapter 3.1) - with intriguing structures have been obtained. Presum-

ably, the composition of the starting materials is decisive whether the X ion is incorporated 

in the lithium (oxo)nitridosilicate or not. Thus, syntheses are possible in which the halide is 

incorporated or not, as shown with the synthesis of Ba32[Li15Si9W16N67O5] and LiEA4Si4N8F 

(EA = Ca,Sr). In contrast to the lanthanum (oxo)nitridosilicates, the formation of ternary lith-

ium (oxo)nitridosilicates was not observed with this route until now. For example, the com-

pound La3[SiN3O] represents a lanthanum oxonitridosilicate consisting only of La, Si, N and 

O, whereas for the synthesis of the obtained lithium (oxo)nitridosilicates either the F ions of 

LiF as well as the EA ions of EAH2 (EA = Ca, Sr) are necessary. Additionally, the incorporation 

of W was novel for this route leading to the first oxonitridolithotungstosilicate 

Ba32[Li15Si9W16N67O5]. All in all, further structural variations were achieved with this type of 

reaction by the incorporation of F and W into the Li/Si/(O)/N compound class. With 

Ba32[Li15Si9W16N67O5] a mixed cation position of Li and Si plus the combination of the Si/N 

and W/N compound was observed for the first time. The mentioned combination leads to a 

structural expansion, since the WN4 tetrahedra show a hitherto unknown linkage with SiN4 

tetrahedra. The occurrence of linked WN4 tetrahedra in Ba32[Li15Si9W16N67O5] is an excep-

tional feature since in other tungsten nitrides with Li and Ba isolated [MVIN4]6- tetrahedra 

anions are common. Furthermore, this combination led to an incorporation of Ba into lithi-
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um (oxo)nitridosilicates, which was not observed before. Moreover, the compounds 

LiCa4Si4N8F and LiSr4Si4N8F are not only the first F-containing lithium alkaline earth 

nitridosilicates, they are the first multinary nitride-fluorides consisting of a zeolite-related 

framework (BTC-type) as well, which is exclusively built up of vertex-sharing SiN4 tetrahedra 

with a degree of condensation κ = n(Si):n(N) = 0.50. This shows the broad structural variabil-

ity of nitridosilicates. In addition, a high degree of condensation stands mostly for a stable 

network and therefore such compounds seem to be favorable for luminescence properties 

upon doping with Eu2+. This was confirmed by doping of Li24Sr12Si24N47OF and the observed 

emission at 598 nm after irradiation with blue light. This compound shows an interesting 

change of luminescence properties induced by the incorporation of F. The emission is nar-

rower and blue-shifted (λem = 598 nm; FWHM = 81 nm) when compared with the 

homeotypic compound Li2SrSi2N4:Eu2+ (λem = 613 nm; FWHM = 86 nm). Hence, 

Li24Sr12[Si24N47O]F:Eu2+ is an example of a flexible system, which enables tuning of lumines-

cence properties and widens the group of novel orange to red-emitting systems. By incorpo-

ration of F into further host lattices it may be possible to achieve materials of specific 

properties, precisely tunable pursuant to respective application.  

All the shown examples corroborate that the possibilities of this synthetic route are enor-

mous. Surely it would be interesting to further extent this metathesis route by alteration of 

the starting materials, their composition or by adding additional components as well as the 

thermal treatment of the samples. This might enable the synthesis of further new lithium 

(oxo)nitridosilicates, e.g. so far unknown quaternary lithium (oxo)nitridosilicates with Mg 

might become accessible with this approach. As the compounds La6Ba3[Si17N29O2]Cl as well 

as Ba1.63La7.39Si11N23Cl0.42:Ce3+ are known, also the incorporation of Cl into lithium 

(oxo)nitridosilicates should be possible as well. 

Since lithium (oxo)nitridosilicates might be intriguing as Li+ ion conductors, the effect of Ca 

and Mg doping on the ionic conductivity of Li2SiN2 was also investigated during this thesis. 

The preparation of pellets of phase-pure samples of Li2SiN2, Li2SiN2:Ca2+as well as 

Li2SiN2:Mg2+ was successful. However, the pellets were not stable during the conductivity 
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measurements and the determination of conductivity values was not possible so far. Pre-

sumably the instability of the pellets is originating from the materials properties of the sam-

ples. The exchange of “Si(NH)2” against Si3N4 yet improved this problem remarkably. Since 

doping of Li2SiN2 with Ca2+ and Mg2+ was already achieved, only the stability of the pellets 

needs to be further optimized in future works to determine the lithium ion conductivity.  

In this thesis, a novel synthetic approach for synthesis of nitridosilicates could be established 

and several new compounds leading to structural expansions could be investigated. Moreo-

ver, exceptional luminescence properties of a novel Eu2+-doped lithium 

nitridosilicatefluoride were presented. The findings of this thesis raise a further incentive to 

investigate novel compounds in the class of lithium (oxo)nitridosilicates. With the used ap-

proach additional structural novelties should be achievable increasing the structural variety 

of this interesting compound class further on. 
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5 Summary 

5.1 Investigations into the Synthesis of Ternary and Ouaternary 

Lithium (Oxo)nitridosilicates 

 

 

 

 

 

Up to now, there are only few reports of ternary lithium (oxo)nitridosilicates and even no 

reports of lithium (oxo)nitridosiliciates with barium. Thus, the focus of this thesis was on 

development of new synthetic strategies enabling access to novel representatives of the 

mentioned compound classes. Therefore, both starting materials and reaction conditions 

were modified extensively. These investigations included high temperature reactions in tan-

talum ampoules, tungsten crucibles and high-pressure reactions as well as the usage of un-

common starting materials. Thereby, various starting materials in varying molecular ratios 

were used as well as different temperatures, reaction times and cooling rates were investi-

gated. In summary, with all of these conditions and variations, no unknown compounds 

within the system Li/Si/N and Li/Ba/Si/N were obtained or could not be structurally charac-

terized due to bad crystallinity of the obtained products. In future works high-pressure high-

temperature reactions should be pursued since these reactions clearly indicated the for-

mation of an unknown Li/Si/N compound. Finally, the transformation of a synthetic ap-

proach - based on halides, hydrides and amides and developed for the synthesis of novel 

lanthanum (oxo)nitridosilicates – to the system Li/Si/N was also successful for synthesis of 

novel multinary lithium (oxo)nitridosilicates. With this approach the compound class of lithi-
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um (oxo)nitridosilicates was expanded. The different novel members which were obtained 

are summarized in the following chapters.  

 

5.2 Ba32[Li15Si9W16N67O5] – a Ba-containing Oxonitridolitho-

tungstosilicate with a Highly Condensed Network Structure 

 

 

 

 

 

 

The oxonitridolithotungstosilicate Ba32[Li15Si9W16N67O5] was synthesized by means of solid-

state metathesis reactions. Block-like orange crystals of the latter one were obtained by 

heating the reactive starting materials Si(NH)2, LiNH2, LiF and BaH2 in a tungsten crucible in a 

radio-frequency furnace at 1000 °C. But also a targeted incorporation of tungsten was possi-

ble. Exchange of LiF against WCl6 in the initial reaction mixture showed that 

Ba32[Li15Si9W16N67O5] is also formed. The crystal structure was successfully solved and re-

fined using single-crystal X-ray diffraction [P21/n (no. 14), a = 8.3402(3), b = 8.5465(3), c = 

16.6736(6) Å, β = 99.1950(10)°, Z = 1, R1(all) = 0.0302]. The chemical composition as well as 

the structural model of the compound was confirmed through X-ray spectroscopy, lattice 

energy calculations with MAPLE and X-ray diffract. The absence of N-H bonds was proven 

with IR spectroscopy. Magnetic measurements validated oxidation state +VI for W since the-

se measurements showed diamagnetic behavior. Additionally, the optical band gap of 

Ba32[Li15Si9W16N67O5] was determined by UV-Vis spectroscopy and was estimated to be 
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~ 2.71 eV according to the light orange body color. The compound is characterized by a high-

ly condensed framework of vertex- and edge-sharing LiN3O, Li/SiN3O and SiN3O tetrahedra 

as well as vertex-sharing WN4 units. The tetrahedra are condensed to different kinds of 

rings. Whereby fünfer, sechser and achter rings form channels along [100] and [010]. The 

cavities of the structure are filled with Ba2+ ions which are coordinated by 6 to 8 anions. An 

exceptional structural feature is given for the WN4 tetrahedra. These are part of the three-

dimensional network – whereas in other tungsten nitrides isolated [WVIN4]6- tetrahedra ani-

ons are common - and are alternating connected with SiN4 tetrahedra in chains running 

along [001]. With this contribution, we could show that solid-state metathesis reactions rep-

resent a promising and new synthetic approach for novel nitridosilicates. It opens up a wide 

range of novel possible crystal structures and combined the Si/N and W/N compound classes 

for the first time. Furthermore, this combination led to an incorporation of Ba into lithium 

(oxo)nitridosilicates, which was not observed before. Since this incorporation could also not 

been achieved with the other investigated approaches (chapter 2.2) the presence of W 

seems to be crucial for it.  
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5.3 LiCa4Si4N8F and LiSr4Si4N8F – Nitridosilicate Fluorides with a 

BCT-Zeolite Type Network Structure 

 

 

 

 

 

 

 

 

The nitridosilicate fluorides LiCa4Si4N8F and LiSr4Si4N8F were synthesized employing the same 

solid-state metathesis reaction in a radio-frequency furnace at 1000 °C. The presence of suf-

ficient amounts of LiF within the reaction mixture resulted in the formation of the two new 

F-containing phases. Both compounds contain the same structural motifs and crystallize in 

the monoclinic space group P21/c (LiCa4Si4N8F) and the tetragonal space group P4nc 

(LiSr4Si4N8F). The crystal structures were solved and refined on the basis of single-crystal X-

ray diffraction data (LiCa4Si4N8F: a = 10.5108(3), b = 9.0217(3), c = 10.3574(3) Å, β = 

117.0152(10)°, R1 = 0.0422, wR2 = 0.0724, Z = 4; LiSr4Si4N8F: a =9.3118(4), b = 9.3118(4), c = 

5.5216(2) Å, R1 = 0.0160, wR2 = 0.0388, Z = 2) and were confirmed by lattice-energy calcula-

tions (MAPLE), EDX measurements and powder X-ray diffraction. IR spectra proves absence 

of N-H bonds. Both compounds represent nitridosilicates with the same BCT-zeolite analo-

gous network - exclusively built up of vertex-sharing SiN4 tetrahedra with Ca2+/Sr2+, Li+ and F− 

ions filling the voids - and are homeotypic with Li2Sr4Si4N8O. The crystal structure of 

LiSr4Si4N8F incorporates LiF instead of the Li2O units in case of Li2Sr4Si4N8O. In contrast to 
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LiSr4Si4N8F LiCa4Si4N8F shows a distortion of the BCT-zeolite analogous framework along with 

different crystallographic sites and coordinations for fluorine. These two novel compounds 

are the first F-containing lithium alkaline earth nitridosilicates as well as the first multinary 

nitride-fluorides consisting of a zeolite-related framework. Furthermore, both compounds 

are additional examples for the benefits of the engaged synthetic route. This route leads on 

the one hand to the first compounds in the system Li-EA-Si-N-F (EA = Ca, Sr). On the other 

hand it enabled the synthesis of new porous nitridosilicates - without any particular precur-

sors like “Si(CN2)2“, “Si(NH)2“ or “Si2(NH)3∙6NH4Cl” – as well as the formation of a zeolite-type 

nitride framework at moderate temperatures. Thus, it appears to be a promising synthesis 

route leading to further new (oxo)nitridosilicates with further structural features. The title 

compounds are stable against air and moisture at ambient temperature and include cavities, 

so substitution and ion exchange are conceivable. Consequently, the presented combination 

of nitridosilicates and zeolite-like frameworks could possibly lead to advanced materials 

properties.  
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5.4 Li24Sr12[Si24N47O]F:Eu2+ - Structure and Luminescence of an Or-

ange Phosphor for Warm White LEDs 

 

 

 

 

 

 

 

The solid-state metathesis reaction of the reactive starting materials (halides, hydrides, am-

ides) plus the dopant EuF3 in tungsten crucibles yielded an inhomogeneous sample with or-

ange-colored crystals of Li24Sr12[Si24N47O]F:Eu2+. The crystal structure was solved and refined 

on the basis of single-crystal X-ray diffraction data. Li24Sr12[Si24N47O]F:Eu2+ crystallizes in the 

cubic space group Pa  (no. 205) with a = 10.72830(10) Å, R1 = 0.0401, wR2 = 0.0885, Z = 1. 

Li24Sr12[Si24N47O]F is homeotypic with the nitridosilicate Li2SrSi2N4. Both compounds are 

characterized by the identical tetrahedra network topology of vertex-sharing Q4 type 

Si(N/O)4 tetrahedra. But Li24Sr12[Si24N47O]F is an oxonitridosilicate and contains an additional 

F site, which is located at the middle of the cell edges as well as the center of the unit cell. 

The latter is verified by EDX measurements as well as through calculations with PLATON. The 

structural motif of the Si(N/O) framework are siebener rings build up by four dreier rings. 

One part of the Li+ and Sr2+ ions is located in the channels running parallel to the crystallo-

graphic axes of the Si(N/O) network, whereas the remaining part is distributed amongst the 

voids of the structure. Upon irradiation with blue light, orange to red emission of 

Li24Sr12[Si24N47O]F:Eu2+ (λmax = 598 nm; FWHM = 81 nm) is observed, which differs from that 
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of Li2SrSi2N4:Eu2+ (λem = 613 nm; FWHM = 86 nm) due to the additional F site. Consequently, 

the luminescence properties can be easily tuned by further variation of the ratio F/O. Hence, 

Li24Sr12[Si24N47O]F:Eu2+ is an example of a flexible system, which enables tuning of lumines-

cence properties and widens the group of novel orange to red-emitting systems. It has been 

shown that syntheses based on LiF, hydrides and amides permit a promising synthetic tool - 

not only concerning the various structural opportunities which were enabled with it - even 

for the synthesis of novel interesting luminescent materials.  

 

5.5 Li+ ion Conductivity Investigations of Li2SiN2:Ca,Mg2+ 

 

 

 

 

 

Nitridosilicates are not only interesting regarding their luminescence properties. Ternary 

lithium nitridosilicates are – due to their lithium ion conductivity - interesting materials for 

novel solid electrolytes as well. Thus, chemical doping in Li2SiN2 with the aim to further im-

prove and optimize the Li+ ion conductivity in Li2SiN2 solid electrolyte was also investigated. 

Since phase-pure pellets of the samples are indispensible for impedance measurements, 

intense optimization processes – concerning syntheses as well as pressing of pellets - were 

performed. Finally, phase-pure samples of Li2SiN2, Li2SiN2:Ca2+and Li2SiN2:Mg2+ were ob-

tained with Si3N4 and were only accessible with double excess of Li3N and Ca metal or MgH2, 

respectively. For pressing pellets under inert conditions, also the starting material “Si(NH)2” 

had to be exchanged by Si3N4. It has not been possible to determine conductivity values so 

far due to instability of the prepared pellets during the conductivity measurements. Given 
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that doping of Li2SiN2 with Ca2+ and Mg2+ was successful, only the pellets stability needs to 

be optimized in future researches to determine the lithium ion conductivity. 
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6 Appendix 

6.1 Supporting Information for Chapter 2.3 

Katrin Horky and Wolfgang Schnick, Eur. J. Inorg. Chem. 2017, 1100. 

 

Table S1. Anisotropic displacement parameters (Uij in Å
2
) of Ba32[Li15Si9W16N67O5] with standard deviations in 

parentheses. 

 U11 U22 U33 U12 U13 U23 

W1 0.00467(16) 0.00487(15) 0.00388(15) 0.00080(12) 0.00008(12) −0.00086(12) 
W2 0.00540(15) 0.00386(15) 0.00546(16) 0.00044(12) 0.00170(12) 0.00045(11) 
Ba1 0.0098(2) 0.0097() 0.0165(3) 0.00105(19) 0.0042(2) 0.00168(19) 
Ba2 0.0179(3) 0.0064(2) 0.0089(2) −0.00179(19) −0.0023(2) 0.00132(18) 
Ba3 0.0095(2) 0.0089(2) 0.0095(2) 0.00052(19) 0.00010(19) −0.00126(18) 
Ba4 0.0080(2) 0.0077(2) 0.0097(2) −0.00071(18) 0.00117(19) 0.00162(18) 
Si2 0.0107(11) 0.0102(11) 0.0084(11) 0.0004(9) 0.0028(9) −0.0008(9) 
 

 

 

 

 

 

 

 

 

 

 

Figure S1. IR spectrum of Ba32[Li15Si9W16N67O5]. 
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Figure S2. Magnetic moment of Ba32[Li15Si9W16N67O5]; VSM measurement at 5 K (left) and 295 K (right). 

 

Figure S3. Characteristic section of the experimental powder diffraction pattern (black) of the sample contain-

ing Ba32[Li15Si9W16N67O5] Red lines describe the simulation of the structural models obtained from single-crystal 

structure elucidation of the respective compound. Non-described reflections belong to unknown side phases. 
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Figure S4. UV-Vis reflectance spectra of Ba32[Li15Si9W16N67O5] with plotted tangents to the slope of the 

reflectance curve (blue). 
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6.2 Supporting Information for Chapter 2.4 

Katrin Horky and Wolfgang Schnick, Eur. J. Inorg. Chem. 2017, 1107. 

 

Table S1. Anisotropic displacement parameters (Uij in Å
2
) of LiCa4Si4N8F and LiSr4Si4N8F with standard deviations 

in parentheses. 

 U11 U22 U33 U12 U13 U23 

 
LiCa4Si4N8F 
 
Ca1                      
Ca2 
Ca3 
Ca4 
Si1 
Si2 
Si3 
Si4 
F1 
F2 
N1 
N2 
N3 
N4 
N5 
N6 
N7 
N8 
Li1 
 
LiSr4Si4N8F 
 
 
Sr1 
Si1 
F 

 
 
 
0.0080(3) 
0.0058(3) 
0.0077(3) 
0.0083(3) 
0.0039(3) 
0.0035(3) 
0.0034(3) 
0.0039(3) 
0.0065(12) 
0.0168(15) 
0.0076(11) 
0.0055(11) 
0.0083(11) 
0.0112(11) 
0.0063(11) 
0.0061(11) 
0.0081(11) 
0.0051(11) 
0.018(3) 
 
 
 
 
0.0033(2) 
0.0025(5) 
0.0107(13) 

 
 
 
0.0054(3) 
0.0147(3) 
0.0090(3) 
0.0052(3) 
0.0031(3) 
0.0038(3) 
0.0035(3) 
0.0028(3) 
0.0220(14) 
0.0099(14) 
0.0065(11) 
0.0090(11) 
0.0051(11) 
0.0043(11) 
0.0069(11) 
0.0056(11) 
0.0079(11) 
0.0093(11) 
0.007(2) 
 
 
 
 
0.0073(2) 
0.0024(4) 
0.003(6) 

 
 
 
0.0083(3) 
0.0068(3) 
0.0084(3) 
0.0232(3) 
0.0044(3) 
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Figure S1. Characteristic section of the experimental powder diffraction pattern (black) of the sample con-

taining LiCa4Si4N8F. Red lines describe the simulation of the structural models obtained from single-crystal 

structure elucidation of the respective compound. Non-described reflections belong to unknown side phas-

es. 

 

Figure S2. Characteristic section of the experimental powder diffraction pattern (black) of the sample 

containing LiSr4Si4N8F. Red lines describe the simulation of the structural models obtained from single-

crystal structure elucidation of the respective compound. Non-described reflections belong to unknown 

side phases. 
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Figure S3. IR spectrum of the sample containing LiCa4Si4N8F. 

Figure S4. IR spectrum of the sample containing LiSr4Si4N8F. 
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6.3 Supporting Information for Chapter 3.2 

Katrin Horky and Wolfgang Schnick, Chem. Mater. 2017, 29, 4590. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Characteristic section of the experimental powder diffraction pattern (black) of the sample containing 

Li24Sr12[Si24N47O]F. Red lines describe the simulation of the structural model obtained from single-crystal struc-

ture elucidation of the respective compound. Non-assigned reflections belong to unknown side phases. 
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Table S2. Anisotropic displacement parameters (Uiy, in Å2) (for Sr/Si/NO) of Li24Sr12[Si24N47O]F. 

atom U11 U22 U33 U23 U13 U12 
Sr1  0.00818(12) 0.00818(12) 0.00818(12) 0.00067(10) 0.00067(10) 0.00067(10) 
Sr2  0.01494(17) 0.01494(17) 0.01494(17) -0.00608(15) -0.00608(15) -0.00608(15) 
Si1  0.0021(3) 0.0044(3) 0.0022(3) 0.0000(3) 0.0004(2) -0.0004(2) 
N1O1  0.0066(10) 0.0069(10) 0.0039(9) 0.0013(8) 0.0010(8) 0.0005(8) 
N2O2  0.0094(11) 0.0131(13) 0.0047(10) -0.0030(9) -0.0019(9) -0.0028(10) 
 

 

 

Figure S2. IR spectrum (ATR) of the sample containing Li24Sr12[Si24N47O]F. 
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7.3 CSD Numbers 

Ba32[Li15Si9W16N67O5]  CSD - 432182 

LiCa4Si4N8F   CSD - 432268 

LiSr4Si4N8F   CSD - 432269 

Li24Sr12Si24N47OF:Eu2+  CSD - 432550 

 

 

 


