
CREATE: CLINICAL RECORD ANALYSIS TECHNOLOGY ENSEMBLE

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Skylar Eglowski

June 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@CalPoly

https://core.ac.uk/display/141487069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2017

Skylar Eglowski

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: CREATE: Clinical Record Analysis Tech-

nology Ensemble

AUTHOR: Skylar Eglowski

DATE SUBMITTED: June 2017

COMMITTEE CHAIR: Alexander Dekhtyar, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Foaad Khosmood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Maria Pantoja, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: V.S. Subrahmanian, Ph.D.

Professor of Computer Science

iii

ABSTRACT

CREATE: Clinical Record Analysis Technology Ensemble

Skylar Eglowski

In this thesis, we describe an approach that won a psychiatric symptom severity

prediction challenge. The challenge was to correctly predict the severity of psychiatric

symptoms on a 4-point scale. Our winning submission uses a novel stacked machine

learning architecture in which (i) a base data ingestion/cleaning step was followed by

the (ii) derivation of a base set of features defined using text analytics, after which (iii)

association rule learning was used in a novel way to generate new features, followed by

a (iv) feature selection step to eliminate irrelevant features, followed by a (v) classifier

training algorithm in which a total of 22 classifiers including new classifier variants

of AdaBoost and RandomForest were trained on seven different data views, and (vi)

finally an ensemble learning step, in which ensembles of best learners were used to

improve on the accuracy of individual learners. All of this was tested via standard 10-

fold cross-validation on training data provided by the N-GRID challenge organizers,

of which the three best ensembles were selected for submission to N-GRID’s blind

testing. The best of our submitted solutions garnered an overall final score of 0.863

according to the organizer’s measure. All 3 of our submissions placed within the

top 10 out of the 65 total submissions. The challenge constituted Track 2 of the

2016 Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-

Scale and RDOC Individualized Domains (N-GRID) Shared Task in Clinical Natural

Language Processing.

iv

ACKNOWLEDGMENTS

Thanks to:

• Our team’s work was supported by US Army Medcom/TATRC grant W81XWH-

13-C-0030. The CEGS N-GRID 2016 Shared Task in Clinical Natural Language

Processing was sponsored in part by two NIH awards: NIH P50 MH106933 (PI:

Isaac Kohane) and NIH 4R13LM011411 (PI: Ozlem Uzuner).

• My fellow team members at SentiMetrix: Alex Dekhtyar, Vadim Kagan, Andrew

Stevens, V.S. Subrahmanian and Joshua Terrell

• Kees for their understanding and support throughout this process

• Andrew Guenther for preparing this thesis template.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1 Introduction . 1

2 Related Work . 4

2.1 Classification . 4

2.1.1 Supervised Classification . 5

2.1.2 Unsupervised Classification 7

2.2 Text Representation and Word Vectors 8

2.2.1 Bag of Words . 8

2.2.2 AutoEncoders . 9

2.2.3 Word2Vec . 10

2.3 Existing Medical Language Methodologies 12

2.3.1 SentEmotion . 12

2.3.2 cTAKES . 13

2.3.3 Classification using Association Rules 13

2.3.4 Feature Selection using Association Rules 14

2.3.5 Other Work . 14

2.4 Ensemble Construction . 14

3 The Challenge . 18

4 Overview Of CREATE . 24

5 Feature Engineering . 26

5.1 Cumulative Scores . 27

5.2 Extracting Medications . 29

5.3 Emotion Features . 29

5.4 Simple Representations of Textual Information 29

5.5 Word2Vec for Textual Information 30

5.6 cTAKES Features . 31

vi

5.7 LIWC Features . 31

5.8 Common Value Features . 32

6 Class Association Rules . 34

6.1 Data Preparation . 34

6.2 Mining . 35

6.3 Pruning . 36

7 Feature Selection . 39

7.1 Association Rule test . 39

7.2 Statistical Tests . 39

7.2.1 χ2 test for categorical features 39

7.2.2 ANOVA F-test for continuous features 40

7.2.3 Mutual Information Gain test (MIG) 40

7.3 Linear SVM Recursive Feature Elimination 41

7.4 Surviving Features . 41

8 Classifier Training and Adaptations . 43

8.1 Classifier Adaptations . 43

8.1.1 Random Forest Regression with Classification Inference (RF-
reg-clf) . 43

8.1.2 SVM Initialized AdaBoost (SVM-Init-ada) 44

8.2 Data Views . 46

8.3 Classifier Training and Evaluation . 47

9 Ensemble Learning . 57

9.1 Voting Schemes . 57

9.1.1 Majority voting . 57

9.1.2 Plurality voting . 58

9.1.3 Majority favor MODERATE voting 58

9.1.4 Plurality favor MODERATE voting 58

9.1.5 Simple Round voting . 58

9.1.6 Tuned Round voting . 58

9.2 Submitted Ensembles . 59

9.2.1 Hybrid Random Forest Contribution 64

9.3 Test Results . 67

vii

10 Conclusion and Future Work . 70

10.1 Enhanced features . 70

10.2 Use of Class Association Rules as features 70

10.3 Feature Pruning and Data View construction 71

10.4 Adaptations of classifiers . 71

10.5 Tuned Round Voting scheme for ensembles of classifiers 72

10.6 Limitations and Challenges . 72

10.7 Computational Costs . 72

10.8 Future Work . 73

10.8.1 Better Application of Deep Learning Classifiers 75

10.8.2 More Efficient Ensemble Construction 75

10.8.3 Usability . 75

BIBLIOGRAPHY . 76

viii

LIST OF TABLES

Table Page

3.1 Overview of released data. 19

3.2 The scale of the target Valence variable in the N-GRID challenge
training set data. 19

3.3 Breakdown of features in the original N-GRID 2016 challenge Track
2 dataset by category. 20

3.4 List of free-form text fields found in the original data for Track 2 of
the N-GRID 2016 challenge. 21

5.1 A list of approaches to enhancing the feature set for the N-GRID
Challenge (Track 2) dataset. 28

6.1 Pruning conditions for Association Rule mining process. 35

6.2 Examples of discovered Association Rules. 37

7.1 Description of the final set of features remaining in our operational
dataset after the feature selection (pruning) step. 42

8.1 All the classifiers that were tried as part of the N-GRID Shared Task
Challenge. 51

8.2 Different data views used for classifier training. 52

8.3 Abbreviated names for classifiers for the next sections. 52

8.4 Individual Confusion Matrices on the 325 document training set for
the 10 best Classifiers (Part 1). 53

8.5 Individual Confusion Matrices on the 325 document training set for
the 10 best Classifiers (Part 2). 54

8.6 Multi-class Precision, Recall and MAE on the 325 document training
set for the 6 classifiers in the competition-winning ensemble. Per-
class MAE is normalized with the assumption that all predictions
are maximally incorrect for each class. 55

8.7 Summary metrics on the 325 document training set for each of the
10 best Classifiers. All applicable metrics are macro-averaged when
necessary. Higher is better. 56

ix

9.1 Top five voting ensembles. The MA-MAE value is computed on the
325-record training set. 61

9.2 Confusion Matrices on the 325 document training set for the 5 ana-
lyzed Ensembles (first 3 were submitted). 62

9.3 Multi-class Precision, Recall and MAE on the 325 document training
set for the 3 submitted Ensembles. Per-class MAE is normalized with
the assumption that all predictions are maximally incorrect for each
class. 63

9.4 Summary metrics on the 325 document training set for each of the
3 submitted Ensembles. All applicable metrics are macro-averaged
when necessary. Higher is better. 64

9.5 Effect on Confusion Matrices for substituting RF-reg-clf-full with
RF-reg-full in Ensemble A. 65

9.6 Confusion Matrices on the 216 document hidden test set for the 3
submitted Ensembles. 65

9.7 Multi-class Precision, Recall and MAE on the 216 document hidden
test set for the 3 submitted Ensembles. Per-class MAE is normalized
with the assumption that all predictions are maximally incorrect for
each class. 66

9.8 Summary metrics on the 216 document hidden test set for each of
the three submitted Ensembles. All applicable metrics are macro-
averaged when necessary. Higher is better. 67

10.1 Description of approximate computation times for various parts of
the CREATE pipeline. 74

x

LIST OF FIGURES

Figure Page

1.1 Architecture of the CREATE Framework. 2

2.1 S.t. (I ′ − I)2 is minimized. 9

2.2 A Context Ct is the Bag of Words representation of the window
centered at point t, with wt omitted. 11

2.3 Skip-Gram: construct f and g such a word w at location t predicts
its context C ′t. The loss is the difference of C ′t and its actual context
Ct. 11

2.4 CBOW: construct f and g such a context C at location t predicts
word w′t. The loss is the difference of the predicted w′t and the actual
word wt. 11

2.5 Decision Tree Construction [28]. 16

2.6 Random Forest Construction [32]. 17

3.1 Formula for computing Macro-Averaged Mean Average Error (MA-
MAE). 22

3.2 A synthetic record illustrating the type of clinical medical records
data contained in the dataset released for Track 2 of the N-GRID
challenge. 23

5.1 How to compute our 5 Common Value Features. 33

6.1 Antecedent and Consequent of a Class Association Rule. 34

6.2 A naive CAR coverage check algorithm as described in [27]. 38

9.1 Tuned Round Voting. 69

xi

Chapter 1

INTRODUCTION

When a medical professional diagnoses a patient who is seeking help for mental

health-related issues, there are two critical factors: correctness, and timeliness of

the diagnosis. The correct diagnosis allows the clinical psychiatrist to devise and

implement the appropriate treatment. The timeliness of the correct diagnosis means

that the appropriate treatment can start as soon as possible. Correctly assessing

the severity of a patient’s psychological symptoms poses a challenge with substantial

negative consequences if estimated incorrectly. If the severity of a patient’s condition

is underestimated, the patient will not receive proper treatment, and the condition

may deteriorate; if the severity of the condition is overestimated, the patient may be

unnecessarily prescribed potentially harmful medications.

Therefore, initial psychiatric evaluations of patients play a crucial role in both

the timeliness and the correctness of the diagnosis. Such evaluations often contain

a plethora of information, including the patient’s mental health history, the family’s

history of mental conditions, and a detailed report of the patient’s present symptoms.

Some of this data is naturally generated in a well-structured form: e.g. as a patient’s

answers to a series of self-assessment survey questions. Other parts of the evaluations

come as unstructured text: doctors’ notes, patients’ verbatim comments, and so on.

Track 2 of the CEGS N-GRID 2016 Shared Task in Clinical Natural Language

Processing challenged the participants to analyze the initial psychiatric evaluations

of a group of patients for the purpose of predicting the severity of their symptoms.

The challenge consisted of a two-month development stage with a labeled training

set and a three-day window to submit labels for an unlabeled test set. The training

set was composed of real world text and survey information with redacted names and

1

dates. In this paper, we describe the methods used by our team to win this challenge,

by leveraging known natural language processing (NLP) and machine learning meth-

ods into a single pipeline we called CREATE (Clinical REcords Analysis Technology

Ensemble) shown in Figure ??.

Figure 1.1: Architecture of the CREATE Framework.

The CREATE framework is a machine-learning pipeline that includes several in-

novations that were developed over the course of project. We start by taking the raw

(noisy, cluttered) data provided to N-GRID challenge participants and use a data

ingestion phase to ingest and clean it. Second, we apply a host of sophisticated meth-

ods to extract a “base” set of features for each clinical record from the ingested data.

We expand this set of features via a variety of methods, adding 9263 new features

to the original 86. Third, we apply association rule mining to learn approximately

345,000 association rules [20, 37], and then trim them to a set of 628 predictive rules.

Though association rules have been widely used in the literature for classification, we

use them to generate 628 new features, one for each association rule. Fourth, with

the new total of 86 + 9263 + 628 = 9977 features we engage a set of feature selection

operations in order to eliminate non-predictive features. Fifth, we train a total of 22

2

classifiers, each on seven different subsets of features (data views). Of these, two are

novel adaptations of existing Random Forest [21, 10] and AdaBoost [17] classifiers.

All of these classifiers utilize the association rule classifiers developed earlier, which is

why we call them “stackable” in our framework. On our final step, we train different

ensemble classifiers consisting of the subsets of best individual learners in order to

improve the final accuracy of detection of patient condition severity. In both the fifth

and sixth steps, we do extensive k-fold cross validation and move forward from there

to make our final predictions.

This paper is organized as follows. In Section 2 we discuss prior work in this

area. Section 3 explains the details of Track 2 of the CEGS N-GRID 2016 Shared

Task in Clinical Natural Language Processing (which we, for brevity, refer to as

“the N-GRID challenge” throughout the rest of the paper) and provides an overview

of the data we have received from the challenge organizers. Section 4 provides an

overview of CREATE’s six-step approach to the N-GRID challenge. Because Step 1

(ingestion and cleaning) has a straightforward approach, we do not describe it in full

detail. Section 5 describes the features we used, while Section 6 describes how we

selected just 628 of 345,373 association rules generated by an off-the-shelf association

rule mining engine called FP-Growth[20], and by adapting Quinlan’s C5 decision

tree induction algorithm [36, 37] for association rule mining. Section 7 shows how we

determined which features (original and extended) were irrelevant. Section 8 describes

how we engaged in an intensive classifier training and hyperparameter optimization

procedure on seven different data views of our dataset, which included the adaptations

of the well-known Random Forest and AdaBoost classifiers for our purpose. Finally,

in Section 9 we describe how we put together a variety of ensembles, made from the

best-performing individual learners, to improve the final prediction accuracy. We

conclude in Section 10.

3

Chapter 2

RELATED WORK

Machine Learning another name for the task known as predictive modeling : given a

set of observations in the past, can you construct a procedure that can identify future

observations correctly? There are several different types of classification problems,

but the two that we will be focusing on are supervised and unsupervised classification.

2.1 Classification

Classification is the act of associating an observation with a pattern [28]. Formally,

an observation – typically represented as a collection of text, audiovisual or numerical

features – is assigned one or more labels. When presented with a new, unlabeled

observation, the classifier must infer or predict the most likely label to associate

with the observation. For example, if a data scientist were tasked with classifying

days as hot or cold, the number of customers at a local ice cream store could be

used as a feature. In general, we’d expect the store to be more busy on hot days,

rather than cold days. However, this is not a guarantee – for example, a particularly

large birthday party could form an outlier, or perhaps ice cream stores are just more

popular on Fridays, even though Fridays are no more likely to be warmer than any

other day.

An excellent classifier would be able to identify hot days from cold ones with

high precision as well as miss very few obviously hot days (known as recall). In

most tasks, data scientists must balance between both Recall and Precision. In some

domains, recall is extremely important. For example, in the medical domain it is

much preferred to have false positives while detecting cancer than it is to overlook a

4

real threat at the risk of a patient’s health. On the other hand, some tasks prefer the

opposite. A camera that detects if someone has run a red light would prefer to be

precise rather than flag innocent drivers.

2.1.1 Supervised Classification

Supervised Classification is focused on identifying membership to one of a set of

predetermined patterns, typically called a label [28]. Supervised learning is called

supervised because it is assigned a label by a human that is decided upon before the

algorithm is trained. The training step will be given each label, and the label must

be trustworthy and consistent. Supervised Classification problems, therefore, tend to

be somewhat expensive to collect data for. Every data point must be labeled and

audited by a human, or even several in order to form a clear consensus.

In the following paragraphs, a brief description will be provided of a variety of

the most common supervised machine learning techniques that we used as a part of

CREATE.

Naive Bayes – Naive Bayes is one of the simplest machine learning algorithms

[28]. During training, the classifier assumes that each feature is independent and

marks two pieces of information: the distribution of labels in the training set, and

the distribution of values for which a certain value of a certain feature is associated

with label. During inference, it computes the probability of a new observation with

its previously recorded values and predicts the most likely class.

Decision Trees – Decision Trees are classifiers modeled after a flowchart. The final

result of the classifier is a simple of yes/no questions, terminating with a final label at

each of its terminal nodes – called leaves. Since computing the best possible decision

tree is difficult (NP-complete), usually a set of heuristics are employed [28].

To construct the classifier, a recursive algorithm is employed. The base case is

5

when the input computes only a single class, or if every single attribute has already

been analyzed. In that case, the result is a leaf node of the majority class. Otherwise,

each remaining attribute 1 is analyzed to see which attribute splits the dataset into

two “pure” disjoint sets best. The selected attribute is removed and phrased as

a “question” in the final classifier, while each of the disjoint sets are re-evaluated

recursively until each sub-problem is terminated with only leaf nodes.

AdaBoost – AdaBoost is a methodology in which an ensemble of weak learners are

trained in succession; each learner specializing in correcting the errors the previous

learner made. AdaBoost traditionally uses fast and weak learners such as Naive Boost

or Decision Trees, as the initial weak learners only have to perform slightly better

than random in order to eventually converge to a stronger classifier [28].

First, a base classifier is trained. Then, there is a boosting step: this step com-

putes all the training instances that were correctly or incorrectly identified. Those

which were correctly identified are assigned a weaker level of importance for the suc-

cessive classifier, while incorrectly classified observations are given a higher level of

importance. Finally, the next classifier is trained with the re-weighted dataset [17].

The last two steps are repeated a predetermined number of times, or until a learner

cannot improve on a previous learner.

Random Forest – Random Forests is an ensemble of Decision Trees that are trained

on random subsamples of the training data [10]. Decision Trees suffer from a few

disadvantages. First, for many problems decision trees tend to become very long

and complex. This results in the tree overfitting the training data, and building

patterns out of random noise; when you classify against out of sample data, it does

not generalize very well.

However, you can generally eliminate this overfit without reducing performance by

1for very large numbers of attributes, someones only a random sample is analyzed at each level

6

transforming the Decision Tree into a Random Forest. First, you must determine how

many subtrees you would like to train. Then, randomly subsample (with replacement)

the data into that many subsets. Finally, construct a Decision Tree with each of those

subsamples, with one small change: at each level of the Decision Tree subroutine, only

sample a random subset of the features, rather than the entire feature set. This is to

provide some entropy for the subtrees so that a handful of dominating features force

almost every subtree to look the same. At inference, take the average of all the votes.

Support Vector Machines – Support Vector Machines attempt to identify how to

bisect the feature space into two classes. Linear SVMs always bisect with a line in

the form of Ax+ b = y; though there are many kernels that can be used to transform

the feature space to solve more interesting problems. The observations closest to

the bisecting plane are called support vectors. In higher dimension problems, the

composition of these vectors constructs a bisecting hyperplane. During inference, the

label that is returned depends on whether the point is above or below the hyperplane.

2.1.2 Unsupervised Classification

Unsupervised Classification does not have labels, and instead attempts to assign

certain patterns to groups, typically called clusters [11]. Some algorithms expect

hints in the form of the exact number or size of clusters, while others attempt to

figure out it out on their own. Unsupervised classification is often used to provide

insight for humans, especially for topic modeling [11]. Unsupervised classification

can also be used as an automated way to learn compression and feature extraction

methodologies, which is what we will focus on in the section 2.2.

7

2.2 Text Representation and Word Vectors

WordVectors [30] are currently the state-of-the-art method of representing text as

features for supervised and unsupervised classification problems. However, the exact

benefits of WordVectors are unclear without going over a brief history of simpler

means of representation and textual feature extraction.

2.2.1 Bag of Words

The traditional method of text representation was a Bag of Words. Bag of Words

are unordered, sparse matrices where each column represents a unique term. As the

English vocabulary V is large and constantly changing, the first step of many Natural

Language Processing tasks would be to scan over the corpus that you want to work

with and build a list of each unique term. V ′ is often smaller than V , but typos,

proper names and slang all expand V ′. For infinite datasets such as the Internet, one

could utilize the Hashing Trick [54] which runs each term into a hashing function

that computes a random column index. This strategy has a few drawbacks such

as colliding terms and having a |V ′| that is at least twice as large as your datasets

predicted size, but no longer requires an additional pre-processing step.

Some classifiers, such as Naive Bayes [40], work with these very wide and sparse

matrices very well. For classifiers that prefer small, dense matrices there are several

strategies such as latent Dirichlet Allocation [7] and Singular Value Decomposition

[28] that attempt to extract the most frequent and meaningful co-occurring terms and

represent them as a single value. Moreover, additional information can be injected by

extracting Parts of Speech – such as Noun or Adjective – or constructing the lemma

of terms – swimming → swim.

8

2.2.2 AutoEncoders

AutoEncoders were originally designed as compression strategies for video and

text and were a source of inspiration for WordVectors due to its ability to create

graphical features in an unsupervised manner. Graphical data tends to be very high

fidelity, and so transferring it over the Internet losslessly is expensive. In addition,

small errors and loss of quality are not significant issues for videos that display dozens

of frames per second.

Consider an grayscale image matrix I, that is 1000x1000 pixels. To simplify the

problem, instead of a traditional RGB channel, each pixel is a float value in the range

of 0. . . 1 indicating the grayscale of that pixel. Thus, the image contains 1 million

floats if we were to represent it as a naive, dense matrix. Suppose our goal is to

achieve 50% compression. We would want to create two functions: fc and fd. fc

accepts I and outputs a compressed version C which is sent to the client, which fd,

then decodes and outputs I ′. Our algorithm is trained to minimize the loss which

might be defined as the difference between I and I ′. Our black-box AutoEncoder

would thus look something like this:

fc(I) => C

fd(C) => I ′

Figure 2.1: S.t. (I ′ − I)2 is minimized.

Intuitively, there is a trade-off in |C| and the loss. That is, smaller, more-

compressed matrices will generally result in a higher loss I ′. In a typical system,

AutoEncoders are stacked. That is, we might have three successive compression func-

tions, each emitting a compressed matrix, followed by three successive decompression

functions. The exact implementations of the AutoEncoder is beyond the scope of this

9

discussion, but they generally rely on a Deep Neural Network [1].

2.2.3 Word2Vec

Mikolov’s Word Vector model is one of the greatest recent developments in text

classification [30]. Mikolov identified a few weaknesses of the Bag of Words model.

First, constructing Bag of Word features requires two passes over the data 2, which

can be very costly when working with billions of documents. Second, if one could

construct a model that captures all English literature with reasonable precision, then

that model can be trained once and then used on nearly every English NLP problem.

However, a ”Universal English” Bag of Words model would be enormous and contain

many unused words for most practical applications. The final and most significant

flaw is how Bag of Words treats every word as equally distant from each other.

This is intuitively imprecise. Words pairs such as {lake, swim} or {queen, king} are

intuitively related compared to {evil, throttle}.

Word vectors solves this by constructing dense, continuous vectors with a limited

number of dimensions such that similar words are closer than unrelated words. If

vector space representations of queen and king were close, then we would have at

least a partial success at solving the third problem. If our training model is capable

of an online training that can handle billions of documents in a reasonable amuont of

time, this would go a long way towards addressing the first two flaws.

Mikolov’s initial paper described two methods: skip-gram and continuous bag of

words (cbow). skip-gram focuses on predicting a word’s context from the word itself,

whereas cbow focuses on predicting a word from its context.

Consider wt which is defined as a word w at location t. wt’s context Ct is defined by

all words preceding or succeeding wt within a window of some parameter n. Now, we

2at least, not without using the Hashing Trick, which has its own drawbacks as discussed earlier

10

define a pair of functions f and g that are analogous to fc and fd in an AutoEncoder. f

accepts a sparse 1D vector where each column corresponds to a term in the vocabulary,

just as it is in the Bag of Words model. f will output a dense vector V analogous

to the compressed image C in an AutoEncoder. In skip-gram, f ’s input is wt and g’s

output is C ′t, where the loss is the difference between the predicted C ′t and the actual

Ct. In cbow, f ’s input is Ct and g’s output is w′t, where the loss is the difference

between the predicted w′t and the actual wt.

Ct : [wt−N , . . . , wt−2, wt−1, wt+1, wt+2, . . . , wt+N]

Figure 2.2: A Context Ct is the Bag of Words representation of the window
centered at point t, with wt omitted.

f(wt) => V

g(V) => C ′t

Figure 2.3: Skip-Gram: construct f and g such a word w at location t
predicts its context C ′t. The loss is the difference of C ′t and its actual
context Ct.

f(Ct) => V

g(V) => w′t

Figure 2.4: CBOW: construct f and g such a context C at location t
predicts word w′t. The loss is the difference of the predicted w′t and the
actual word wt.

By itself, the skip-gram and cbow models do not seem to be useful. The key

contribution of Word Vectors is understanding that unlike in an AutoEncoder where

a human is consuming the final output C ′, we can throw away g and its output entirely!

Suppose we want to solve a second classification problem that has labels Lt. We can

11

replace the original g with a new g′ that accepts V and predicts Lt! Thus, if we pre-

compute a comprehensive look-up dictionary of words to V , we are able to greatly

simplify the original dataset construction of multiple problems at the same time.

Med2Vec – Building on top of Mikolov’s Skip-Gram model, Choi et al. sought

to create a deep learning document embedding strategy [13]. They had two datasets

of 3 and 5 million documents with a combined total almost 30,000 medical codes

that acted as a natural clustering. Med2Vec is constructed in a similar method as

Skip-Gram Word2Vec, but treats sequential visits from the same patient as if they

were sequence of words in a sentence. Compared to Skip-Gram Word2Vec and GloVe,

Med2Vec achieves lower, better normalized Mutual Information Gain scores on Med-

ication and Procedure, implying that it builds embeddings that are better clustered

for those tasks [34]. While SVD of document text performed better than Med2Vec,

SVD was demonstrated to have far lower interpretability [18].

2.3 Existing Medical Language Methodologies

We limit discussion of existing methologodies to two categories: work on analysis

of clinical records in the medical domain, and emerging machine learning and NLP

technologies. In addition to these, our work on this project used a wide array of

classification [56] and association rule mining [20] techniques, and traditional methods

for text parsing and Parts-of-Speech (POS) tagging [46]. We used the Python scikit-

learn [32] and nltk [6] toolkits, the Stanford parser and Part of Speech Tagger [46],

and the Snowball stemmer for English[8].

2.3.1 SentEmotion

Through its work on past projects [16, 24, 48] SentiMetrix has built an array

of technology-based solutions, focusing on the near real-time analysis of large quan-

12

tities of complex data in multiple languages. SentEmotion [23, 43] is a text-based

classification engine developed jointly with psychologists that detects mental health

disorders such as Depression, Post-Traumatic Stress Disorder, and Traumatic Brain

Injury from patient notes. Leading surveys had identified a set of signals that a

victim of depression might have: for example, isolation from others. We built a clas-

sification engine on top of the Stanford Parser [46] to extract these signals, and then

a second layer to extract both emotions – anger or fear – and symptoms – insomnia

or agoraphobia. The final layer generates a confidence value for each of the disorders

that COPTADs is configured to recognize.

2.3.2 cTAKES

Clinical Text Analysis and Knowledge Extraction System [44] by Apache is an

open-source NLP system that extracts a variety of mental illness signals, physical

symptoms, and medication from text.

2.3.3 Classification using Association Rules

B. Liu developed a technique on which to do Classification Based On Association

Rules [29]. Liu’s main contributions is the notion of a coverage check in which rules

are sorted in order of their predictive power – confidence – and then removes rules

that are subsumed by a more powerful rule. At inference time, the first rule in which

the antecedent is covered yields its corresponding class. Li et all improves upon this

work by raising the minimum coverage of the coverage check to 5 subsuming rules, as

well as a stronger rule scoring using chi-x2 tests [27]. In addition, Li suggests storing

rules in a trie so that inference can be performed quickly.

13

2.3.4 Feature Selection using Association Rules

K. Rajeswari continued Liu’s work to see if Apriori rule mining can be used select

features with high significance, specifically in order to classify the risk of heart disease

[38]. First, the authors mined a set of rules with a small k value. Then, they removed

all features that did not appear in at least one rule. Next, they re-ran the Apriori but

on a much larger k. Finally, when training the final classifier, they included only the

features that were an antecedent in at least one rule. The higher k value omits some

useful association rules, but should take an order of magnitude less time to complete,

due to the large reduction of n candidate rules. The author conclude that this process

reduces computation time on their dataset by two full orders of magnitude.

2.3.5 Other Work

Abbe [2] describes different styles of psychiatric NLP and suggests four domains:

observational studies, analysis of patient’s thoughts and journals, medical records,

and published literature. The NGRID challenge falls into the third category, whereas

SentEmotion mostly focused on the second. Pestian [35] created an NLP pipeline

that could identify whether or not a suicide note was genuine using decision-tree-

based classification rules along with AdaBoost and outperformed domain experts by

reducing Type II errors by 30%.

2.4 Ensemble Construction

Constructing ensembles was a key step in winning both the N-GRID competition

as well as others, such as Kaggle. However, constructing ensemble rules by hand

can be time-consuming or miss optimal solutions. Cortes et al. describes an online

machine-learning algorithm called ESPBoost that accepts hundreds of potential “ex-

14

perts” and the correct label [14]. Similar to many other machine learning algorithms,

ESPBoost uses coordinate descent to reduce a loss function – in this case, Hamming

– to find a local minima without enumerating all possibilities [5, 19]. ESPBoost has

been empirically found to work best on large problems with a large number of experts.

15

D: True Labels

A: Features

T: Tree to recursively build (initially empty)

if D contains only one class then

make T a leaf node labeled with the majority class ;

end

else if A is empty then

make T a leaf node labeled with the majority class ;

end

else

(sometimes, only a random sample of attributes are tested)

p0 ← ImpurityEval1(D) ;

for Ai in A do

pi ← ImpurityEval2(Ai, D) ;

end

g ← argmax(p1 . . . pk) ;

if p0 − pg < threshold then

make T a leaf node labeled with the majority class

end

else

Tj ← make T a decision node on Ag ;

partition D into disjoint subsets for each value of Ag ;

for Dj in partitions do

DecisionTree(Dj, A− Ag, Tj) ;

end

end

end

Figure 2.5: Decision Tree Construction [28].

16

D: True Labels

A: Features

B: Number of subtrees to construct

for i in 0. . .B do

Di, Ai ← SubSample(i, D, A) ;

Ti ← null ;

only sample square-root features in each level of DT

DecisionTree(Di, Ai, Ti,
√
A);

Treesi ← Ti ;

end

Figure 2.6: Random Forest Construction [32].

17

Chapter 3

THE CHALLENGE

The specification of Track 2 of the CEGS N-GRID 2016 Shared Task in Clini-

cal Natural Language Processing (also called the RDoC for Psychiatry Challenge)

presented the goal of this particular track of the challenge as:

“Determine symptom severity in a domain for a patient, based on informa-

tion included in their initial psychiatric evaluation. The domain has been

rated on an ordinal scale of 0-3. There is one judgment per document,

and one document per patient.”[51]

Research Domain Criteria (RDoC) is a framework for facilitating the study of

human behavior, both normal and abnormal in various clinical domains. The RDoC

provided the data, originally collected by Partners Healthcare Inc. and the Neuropsy-

chiatric Genome-Scale and RDoC Individualized Domains (N-GRID) project at the

Harvard Medical School [51]. The data was released to the challenge participants

under a strict set of Rules of Conduct and the Data Use Agreement.

As shown in Table 3.1, a total of 649 records were released, broken into a training

set of 433 files and a test set of 216 files with no ground truth — the latter released

two days before the submissions were due. The initial release of the 433 patient

records was broken into two categories: a suggested training set of 325 files, and 108

files called annotated by 1. Since the contest organizers discouraged us from using

the records from the annotated by 1 set as training set data, we focused most of our

efforts on the 325-record training set.

Each record, originally stored in a single XML file, represented the information

from the initial psychiatric consultation of a single patient performed by the N-GRID

18

Table 3.1: Overview of released data.

Total number of records released 649

Number of records in suggested training set 325

Number of records in additional training set 108

Number of records in test set 216

Table 3.2: The scale of the target Valence variable in the N-GRID challenge
training set data.

Value Meaning

0 NONE

1 MILD

2 MODERATE

3 SEVERE

project. For each record in the training set the challenge organizers supplied the

ground truth about the severity of the patient’s psychiatric condition, called Valence.

Table 3.2 shows the scale on which the patients’ conditions were evaluated. The judg-

ment contained in the Valence field came from a clinical expert and was based solely

on the symptoms and medical, social, mental health, and family history captured in

the provided data.

The XML files provided by the challenge organizers contained both structured

data, which documented demographic information, mental health history, education,

employment, financial status, family history of mental health, medical history, pre-

scription and recreational drug use, and a few other categories of information; along

with unstructured, free-form textual data, which documented self-reported symptoms

and attending psychiatrists’ notes on the patient and their condition. The data was

in its raw, originally recorded form; containing numerous typos, conjoined words,

missing attributes, inconsistent use of abbreviations, and freeform text.

19

Table 3.3: Breakdown of features in the original N-GRID 2016 challenge
Track 2 dataset by category.

Feature Type # features Feature Type # of features

All features 102

Demographic information 3 Family History 4

Harming Others Or Self 4 Symptom Denial 8

Mental Health Symptoms 18 Owns Firearms 1

Drug, Caffeine and Alcohol Use 5 Legal History 1

Independence of Daily Activities 9 Appearance 14

Marital Status and Abuse 3 Military History 2

Employment and Finances 4 Mental Health 18

If Underage, Legal Guardian 2 Physical Health 6

Figure ?? shows a notional (not real) record created by us to illustrate the nature

of the data — it contains no information from the N-GRID dataset. However, this

notional record can give the reader an idea of the type of information that the teams

had access to while working on the challenge. Actual records contained significantly

more data.

Table 3.3 contains a rough breakdown of the types of features found in the original

data. Table 3.4 contains the list of features from the original data that were deemed

by our team to be free-form text. In the original clinical files, features were informally

grouped according to the idiosyncrasies of the RDoC system. The presented high-

level feature groups are only given to help the reader understand the typical topics

covered in a medical record.

The results of the challenge were evaluated using the a variant of the Mean Absolute

Error (MAE) metric. Given a vector v = (v1, . . . , vn) of ground truth values and a

20

Table 3.4: List of free-form text fields found in the original data for Track
2 of the N-GRID 2016 challenge.

Free-form Entries

Childhood History History of Present Illness and Precipitating Events

Previous Treatments Prior Medication Side-effects

Current Medication Chief Complaint (Patient’s Own Words)

Interpersonal Concerns Education

Family Living Situation Protective Factors

Risk Factors Actions Taken

Formulation Level of Care

prediction vector p = (p1, . . . , pn), the MAE of the prediction is computed as:

MAE(p,v) =
1

n

n∑
i=1

|pi − vi|

MAE as described is frequently used in a variety of machine learning tests [55].

However, it has an unbounded maximal value, which can make it unintuitive to reason

about. For this reason, the challenge organizes changed the formula such that the

score was in the range of [0, 1], where 1 indicated a perfect score. The new MA-MAE

(Macro-Averaged Mean Absolute Error) measure was computed by splitting the set

of records into four categories (one per ground truth Valence value), computing the

MAE for each of the four subsets independently, and combining the computed MAEs

into a weighted sum. The normalizing factors for each of the component MAE values

are the highest possible errors that can be achieved for a data point with the given

Valence value (3 for Valence=0 and Valence=3, and 2 for Valence =1 and Valence =

2). To make the computed value correspond to the higher is better intuition, the

computed weighted sum was subtracted from 1. The formula for computing the

N-GRID Challenge version of MAE is:

21

MA MAE(p,v) = 1−
(MAE(P0,V0)

3
+ MAE(P1,V1)

2
+ MAE(P2,V2)

2
+ MAE(P3,V3)

3
)

4

Figure 3.1: Formula for computing Macro-Averaged Mean Average Error
(MA-MAE).

Every team participating in the challenge was allowed to submit up to three final

guesses. Each guess was an XML file containing a single value which was the predicted

valence for the specified clinical record from the provided test set.

22

RAW DATA

Name: John Doe

Age: 42

Sex: Male

Referred by Emergency Services

Has difficulty remembering if he has taken prescription drugs.

Accidental overdose.

Referral Notes: Patient exhibits short-term memory loss

Mixed alcohol with prescription. Stayed overnight.

Found bruises on shoulders - possibly from falling.

DEPRESSION: YES

OCD: No

PANIC: Yes

Prescriptions:

Advil (3 times a day)

Formulation:

Patient has history of anxiety and bipolar.

Recommendations:

Change medication to Alpazolam.

Require additional visit in 2 weeks.

Figure 3.2: A synthetic record illustrating the type of clinical medical
records data contained in the dataset released for Track 2 of the N-GRID
challenge.

23

Chapter 4

OVERVIEW OF CREATE

Figure ?? describes the 6 parts of CREATE. We provide brief overviews of the

individual components of CREATE below.

1. Data Ingestion - convert the XML data files provided to us into case × feature

matrices that are readily consumed by machine learning pipelines. We limit our

discussion of this step to what was presented in Section 3, when we discussed

the provided dataset.

2. Feature Extraction - described in Section 5. We started our work on predicting

the Valence variable by careful extraction of existing features from the raw XML

data provided to us by the organizers. After starting with the features present

verbatim (i.e., as unique elements) in the released dataset (see Table 3.3) we

defined several other features to generate a single overarching dataset.

3. Development of Association Rule-based Features - described in Section 6. In this

stage, we extracted a set of 345,373 Class Association Rules from the above

dataset and then eliminated redundant ones to generate a final count of 628.

For each retained Class Association Rule we included a binary feature into our

augmented dataset.

4. Feature Selection - described in Section 7. We devised a set of tests to identify

irrelevant features; a feature that failed all of the tests was eliminated.

5. Classifier Development & Training - described in Section 8. We devised seven

different views of our data: each view containing a specific subset of the full

set of features. We put together a battery of 22 machine learning algorithms,

24

including two novel adaptations of Random Forests and AdaBoost. We trained

the 22 classifiers on our seven data views and selected the best runs for the

ensemble learning step.

6. Ensemble Learning - described in Section 9. On the last step, we evaluated en-

sembles of best-performing individual classifiers. We used both simple major-

ity/plurality ensemble schemes, as well as more complicated voting techniques

to see which, if any, provided the best solutions. At the end, a number of

simple ensembles over subsets of our classifiers emerged with scores that were

clear improvements over the best individual classifiers, and produced MA-MAE

scores over 0.86. From those, we selected three predictors that we submitted

to the N-GRID challenge organizers. We are proud to report that one of our

submissions had the highest overall MA-MAE among the submitted solutions.

25

Chapter 5

FEATURE ENGINEERING

To analyze the provided data, first we had to transform the original XML data into

a tabular, textual format. Each XML file was structured so that it contained all the

patient information in a single CDATA block, along with a single tag describing the

Valence. Manual examination of several XML files revealed the underlying structure

of the patient records (see the synthetic example in Figure ??). We have previously

identified portions of the patient record that we elected to represent as free-form text

features (see Table 3.4). These were primarily the restatements of symptoms experi-

enced by the patients recorded from their own words, plus notes and observations of

the psychiatrists conducting the evaluations of the patients. Most other content from

the XML files are represented as key-value pairs, with both keys and values relatively

straightforward to determine and extract.

To transform this XML file into a pipeline-ingestable format, a serious of regular

expressions were applied searching for text starting with a special key. Pure textual

data was assigned its own feature column, but would eventually be concatenated into

one feature called text ALL. Ordinal numbers were simply used as is. Categorical

values were handled on a case-by-case basis. Often, there was a limited number of

potential values – either text or numerical – and we would map each categorical value

to its own boolean feature, doing our best to map inconsistent abbreviation usage

to the correct values. Missing data was represented with the value Not a Number.

The final result of the extraction process, reduces the 102 features (identifiable in

the XML files as individual prompts) to 86 features, which we term the “original”

N-GRID dataset features.

The initial breakdown of features is described in Table 3.3. As mentioned above,

26

not every XML document had values for all of the extracted features; in fact, some

features were present only in a handful of records, and other features were often omit-

ted from records. Another data quality issue worth noting is the relative frequency

of typos (which could have originated either from the process of digitization of the

records, or from the initial medical records themselves). Regular expressions were

used to reduce the amount of error in boolean and categorical entries. Some exam-

ples include catching different ways to say No: N, Missing or Not. Other expressions

simplified synonymous medical codes or shorthand in categorical features, such as

ld for a learning disability. For free-form text, no typo detection or conjoined word

detection was used.

We have then proceeded to enhance the original N-GRID dataset with a wide

range of additional features. Below we discuss the nine different ways in which we

augmented our feature set. Table 5.1 contains the summary of our feature enhance-

ment efforts.

5.1 Cumulative Scores

Our initial investigation of the original features extracted from the raw data un-

veiled groups of related features, typically with “yes”/“no” values, where each indi-

vidual feature was rarely set to “yes” and no relationship with Valence appeared to

exist. Moreover, the overall number of such features set to “yes” in a single patient

case history seemed to be in some relationship with Valence. In such cases, we added

a new feature: a cumulative score of “yes” values in a group of features, to the dataset.

For example, the original features contained a relatively rich arsenal of substances

that a patient could abuse or consume, from readily-available substances such as

tobacco, caffeine, and alcohol to a wide range of recreational drugs. We identified

all such features, and added a new feature Cumulative Substance Use which stored a

27

Table 5.1: A list of approaches to enhancing the feature set for the N-
GRID Challenge (Track 2) dataset.

Approach Explanation #

Original (Munged) Features Original clinical record entries 102

Cumulative Scores Aggregations of like features 62

Medications Individual medications taken by patients 47

Association Rules ARs from features to Valence 628

Unigrams Representations of textual data 8033

Word2Vec vectors Representations of textual data 300

SentEmotion Sentiment and emotion extraction from text 49

cTAKES Medical symptom tagging 658

LIWC Topic detection and POS counts 93

Commonality of Patient A measure of how typical a patient is 5

TOTAL 9977

count of substances which the patient admitted to using. Similar cumulative count

features were created for a few more groups of variables: number of psychiatric review

conditions deemed positive for the patient, number of “abnormal” items from the

mental status exam, number of activities the patient does not perform independently,

and more.

The reasoning behind adding such features to the dataset was straightforward:

we saw features which appeared to carry important information, but which, due to

relative lack of positive/abnormal/out-of-ordinary values, could not individually con-

tribute to the learning of Valence. By creating cumulative count features, we repre-

sented the quantitative effects: case histories with more positive/abnormal responses

in those feature columns received higher counts. This removed some of the sparsity

of the dataset.

28

5.2 Extracting Medications

To capitalize on the possibility of using medications in predicting Valence, we:

(i) manually created a list of 47 medications deemed relevant for patient conditions,

complete with alternate spellings, brand names and abbreviations where applicable;

(ii) developed a Medication Extractor which analyzed the input data and produced a

list of all the medications listed within it; and (iii) created a dataset of medication

mentions with 47 columns corresponding to each of the medications our Medication

Extractor tool was tracking.

5.3 Emotion Features

SentiMetrix’s SentEmotion is a web service, developed as part of the COPTADS

project [23, 43] (see also Section 2) that extracts the intensity of emotions such as

anger, fear, depression, anxiety, stress, etc. from freeform text. In addition to labeling

the overall sentiment of a text fragment [49] and individual emotions expressed in

the text (anger, fear, depression, etc), the system outputs a confidence value which

expresses the level of confidence the system has in the presence of the emotion. We

ran all textual information for each of the records through SentEmotion and added

49 new mental health-related features.

5.4 Simple Representations of Textual Information

At our initial examination of the provided data, we identified a number of features

whose contents constituted free-form text. We considered using the free-form text

from each of the features as a separate input into any text analysis procedures we

were employing. However, in the end, we decided to concatenate the contents of all

free-form features into a single free-form text feature, and conduct all text analysis

29

on it. This resulted in the richest possible text being processed for each of our various

patient records.

We investigated a number of different ways to represent textual data in our

dataset. The first and most straightforward approach we took was a part of the

SentiMetrix Common Pipeline framework for data processing and data ingestion.

The steps are as follows:

• Replace dates with a special tag of SMXDATE

• Replace integers with a special tag of SMXNUM

• Stopword removal using the suggested english stopword lists in NLTK [6] and

Scikit-Learn [32]

• Stemming using the Snowball Stemmer [8]

• Term-Frequency Inverse-Document Frequency [4, 47] of unigram features for

each surviving word stem/term

5.5 Word2Vec for Textual Information

Our second approach used Word2Vec methodology [30] introduced recently by

Google. to represent each word found in each freeform text as a vector of 300 features.

We used Google’s own collection of Word2Vec vectors trained on the Google News

corpus and provided by Google 1 . Despite N-GRID data containing many specialized

technical terms from the psychiatric domain, and proper names such as names of

medications, 96.8% of tokenized text contained in the N-GRID training set was also

found in the Google’s Word2Vec dataset with a coverage of 78.4% of unique words.

Examples of words not covered are typos such as “weopons”, “ibuprofin” or “bipolaar”;

1https://code.google.com/p/word2vec/

30

conjoined words such as ”employment.He”; dates such as ”8/17/86”; and medical

jargon such as an exact dosage for a patient.

To represent the text from individual patient records, we took the vector rep-

resentations of each term found in the free-form text in the patient’s record, and

computed the mean vector. This is the Word2Vec equivalent of the traditional Bag of

Words model, and acknowledged as a naive baseline to construct a ParagraphVector

by Mikolov and Le [26]. This procedure added 300 features to our dataset. We used

gensim to load the binary Word2Vec word-to-vector file [39].

5.6 cTAKES Features

As mentioned in Section 2, Apache cTAKES is a framework for extracting a variety

of information from medical records. cTAKES looks for terminology related to medical

symptoms, mentions of medications, body parts, procedures, diseases, disorders, and a

few other categories of information. For each patient record, we ran the concatenated

free-form text extracted from the record through cTAKES to collect these signals.

5.7 LIWC Features

LIWC, Linguistic Inquiry and Word Count [33], is a linguistic computerized text

analysis tool similar to SentEmotion. LIWC produces 93 signals, which include var-

ious low-level Parts-of-Speech analysis such as the number/frequency of pronouns;

semantic features such as if the document has a positive or negative tone; and basic

topic-analysis such as detecting if the document focuses on home, money, leisure, the

past, or friends. We have run the free-form text extracted from each record, collected

all LIWC features, and added them to our dataset.

31

5.8 Common Value Features

Common Value Features are another form of a cumulative feature, but rather than

summarizing logically related features, they summarizes features that individually

have little explanatory power. For example most individual observations of a variety

of patient behaviors were labeled with the code ”WNL” which is interpreted as ”within

normal limits”. In fact, most patients had all their observations set to ”WNL”, so a

group of ”WNL”-valued features formed a very well-defined, but not very interesting

frequent itemset. These very frequent, but essentially benign itemsets give rise to a

large number of useless association rules during the rule generation process. Since an

exhaustive mining process on our dataset is extremely slow for any k greater than 4,

these very frequent itemsets tended both to consume significant CPU resources while

not producing any interesting results.

To reduce the size of our market baskets, we created the concept of a typical value.

We set up five separate ”commmonality” thresholds: 51%, 62.5%, 75%, 87.5%, and

90%. Given a number t from the list above, and given a feature from our feature

set, a specific value of the feature was called t-common if more than t percent of all

records in the training set contained this value.

We aggregated the notion of t-commonality by introducing five common value

features into the dataset: one per commonality threshold. The common values feature

for threshold t was set to the total number of other features in the given record

which contained t-typical values. See the algorithm described in Algorithm ?? for

more detail. These new features allowed us to quickly see whether a specific patient

evaluation record yielded rare, atypical, or unusual values for its features.

32

f : matrix of feature values

output: 5 new common value features

num common values← Array(5) ;

common values← Array(RowRank(F), 5) ;

for for each feature column f in F do

freq ← compute a histogram for f ;

most freq val← argmax(freq) ;

for ndx, t in enumerate([0.51, 0.625, 0.75, 0.875, 0.90]) do

f is common for threshold t ;

if max(freq) ≥ t then

num common values[ndx] += 1 ;

for each record ;

for r in f do

if r == most freq val then

common values[r, ndx] += 1

end

end

end

end

end

normalize output so it is in 0. . . 1

common values /= num common values

Figure 5.1: How to compute our 5 Common Value Features.

33

Chapter 6

CLASS ASSOCIATION RULES

We decided to see if we could discover some clear dependencies between the fea-

tures present in (potentially small) subsets of patients, and the value of their Valence.

To test this, we engaged in the mining of our feature data for Class Association Rules.

6.1 Data Preparation

We constructed a subset of binary and categorical features found in the data.

These primarily included the original features, medication and cumulative features

along with boolean features from LIWC, SentEmotion, cTakes. With these, we con-

centrated on discovery of class association rules of the form:

F1, F2, . . . , Fk −→ Valence,

Figure 6.1: Antecedent and Consequent of a Class Association Rule.

where F1, . . . , Fk are conditions on the binary/categorical features. Table 6.1 shows

the parameters for our Class Association Rule search; we pruned away all rules that

did not satisfy them.

34

Table 6.1: Pruning conditions for Association Rule mining process.

Parameter Value

Minimal Support 20 records

Minimal Confidence 0.6

Maximal Inverse Confidence 0.4

Maximal Negative Confidence 0.4

6.2 Mining

We used an existing Python implementation [31] of the FP-Growth 1 [20] algorithm

to perform an exhaustive search for Class Association Rules with k ∈ {1, 2, 3, 4, 5}.

For larger values of k (k = 6 . . . 9) we used C5 [37, 36], which is non-exhaustive.

The discovered rules went through a rigorous pruning procedure. In addition to

pruning away all discovered Class Association Rules (CARs) that did not pass the

minimum standards shown in Table 6.1, we also conducted a χ2 test of significance

for each discovered CAR (see Section 7 for a more detailed explanation of the χ2 tests

conducted). All CARs that did not pass the χ2 test at the significance level of p = 0.05

were also eliminated from consideration. Failing the χ2 test implies that the CAR

was a by-product of individual frequencies of the features it contained, rather than

an actual meaningful relationship between these features and the Valence variable.

1 Since the original Python implementation is not actively maintained, SentiMetrix has a private
fork of the repository. SentiMetrix’s API tweaks allow the emission of only Class Association Rules,
rather than all Association Rules; support for aggressive filtering of redundant rules while mining;
and utilizes Numpy arrays rather than Python lists for more compact memory allocation and faster
cache coherence [52]. The overall improvements result in a modest reduction of memory, and a 33%
reduction in run-time. In addition, considering only Class Association Rules reduces the problem
size by multiple orders of magnitude. This is significant, because even with these improvements
mining higher k ∈ {4, 5} took days to complete.

35

6.3 Pruning

Finally, we performed a Coverage Test as proposed by Li et al [27]. The purpose

of the Coverage Test is to reduce the set of CARs to the ones that most accurately

describe our data while avoiding excessive duplication. First, we sorted all of our

generated CARs by confidence, support and χ2 score from best to worst. Starting

with the first rule, all documents with features in the antecedent of the rule were

marked. Then, we advanced onto the second rule and marked all documents with

features in the antecedent of that rule. The process was repeated until each input

record was covered. After a single document has been marked five times, we removed

it from future consideration. If a rule did not cover any considered documents, we

discarded the rule. Once all documents have been marked five times, we discarded

all remaining rules. For more information, see Algorithm ??.

Altogether, the pruning process reduced the total number of CARs extracted from

the data from 345,373 to 628. For each extracted Class Association Rule, we added

one binary feature to the dataset, which was set to 1 on records where the antecedent

of the Association Rule applied 2. Some examples of the Association Rules we mined

during this process are presented in Table 6.2. The first two rules were found by the

FP-Growth process, and the third by C5.

2The conclusion of the CAR was not considered, as that would result in leaking the label infor-
mation during training, nor could these features be constructed on a hidden test set

36

Table 6.2: Examples of discovered Association Rules.

Antecedent Valence Support Conf. Neg. Conf.

patient is an inpatient and

currently undergoing SEVERE 22 21/22 18.25%

addiction treatment (95.5%)

patient suffers from OCD and

has no history of drug abuse MOD. 25 20/25 22.06%

and NOT taking Aplenzin (80%)

patient is NOT inpatient and

does not drink alcohol and

is NOT taking Allernaze and

is NOT taking Levothroid and

is NOT taking Cultivate and MILD 73 67/73 38.37%

is NOT taking Abilify and (92%)

does not suffer from OCD and

has no history of violence

and suffers from depression

37

rules : Sorted set of candidate association rules (best to worst)

observations: Set of observations to cover

k : number of observations to cover an observation

output : A set of covering association rules

observation counts← Array(Rank(observations)) ;

for rule in rules do

keep← false ;

for observation, count in Zip(observations, observation counts) do

if count < k and covers(rule, observation) then

keep← true;

increment the corresponding observation count ;

end

end

if keep then

add our current rule to output ;

end

end

Figure 6.2: A naive CAR coverage check algorithm as described in
[27].

38

Chapter 7

FEATURE SELECTION

Because we now had thousands of features to consider, we developed a feature

selection procedure that subjected each feature in our dataset to a battery of tests.

Features that failed every single test were eliminated from consideration. The battery

of tests is described in the following sections, followed by a brief analysis of the

surviving features.

7.1 Association Rule test

This decision procedure is a simple existence check: keep a feature if it appears in

the antecedent of at least one of the 628 Class Association Rules in our dataset.

7.2 Statistical Tests

We used 3 statistical tests to filter features. Each of our three methods works best

with different feature types and captures different associations with a class labels.

7.2.1 χ2 test for categorical features

We ran a χ2 test [59] for each categorical feature against the Valence variable. This

test checks whether there are sufficient grounds to believe that a specific categorical

feature is associated with another categorical feature purely by coincidence.

Suppose a feature is completely uncorrelated with a valence. This means that

the distribution of its categories will be very similar to that of the distribution of

the ground truth labels. Now, suppose a YES value for a particular categorical

39

feature always corresponds to a MILD valence. If we have sufficient number of YES

observations, we can compute the likelihood that this happened purely by chance –

which would quickly become very low. We rejected any categorical feature whose χ2

test yielded a p-value higher than 0.05. The χ2 test was implemented by using scipy’s

chisquare function to compute the p-value of each categorical feature [22].

7.2.2 ANOVA F-test for continuous features

ANOVA F-tests are used to test the significance of a regression model [9]. While

we used the χ2 test to test for potential significance of our categorical features, we

used the multi-way ANOVA F-test for all numeric features. For each feature tested,

we separated the data into four subsets, based on the value of the target Valence

attribute. We then randomly sampled from these four groups. We then tested the

means and standard deviations in each of the four subsets to see if they represented

similar or different distributions, and compared them across our multi-way samples

to see if there is a statistical bias. Similarly to the χ2 test, we set rejected any

numeric attribute whose ANOVA F-test produced a p-value of more than 0.05. We

used scikit-learn’s f classif function to compute the multi-way ANOVA tests [32].

7.2.3 Mutual Information Gain test (MIG)

Mutual Information Gain is typically used in measuring the robustness of cluster-

ing methods. In unsupervised problems, MIG is measured by calculating P(X, Y)

- the probability that two variables X and Y occur in the same cluster - compared

to the probability P(X) * P(Y) of their occurring in the same cluster by random

chance. If there is a clear dependence between the two variables, then the probability

of P(X, Y) will be higher than P(X) * P(Y). Recent research shows that MIG

provides an additional level of feature selection in the context of textual classifica-

40

tion and clustering [58]. In the case of supervised feature selection, we compare the

entropies and distributions of Valence vs. each feature using K Nearest Neighbors.

At the time of the N-GRID Challenge, scikit-learn [32] did not have a completed im-

plementation of mutual info classif, but it was in the process of being developed. We

ported scikit-learn’s partial implementation into our system.

7.3 Linear SVM Recursive Feature Elimination

Our final test involved running scikit-learn’s version of the Support Vector Machine

(SVM) classifier with a linear kernel [15] and observe whether the feature survived the

Recursive Feature Elimination process implemented within it. An advantage of using

a linear SVM to find support vectors is that it provided our system with multivariate

feature selection. In addition, χ2 test and our Class Association Rules only worked

on categorical features, while Mutual Information Gain requires a heuristic [58] to

operate on continuous features. The Linear SVM recursive feature elimination allowed

us an additional test on the continuous features in our dataset.

7.4 Surviving Features

Table 7.1 contains the overview of the features that survived this process: i.e.,

that passed successfully at least one of the tests from the list above. We make

a few observations here about the final shape of the dataset. Only LIWC did not

contribute any features. All other means of enhancing non-textual features provided

meaningful contributions, with cTakes, original dataset, and, interestingly enough,

our cumulative scores accounting for the majority of non-textual features. All five

Common Value features also made it. Our manual work on documenting medications

resulted in 10 out of 47 medication features kept.

41

Table 7.1: Description of the final set of features remaining in our opera-
tional dataset after the feature selection (pruning) step.

Feature Category # Features Feature Category # Features

TOTAL 788

Original 30 cTakes 40

Cumulative scores 34 Common Value 5

Medications 10 Word2Vec 34

SentEmotion 6 CAR 628

Unigrams 1

An unexpected outcome of this process was an essential depletion of directly word

related features from the dataset. Only 34 out of 300 Word2Vec dimensions were

kept. For non-Word2Vec features, only a single unigram survived – “other”. This

implies that the categorical and yes/no responses have far more predictive power than

long form text.

42

Chapter 8

CLASSIFIER TRAINING AND ADAPTATIONS

For our next step, we have constructed a battery of 22 different classifiers to train

on the dataset we built on previous steps. Table 8.1 lists the classifiers we used on this

project. 12 of the 22 classifiers came from scikit-learn. Another five classifiers came

from the internal SentiMetrix implementations primarily developed prior to the N-

GRID challenge, but modified where needed to work with the data from this challenge.

Additionally, we used two neural network learners from Google’s TensorFlow: their

deep neural network implementation; and their so called deep and wide classifier,

which combines neural nets (deep learning) with Support Vector Machines (wide

learning). Finally, two extra classifiers — XGBoost, the boosted gradient classifier

[12], and Quinlan’s implementation of C5.0 decision tree classifier 1 [37] — were used

as well.

8.1 Classifier Adaptations

Of the 22 classifiers we used two, the Random Forest Regression with Classification

Inference (RF-reg-clf), and the SVM-initialized Näıve Bayes AdaBoost were novel

adaptations of the well-known Random Forest [10, 21] and AdaBoost [17] machine

learning techniques. They are described below, and can be found on Table 8.1.

8.1.1 Random Forest Regression with Classification Inference (RF-reg-clf)

Random Forest is a powerful yet forgiving algorithm that can perform a modest

amount of feature selection due to its subsampling [10, 21]. In scikit-learn, there are

1Due to licensing restrictions, we did not integrate C5.0 into the Common Pipeline Framework

43

both regression and classification modes of Random Forest [32]. As Valence can be

treated as both a class or an ordinal value, we tried both methods. Since regression

provides additional insight for the classifier, it often had slightly higher MA-MAE

scores. However, in practice regression at inference time biases the kernels right in

between MILD (eg, 1.4) and MODERATE (eg, 1.6). The result of this is MILD Valences

might be moved to be slightly more MODERATE and vice-versa. When it comes to

building the ensemble, this small amount of drift can result in large classification

errors if it causes the ensemble’s vote to cross a rounding threshold. Our adaptation

was to train the Random Forest on the regression version of the problem. Then,

during inference, round the inferred value to the nearest Valence.

Performance – As an individual classifier, RF-reg-clf is no different than RF-reg.

However, we can compare the performance of the Random Forest Regression versus

Random Forest Classification. The regression learner strongly biases the central val-

ues, only predicting NONE and SEVERE for the most obvious of cases. On the other

hand, the classification learner has better recall scores for every class except MOD-

ERATE which it does horribly on. In addition, the classification learner makes more

three-degree mistakes than any other of our 10 classifiers. We continue this discussion

and how classification inference affects ensemble performance in Section 9.

8.1.2 SVM Initialized AdaBoost (SVM-Init-ada)

Another novel technique we used on this project is the initialization of AdaBoost

learning process with SVM (SVM-Init-AdaBoost classifier in our parlance). AdaBoost

trains a sequence of estimators one after another [17]. After each iteration, the

training set is be reweighed; documents that were just misclassified will have their

weight increased, while documents that were just classified correctly will have their

weight decreased. This forces the next classifier to correct the mistakes its predecessor

44

made. While AdaBoost is traditionally done a fast and weaker classifier such as Naive

Bayes, any kernel can be used.

In other project, SentiMetrix has had success by introducing a single round of a

slow and strong classifier as a seed for AdaBoost [48]. Recall that AdaBoost gener-

ally relies on an ensemble of weak classifiers that only need to be slightly better than

random to gradually converge. As Support Vector Machines was one of our better

classifiers and provides a meaningful decision function that cleanly divides the prob-

lem space, it works well as an initial bootstrapping classifier to provide an anchor for

the successive weak classifier to converge around. We modified the original AdaBoost

process (see Section 2.1.1) as follows:

1. Step 1: Train a Linear SVM classifier on input data.

2. Step 2: Analyze kernel decision function to reweigh document weights

3. Step 3. . . 52: Run Näıve Bayes classification 49 times, reweighing document

weights after every iteration, and checking for convergence. Reaching conver-

gence before 49 iterations will terminate the process early

On the input N-GRID challenge data, linear kernel SVM produced better accuracy

results than a single Näıve Bayes run. This allowed our modification of AdaBoost to

start with a sufficiently accurate bootstrap. This additional accuracy gained on the

first step has proven to be a core factor in the overall accuracy of this classifier, as

one of its runs wound up being the best individual classifier in our battery.

One might point out that if 1 iteration of SVM is good, then wouldn’t 50 iterations

of SVM to be even better? First, there is a significant cost to training and hyper-

parameterizing a Support Vector Machine, compared to Naive Bayes – hours versus

seconds. Second, the Support Vector Machine is inserted for “free” by a natural

consequence of our process. Since we had already trained and hyper-parameterized

45

a Support Vector Machine for each view, we only had to train the 49 successive

iterations of Naive Bayes in order to build this model. Finally, such a process would

be similar to that of the Gradient Boosted Decision Trees implemented in XGBoost

[12], which did not perform very well in our data sets. This was partially expected

as XGBoost typically requires millions of observations to generalize well.

Performance – Without the initialization of SVM, AdaBoost regressed into a ro-

tating single-class classifier. That is, the very first iteration would see good results,

then the second iteration would only predict MILD, the third would only predict

MODERATE, the fourth would only predict SEVERE, and the fifth would only predict

ABSENT. As none of these classifiers provided any lift as a whole, its performance

was identical to that of only the initially trained classifier.

Compared to MNB-CARs, SVM-Init was 0.103 worse at NONE, 0.012 worse at MILD

and 0.010 worse at SEVERE in exchange for being 0.171 better at MODERATE. As

NONE was a comparatively uncommon class, whereas MODERATE was comparatively

difficult, this tradeoff was worth it and resulted in a macro-averaged MAE increase

of 0.016 as an individual classifier. The increased performance of MODERATE was

particularly crucial during ensemble creation; see Section 9. Please refer to MNB-

CARs in Table 8.4 for the exact comparison between MNB-CARs and SVM-Init.

8.2 Data Views

Each of the 22 classifiers was separately trained on nine different data views de-

scribed in Table 8.2. A data view is a collection of features onto which the data is

projected prior to being supplied to the classifier. Different subsets of features were

selected due to their distinct origins, the hypothesis was if certain minimalist sets of

features contain enough information for training the classifiers, and if two classifiers

trained on different data views would agree on the Valence of a particular document.

46

Two of the nine data views listed, ANOVA-wordvector-34 (the 34 Word2Vec fea-

tures that passed our ANOVA significance tests) and WordVector (all 300 Word2Vec

features) yielded abysmal accuracy for all classifiers, and were eliminated from further

consideration.

Of the remaining seven data views one, Full, represents the entire collection of

features selected during the process described in Section 7, five are its subsets, and

one, TF-IDF is the complete set of tf-idf vectors representing the textual portion of

each record. The subsets of the Full data view were selected to represent different

categories of features (CARs, Numeric2) as well as the best features that passed a

specific test: χ2, ANOVA or Multiple Information Gain. We experimented briefly

with top 100, 82 3 and top 75 best features for each of the tests, but settled on top

50, as this provided better accuracy.

At the end of this process we had a total of 22 × 7 = 154 trained (classifier,

data view) pairs. As a final preprocessing step, we normalized the data view as

appropriate for each classifier. For most classifiers, the normalization centered each

feature at 0 and scaled it to have unit standard deviation using the interquartile

range. For classifiers that cannot use negative numbers, such as Multinomial NB, we

did the above normalization and then rescaled the data in the range of [0, 1]. This

was accomplished with scikit-learn’s RobustScaler and MinMaxScaler, respectively [32].

8.3 Classifier Training and Evaluation

For each classifier – data view pair we used 10-fold Cross Validation across the

entire training set of 325 data points, using a seeded stratified method provided

2The name of this view is a bit of a misnomer, and is kept for historical reasons. This view
includes both numeric and categorical features that were present in the original dataset, as well as
constructed using cTAKES, SentEmotion, and LIWC toolkits.

382 was the fewest number of significant features found by all three statistical measures – which
happened to be chi2

47

by scikit-learn. These predictions were eventually fed into the Ensemble Creation

procedures.

Scikit-Learn provides some utilities for hyper-parameter selection Randomized-

SearchCV and GridSearchCV which allow an engineer to specify a parameter grid

which will be either randomly sampled or exhaustively searched, respectively. The

sheer number of parametric combinations for some pipelines, such as Bernoulli RBM

followed by a SVM, were forced to use RandomizedSearch but GridSearch is preferred

otherwise [32].

Towards the end of the competition, we occasionally switched to using a pipeline

trained on the 325 records from the training set, and predict the Valence of the

108 annotated by 1 dataset to make sure that there was no significant over-fitting (in

addition to our usage of 10-fold cross validation). For every classifier except XGBoost,

scores on the 108 annotated by 1 files were lower than the the 325 record test set.

Of the 154 total runs, 16 learners who scored above 0.60 4. Of those 16, 4 were

strictly inferior to other options, leaving us with 12 learners to use in the next step:

ensemble training. Of these 12 learners, 10 participated in the five best ensembles

(see Section 9.) These 10 are shown in Table 8.3 which associates an abbreviated

naming convention for each classfier+dataview.

For the sake of brevity, we limit the demonstration and discussion of the results

of the individual classifiers to the six classifiers from Table 8.3 which constituted our

top performing classification ensemble. These classifiers are:

1. RF-ref-full: the Random Forest regression run on the Full data view.

2. Lin-SVM-chi2-best: Linear kernel SVM classifier run on the 50 best features

4the exact threshold is coincidental – there was a large gap between 0.60 and a next-best clus-
ter classifier+dataview combinations of scores around 0.54. Altogether, more than half of classi-
fier+dataview combinations did only slightly better or equal to random

48

selected by the χ2 test.

3. RBF-SVR-mig-best: Radial basis function kernel SVM regressor run on the top

50 best features selected by the mutual information gain test.

4. D&W-num: the TensorFlow’s Deep and Wide classifier run on the numeric and

categorical features.

5. SVM-Init-Ada-CARs: SVM-initialized Adaboost running on our CAR features.

6. MNB-CARs: Multinomial Näıve Bayes running on our CAR features.

Table 8.4 contains the confusion matrices for these six runs, Table 8.6 shows pre-

cision, recall and MAE for each class, while Table 8.7 document the overall accuracy

metrics: MA-MAE, RoC-AUC, precision, recall, f-score and accuracy. We discuss the

work of individual classifiers below.

Our RandomForest regression run on the full data view (RF-reg-full) tended to

over-predict MILD and MODERATE valences at the expense of NONE and SEVERE,

however, it contained excellent separation between the NONE/MILD, and MODER-

ATE/SEVERE pairs of valences, with only MILD⇒MODERATE false positives being

of concern. While this run had the second lowest MA-MAE value out of our six runs,

it should be noted (see Section 9) that this is the only run that participated in all

final ensembles.

The linear kernel SVM classifier running on our top 50 χ2 features (Lin-SVM-chi2-

best) has the third highest MA-MAE and has produced an excellent confusion matrix,

with majority of NONE and SEVERE conditions being classified correctly, and with

very few “costly” misses.

The SVM regressor with RBF kernel running on our top 50 Mutual Informa-

tion Gain features (RBF-SVR-mig-best) had the lowest performance of these six runs

49

(although was still among the better classifiers overall). It over-predicted the MOD-

ERATE class, and had some trouble distinguishing MODERATE and MILD valences.

It also was very strict at predicting NONE and SEVERE valences.

TensorFlow’s Deep and Wide classifier, run on all our numeric and categorical

attributes, excluding CAR and Word2Vec attributes (D&W-num) had no significant

distinctive features as compared to other runs. It did the worst on properly capturing

MILD valences (MILD recall), and tended to admit more ”big” mistakes (misclassifi-

cations two or more classes apart) than some other methods. But it kept the overall

number of misclassified cases reasonable, and earned a MA-MAE in excess of 0.8.

Our overall best single run came from our own AdaBoost classifier trained on a

single round of SVM followed by 49 rounds of Näıve Bayes applied to the dataset con-

sisting solely of CAR attributes (SVM-Init-Ada-CARs, see Section 8.1). This classifier

excelled almost everywhere, giving by far the most accurate predictions of SEVERE

valence and minimizing false positives. The only “weak spot” for this method came

from improperly classifying 13 cases with valence of NONE as MODERATE. However,

as this was a clear outlier prediction among our six runs (the other runs predicted

anywhere from 0 to 4 cases this way), this miss was effectively eliminated in the

followup ensembles.

The final classifier run, Multinomial Näıve Bayes run on the same data view of

CAR attributes (MNB-CARs), edged the Lin-SVM-chi2-best run by a hair to give us our

second best single run MA-MAE of 0.835. It got the largest number of both NONE and

SEVERE true positives, as well as tying the Lin-SVM-chi2-best for the largest number

of MILD true positives, only stumbling a bit on the MODERATE valence, where it

had a very high precision, but low recall.

50

Table 8.1: All the classifiers that were tried as part of the N-GRID Shared
Task Challenge.

No. Abbreviation Classifier Source

1 SVM-Ini AdaBoost [17] [32] SentiMetrix

AdaBoost 1 round Linear-SVM [15], 49 rounds of NB

2 RF-reg-clf Train: Regression RF [21]; SentiMetrix

inference: Classification RF

3 MI SVR Mutual-Info [41] Feature Boosted SVM [15] SentiMetrix

4 CMAR Classifier on Multiple Assoc. Rules [27] SentiMetrix

5 CMAR SVM CMAR-Boosted [27] SVM [15] SentiMetrix

6 CBA Classification Based on Associations [29] SentiMetrix

7 MB NB Multinomial/Bernoulli Näıve Bayes [32] scikit-learn

8 Lin-SVM Linear Kernel SVM [15] scikit-learn

9 RBF SVM Radial Basis Function Kernel SVM [32] scikit-learn

10 LogReg Logistic Regression [32] scikit-learn

11 RF Random Forests [21] scikit-learn

12 Adaboost NB AdaBoosted NaiveBayes [17] scikit-learn

13 KNN K-Nearest Neighbors [32] scikit-learn

14 SGD Stochastic Gradient Descent [32] scikit-learn

15 BRBM Bernoulli Restricted Boltzmann Machine [32] scikit-learn

16 RF-reg Regression version of Random Forest [21] scikit-learn

17 Lin-SVM-reg Regression version of Lin-SVM [15] scikit-learn

18 RBF SVM-reg Regression version of RBF SVM [15] scikit-learn

19 DNN Deep Neural Network [1] TensorFlow

20 Deep & Wide Deep-and-Wide classifier [1] TensorFlow

21 XGBoost XGBoost (scalable gradient boosting) [12] XGBoost

22 C5 C5.0 Decision Tree Classifier [37] RuleQuest

51

Table 8.2: Different data views used for classifier training.

No. Label Explanation Size

1 Full All features that passed filtering 788

2 Numeric All numeric (and categorical) filtered 125

3 CARs All CAR features 628

4 TF-IDF All tf-idf unigram features 8033

5 WordVector All Word2Vec features 300

6 Chi-square-best50 50 features with highest χ2 value 50

7 ANOVA-best50 50 features with highest ANOVA F-scores 50

8 MIG-best50 50 features with best MIG values 50

9 ANOVA-wordvector34 Word2Vec features that passed ANOVA 34

Table 8.3: Abbreviated names for classifiers for the next sections.

No. Name Algorithm View

1 MNB-CARs MNB CARs

2 RF-full RF Full

3 RF-reg-full RF-reg Full

4 RF-reg-clf-full RF-reg-clf Full

5 Lin-SVM-chi2-best Lin-SVM chi2-square-best50

6 Lin-SVM-anova-best Lin-SVM ANOVA-best50

7 RBF-SVR-mig-best RBF-SVR MIG-best50

8 SVM-Init-Ada-CARS SVM-Init AdaBoost Rules

9 D&W-num Deep & Wide Numeric

10 DNN-full DNN Full

52

Table 8.4: Individual Confusion Matrices on the 325 document training
set for the 10 best Classifiers (Part 1).

MNB-CARs Pred NONE Pred MILD Pred MOD. Pred SEVERE

True NONE 31 14 0 0

True MILD 16 103 3 8

True MODERATE 5 33 34 10

True SEVERE 1 6 5 56

RF-full Pred NONE Pred MILD Pred MOD. Pred SEVERE

True NONE 28 15 2 0

True MILD 17 103 9 1

True MODERATE 4 38 25 15

True SEVERE 3 9 18 38

RF-reg-full Pred NONE Pred MILD Pred MOD. Pred SEVERE

True NONE 13 28 4 0

True MILD 3 94 33 0

True MODERATE 0 16 60 6

True SEVERE 0 4 49 15

RF-reg-clf-full Pred NONE Pred MILD Pred MOD. Pred SEVERE

True NONE 13 28 4 0

True MILD 3 94 33 0

True MODERATE 0 16 60 6

True SEVERE 0 4 49 15

Lin-SVM-chi2-best Pred NONE Pred MILD Pred MOD. Pred SEVERE

True NONE 28 13 4 0

True MILD 11 103 13 3

True MODERATE 1 18 41 22

True SEVERE 1 2 21 44

53

Table 8.5: Individual Confusion Matrices on the 325 document training
set for the 10 best Classifiers (Part 2).

Lin-SVM-anova-best Pred NONE Pred MILD Pred MOD. Pred SEVERE

True NONE 29 14 2 0

True MILD 16 89 17 8

True MODERATE 5 20 36 21

True SEVERE 0 5 21 42

SVM-Init-Ada-CARS Pred NONE Pred MILD Pred MOD. Pred SEVERE

True NONE 30 2 13 0

True MILD 9 96 21 4

True MODERATE 1 16 58 7

True SEVERE 0 2 14 52

RBF-SVR-mig-best Pred NONE Pred MILD Pred MOD. Pred SEVERE

True NONE 17 25 3 0

True MILD 10 90 30 0

True MODERATE 1 26 43 12

True SEVERE 1 1 47 19

D&W-num Pred NONE Pred MILD Pred MOD. Pred SEVERE

True NONE 27 17 1 0

True MILD 13 84 25 8

True MODERATE 3 17 41 21

True SEVERE 1 4 20 43

DNN-full Pred NONE Pred MILD Pred MOD. Pred SEVERE

True NONE 23 19 2 1

True MILD 13 100 15 2

True MODERATE 7 23 37 15

True SEVERE 1 3 17 47

54

Table 8.6: Multi-class Precision, Recall and MAE on the 325 document
training set for the 6 classifiers in the competition-winning ensemble. Per-
class MAE is normalized with the assumption that all predictions are
maximally incorrect for each class.

RF-reg-full Prec. Recall MAE SVM-Init Prec. Recall MAE

NONE 0.812 0.289 0.733 NONE 0.750 0.667 0.793

MILD 0.662 0.723 0.824 MILD 0.828 0.738 0.854

MODERATE 0.411 0.732 0.809 MODERATE 0.547 0.707 0.848

SEVERE 0.714 0.221 0.738 SEVERE 0.825 0.765 0.912

Lin-SVM-chi2 Prec. Recall MAE D&W-num Prec. Recall MAE

NONE 0.683 0.622 0.844 NONE 0.614 0.600 0.859

MILD 0.757 0.792 0.885 MILD 0.689 0.646 0.793

MODERATE 0.519 0.500 0.744 MODERATE 0.471 0.500 0.732

SEVERE 0.638 0.647 0.863 SEVERE 0.597 0.632 0.848

RBF-SVR-mig Prec. Recall MAE MNB-CARs Prec. Recall MAE

NONE 0.586 0.378 0.757 NONE 0.585 0.689 0.896

MILD 0.634 0.692 0.787 MILD 0.660 0.792 0.866

MODERATE 0.350 0.524 0.745 MODERATE 0.810 0.415 0.677

SEVERE 0.613 0.279 0.739 SEVERE 0.757 0.824 0.902

55

Table 8.7: Summary metrics on the 325 document training set for each of
the 10 best Classifiers. All applicable metrics are macro-averaged when
necessary. Higher is better.

Classifier MA-MAE ROC-AUC R2

MNB-CARs 0.835 0.773 0.459

RF-full 0.789 0.707 0.339

RF-reg-full 0.776 0.683 0.554

RF-reg-clf-full 0.776 0.683 0.554

Lin-SVM-chi2-best 0.834 0.765 0.521

Lin-SVM-anova-best 0.803 0.724 0.384

RBF-SVR-mig-best 0.757 0.657 0.476

SVM-Init-Ada-CARs 0.851 0.811 0.515

D&W-num 0.808 0.721 0.394

DNN-full 0.809 0.742 0.427

Classifier Precision Recall F1-Score Accuracy

MNB-CARs 0.703 0.680 0.673 0.689

RF-full 0.582 0.570 0.567 0.597

RF-reg-full 0.650 0.491 0.495 0.560

RF-reg-clf-full 0.650 0.491 0.495 0.560

Lin-SVM-chi2-best 0.649 0.640 0.644 0.665

Lin-SVM-anova-best 0.585 0.596 0.590 0.603

RBF-SVR-mig-best 0.546 0.468 0.481 0.520

SVM-Init-Ada-CARs 0.738 0.719 0.724 0.726

D&W-num 0.593 0.595 0.593 0.600

DNN-full 0.614 0.606 0.609 0.637

56

Chapter 9

ENSEMBLE LEARNING

From our prior research [3, 25], we know that ensembles frequently beat vanilla

classifiers. As a consequence, we decided to try out ensembles on our data. From our

set of 154 classifier data view runs, we selected the 12 best runs (six of which were

presented in detail in Section 8). We constructed a variety of ensembles of size 2 to 9

classifiers in each from these runs, and via attrition zeroed in on the best performing

ones. Our measure of performance of an ensemble was straightforward:

the MA-MAE of the ensemble must be higher than 0.851, the MA-MAE of

our best standalone method (SVM-Init-Ada-CARs).

9.1 Voting Schemes

Our classifier ensembles were constructed in a straightforward way. Each ensem-

ble consisted of a subset of classifiers from our list of 12 best runs. Each classifier in

the ensemble received an equal vote share (i.e., we did not attempt to weigh classi-

fiers differently). We devised six different voting schemes to determine the ensemble

prediction of the Valence based on the predictions of the constituent classifiers. These

voting schemes are defined below.

9.1.1 Majority voting

A value of the Valence is selected if it was predicted by the majority (at least half)

of classifiers in the ensemble. If such value does not exist, this method picks the most

common Valence in the training set1.

1In our training set, this was Valence=MILD.

57

9.1.2 Plurality voting

Given a parameter min votes, the most common Valence with at least min votes

is returned. If such value does not exist, this method picks the most common Valence

in the training set.

9.1.3 Majority favor MODERATE voting

This scheme selects the majority value of predicted Valence if one exists, the

same way the majority scheme works. However, if a majority value does not exist,

this voting scheme favors Valence = MODERATE: it selects this value if at least one

classifier predicts it. If no classifier predicts Valence = MODERATE, this scheme

defaults to the most common Valence in the training set.

9.1.4 Plurality favor MODERATE voting

This scheme selects the plurality value of Valence if it is predicted by more than

min votes votes. If such value does not exist, but at least one classifier predicts

Valence = MODERATE, this scheme selects this value. If no Valence = MODERATE

prediction exists in the ensemble, the voting scheme defaults to the most common

Valence in the training set.

9.1.5 Simple Round voting

This voting scheme simply finds the average prediction value among the ensemble

classifiers, and rounds it to the nearest Valence value.

9.1.6 Tuned Round voting

Our most complicated voting scheme offers another layer of hyper-parametrization.

58

The simple round voting scheme assumes that the average valence of 2.6 (out of

3) points to the class Valence = SEVERE, as 2.6 is greater than the midpoint between

the numeric Valence scores for MODERATE and SEVERE classes. However, Valence

(despite how we choose to treat it on occasion) is not a continuous variable, but

an ordinal one. Therefore, 0.5, 1.5 and 2.5 do not have to be the threshold values

separating the neighboring valence classes. What should these values be? Well, we

can treat this as yet another hyper-parameter tuning problem, and find such values

of the three threshold parameters that optimize the MA-MAE score.

For our experiments we used the following threshold sets, which give rise to a

search space of 343 possibilities.

• NONE/MILD threshold: 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75

• MILD/MODERATE threshold: 1.25, 1.3, 1.4, 1.5, 1.6, 1.7, 1.75

• MODERATE/SEVERE threshold: 2.25, 2.3, 2.4, 2.5, 2.6, 2.7, 2.75

To run all our ensembles through this voting mechanism we would have to generate

in excess of 13.3 million combinations. To achieve this, the tuned round voting ensem-

ble algorithm was parallelized onto a c4.4xlarge Cloud Instance on Amazon AWS. In

addition, the mean votes of each of the 38,760 candidate ensembles were pre-computed

using OpenBLAS [57]. Nonetheless, the entire computation took 8 hours with classi-

fier ensembles of no larger than 6, whereas all Majority and Plurality schemes up to

9 completed on a single core in less time.

9.2 Submitted Ensembles

Among the multitude of voting ensembles, we selected the five top performers (all

providing us with 1.5 – 3% of lift over the best individual classifier) shown in Table

59

9.1. Notably, all these ensembles used the tuned voting ensemble voting, confirming

to us that the tuning of the thresholds separating the neighboring Valence classes was

a useful procedure. The MA-MAE scores reported in Table 9.1 were computed over

the 325-record training set.

As we could only submit three guesses, we had to make our final choices from

these five ensembles. We selected ensembles A, B and C for official submission.

Ensemble B consisted only of the Random Forest regressor run on the full data

view, and our most accurate standalone classifier, SVM-initialized Näıve Bayes Ad-

aBoost on the Class Association Rules data view. It also was the best performer on

the training set.

Ensembles A and C were selected to diversify our pool of guesses. Ensemble A was

selected as the most accurate ensemble that did not feature classifiers trained on Class

Association Rules alone. We chose Ensemble C over Ensemble E despite its marginally

lower MA-MAE score, because in a secondary run on the 108 annotated by 1 records

Ensemble E had a drop in accuracy that worried us. Additionally, Ensemble C was

far better than the other ensembles in properly recognizing the Valence = SEVERE

class. Thus, if the withheld test set actually had a large amount of SEVERE Valence

scores, we would expect this classifier to perform much better than the other four. In

a real-world environment, identifying these SEVERE Valence cases is life-critical.

Table 9.2 shows the confusion matrices of the three submitted ensembles on the

325-record training set. Table 9.3 shows the precision, recall and MAE for each Valence

class for each ensemble. Table 9.4 shows the MA-MAE as well as the ROC-AUC,

precision, recall, f-measure and accuracy of the ensembles.

60

Table 9.1: Top five voting ensembles. The MA-MAE value is computed on
the 325-record training set.

Name Classifiers Voting MA-MAE

RF-full

RF-reg-clf-full

A RF-Reg-full Tuned round 0.865

Lin-SVM-chi2-best (0.7,1.6,2.25)

Lin-SVM-anova-best

DNN-full

B RF-reg-full Tuned round 0.882

SVM-Init-Ada-CARs (0.7,1.7,2.3)

RF-Reg-full

Lin-SVM-chi2-best

C RBF-SVR-mig-best Tuned round 0.865

D&W-num (0.75,1.5,2.25)

SVM-Init-Ada-CARs

MNB-CARs

RF-reg-full

D Lin-SVM-chi2-best Tuned round 0.850

Lin-SVM-ANOVA (0.5,1.3,2.3)

DNN-full

RF-Reg-full

E SVM-Init-Ada-CARs Tuned round 0.866

DNN-full (0.7,1.4,2.4)

Lin-SVM-chi2-best

61

Table 9.2: Confusion Matrices on the 325 document training set for the 5
analyzed Ensembles (first 3 were submitted).

Ensemble A Pred NONE Pred MILD Pred MOD. Pred SEVERE

NONE 34 10 1 0

MILD 9 102 17 2

MODERATE 1 15 48 18

SEVERE 0 3 19 46

ENSEMBLE B Pred NONE Pred MILD Pred MOD. Pred SEVERE

NONE 29 15 1 0

MILD 8 116 4 2

MODERATE 1 20 54 7

SEVERE 0 1 20 47

ENSEMBLE C Pred NONE Pred MILD Pred MOD. Pred SEVERE

NONE 31 14 0 0

MILD 10 107 10 3

MODERATE 2 21 42 17

SEVERE 0 3 10 55

ENSEMBLE D Pred NONE Pred MILD Pred MOD. Pred SEVERE

NONE 28 13 4 0

MILD 7 99 24 0

MODERATE 2 14 47 19

SEVERE 0 2 17 49

ENSEMBLE E Pred NONE Pred MILD Pred MOD. Pred SEVERE

NONE 30 12 33 0

MILD 8 101 21 0

MODERATE 0 12 60 10

SEVERE 0 2 16 50

62

Table 9.3: Multi-class Precision, Recall and MAE on the 325 document
training set for the 3 submitted Ensembles. Per-class MAE is normalized
with the assumption that all predictions are maximally incorrect for each
class.

ENSEMBLE A Precision Recall MAE

NONE 0.773 0.756 0.911

MILD 0.785 0.785 0.885

MODERATE 0.565 0.585 0.787

SEVERE 0.697 0.676 0.877

ENSEMBLE B Precision Recall MAE

NONE 0.763 0.644 0.874

MILD 0.763 0.892 0.939

MODERATE 0.684 0.659 0.823

SEVERE 0.839 0.691 0.892

ENSEMBLE C Precision Recall MAE

NONE 0.721 0.689 0.896

MILD 0.738 0.823 0.900

MODERATE 0.677 0.512 0.744

SEVERE 0.733 0.809 0.922

63

Table 9.4: Summary metrics on the 325 document training set for each
of the 3 submitted Ensembles. All applicable metrics are macro-averaged
when necessary. Higher is better.

Ensemble MA-MAE ROC-AUC R2

A 0.865 0.795 0.622

B 0.882 0.823 0.694

C 0.865 0.801 0.629

Ensemble Precision Recall F1-Score Accuracy

A 0.705 0.701 0.703 0.708

B 0.762 0.722 0.738 0.757

C 0.717 0.708 0.709 0.723

9.2.1 Hybrid Random Forest Contribution

As discussed in Section 8.1, our Random Forest Regression with Classification

Inference provided a modest amount of lift to our hybrid rounding scheme. We analyze

this lift here by substituting RF-reg-clf-full with RF-reg-full in Ensemble A. Table

9.5 compares the confusion matrix that this substitution makes. The substitution

actually slightly increases MILD by removing two errors. However, for NONE and

MODERATE the error increase is 9 points each! This comes out to be a MA-MAE

difference of 0.0318 and worse than just using SVM-Init-Ada-CARs alone. It is quite

possible that these errors could have been mitigated by re-running our Tuned Voting

process to find more precise breakpoints, so this should be used as an estimation of

maximum loss rather than actual loss. The actual loss is guaranteed to be at least

0.015 as Ensemble D was our fourth-best ensemble with a MA-MAE of 0.850.

64

Table 9.5: Effect on Confusion Matrices for substituting RF-reg-clf-full
with RF-reg-full in Ensemble A.

Pred NONE Pred MILD Pred MOD. Pred SEVERE

NONE -9 +9 0 0

MILD 0 +2 -2 0

MODERATE -1 +4 -10 +7

SEVERE 0 +1 -1 0

Table 9.6: Confusion Matrices on the 216 document hidden test set for
the 3 submitted Ensembles.

ENSEMBLE A Pred NONE Pred MILD Pred MOD. Pred SEVERE

NONE 20 10 1 0

MILD 12 66 5 3

MODERATE 2 16 23 5

SEVERE 1 3 10 39

ENSEMBLE B Pred NONE Pred MILD Pred MOD. Pred SEVERE

NONE 20 11 0 0

MILD 4 68 13 1

MODERATE 2 19 21 4

SEVERE 0 8 7 38

ENSEMBLE C Pred NONE Pred MILD Pred MOD. Pred SEVERE

NONE 21 10 0 0

MILD 7 64 13 2

MODERATE 2 12 29 3

SEVERE 0 3 9 41

65

Table 9.7: Multi-class Precision, Recall and MAE on the 216 document
hidden test set for the 3 submitted Ensembles. Per-class MAE is normal-
ized with the assumption that all predictions are maximally incorrect for
each class.

ENSEMBLE A Precision Recall MAE

NONE 0.571 0.645 0.871

MILD 0.695 0.767 0.867

MODERATE 0.590 0.500 0.739

SEVERE 0.830 0.736 0.881

ENSEMBLE B Precision Recall MAE

NONE 0.769 0.645 0.882

MILD 0.642 0.791 0.890

MODERATE 0.512 0.457 0.707

SEVERE 0.884 0.717 0.855

ENSEMBLE C Precision Recall MAE

NONE 0.700 0.677 0.892

MILD 0.719 0.744 0.861

MODERATE 0.569 0.630 0.794

SEVERE 0.891 0.774 0.906

66

Table 9.8: Summary metrics on the 216 document hidden test set for
each of the three submitted Ensembles. All applicable metrics are macro-
averaged when necessary. Higher is better.

Ensemble MA-MAE ROC-AUC R2

A 0.837 0.776 0.534

B 0.833 0.763 0.539

C 0.863 0.799 0.629

Ensemble Precision Recall F1-Score Accuracy

A 0.671 0.662 0.664 0.685

B 0.702 0.652 0.671 0.681

C 0.720 0.706 0.712 0.718

9.3 Test Results

The results of running our three submitted ensembles on the 216-record test set

are shown in Table 9.6. Table 9.6 shows the confusion matrices of the three ensembles

on the test set.

It is worth immediately noting, by comparing confusion matrices in Table 9.6 to

those in Table 9.2 (for the training set), that all three ensembles overall performed as

hoped and did not overfit the training set by much. Much of the ensemble’s MA-MAE

improvement was by avoiding misclassifying documents with an error of 2 or more;

10, 11, and 7 data points (respectively) with classification error of 2 or more. This

compares with 7, 5, and 8 such data points misclassified on (somewhat larger) training

set. This is an expected behavior – in order to misclassify a document with a larger

error, many of an ensemble’s constituent classifiers must make the same mistake.

All three ensembles exhibited very similar performance on the 31 records with

Valence = NONE. Ensemble A tended to underrate MILD cases, preferring to predict

Valence = NONE when it made a mistake. Ensembles B and C went in the other

67

direction, overrating the majority of mistakes on cases with Valence=MILD.

It is on cases with Valence=MODERATE and Valence=SEVERE Ensemble C showed

a clearly better performance, both in terms of recall (correctly classifying 29 out of 46

MODERATE cases and 41 out of 53 SEVERE cases), and in terms of precision (keeping

it above 50% for Valence=MODERATE, and allowing for only 5 false positives for

Valence=SEVERE). These numbers, especially the precision for the Valence=SEVERE

class wound up actually being better than the training set results (where Ensemble C

had 20 false positives and 55 true positives in this)!

Table 9.7 shows precision, recall and MAE for each valence class for each ensem-

ble. Table 9.8 shows the overall MA-MAE, ROC-AUC, precision, recall, f1-score and

accuracy and R2 metrics for each ensemble.

Ensemble C wound up being the top scorer among our submissions. Ensemble C

was the best overall predictor of patient condition severity for CEGS N-GRID 2016

Shared Task in Clinical Natural Language Processing (Track 2).

68

truth : correct Valence scores for each document

predictions: predictions of all trained classifiers to attempt to construct an

ensemble for

k : max size of ensemble

thresholds : boundary thresholds to use as triplets

output : The best ensemble from training data

best ensemble← null ;

best score← 0 ;

for i in 2..k do

for candidate ensemble in Combinations(predictions, i) do

predictions← RowSum(candidate ensemble) ;

for none,mild,moderate in thresholds do

rounded← [

SEV ERE if v > moderate else

MODERATE if v > mild else

MILD if v > none else NONE

for v in predictions

] ;

score← MA MAE(rounded, truth) ;

if score > best score then

best score← score ;

best ensemble← ensemble, none,mild,moderate ;

end

end

end

end

Figure 9.1: Tuned Round Voting.

69

Chapter 10

CONCLUSION AND FUTURE WORK

The CREATE framework we built for Track 2 of the CEGS N-GRID 2016 Shared

Task in Clinical Natural Language Processing introduces a number of novel features

in the field of automated analysis of medical records. The core novel features of

CREATE that proved to be crucial to our success included:

10.1 Enhanced features

An aggressive approach to enhancing the initial patient evaluation records pro-

vided to us with a multitude of features from diverse sources. Almost all of our feature

enhancement efforts contributed non-trivial amounts of features to the final feature

set. In addition to traditional features used for medical data analysis, such as diag-

nosis signals and sentiment, we have added novel categories of features: cumulative

scores, commonality features, and medication-use features, which were demonstrated

to be statistically significant. In particular, commonality features were significant

both in terms of surviving through our rigorous feature selection processes, as well as

greatly compacting the search space for association rule mining.

10.2 Use of Class Association Rules as features

Class Association Rules are often used by themselves to classify underlying data.

In CREATE we “stacked” the learning processes by using a set of CARs with com-

plete five-fold1 coverage of our training set as additional features in our dataset, and

1Meaning that each record in the training set was covered by at least five discovered Class
Association Rules.

70

using both the CARs-only and combined feature sets in subsequent classification and

regression tasks.

10.3 Feature Pruning and Data View construction

Our battery of feature pruning tests eliminated a large amount of useless features.

In addition, rather than using the full set of features for each classification tasks,

we attempted to zero in on useful subsets of the features, either by feature type (all

CAR features, all non-CAR features) or by the scores assigned to them by some of our

pruning tests (features with highest χ2, mutual information gain, ANOVA F−value).

Separation of our data into these data views allowed us to better train our classifiers:

the winning ensemble of six classifiers used four out of seven data views. The fact

that some of the classifiers in the ensemble were trained on disjoint sets of features

helped prevent overfit in the ensemble, because while a single classifier may be biased

with a certain data view, the collection of different data views would be less biased.

10.4 Adaptations of classifiers

We adapted two classifiers to better work with the data. The Random Forest

regressor with classification inference adaptation was made specifically to account for

the nature of the target Valence class attribute and resulted in improved performance

of the Random Forest classifier. This regressor was featured in one of the three

of our final submissions. The SVM-Initialized AdaBoost outperformed every other

individual classifiers-data view in almost every metric and featured prominently the

competition-winning ensemble.

71

10.5 Tuned Round Voting scheme for ensembles of classifiers

While our classifier ensembles were formed in a simple way by giving each classifier

an equal vote in each outcome, the tuned round voting scheme for deciding the results

of the vote, which was featured in all five best classifier ensembles was the third

“stacked” learner in CREATE: it performed the hyper-parameter tuning to determine

the best way to separate averaged (and therefore no longer integer) values between

neighboring Valence classes. As seen from Table 9.1, the class thresholds learned by

this method were different than the default values in almost all cases, which, by virtue

of the method, improved the final accuracy of the ensembles.

10.6 Limitations and Challenges

One key limitation of CREATE is its tightly coupled functionality as a part of the

structure of the challenge itself. While no individual component was tightly coupled

to the domain, the entire pipeline itself was trained on a very specific data format.

This makes it somewhat less extensible compared to other NLP systems such as

Stanford Parser [46]. Second, both the training and test sets were small; 325 and

216 documents, respectively. Therefore, it is possible that our ensemble took first

place only by chance. Nonetheless, we believe that the contributions outlined in the

previous section provide lift when applied in the correct domain. In particular, Class

Association Rules provide strong story-telling capabilities when results need to be

interpreted by a professional.

10.7 Computational Costs

Unfortunately, CREATE has significant implementation and training costs that

may limit its applicability compared to simpler models in budget constrained en-

72

vironments. While some labor costs are unavoidable – such as text ingestion into

feature matrices – the training costs of all of different data views combined with all

our different classifiers is high. Cross-validation and hyper-parameterization is also

a time-consuming process, even if it can be computed in parallel. Complete Class

Association Rule mining in particular was one of our slowest stages, and would get

even worst with additional data. Recently, some tweaks to FP-Growth have been

suggested that allow association rules to be mined on distributed GPUs, despite the

sequential process of traditional FP-Growth [53].

In addition, the knowledge that we have gleaned from participation in this contest

would inform us on which features to focus on in future clinical record analysis tasks.

Table 10.1 describes some of effect that was spent at each stage of the pipeline. The

computational complexity of training most stages of the pipeline is O(n∗k) where n is

the number of documents and k is the maximum of |features| and |documents|. The

critical path of our pipeline is mining as currently implemented is Class Association

Rules.

10.8 Future Work

Improve Embedding Word2Vec and other emerging text embedding NLP strategies

have gained a large amount of notoriety since the release of TensorFlow. Although

Google’s GoogleNews vectors worked surprisingly well despite its apparent non-domain

applicability 2, utilizing PubMed’s massive database of medical text would be a more

domain-aware embedding strategy and training our own PubMedWordVectors would

likely increase the amount of topic coherency.

2for more information, see Section 5.5

73

Table 10.1: Description of approximate computation times for various
parts of the CREATE pipeline.

Step Computation Time Critical Path

Text to Munged CSV Seconds -

Feature Expansion 5 Minutes SentEmotion

(already existing tools)

WordVectors 20 minutes Loading Pre-trained Vectors

Class Association Rules Minutes (up to k=3)

Class Association Rules Hours (up to k=4)

Class Association Rules 3 Days (up to k=5)

C5.0 CARs Minutes (up to k=9)

Feature Selection Minutes Mutual Information Gain

Classifier Training 6 Hours Linear SVM

Ensemble Creation 8 Hours -

74

10.8.1 Better Application of Deep Learning Classifiers

A second area of improvement is using of deep learning algorithms such as LSTMs

from TensorFlow [1] in an attempt to find convoluted, non-linear feature interactions.

Since our work on the N-GRID competition, we have since implemented custom

embedding strategies modeled after Word2Vec. If we were to repeat this competition,

we would likely attempt to pursue a strategy merging PubMed with Word2Vec to

create medical vectors similar to Med2Vec 3 [13]. As a part of the COPTADs project

[43], we have since spent some time looking at Word2Vec skip-gram training strategies

[30] to model clinical records in lower dimensional space over time.

10.8.2 More Efficient Ensemble Construction

We are currently expending effort comparing online learning strategies using ESP-

Boost [14] compared to Tuned Round Voting. Preliminary analysis leads us to believe

that ESPBoost works best for datasets in the millions of documents where compre-

hensive brute force analysis is intractable.

10.8.3 Usability

Finally, the CREATE framework currently exists purely offline and is driven by

a command line interface. Developing a more user-friendly and automated pipeline

would allow SentiMetrix to more easily extend the applicability of the framework to

a larger domain of medical records analysis, as well as to any data analysis tasks that

involve large combined structured data and textual data feature sets.

3for more information, see Section 2.2.3

75

BIBLIOGRAPHY

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for

large-scale machine learning. In Proceedings of the 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI).

Savannah, Georgia, USA, 2016.

[2] A. Abbe, C. Grouin, P. Zweigenbaum, and B. Falissard. Text mining

applications in psychiatry: a systematic literature review. International

journal of methods in psychiatric research, 2015.

[3] B. An, H. Chen, N. Park, and V. Subrahmanian. Map: Frequency-based

maximization of airline profits based on an ensemble forecasting approach.

In Proceedings of the 22nd ACM International Conference on Knowledge

Discovery and Data Mining (SIGKDD16), pages 421–430, 2016.

[4] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume

463. ACM press New York, 1999.

[5] J. Bezdek, R. Hathaway, R. Howard, C. Wilson, and M. Windham. Local

convergence analysis of a grouped variable version of coordinate descent.

Journal of Optimization Theory and Applications, 54(3):471–477, 1987.

[6] S. Bird, E. Klein, and E. Loper. Natural language processing with Python:

analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”,

2009.

[7] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of

machine Learning research, 3(Jan):993–1022, 2003.

76

[8] R. Boulton and M. Porter. Snowball. http://snowballstem.org, 2001.

Accessed: 2017-04-01.

[9] G. E. Box. Non-normality and tests on variances. Biometrika, 40(3/4):318–335,

1953.

[10] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[11] M. E. Celebi et al. Partitional clustering algorithms. Springer, 2015.

[12] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In

Proceedings of the 22Nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 785–794. ACM, 2016.

[13] E. Choi, M. T. Bahadori, E. Searles, C. Coffey, M. Thompson, J. Bost,

J. Tejedor-Sojo, and J. Sun. Multi-layer representation learning for medical

concepts. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1495–1504.

ACM, 2016.

[14] C. Cortes, V. Kuznetsov, and M. Mohri. Learning ensembles of structured

prediction rules. In ACL (1), pages 1–12, 2014.

[15] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

[16] J. P. Dickerson, V. Kagan, and V. Subrahmanian. Using sentiment to detect

bots on twitter: Are humans more opinionated than bots? In Advances in

Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM

International Conference on, pages 620–627. IEEE, 2014.

[17] Y. Freund, R. Schapire, and N. Abe. A short introduction to boosting.

Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

77

http://snowballstem.org

[18] G. H. Golub and C. Reinsch. Singular value decomposition and least squares

solutions. Numerische mathematik, 14(5):403–420, 1970.

[19] R. W. Hamming. Error detecting and error correcting codes. Bell Labs

Technical Journal, 29(2):147–160, 1950.

[20] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate

generation. In ACM Sigmod Record, volume 29 (2), pages 1–12. ACM, 2000.

[21] T. K. Ho. Random decision forests. In Document Analysis and Recognition,

1995., Proceedings of the Third International Conference on, volume 1,

pages 278–282. IEEE, 1995.

[22] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for

Python, 2001–. [Online; accessed 2017-04-01].

[23] V. Kagan, E. Rossini, and D. Sapounas. Sentiment Analysis for PTSD Signals.

Springer, 2013.

[24] V. Kagan, A. Stevens, and V. Subrahmanian. Using twitter sentiment to

forecast the 2013 pakistani election and the 2014 indian election. IEEE

Intelligent Systems, 30(1):2–5, 2015.

[25] C. Kang, N. Park, B. A. Prakash, E. Serra, and V. Subrahmanian. Ensemble

models for data-driven prediction of malware infections. In Proceedings of

the Ninth ACM International Conference on Web Search and Data Mining,

pages 583–592. ACM, 2016.

[26] Q. V. Le and T. Mikolov. Distributed representations of sentences and

documents. In ICML, volume 14, pages 1188–1196, 2014.

[27] W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient classification based on

78

multiple class-association rules. In Data Mining, 2001. ICDM 2001,

Proceedings IEEE International Conference on, pages 369–376. IEEE, 2001.

[28] B. Liu. Web data mining: exploring hyperlinks, contents, and usage data.

Springer Science & Business Media, 2007.

[29] B. L. W. H. Y. Ma and B. Liu. Integrating classification and association rule

mining. In Proceedings of the 4th, 1998.

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed

representations of words and phrases and their compositionality. In

Advances in neural information processing systems, pages 3111–3119, 2013.

[31] E. Naeseth. Python fp-growth.

https://github.com/enaeseth/python-fp-growth, 2009. MIT License.

Accessed: 2017-04-01.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn:

Machine learning in python. Journal of Machine Learning Research,

12(Oct):2825–2830, 2011.

[33] J. W. Pennebaker, M. E. Francis, and R. J. Booth. Linguistic inquiry and word

count: Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71(2001):2001,

2001.

[34] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word

representation. In EMNLP, volume 14, pages 1532–1543, 2014.

[35] J. Pestian, H. Nasrallah, P. Matykiewicz, A. Bennett, and A. Leenaars. Suicide

note classification using natural language processing: A content analysis.

Biomedical informatics insights, 2010(3):19, 2010.

79

https://github.com/enaeseth/python-fp-growth

[36] J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[37] R. Quinlan. Rulequest research data mining tools, 2006.

[38] K. Rajeswari. Feature selection by mining optimized association rules based on

apriori algorithm. International Journal of Computer Applications, 119(20),

2015.

[39] R. Rehurek and P. Sojka. Software framework for topic modelling with large

corpora. In In Proceedings of the LREC 2010 Workshop on New Challenges

for NLP Frameworks. Citeseer, 2010.

[40] I. Rish. An empirical study of the naive bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence, volume 3, pages

41–46. IBM New York, 2001.

[41] B. C. Ross. Mutual information between discrete and continuous data sets.

PloS one, 9(2):e87357, 2014.

[42] D. L. Roter, R. M. Frankel, J. A. Hall, and D. Sluyter. The expression of

emotion through nonverbal behavior in medical visits. Journal of general

internal medicine, 21(S1):S28–S34, 2006.

[43] A. S. S. Banaszak, V. Kagan and V. Subrahmanian. Coptads:clinical online

ptsd and tbi analysis and detection system. In Proc. Workshop on Visual

Analytics in Healthcare’2013, pages 86–89, 2013.

[44] G. K. Savova, J. J. Masanz, P. V. Ogren, J. Zheng, S. Sohn, K. C.

Kipper-Schuler, and C. G. Chute. Mayo clinical text analysis and

knowledge extraction system (ctakes): architecture, component evaluation

and applications. Journal of the American Medical Informatics Association,

17(5):507–513, 2010.

80

[45] B. Shiner, L. W. D’avolio, T. M. Nguyen, M. H. Zayed, B. V. Watts, and

L. Fiore. Automated classification of psychotherapy note text: implications

for quality assessment in ptsd care. Journal of evaluation in clinical

practice, 18(3):698–701, 2012.

[46] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng. Parsing with compositional

vector grammars. In ACL (1), pages 455–465, 2013.

[47] K. Sparck Jones. A statistical interpretation of term specificity and its

application in retrieval. Journal of documentation, 28(1):11–21, 1972.

[48] V. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman,

L. Zhu, E. Ferrara, A. Flammini, and F. Menczer. The darpa twitter bot

challenge. Computer, 49(6):38–46, 2016.

[49] V. S. Subrahmanian and D. Reforgiato. Ava: Adjective-verb-adverb

combinations for sentiment analysis. IEEE Intelligent Systems,

23(4):43–50, 2008.

[50] S. M. Tan, P.N. and V. Kumar. Introduction to Data Mining. Addison-Wesley

Longman Publishing, Boston, MA, USA, 1 edition, 2005.

[51] S. A. F. M. C. T. C. S. K. I. M. T. P. R. S. P. V. U. Uzuner, O. and P. Wang.

Announcement of data release and call for participation 2016 cegs n-grid

shared-tasks and workshop on challenges in natural language processing for

clinical dat. https://www.i2b2.org/NLP/RDoCforPsychiatry, 2016.

Accessed: 2017-04-01.

[52] S. v. d. Walt, S. C. Colbert, and G. Varoquaux. The numpy array: a structure

for efficient numerical computation. Computing in Science & Engineering,

13(2):22–30, 2011.

81

https://www.i2b2.org/NLP/RDoCforPsychiatry

[53] F. Wang and B. Yuan. Parallel frequent pattern mining without candidate

generation on gpus. In 2014 IEEE International Conference on Data

Mining Workshop, pages 1046–1052, Dec 2014.

[54] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature

hashing for large scale multitask learning. In Proceedings of the 26th

Annual International Conference on Machine Learning, pages 1113–1120.

ACM, 2009.

[55] C. J. Willmott and K. Matsuura. Advantages of the mean absolute error (mae)

over the root mean square error (rmse) in assessing average model

performance. Climate research, 30(1):79–82, 2005.

[56] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.

McLachlan, A. Ng, B. Liu, S. Y. Philip, et al. Top 10 algorithms in data

mining. Knowledge and information systems, 14(1):1–37, 2008.

[57] Z. Xianyi. Openblas: an optimized blas library. http://www.openblas.net,

2016. Accessed 2017-04-01.

[58] Y. Xu, G. J. Jones, J. Li, B. Wang, and C. Sun. A study on mutual

information-based feature selection for text categorization. Journal of

Computational Information Systems, 3(3):1007–1012, 2007.

[59] F. Yates. Contingency tables involving small numbers and the χ 2 test.

Supplement to the Journal of the Royal Statistical Society, 1(2):217–235,

1934.

82

http://www.openblas.net

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Related Work
	Classification
	Supervised Classification
	Unsupervised Classification

	Text Representation and Word Vectors
	Bag of Words
	AutoEncoders
	Word2Vec

	Existing Medical Language Methodologies
	SentEmotion
	cTAKES
	Classification using Association Rules
	Feature Selection using Association Rules
	Other Work

	Ensemble Construction

	The Challenge
	Overview Of CREATE
	Feature Engineering
	Cumulative Scores
	Extracting Medications
	Emotion Features
	Simple Representations of Textual Information
	Word2Vec for Textual Information
	cTAKES Features
	LIWC Features
	Common Value Features

	Class Association Rules
	Data Preparation
	Mining
	Pruning

	Feature Selection
	Association Rule test
	Statistical Tests
	2 test for categorical features
	ANOVA F-test for continuous features
	Mutual Information Gain test (MIG)

	Linear SVM Recursive Feature Elimination
	Surviving Features

	Classifier Training and Adaptations
	Classifier Adaptations
	Random Forest Regression with Classification Inference (RF-reg-clf)
	SVM Initialized AdaBoost (SVM-Init-ada)

	Data Views
	Classifier Training and Evaluation

	Ensemble Learning
	Voting Schemes
	Majority voting
	Plurality voting
	Majority_favor_MODERATE voting
	Plurality_favor_MODERATE voting
	Simple Round voting
	Tuned Round voting

	Submitted Ensembles
	Hybrid Random Forest Contribution

	Test Results

	Conclusion and Future Work
	Enhanced features
	Use of Class Association Rules as features
	Feature Pruning and Data View construction
	Adaptations of classifiers
	Tuned Round Voting scheme for ensembles of classifiers
	Limitations and Challenges
	Computational Costs
	Future Work
	Better Application of Deep Learning Classifiers
	More Efficient Ensemble Construction
	Usability

	BIBLIOGRAPHY

