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ABSTRACT 
 

Linewidth and Ranging Characterization of a Vernier-Tuned 
Distributed Bragg Reflector (VT-DBR) All-Semiconductor 

Tunable Swept Laser System for Lidar in Autonomous 
Applications 

 
Taewan Kim 

 
Linewidth and ranging experiments of a Insight 

packaged Vernier-Tuned Distributed Bragg Reflector (VT-DBR) 
laser across its wavelength output range of 1522.13 to 
1566.18 nm is done in this work to characterize it for 
lidar applications. The purpose of this paper is to 
investigate the laser’s potential to combine the advantages 
of lidar and FMCW radar for autonomous systems.  

Linewidth measurements were done by using a Mach-
Zehnder interferometer to set up a delayed self-homodyne 
measurement. The laser was set to output at a fixed 
wavelength across a range of 1523 to 1566 nm in 1 nm 
increments, and linewidth was captured each of these 
increments. For each of the linewidths, coherence time and 
length along with laser currents were associated. The 
minimum linewidth found in this test was found to be 50 
MHz, leading to a maximum coherence time of 6.366 ns and a 
maximum coherence length of 129.92 cm. There was a somewhat 
linear, albeit low correlation, area of low linewidths 
depending on the front mirror and back mirror currents 
across the wavelength range. 

Initial ranging experiments were performed using 
interference fringes caused by variable stationary path 
length differences introduced into a homemade Mach-Zehnder 
interferometer around the coherence lengths found in the 
linewidth test. The experimental path length differences 
indicated by the interference fringes seem to be accurate 
at very small ruler measured path length differences, but 
starts to stray away from the ruler measured as the path 
length differences get larger. Data taken suggests that 
there is a mathematical relationship in the error between 
the ruler measured and experimental path length differences 
leading to the belief that this error can be compensated 
for. 
 
Keywords: Vernier-Tuned Distributed Bragg Reflector, VT-
DBR, FMCW, linewidth, coherence, self-homodyne, Mach-
Zehnder Interferometer, interference fringes 
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Chapter 1. Introduction  

With the onset of a more technologically focused 

future, the ability of everyday items to be “smart” is in 

demand more so than ever before. What is exactly a “smart” 

item? Something that can learn, something that can do tasks 

for a person, but all in all, something that further 

satisfies the human desire to do less in the pursuit of a 

“comfortable” future in which human involvement is 

minimized but productivity of that said person is the same 

or improved. In this pursuit of “smart” items or 

“comfortability” there is the drive for development of 

fully autonomous vehicles. 

From a very high level, an autonomous vehicle can be 

defined as a vehicle that can drive or fly itself. Further 

delving into this concept, the vehicle would have to be 

able to safely transport itself from Point A to Point B 

with efficiency, comfortability, safety, and everything in 

between while completing tasks that it may be given. From 

drones to planes, rovers to cars, an automated future is in 

demand. 

1.1 Example of Autonomy Technology: Driverless Cars 

In the world today, especially in tech hubs such as 

Silicon Valley, driverless cars in particular are of huge 

interest. When presented with this challenge that can 
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rebound with large profits, top companies such as Google, 

Uber, and Tesla initiated research and development for 

driverless tech in the hopes of being the first company to 

create a common consumer purposed fully autonomous car.  

These companies all have different methods of approach for 

their goals. For example, Google has the autonomous car 

development as part of their Research and Development 

sector of the company called Waymo [1], Uber has bought out 

many faculty and facilities of Carnegie Mellon University 

to give them a head start [2], and Tesla is now producing 

cars that have full autonomous hardware in order to gather 

data from everyday drivers as they continue to develop the 

autonomous software needed for full autonomy in parallel 

[3]. 

Although all of these companies are in constant 

software development to develop the artificial intelligence 

needed for full autonomy, they seem to have convened on the 

hardware necessary for their software to be loaded unto. In 

other words, the hardware system necessary to receive data 

from the surroundings of said autonomous car and needed for 

actuation of received data has a commonality between all of 

these cars hoping to be self-driving. To provide a better 

understanding of this system, the hardware in this system 

will be listed and the use of each will be described. 
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Figure 1-1 highlights the hardware that is installed 

on Google’s self-driving cars along with the costs involved 

for each piece. 

 
Figure 1-1 – A high-level overview of the hardware used on 
the Google Autonomous Car [4].  
 
Observing what has been revealed by Google, the different 

types of sensors in terms of hardware needed for a self-

driving car are GPS, Ultrasonic Sensor, Odometry Sensor, 

Lidar, and Radar Sensor.  

GPS, Short for Global Positioning System is used for 

location identification. The problem with GPS becomes 

resolution. GPS with the current technology available today 

for the consumer and from a business analytics point of 

view the most affordable GPS tech in terms of return on 

investment is meter length resolution. Only very expensive 

versions allow centimeter accuracy, though the push towards 
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innovation for less expensive highly accurate GPS is in the 

works [5]. 

Ultrasonic sensors are used for distance measurement 

and is composed of a transmitter and receiver and transmits 

a high frequency sound pulse and measures the amount of 

time it takes for that pulse to be received back after 

being reflected from another object to be able to estimate 

the distance between the ultrasonic sensor and said object 

[6]. 

Odometry Sensors are used to measure change in 

position over time. An example of how this might work is 

having rotary encoders on a wheel which will indicate how 

far the wheels have rotated, and knowing the wheel 

circumference, distance traveled can be found [7]. 

Lidar uses a surveying method used for object 

detection by illuminating said object with a laser light. 

An array of detectors or a timed camera can read in light 

reflections from the short pulses of light emitted, to 

create a 3D point “cloud” for vector information and volume 

identification [8]. 

Radar sensors, which are commonly frequency-modulated 

continuous-wave (FMCW) radar, is composed of a transmitter 

and receiver and uses RF technology to determine speed, 

proximity, range, and object size. Both lidar and radar are 
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used commonly used in autonomous systems to cross validate 

what they’re seeing and to predict motion [9]. 

With the many technologies available for the purpose 

of an autonomous vehicle briefly outlined, it would be of 

great interest to be able to explore technology that is 

able to combine the benefits of a two into a new sensor.  

Given that radar and lidar are commonly used to cross 

validate, if there was a method of utilizing a laser and 

its benefits of angular accuracy along with the benefits of 

the FMCW method of radar, it could be extremely beneficial 

to the arsenal of hardware that may be needed for 

autonomous systems in the future. 

1.2 Frequency Modulated Continuous-Wave (FMCW)  

Ordinary pulsed radar detects an object by emitting a 

short pulse and calculating the time of flight of the 

reflected pulse off the object. This practice of using 

short pulses requires the radar to have a high 

instantaneous transmit power which results in a larger and 

more expensive physical apparatus for the radar [10]. 

Frequency Modulated Continuous-Wave (FMCW) radars, on the 

other hand, can achieve similar results as ordinary pulsed 

radars but with a lesser instantaneous transmit power and 

thus physical apparatus by using continuously emitting 

continuous pulses whose frequencies vary over time [10].  
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Further, the continuous wave sweep nature of FMCW allows it 

to detect velocity as well, while ordinary pulsed radars 

cannot continuously monitor and as a result, cannot 

accurately measure velocity of a detected object. Called a 

linear FM sweep, the range to the object of interest is 

found by detecting the frequency difference between the 

transmitted and received signals. As such, the range 

between the radar and the object is proportional to the 

difference in frequencies (called the beat frequency) [11].  

 

Figure 1-2 – The concept of FMCW with a linear sweep of 
frequencies transmitted [11]. 

 
Figure 1-2 provides a visual representation of FMCW. 

As illustrated, the transmitter of the radar sends out 
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pulses of linearly increasing frequencies over time and 

this repeats at a rate commonly called the sweep rate. 

These pulses are reflected off the object of interest and 

the receiver receives a frequency which is indicative of 

the round-trip delay as shown which is proportional to the 

distance of the object from the radar.  

Further explaining, how this would work is that with 

each repetition of the frequency sweeps (governed by the 

sweep rate), there is a range of frequencies (governed by 

the sweep bandwidth) that is sent out. Following those 

frequencies to the object of detection, they will reflect 

off the object, and return to the receiver of the radar. As 

these frequencies return to the receiver, the difference in 

frequencies transmitted vs. received is called the beat 

frequency and can be correlated with a difference in time 

called the delay time. With this frequency and time 

difference data received and utilizing the speed of light, 

the distance to the object can be calculated. In equation 

form, the relationship between all these factors that 

determine the distance between the radar and the object is 

shown as follows [11]: 

𝑡(
𝑇1
=

𝑓4
𝐵16778

 

𝑅 =
𝑐𝑇1𝑓4

2 ∗ 𝐵16778
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where:  

𝑐	 = 	𝑠𝑝𝑒𝑒𝑑	𝑜𝑓	𝑙𝑖𝑔ℎ𝑡 

𝑡( = 𝑑𝑒𝑙𝑎𝑦	𝑡𝑖𝑚𝑒	(𝑠) 

𝑓4 = 𝑏𝑒𝑎𝑡	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	(𝐻𝑧) 

𝑅	 = 	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑎𝑛𝑡𝑒𝑛𝑛𝑎	𝑎𝑛𝑑	𝑡ℎ𝑒	𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑛𝑔	𝑜𝑏𝑗𝑒𝑐𝑡	(𝑚) 

𝑇1 = 	𝑠𝑤𝑒𝑒𝑝	𝑡𝑖𝑚𝑒	(𝑠) 

𝐵16778 = 	𝑠𝑤𝑒𝑒𝑝	𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ	(𝐻𝑧)  

With this distance detection also comes the ability 

for detection of a moving object, or the velocity of this 

object; however, Doppler frequency must be taken into 

account as well for this calculation. The radar in this 

application must not only measure the difference in 

frequencies between the transmitted and received, but also 

the Doppler frequency which is caused by the speed of the 

object. 
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Figure 1-3 – The concept of FMCW with the Doppler effect 
showing a linear increase and decrease sweep of frequencies 
transmitted [11]. 
 

Figure 1-3 provides a visual representation of FMCW 

with the Doppler effect. As illustrated, the transmitter of 

the radar outputs a linear increase and decrease of 

frequencies, and as they reflect off the object of interest 

approaching the radar, the beat frequency is higher or 

lower depending on the increasing or decreasing sweep of 

frequencies received at the receiver. 

The Doppler effect can be explained further at a high 

level using a simple example. If one is an observer to an 

ambulance that is emitting its siren sound at a certain 

constant frequency, and that ambulance is approaching the 
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observer, the frequency of the sound to the approached 

observer is higher than the true emitted frequency of the 

moving ambulance. However, on the flip side, to an observer 

that the ambulance is departing from, the frequency of the 

sound is lower than the true emitted frequency. A visual 

representation of this can be found in Figure 1-4.  

 
Figure 1-4 - Ambulance caused Doppler effect with an 
approached and departed observer [12]. 
  

Along with the simple concept of ranging both still 

and moving objects with the FMCW method, comes another 

benefit, which is security from jamming. With autonomous 

systems reliant on their sensors as much as humans are 

reliant on their senses to move around, it is extremely 

important that the sensors are resistant to those who may 

want to trick them into sensing something false, bringing 

them offline, or worse, causing an accident. Because in 

FMCW, the frequency is constantly changing, it stands as a 

formidable system to trick. In order for one to jam the 

radar, they would first have to know the operating range of 
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frequencies (sweep bandwidth) and operate within that range 

so that a receiver can acknowledge the false frequency as 

within its bandwidth. Furthermore, the jammer would also 

have to know the step frequency (slope of the linear 

increase) of the signal transmitted by the radar it is 

trying to jam and would have to successfully emulate such a 

signal. Compared to another sensor such as lidar, where 

there is simply a short pulse of light that is sent out and 

received, FMCW is much more difficult to emulate, and as a 

result, jam. 

1.3 Swept Laser in Optical Coherence Tomography (OCT) 

 OCT is an imaging technique used for translucent and 

partially opaque materials first demonstrated in the early 

1990s [13]. It is commonly used for biomedical imaging in 

cardiology, optometry, dermatology, and early cancer 

detection where it can offer sub-micrometer isotropic 

resolution images [13]. OCT can be seen as a optical 

ultrasound where highly coherent light instead of sound is 

used. OCT can be performed in or ex vivo, as shown in 

Figure 1-5 allowing a dynamic imaging modality that is 

minimally invasive and can offer high resolution imaging 

[13].  



	

	 12 

 

Figure 1-5 - Biomedical imaging techniques and the unique 
niche of OCT [13].  
  

 Recent developments of OCT have brought upon several 

different methods with unique advantages, and among them, 

there in source-swept OCT (SSOCT). In SSOCT, a broadband 

swept light source is required [13]. Figure 1-6 illustrates 

a high-level block diagram of an SSOCT system. 

 

Figure 1-6 – A typical SSOCT test setup with a sampling 
output going to the photodetector and two sample arms, one 
of which is a reference with a fixed mirror [13]. 
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Figure 1-6 is implemented as a fiber-coupled Michelson 

interferometer and the sample arm is used for imaging 

something such as an artery, tooth surface, or skin [13]. 

This method, also know as Fourier Domain OCT (FDOCT) has 

been shown to have a sensitivity advantage over traditional 

time domain OCT [13]. Swept frequency lasers are an ideal 

source for this approach and have continually demonstrated 

success. 

1.4 Purpose of Study 

 This study uses an Insight Photonics packaged Vernier-

Tuned Distributed Bragg Reflector (VT-DBR) which is an all-

semiconductor, high-speed, tunable laser. Tunable meaning 

that the wavelength can be controlled over a certain range 

[13]. As such, just like how FMCW radar sweeps across a 

range of frequencies, this can be done with the tunable 

laser to sweep across its range of wavelengths. The VT-DBR 

so far has demonstrated success in achieving high-

resolution images of the human body in OCT applications 

[13].  

The purpose of this study is to investigate into the 

feasibility of using this laser for ranging purposes 

similar to how the FMCW method works for radar in order to 

combine the benefits of both a lidar and radar into one 

FMCW lidar sensor. The overall goals of such a sensor and 
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the potential benefits of FMCW lidar over conventional time of 

flight lidar is summarized in Table 1. 

Table 1 - Goals of FMCW lidar sensor and comparison of FMCW 
method vs conventional time of flight method. 

Parameter Goal 
Value 

Comments FMCW 
Specific 

Time of 
Flight 

Specific 
Range/Sensitivity 100 m Should be 

able to sense 
something 
like a stop 
sign at 100 m 
with adequate 
signal to 
noise ratio. 

Heterodyne 
detection 
is used. 

Requires 
Geiger-
Mode 
detectors. 

Distance 
Resolution 

10 cm  N/A Requires 
sweep 
bandwidth 
𝐵16778 of 5 
GHz 

𝑡 =
𝑑
𝑣

=
10	𝑐𝑚

3×10W	𝑚/𝑠
≈ 333	𝑝𝑠 
 

Time to take a 
single data 
point. 

2	𝜇𝑠 Corresponds 
to taking 500 
kSamples/s  

N/A N/A 

Security of 
system against 
other lidars. 

TBD Must be able 
to work in an 
environment 
with many 
simultaneous 
LIDARs in 
operation, 
with little 
interference. 

Robust Vulnerable 
(easier to 
jam with 
pulses or 
CW) 

Security against 
intentional 
jamming. 

TBD Must still 
work even 
with 
intentional 
laser jamming 
signal. 

Robust Vulnerable 
(easier to 
jam with 
pulses or 
CW) 

Cost TBD  Minimal part 
of autonomous 
system cost 

TBD TBD 

Eye Safety IEC 
Class 1 

Class 1 
lasers are 
very low risk 
and “safe 
under 
reasonably 
foreseeable 
use” [14].  

N/A N/A 
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The extent to which this FMCW lidar application of the 

VT-DBR differs from a typical OCT application is summarized 

in Table 2. 

Table 2 – Comparison of VT-DBR Laser for OCT vs FMCW Lidar. 

 

An example of factors that come into play to test the 

potential success of an FMCW laser and reaching the goal of 

a range/sensitivity of 100 m as shown in Table 1 and Table 

2 is the range of wavelengths chosen to be swept over. 

Depending on how the laser is tuned, some wavelengths may 

yield to lower spectral width than others leading to longer 

or more accurate ranging measurements. Also from there, 

extracting the theoretical maximum range of the laser would 

be useful to determine what applications the current 

configuration of the Insight VT-DBR laser would be most 

fitted for. 

Another example of factors that come into play is how 

accurate the laser ranging is when an object is in its 

theoretical range. Is the resolution error large? Table 1 

indicates a desired distance resolution of 10 cm. If the 
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resolution error is too large, is there an error trend so 

that this resolution problem can possibly be compensated 

for? These are some of the questions that can be asked from 

the ranging accuracy point of view. 

1.5 Thesis Summary  

 Chapter 2 provides more info on the VT-DBR laser and 

its tuning mechanism along with a basic theoretical 

background on linewidth needed to aid in understanding the 

experiments performed in Chapter 3 and Chapter 4. 

 Chapter 3 outlines an experiment done to capture the 

laser linewidths across the laser’s sweep range and 

analysis of what those linewidths indicate along with how 

one may achieve minimum linewidth. 

 Chapter 4 outlines an experiment done to test the 

feasibility of ranging by the laser within optical fibers. 

Analysis of how one can calculate range from the data 

retrieved and how accurate the ranging is, is discussed. 

 Chapter 5 shares conclusions with regards to the 

investigation done and future work that is necessary to 

further investigate into the feasibility of an FMCW laser 

on future autonomous systems. 
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Chapter 2. The Insight VT-DBR Laser and Linewidth 

In order to discuss aspects of the device under test, 

the Insight VT-DBR akinetic laser, it would be helpful to 

understand what the VT-DBR akinetic laser is before 

describing the specific capabilities of the Insight 

packaged laser. After discussing the capabilities of the 

Insight laser, the characteristics of interest of the laser 

in the application of ranging is discussed to be able to 

give a basic theoretical basis for the experiments found in 

the following Chapters, 3 and 4. 

2.1 Laser Components and the VT-DBR Laser 

 Three main components are necessary for a conventional 

laser to produce an optical output and they include a gain 

medium, an optical resonator, and a pump. First, the gain 

medium is a medium which amplifies the power of light in 

order to compensate for resonator losses. Different types 

of material with the necessary properties such as a gas, 

liquid, or solid can be used, but in the VT-DBR laser 

specifically, a semiconductor is used. Second, the optical 

resonator is placed around the gain medium to act as a 

source of a feedback for the system and is composed of two 

parallel mirrors, one which is fully reflective and another 

which is partially reflective to allow light to escape the 

laser cavity. Last, the pump is the source of energy for 
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the laser and injects electrical or optical energy into the 

medium to stimulate the process of light emission [13]. 

Figure 2-1 illustrates the configuration of a gain medium, 

optical resonator, and pump of a laser.

 

Figure 2-1 - A conventional laser configuration of a gain 
medium, pump, and optical resonator consisting of a fully 
reflective mirror and partially reflective mirror [13]. 
  

The Vernier-Tuned Distributed Bragg Reflector (VT-DBR) 

akinetic laser source is a high-speed, all-semiconductor, 

tunable laser (controllable over a certain wavelength 

range) [15]. Because this laser wavelength is controllable, 

it is ideal for a sweep of frequencies, inherent in the 

FMCW method commonly found today in radar. 

 Moving on from the conventional laser, and discussing 

the specific laser used in this study, The VT-DBR laser’s 

foundation works by using two distributed Bragg-reflector 

(DBR) mirrors on each end of its optical cavity to select 

the oscillatory wavelength [16]. The mirrors reject the 
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transmission of a harmonically related set of wavelengths, 

depending on the length of separation of the two mirrors, 

and the rejected light resonates within the laser cavity in 

the electrically pumped gain medium where a single mode 

commonly reflected by the mirrors is amplified [15].  

The distance between the DBR mirrors of the VT-DBR 

laser is altered by application of different electric 

currents into the semiconductor materials the mirrors are 

composed of, changing their refractive index [17]. 

Reflective angle of incidence is changed from a change in 

refractive index of a material, which ultimately changes 

the distance seen by light between the two mirrors. In 

turn, this affects the light to be rejected by the mirrors, 

changing the wavelength output of the laser.  

The VT-DBR has 5 control currents to perform 

wavelength tuning which include the back mirror (bm), gain 

amplifier, phase, front mirror (fm), and semiconductor 

optical amplifier currents (soa) which can be seen in 

Figure 2-2. 
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Figure 2-2 - The 5 control currents of the VT-DBR to 
control wavelength tuning [18] 
 

The front mirror (fm), back mirror (bm), and phase sections 

which can also be seen in Figure 2-2, are responsible for 

wavelength selection [19]. These currents can change the 

refractive index of the DBR mirrors. The semiconductor 

optical amplifier (soa) and gain sections allow control of 

the power output of the laser. “Vernier” in VT-DBR refers 

to the Vernier effect used in tuning the laser from the 

comb reflection spectra found in the DBR structures [15].  

 What makes this laser superior to other tunable lasers 

is the “akinetic” in “VT-DBR akinetic laser source” title 

which means that there are no moving parts. The advantage 

of this is that because there are no moving parts the 

wavelengths can be controlled more quickly. 
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2.2 Capabilities of Insight Laser 

 The Insight Akinetic Laser source, which is the laser 

used throughout the experiments in Chapters 3 and Chapter 

4, provides the user interface and packaging of the VT-DBR 

laser discussed in the previous section. Digital control is 

utilized to change the control current pumps against time 

in order to provide an accurate control of optical 

wavelengths. A default sample clock of 400 MHz is used and 

trigger signals are generated by the laser to indicate when 

measurements are valid to be taken. Figure 2-3 gives a 

visual representation of the front panel of the Insight 

laser source.  

 
Figure 2-3 - Front Panel of the Insight Akinetic Laser 
source [20]. 
 
As can be seen in Figure 2-3, “Laser out” is the laser 

output of the laser while “Laser in” in is the input to a 

internal acquisition device. “Start Sweep” is a digital 

signal output that allows one to know the duration of a 
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laser sweep and “Data Valid” output is also a digital 

signal output that notifies the user when points in a laser 

sweep are valid or not. The outputs of the laser can be 

seen in a LABVIEW oscilloscope via use of 5105 PCI 

Digitizer ADC and a 5105 Acquisition program as seen in 

Figure 2-4. 

 
 
Figure 2-4 - 5105 Acquisition program with time domain 
waveform data and waveforms of laser outputs including 
“Data Valid” and “Start Sweep”.  
 

 
Figure 2-5 – Interference fringe test setup for a ruler 
measured path length difference of 1 cm. 
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The white waveform seen in Figure 2-4 is an example of a 

time domain waveform that is under analysis which is the 

output of the interference fringe test setup shown in 

Figure 2-5. The red waveform overlapped with the white 

waveform is the digital data valid signal that is high to 

indicate valid laser output and low to indicate invalid 

laser output. Waveform Graph 2 shows the waveform of the 

“Start Sweep” output of the Insight laser and as can be 

seen is indicating the beginning and end of sweeps at its 

rising and falling edges. Waveform Graph 3 is the data 

valid output of the laser in a separate graph from the time 

domain waveform under analysis.   

The specific Insight laser model used throughout this 

thesis is Model SLE-101 and has a sweep range of 1522.13 to 

1566.18 nm.  

2.3 Linewidth and Coherence 

 The linewidth 𝛥𝑣	of a laser is the width of its optical 

spectrum 3 dB down from the peak or at half power. A laser 

spectrum usually has Lorentzian-shaped central peak, small 

sidebands located closer to the central peak caused by 

relaxation oscillations, and small sidemodes (cavity 

frequencies) located farther from the central peak [21]. A 

typical optical spectrum is shown in Figure 2-6 below. 
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Figure 2-6 - Typical Lorentzian-shaped central peak laser 
spectrum with relaxation oscillations and sidemodes [21]. 

 

In the case of linewidth for our specific application, 

the narrower the better. For example a range/sensitivity of 

100 m as was outlined in Table 1 of Section 1.3 in Chapter 

1 within optical fiber requires a narrow linewidth of 649.6 

kHz. Larger range/sensitivity, translates to a shorter 

required linewidth. This is due to the fact that linewidth 

is related to temporal coherence, which is characterized by 

coherence time or coherence length. Coherence time is a 

measure of spectral purity of a laser wavelength or 

frequency over time and a narrower linewidth is related to 

a longer coherence time and coherence length. The 

mathematical relationship between linewidth and coherence 

time 𝜏\ is shown as follows: 

𝜏\ =
1
𝜋𝛥𝑣 



	

	 25 

The coherence length is the coherence time multiplied by 

the velocity of light within optical fiber which is:  

𝑣 =
𝑐
𝑛^
 

Where the group velocity index 𝑛^ for optical fiber is 1.47, 

leading to the coherence length equation of: 

𝐿\ = 𝜏\𝑣  

Coherence time/length can be reduced by random events 

like spontaneous emission in the laser cavity, which can 

alter phase or frequency of the laser output. This concept 

is illustrated in Figure 2-7. 

 
Figure 2-7 - Concept of coherence time with an example of 
(a) coherent light, and (b) short coherence [21]. 
As can be observed in Figure 2-7, the coherence is longer 

in (a) and shorter in (b). Looking between the time 

intervals of 𝑇& and 𝑇*, the coherence is longer in (a) 

because phase is predictable across the interval, while in 



	

	 26 

(b) there are random phase or frequency jumps which causes 

the phase to be unpredictable across the interval.  

In two path interferometers, the degree to which an 

optical wave interferes with a delayed version of itself 

depends on the coherence time of the wave with respect to 

the optical delay [21]. As such, coherence length and 

coherence time plays a large role in the ranging with 

interference fringes experiment done in Chapter 4 and due 

to that large role played, linewidth is the subject of 

investigation in Chapter 3. 
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Chapter 3. Laser Linewidth Characterization 

With the importance of linewidth emphasized in Section 

2.4 of Chapter 2, and the goals outlined in Table 1 in 

Section 1.3 of Chapter 1, an experiment was done to be able 

to efficiently characterize the Insight Laser’s linewidth. 

For FMCW, the laser must be swept at range of frequencies. 

As such, it made sense to step the laser across a range of 

frequencies that could be possible candidates for a sweep 

range to be selected that would utilize wavelengths with 

minimal linewidth compared to say wavelengths in another 

range with larger linewidths.  

3.1 Laser Linewidth Test Setup and Theory  

With the Insight Laser Control Program the laser can 

be set in fixed wavelength mode. The interface is shown in 

Figure 3-1. 
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Figure 3-1 - Insight Laser Control Program fixed wavelength 
output interface [20]. 

 
The fixed wavelength interface allows the user to 

output the laser at a fixed wavelength with modifiable 

power. The output of the laser in this mode can range from 

wavelengths of 1522.13 nm to 1566.18 nm. The output of the 

laser at a wavelength of 1540 nm and at a power of 5 dBm is 

shown in a Optical Spectrum Analyzer (Agilent 86140B) to 

visually highlight the characteristics of the laser in the 

frequency spectrum in Figure 3-2. 
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Figure 3-2 - Fixed 1540 nm output of laser shown in optical 
spectrum analyzer. 

 
Because there is a large number of different 

wavelengths that can be output, in order to get a 

characteristic of the entire range of the laser in the most 

efficient way possible, it was determined that 1 nm step 

would be sufficient to get an understanding of linewidth 

variability across the range. More specifically, the laser 

linewidth would be observed across the range of 1523 to 

1566 nm in 1 nm increments. 

With the laser under test settings determined and 

basic methodology for the how the laser is to be tested 

figured out, the next step was to determine the method of 

measuring the linewidth of the laser and the delayed self-
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homodyne method was chosen. The delayed self-homodyne 

method is a simple way to measure the linewidth of a laser 

and offers a very high resolution compared to other methods 

of measuring linewidth due to the simple usage of an 

optical interferometer with low-loss fiber optic delays 

[21]. In this method, there is a photodetector that must 

receive a combined optical field, consisting of one field 

which is delayed and another that is minimally delayed, 

which is why an interferometer is necessary. There are many 

different types of interferometers that can be used for the 

purpose of delayed self-homodyne including Mach-Zehnder, 

Micheson, and Fabry-Perot interferometers [21]. Visual 

representations of the different types of interferometers 

can be seen in Figure 3-3 [21], however a Mach-Zehnder 

interferometer was chosen to move forward with due to 

simplicity and availability. 
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Figure 3-3 - Mach-Zehnder, Micheson, and Fabry 
interferometers seen in delayed self-homodyne measurement 
setups [21]. 

 
The translation from optical to electrical spectrum 

can be seen in Figure 3-4 [21]. The spectrum shape of 

semiconductor lasers can be approximated by a Lorentzian-

shaped profile and for such shapes such as Lorentzian and 

Gaussian, lineshapes are preserved from the optical to the 

electrical through the autocorrelation operation [21].  
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Figure 3-4 – (a) Laser lineshape mixing with (b) delayed 
self for (c) output electrical spectrum shape [21]. 

 
As can be seen in Figure 3-4, the linewidth appears in 

the electrical spectrum with half of the full spectral 

shape shown (due to the mixed spectrum centered about 0 Hz) 

of which the width of the half spectrum at 3dB down is the 

linewidth. 

3.2 Laser Linewidth Test 

With a basic theoretical background and a method of 

capturing linewidth determined, the experimental setup to 

capture the linewidths of fixed wavelengths across the 

wavelength range able to be output by the Insight laser was 

begun. As hinted, the experimental setup for the delayed 

self-homodyne is simple. The Insight laser was connected to 
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an off the shelf 3.5	𝜇𝑠 delay Mach-Zehnder Interferometer 

with a knob for polarization (Hewlett Packard 11980A) for 

the summation of the laser output with itself. This was 

then connected to the input of a photodetector to convert 

from the optical to the electrical spectrum (optical power 

into electrical current). The output of the photodetector 

was then input into an off the shelf electrical spectrum 

analyzer (Agilent Technologies N9000A) for display of the 

electrical spectrum to the user. A visual representation of 

the experimental setup for linewidth characterization of 

the Insight laser can be seen in Figure 3-5. 

 
Figure 3-5 - Insight laser delayed self-homodyne 
experimental test setup: laser is output into 
interferometer for mixing with delayed self into 
photodetector to observe output spectrum in electrical 
spectrum analyzer. 

 
With the experimental setup ready, the output 

wavelength range of the laser was run through. As mentioned 

before, steps of 1 nm of fixed wavelength were done across 

the range of 1523 to 1566 nm. It must be noted that the 

Insight laser fixed wavelength interface was not able to 
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output at exactly 1556 and 1561 nm and in order to keep 

consistency of data, they were skipped.  

As mentioned before on why linewidth is important for 

laser ranging in Section 2.4 in Chapter 2, linewidth has a 

relation to coherence time and as a result coherence 

lengths. As such, after the laser linewidth spectrum was 

captured for the range of the laser, linewidth was 

extracted. With the linewidth 𝛥𝑣, coherence time 𝜏\ and 

coherence length 𝐿\ was calculated as follows: 

𝑔𝑟𝑜𝑢𝑝	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑛^ = 1.47, 𝑓𝑜𝑟	𝑜𝑝𝑡𝑖𝑐𝑎𝑙	𝑓𝑖𝑏𝑒𝑟 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑜𝑓	𝑙𝑖𝑔ℎ𝑡	𝑤𝑖𝑡ℎ𝑖𝑛	𝑓𝑖𝑏𝑒𝑟	𝑣 =
𝑐
𝑛^
 

𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒	𝑡𝑖𝑚𝑒	𝜏\ =
1
𝜋𝛥𝑣	 

𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒	𝑙𝑒𝑛𝑔𝑡ℎ	𝐿\ = 𝜏\𝑣 	 

Further, in order to gain an understanding of how the 

laser currents play into the linewidth, the laser currents 

at play during each of the fixed wavelength outputs were 

gathered from factory data provided by Insight Photonics 

[22]. Please refer to Appendix A for the results of this 

experiment in tabular format for the linewidths captured 

from 1523 nm to 1566 nm and the corresponding coherence 

times, coherence lengths, and laser currents. Figure 3-6 

highlights the format in which the data was taken for 

example purposes for a fixed wavelength output of 1523 nm. 
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𝑤𝑙	 = 1523	𝑛𝑚	 
𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝜏\ = 6.366	𝑛𝑠 
𝐿\ = 	129.92	𝑐𝑚 
𝑓𝑚	 = 13016 
𝑏𝑚	 = 49647	 
𝑝ℎ𝑎𝑠𝑒	 = 11712 
𝑠𝑜𝑎	 = 	14657 

Figure 3-6 - Example of experimental data taken for fixed 
wavelength output of 1523 nm.  

 
Although the linewidth 𝛥𝑣 provides the width of the 

lineshape at 3dB down from the peak, it is not enough to 

highlight the rest of the lineshape that is shown. For 

example, the 3dB point will only show how close the 

lineshape is hugging the 0 Hz peak but does not highlight 

how much the lineshape spreads out the further from 0 Hz 

one may get. In order to capture this data, the width from 

0 Hz was captured in terms of dB points. So instead of 

capturing just the linewidth (3dB down), the width from 0 

Hz was captured at 10 dB down, 20 dB down, and 30 dB down 

and was compared with the theoretical values of a 

Lorentzian spectral shape, which were calculated utilizing 

Figure 3-7. 
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Figure 3-7 - Theoretical Lorentzian spectral shape at 
measured points of -3 dB, -10 dB, -20 dB, and -30 dB [21]. 
 
The frequencies at these points were captured and this 

experimental data for the fixed wavelengths of 1523 to 1566 

nm along with the theoretical Lorentzian values calculated  

in tabulated form can be found in Appendix B. Figure 3-8 

highlights the format in which the data was recorded for 

example purposes for a fixed wavelength output of 1523 nm.  

Laser 
Wavelength 

Experimental Laser 
Lineshape 

Lorentzian Laser 
Lineshape 

1523	𝑛𝑚 𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 160	𝑀𝐻𝑧 
𝛥𝑣*'() = 350	𝑀𝐻𝑧 
𝛥𝑣+'() = 700	𝑀𝐻𝑧 

𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 150	𝑀𝐻𝑧 
𝛥𝑣*'() = 497.5	𝑀𝐻𝑧 
𝛥𝑣+'() = 1580	𝑀𝐻𝑧 

Figure 3-8 - Example of experimental data recorded of width 
at various dB down from peak for fixed wavelength output of 
1523 nm. 
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3.3 Laser Linewidth Test Results and Analysis 

As can be initially observed from the laser linewidth 

test tabulated in Appendix A, it can be seen that there is 

a large variation between the different wavelengths in 

terms of linewidth with the largest linewidth captured to 

be 300 MHz at a fixed wavelength laser output of 1562 nm 

leading to a calculated minimum coherence time of 1.061 ns 

and coherence length of 21.65 cm. The smallest linewidth 

captured to be at 50 MHz found at fixed wavelength laser 

outputs of 1523, 1525, 1539, 1545, and 1546 nm leading to a 

maximum coherence time of 6.366 ns and coherence length of 

129.92 cm .  

Thus, the largest linewidth captured by this 

experiment is 600% that of the smallest linewidth captured. 

In order to gain a clearer representation of how linewidth 

varied with wavelength output by the laser, they were 

graphed against each other and can be seen in Figure 3-9. 



	

	 38 

 
Figure 3-9 - Laser linewidth graphed against fixed 
wavelength laser output. 

 
As can be observed in Figure 3-9, across the range 

there is a large up and down variability of the linewidth 

from 1523 to 1566 nm. What is immediately obvious from the 

graph however, is how far out the linewidth is at 1562 and 

1563 nm compared to the linewidth at the rest of the 

wavelengths. Besides 1562 and 1563 nm with linewidths of 

300 and 290 MHz, the next largest linewidth is found to be 

150 MHz at 1537 nm which is approximately half of the 

linewidth of the two maximum. The wavelengths and 

corresponding linewidths at which there is an obvious peak 

and the wavelengths at which there is a obvious trough 

compared to data points in the vicinity in the up and down 

linewidth nature of Figure 3-9 is captured in Table 3 and 

Table 4 respectively. Please note 1549 and 1550 nm were both 
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included in Table 3 due to their equivalence in linewidth. For 

the same reason 1545 and 1546 were both included in Table 4. 

Table 3 - Peaks in linewidth found at various wavelength 
outputs of laser. 

𝜆 𝛥𝑣 

1524 nm 85 MHz 

1527 nm 130 MHz 

1532 nm 140 MHz 

1537 nm 150 MHz 

1549 nm 140 MHz 

1550 nm 145 MHz 

1554 nm 145 MHz 

1562 nm 300 MHz 

 
Table 4 - Troughs in linewidth found at various wavelength 
outputs of laser. 

𝜆 𝛥𝑣 

1523 nm 50 MHz 

1525 nm 50 MHz 

1529 nm 75 MHz 

1534 nm 75 MHz 

1539 nm 50 MHz 

1545 nm 50 MHz 

1546 nm 50 MHz 

1551 nm 60 MHz 

1557 nm 65 MHz 

1564 nm 100 MHz 
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Observing the peaks in linewidth as shown in Table 3, 

the initial trend that is somewhat apparent is how much the 

magnitude of the peaks increases over the wavelength range. 

For example, the first peak is seen at 1524 nm with a 

linewidth of 85 MHz, while the last peak is seen at 1562 nm 

with a linewidth of 300 MHz which is over 3 times larger 

than the first peak. The general trend from the first peak 

to the last peak can be found in Figure 3-10. 

 
Figure 3-10 - Peak linewidths across the 1523 to 1566 nm 
wavelength range under test. 

 
Observing the troughs in linewidth as shown in Table 

4, there isn’t a very obvious trend besides the fact that 

the last trough has a higher linewidth than the troughs 

before it, though not nearly as dramatically as is seen in 

the linewidth peaks. Otherwise, the rest of the troughs 
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seem to hover around 60 MHz. The general trend from the 

first trough to the last trough can be found in Figure 3-

11. 

 
Figure 3-11 - Trough linewidths across the 1523 to 1566 nm 
wavelength range under test. 

 
Variation in linewidth is evident with the changes in 

wavelength, and to get a further understanding of what 

might cause these changes in linewidth, it was mentioned 

that the different magnitudes of laser current that are 

active for a set wavelength may play a factor. To get a 

visual representation of how these laser currents come into 

play, the four currents were graphed against wavelength, 

shown in Figure 3-12. 
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(a) 

 
(b) 
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(c) 

 
(d) 

 
Figure 3-12 - (a) Front mirror (fm), (b) back mirror (bm), 
(c) phase, and (d) semiconductor optical amplifier (soa) 
currents variability across the wavelength output range. 
 
As can be observed in Figure 3-12, the first attributes 

that are apparent are the large up and down variability of 
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both the front mirror and back mirror currents of the 

laser. The maximum current for the front mirror case being 

52534	𝜇𝐴 at a fixed wavelength of 1557 nm and the minimum 

current for the front mirror case being 2022	𝜇𝐴 at a fixed 

wavelength of 1532 nm. For the back mirror case the maximum 

current in this test is 53504	𝜇𝐴 at a fixed wavelength of 

1539 nm, and the minimum current found is 3213	𝜇𝐴 at a fixed 

wavelength of 1550 nm. There is also large variability seen 

with the phase current; however, there does not seem to be 

an obvious pattern in how the the phase current changes 

over the range. This is due to the limited amount of data 

being taken at one nm increments; an increment which is too 

large for the phase currents. According to the factory data 

provided by Insight, the phase current in reality also 

illustrates an up and down pattern across the wavelength 

range [22]. In the case of the soa current, its general up 

and down shape across the wavelength range is similar to 

the fm and bm currents, but the magnitude of its 

variability is minimal compared to that of the other 

currents. Initial observation of the current graphs seem to 

indicate that the front mirror and back mirror currents 

with their variability and pattern might be the bigger 

influences on linewidth. 
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With a visual representation of all of the laser 

currents and linewidth against wavelength output by the 

laser, the wavelengths at which there were peak and trough 

linewidths can be observed to get a better indication of 

the magnitude of the different laser currents at those 

points. Using the graphs in Figure 3-12 as reference, Table 

3 and Table 4 can be expanded with the currents at these 

wavelengths and is shown in Table 5 and Table 6. 

Table 5 - Peaks in linewidth found at various wavelength 
outputs of laser with their corresponding laser currents. 

𝜆 𝛥𝑣 fm(𝜇𝐴) bm(𝜇𝐴) phase(𝜇𝐴) soa(𝜇𝐴) 

1524 nm 85 MHz 8689 35317 10602 13899 

1527 nm 130 MHz 32425 8872 14129 13233 

1532 nm 140 MHz 2022 11437 5732 11264 

1537 nm 150 MHz 6108 14066 14583 10958 

1549 nm 140 MHz 7220 7629 31801 10086 

1550 nm 145 MHz 3377 3213 29276 10050 

1554 nm 145 MHz 15857 11153 9362 9316 

1562 nm 300 MHz 6572 47277 11626 9787 

 
Table 6 - Troughs in linewidth found at various wavelength 
outputs of laser with their corresponding laser currents. 

𝜆 𝛥𝑣 fm bm phase soa 

1523 nm 50 MHz 13016 49647 11712 14657 

1525 nm 50 MHz 4173 22664 10276 13119 

1529 nm 75 MHz 14717 39474 8864 12563 

1534 nm 75 MHz 22116 45904 7610 11932 
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1539 nm 50 MHz 34736 53504 16493 11849 

1545 nm 50 MHz 39503 46982 12729 11218 

1546 nm 50 MHz 27048 31647 13278 10796 

1551 nm 60 MHz 45088 39538 9810 10567 

1557 nm 65 MHz 52534 35049 16698 10696 

1564 nm 100 MHz 39771 21950 19923 10987 

  
Further observation of the currents that make a wider 

linewidth as seen in Table 5, seem to indicate no obvious 

trend. A visual representation of these currents can be 

found in Figure 3-13. 

 

 
Figure 3-13 - Front mirror (fm) and back mirror (bm) 
currents at linewidth peaks across the tested wavelength 
range. 

 
However, further observation of the currents that make 

a narrower linewidth as seen in Table 6, seem to indicate a 

somewhat vague trend, but a trend nonetheless. In the lower 

end of the wavelength range, there is lower front mirror 
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current then back mirror current. Around the middle of the 

wavelength range, there is closer to equal front mirror and 

back mirror current. At the higher range of the wavelength 

range, the front mirror current is higher than the back 

mirror current. The trend can be seen in Figure 3-14. The 

linear fit shown in Figure 3-14 shows the general trend but 

in no way indicates a good fit in which a mathematical 

model can be derived. 

 

 
Figure 3-14 - Trend of the front mirror (fm) and back 
mirror (bm) currents at linewidth troughs across the tested 
wavelength range. 
  

With a proposed trend for narrower linewidths as seen 

in Figure 3-14, the front mirror currents of peak and 

trough linewidths can be plotted on one graph to see how 

much the front mirror currents at a wider linewidth deviate 

from the trend and this can be seen in Figure 3-15. This 
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can be done with the back mirror currents as well and can 

be seen in Figure 3-16. Although plotting on one graph 

might be helpful in order to see how both the front mirror 

and back mirror currents at a certain wavelength comply 

with their respective trends, they were decided to be 

graphed separately in order to keep the graphs less 

difficult to read. 

 

 
Figure 3-15 - Trough front mirror (trough fm) and peak 
front mirror (peak fm) currents plotted on same graph to 
highlight deviation from proposed trend. 
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Figure 3-16 - Trough back mirror (trough bm) and peak back 
mirror (peak bm) currents plotted on same graph to 
highlight deviation from proposed trend. 

 
As seen in both Figure 3-15 and 3-16, there is 

indication that the peak front mirror and back mirror 

currents deviate from the proposed trend. However, upon 

further observation it can be seen that there is one 

wavelength that seems to contradict the trend. The front 

mirror and back mirror currents at the wavelength of 1524 

nm hug the respective proposed trends closely but has been 

labeled as a peak linewidth. Upon further investigation, 

using Table 5 as a reference, the linewidth at that 

wavelength is 85 MHz. It was labeled as a peak linewidth 

due to the lower linewidth on each side of it, which was a 

linewidth of 50 MHz at 1523 and 1525 nm. Thus an argument 

for the original proposed trend can be that although in the 

data set that was taken, the 85 MHz is labeled as a peak, 
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it is not technically a high linewidth  when compared 

against the other linewidths found in the range under test.  

 Moving on to more of the rest of the lineshape, upon 

initial observation of the captured tabulated results 

regarding lineshape as can be found in Appendix B, the 

spectral shapes of the various wavelengths seem to 

expectedly follow a pattern in which a narrower linewidth, 

defined as 3dB down from peak 𝛥𝑣, leads to a narrower width 

from 0 Hz at 10 dB down 𝛥𝑣&'(), 20 dB down 𝛥𝑣*'(), and 30 dB 

down 𝛥𝑣+'() from peak. What is interesting however is the 

difference in lineshapes even though the 𝛥𝑣’s are the same. 

For example, 1523 nm and 1525 nm have an equivalent 

linewidth of 50 MHz, but the lineshape is noticeably 

different between the two wavelengths. This is further 

highlighted quantitatively in Figure 3-17 along with the 

rest of the wavelengths across the range.    
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Figure 3-17 - Frequencies at 3 dB (𝜟𝒗), 10 dB (𝜟𝒗𝟏𝟎𝒅𝑩), 20 dB 
(𝜟𝒗𝟐𝟎𝒅𝑩), and 30 dB (𝜟𝒗𝟑𝟎𝒅𝑩) down from peak for wavelengths 
across the range of 1523 to 1566 nm.  
  
 Regarding the comparison of the experimental 

lineshapes to the theoretical Lorentzian lineshape values 

found in Appendix B, there is a large difference especially 

when comparing the frequencies at 𝛥𝑣*'() and 𝛥𝑣+'(). The 

lineshape found in this experiment is much narrower at 

these points than the theoretical Lorentzian values, and is 

more similar to a Gaussian shape. A Gaussian and Lorentzian 

comparison is visually illustrated in Figure 3-18. 
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Figure 3-18 - Lorentzian spectral shape and a Gaussian 
spectral shape overlaid [23].  
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Chapter 4. Ranging with Interference Fringes 

 With investigation into the linewidths of the 

wavelengths across the Insight laser output range of 1523 

to 1566 nm, coherence times and coherence lengths were 

calculated for fixed wavelengths as can be seen in Appendix 

A. In order to test the laser’s ability to abide by those 

calculations, but more importantly, get a general trend for 

how effective the laser might be at ranging, an 

interference fringe test was done. For initial test 

purposes, the laser was chosen to be swept across the 

entire wavelength range, 1522.13 to 1566.18 nm, that was 

available to be output by laser in the fixed wavelength 

mode as seen in Section 3.1 of Chapter 3, in order to keep 

the two tests consistent with each other so that 

comparisons can be drawn.  

4.1 Interference Fringe Test Setup and Theory 

With the Insight Laser Control Program the laser can 

be set in swept wavelength mode. The interface is shown in 

Figure 4-1. 
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Figure 4-1 - Insight Laser Control Program swept wavelength 
output interface [20]. 
 

The swept wavelength interface of this laser allows 

the user to sweep across a chosen range of frequencies 

between 1522.13 nm and 1566.18 nm with modifiable power and 

various other modifiable characteristics of the sweep as 

shown in Figure 4-1. The output of the laser for this test 

is a wavelength sweep across the entire range from 1522.13 

nm to 1566.18 nm and at a power of 0 dBm which is shown in 

a Optical Spectrum Analyzer (Agilent 86140B) to visually 

highlight the characteristics of the laser in the frequency 

spectrum in Figure 4-2. 
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Figure 4-2 - Swept 1522.13 nm to 1566.18 nm output of laser 
shown in optical spectrum analyzer. 
 

With the laser under test settings determined, the 

next step was to determine the method of actually obtaining 

the interference fringes in order to use them to test the 

ranging capabilities of the swept laser. Luckily, the 

method of obtaining these interference fringes isn’t too 

vastly different from obtaining linewidth. 

 As illustrated in Section 3.2 of Chapter 3, to obtain 

linewidth, an interferometer was used to split the laser 

source outputting a fixed wavelength into two different 

paths only to be brought together before being sent into a 

photodetector to be converted into electrical signals for 

the electrical spectrum analyzer. The interferometer used 

in that experiment had a very large delay of 3.5	𝜇𝑠 in one 

path compared to the other path.  
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 In order to obtain interference fringes, the setup is 

almost the same except the laser source is swept across a 

range of frequencies and is split into two paths with a 

much smaller path length difference. For ranging purposes, 

this path length difference would be the distance one would 

hope to measure.  

Qualitatively explained, the laser is sweeping 

frequencies linearly across a range, just like a radar 

would in FMCW. Recalled from before in Section 1.2 of 

Chapter 1, the radar in FMCW will be able to determine the 

distance between itself and an object, knowing when it sent 

out a certain frequency in its sweep and being able to 

calculate the time difference when it detects that certain 

frequency at the receiver. With that time difference it is 

able to calculate distance knowing the speed of its 

signals. The concept of this interference fringe test for 

the laser is similar in that the sweeping laser source is 

split into two different paths by the interferometer. There 

will be a path length difference, so one path will have a 

delay. Comparing to the radar FMCW concept, the shorter 

path can be seen as the frequency that is being sent out by 

the transmitter, and the longer path can be seen as 

frequency that is being sent to the receiver after 

reflecting off the object to be detected. After being split 
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by the interferometer and traveling through different path 

lengths, this will lead to two different frequencies, due 

to the sweep, coming together at the end of the 

interferometer to combine with each other constructively 

and destructively, which will create interference fringes. 

The spacing between the interference fringe peaks will 

indicate the delta wavelength of the sweep 𝛥𝜆, depending on 

the path length difference 𝛥𝐿, and knowing the velocity of 

light in optical fiber 𝑣 , this path length difference can 

be found. How 𝛥𝜆 is related to interference fringes is 

illustrated in Figure 4-3. 

 

 

Figure 4-3 - The delta wavelength of the sweep 𝛥𝜆 is the 
difference in the sweep of the laser between two peaks of 
the interference fringes.  
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  The delta wavelength of the sweep 𝛥𝜆 decreases with a 

𝛥𝐿 increase of the interferometer. The rate at which 𝛥𝜆 

decreases is determined by the laser linewidth. A narrower 

laser linewidth will allow a larger 𝛥𝐿 (because the maximum 

𝛥𝐿 is determined by the coherence length), before the 𝛥𝜆 

decreases to a point where peaks cannot be determined as 

the wavelengths combine completely destructively at the 

output of the interferometer. Figure 4-4 provides a visual 

representation of how interference fringes can change over 

increasing path length differences 𝛥𝐿. 
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Figure 4-4 - Example of time domain interference fringes at 
(a) a small 𝛥𝐿 (b) a medium 𝛥𝐿 (c) a large 𝛥𝐿. 
 

Quantitatively explained, one can refer to the 

derivation of the relationship between 𝛥𝜆 or delta frequency 

of the sweep 𝛥𝑓 (known as the free spectral range of the 

interference fringes), and 𝛥𝐿 for a Mach-Zehnder 

interferometer, which is what was used for the linewidth 

measurements in Chapter 3, and is what is essentially 

created in the interference fringe test. In the Mach-
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Zehnder, the laser is split into two different path lengths 

at one end and is joined together at the other end, and 

because the laser is sweeping, the phases are different as 

can be illustrated in Figure 4-5. 

 
Figure 4-5 - Phase and length relationship across two 
different lengths.  
 
Taking into account the phase relationship with length, and 

how the phase changes with a sweeping wavelength, useful 

equations which will allow one to find path length 

difference from 𝛥𝜆 or 𝛥𝑓 is derived as follows:  

𝜙& =
2𝜋
𝜆 𝐿& 

𝜙* =
2𝜋
𝜆 𝐿* 

𝛿𝜙&
𝛿𝜆 = 	

−2𝜋𝐿&
𝜆*  

𝛿𝜙*
𝛿𝜆 = 	

−2𝜋𝐿*
𝜆*  



	

	 61 

𝛥𝜙
𝛥𝜆 =

𝛿𝜙&
𝛿𝜆 −

𝛿𝜙*
𝛿𝜆 = 	

2𝜋𝛥𝐿
𝜆* 	𝑤ℎ𝑒𝑟𝑒	𝛥𝐿 = 𝐿& 	−	𝐿* 	 

2𝜋
𝛥𝜆 =

2𝜋𝛥𝐿
𝜆*  

𝑔𝑟𝑜𝑢𝑝	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	𝑛^ = 1.47, 𝑓𝑜𝑟	𝑜𝑝𝑡𝑖𝑐𝑎𝑙	𝑓𝑖𝑏𝑒𝑟 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑜𝑓	𝑙𝑖𝑔ℎ𝑡	𝑤𝑖𝑡ℎ𝑖𝑛	𝑓𝑖𝑏𝑒𝑟	𝑣 =
𝑐
𝑛^
 

𝛥𝜆 = uv

wx
= yz

{|
− yz

{v
= yzw{

{v
      

𝜆*

𝛥𝐿 =
𝑣 𝛥𝑓
𝑓*  

(𝑣 /𝑓)*

𝛥𝐿 =
𝑣 𝛥𝑓
𝑓*  

𝛥𝐿 =
𝑣
𝛥𝑓 

The derivation can be summarized in three very useful 

equations: 

𝐹𝑟𝑒𝑒	𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙	𝑅𝑎𝑛𝑔𝑒	𝐹𝑆𝑅 = 𝛥𝑓 =
𝑣
𝛥𝐿 = 𝑣

𝛥𝜆
𝜆* 

𝛥𝜆 = 𝑣
𝛥𝑓
𝑓* 	 

𝛥𝐿 =
𝑣
𝛥𝑓 

The equations above allows one to obtain the path length 

difference from the free spectral range of the interference 

fringes and the velocity of light in optical fiber.  

 The test setup to obtain interference fringes is very 

similar to how the linewidth test was setup in Section 3.2 
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of Chapter 3 except that these Mach-Zehnder type 

interferometers had to be made with much smaller path 

length differences then was presented in the off the shelf 

module that was used for the linewidth tests which had a 

3.5	𝜇𝑠 delay. Because there was no off the shelf module 

available for path length differences which would 

successfully be able to test the relatively short path 

length difference as indicated by the range of coherence 

lengths as shown in Appendix A, the interferometers with 

these path length differences were made. 

 Two 1x2 couplers (Thorlabs TW1550R5A1) with a 

theoretical splitting ratio of 50/50 (50% one arm and 50% 

on the other) were used. These couplers had a bandwidth of 

1550 nm ± 100 nm, which was perfect for the output 

wavelength range of this laser of 1522.13 nm to 1566.18 nm.  

With FC APC male connectors already available on the inputs 

and outputs of the couplers, interchanging lengths in 

between them was simply done using FC APC male to male 

adapters. The couplers and the adapters in the test layout 

can be found in Figure 4-6. 
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Figure 4-6 - Homemade Mach-Zehnder interferometer allowing 
for interchangeable lengths. 
 

A polarization controller was also made to be able to 

plug into the homemade interferometer. Although light waves 

are able to vibrate in multiple planes, a polarization 

controller allows one to tune light waves to vibrate in one 

plane, which is preferable for consistency in test. The 

light directly output by the laser is polarized; however, 

the optical fiber is birefringent which alters the 

polarization. In order to try and reach maximum 

polarization, but more importantly, avoid destructive 

polarization differences when the two lights combine at the 

end of the interferometer with the second coupler, a 

polarization controller was made with a cardboard 

backplane. The dimensions and number of rotations were 

based off a 2 paddle polarization controller. This homemade 

polarization controller can be found in Figure 4-7. 
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Figure 4-7 - Homemade two paddle polarization controller.                   
 
4.2 Interference Fringe Test 
 

With a basic theoretical background and a method of 

capturing path length difference determined, the 

experimental setup to capture the interference fringes of 

swept wavelengths across the wavelength range able to be 

output by the Insight laser at different path length 

differences was begun. 

The laser is connected to the homemade interferometer 

shown in Figure 4-7 and a variable path length difference 

is inserted into the interferometer. The output of the 

interferometer is plugged into an off the shelf 

photodetector (Insight BPD-1). The output of that 

photodetector is then plugged into an oscilloscope 

(Tektronix TDS 784A or the 5105 LABVIEW oscilloscope setup) 

so that the interference fringes can be seen. A visual 
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representation of the experimental setup for the 

interference fringe characterization of the Insight laser 

can be seen in Figure 4-8. 

 
Figure 4-8 - Time domain interference fringe test setup. 
 

Using the interference fringe test setup as seen in 

Figure 4-8, 9 different path length differences were 

inserted. This ranged from very small ruler measured path 

length differences of < 1 cm (no observable measurable path 

length difference) to relatively larger ruler measured path 

length differences such as 187.5 cm. Figure 4-9 shows the 

interference fringes for a ruler measured path length 

difference of < 1 cm across the time scale for the laser to 

perform approximately 3 sweeps on the LABVIEW oscilloscope 

via use of a 5105 PCI Digitizer ADC and a 5105 Acquisition 

program. As can be observed by utilizing Waveform Graph 2 

of the program, the time from 1523.13 nm to 1566.18 nm is 

around 60	𝜇𝑠.  
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Figure 4-9 - Interference fringes as seen on 5105 
Acquisition program across a time scale of around 3 laser 
sweeps for a ruler measured path length difference of < 1 
cm. 
 

Scaled to a much smaller time scale so that the 

interference fringe frequency is more visible for all of 

the path length differences, and utilizing the high 

bandwidth Tektronix oscilloscope rather than the 5105 setup 

due to its limited bandwidth capabilities, please refer to 

Appendix C for the results of this experiment in tabular 

format. Figure 4-10 highlights the format in which the data 

was taken for example purpose for a ruler measured path 

length difference 𝛥𝐿 of < 1 cm.  
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𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 =	< 1	𝑐𝑚	
𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 200	𝑛𝑠/𝑑𝑖𝑣	

Figure 4-10 - Example of experimental data taken for ruler 
measured path length difference of < 1 cm in time domain 
interference fringe test.  
  

With the time domain of the output of this experiment 

captured, in order to capture the frequency of these 

interference fringes 𝑓�, a spectrum analyzer was utilized. 

This would not only allow one to capture the frequency of 

the interference fringes, but it would also allow one to 

observe the entire frequency spectrum and any harmonics 

that may present themselves. In order to do a frequency 

domain analysis, the output of the photodetector as seen in 

Figure 4-8 was connected to an off the shelf spectrum 

analyzer (Agilent Technologies N9000A). This frequency 

domain test setup can be seen in Figure 4-11. 
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Figure 4-11 - Frequency domain interference fringe test 
setup. 
  

The frequency domain test was done for all of the 

ruler measured path length differences that were tested in 

the time domain with the oscilloscope. The frequency at 

which there was peak power was recorded as the frequency of 

the interference fringe. Please refer to Appendix D for the 

results of this experiment in tabular format. Figure 4-12 

highlights the format in which the data was taken for 

example purpose for a ruler measured path length difference 

𝛥𝐿 of < 1 cm. 

 

 



	

	 69 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 =	< 1	𝑐𝑚 
𝑓� = 3.25	𝑀𝐻𝑧 

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 100	𝑀𝐻𝑧 

Figure 4-12 - Example of experimental data taken for ruler 
measured path length difference of < 1 cm in frequency 
domain interference fringe test.  
 
4.3 Interference Fringe Test Calibration Method 

 With the equations necessary to find path length 

difference from the free spectral range 𝛥𝑓 or 𝛥𝜆 from 

Section 4.1, and the interference fringe time domain and 

frequency domain characteristics obtained from section 4.2, 

the next logical step would be to calculate exactly what 

path length differences are indicated by the interference 

fringes obtained and to see how well that lines up with the 

ruler measured path length differences.  

In order to do this, the frequency of the interference 

fringes 𝑓� must be associated with 𝛥𝑓 or 𝛥𝜆. This can be 

done a variety of ways including correlating the wavelength 

range of the sweep with the time it takes for one sweep, 

and calculating what sweep wavelength difference (or 

frequency difference) is correlated with a period of the 
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interference fringes. Another way, similar to a sort of 

calibration, is to take a known value of 𝛥𝜆 from an already 

tested interferometer and find the 𝑓� correlated with it. 

Because the time it takes for each laser sweep is constant, 

knowing how 𝛥𝜆 and 𝑓� relate for one case will allow one to 

calculate the 𝛥𝜆 of the rest of the cases, if given just 𝑓� 

of the other cases, by taking proportions. 

 Because there was an interferometer with a known 𝛥𝜆 of 

100 pm available, the second calibration method was chosen. 

The output of the laser was connected to the input of the 

calibration interferometer, and the output of the 

interferometer was then connected to both the oscilloscope 

and spectrum analyzer. The output of the calibration 

interferometer with a 𝛥𝜆 of 100 pm in the time domain is 

shown in Figure 4-13, and the frequency domain of the same 

is shown in Figure 4-14. 
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Figure 4-13 - Time domain output of calibration 
interferometer with known 100 pm 𝛥𝜆. 
 

 
Figure 4-14 - Frequency domain output of calibration 
interferometer with known 100 pm 𝛥𝜆. 
 
Utilizing both Figure 4-13 and Figure 4-14, the frequency 

of the interference fringes 𝑓� is found to be 7.25 MHz. 

Further, with the known 100 pm 𝛥𝜆, the path length 
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difference that correlates with an 𝑓� of 7.25 MHz can be 

found mathematically as follows:  

𝛥𝜆=100pm 

𝛥𝑓 = (2.04𝑥10W𝑚/𝑠) 	∗ 	 [
100𝑝𝑚

(1545𝑛𝑚)*] 

𝛥𝑓 = 8.546	𝐺𝐻𝑧	 

𝛥𝐿 =
2.04𝑥10W𝑚/𝑠
(8.546𝐺𝐻𝑧)  

𝛥𝐿 = 2.4	𝑐𝑚 

This allows one to correlate a 𝛥𝐿 of 2.4 cm with a 𝑓� of 

7.25 MHz, and also allows one to be able to find an unknown 

path length difference if provided a known 𝑓� for the sweep 

settings of the laser used in this chapter as follows: 

7.25𝑀𝐻𝑧
2.4𝑐𝑚 =

𝑓�
𝛥𝐿 

𝛥𝐿	 = 	𝑓� ∗
2.4𝑐𝑚
7.25𝑀𝐻 ! 

4.4 Interference Fringe Test Results and Analysis 

 With a method of finding path length difference 𝛥𝐿 from 

interference fringe frequencies 𝑓� as found in Section 4.3, 

the interference fringe frequencies captured in Appendix D 

were utilized to calculate experimental path length 

differences and were compared with the ruler measured path 

length differences.  
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As seen in Appendix D, for a ruler measured 𝛥𝐿 of < 1 

cm, there is a 𝑓� of 3.25 MHz. Thus the experimental 𝛥𝐿 can 

be found mathematically as follows according to Section 

4.3: 

𝛥𝐿	 = 	𝑓� ∗
2.4𝑐𝑚

7.25𝑀𝐻𝑧 

𝛥𝐿	 = 	 (3.25	𝑀𝐻𝑧) ∗
2.4𝑐𝑚

7.25𝑀𝐻𝑧 

𝛥𝐿	 = 1.075	𝑐𝑚  

This was done for all of the ruler measured path length 

differences and the comparison between the ruler measured 𝛥𝐿 

and experimental 𝛥𝐿 (found from 𝑓�) can be seen in Table 7.  

Table 7 - Comparison of ruler measured 𝛥𝑳 and experimental 
𝛥𝑳 (calculated from interference fringes frequency) for 
various path lengths.  

Ruler Measured 𝛥𝐿 Experimental 𝛥𝐿 

< 1	𝑐𝑚 1.075	𝑐𝑚 

 ≈ 1	𝑐𝑚 3.145	𝑐𝑚 

≈ 11.5	𝑐𝑚 17.66	𝑐𝑚 

≈ 22.5	𝑐𝑚 36.4	𝑐𝑚 

≈ 34	𝑐𝑚 54.8	𝑐𝑚 

≈ 56.5	𝑐𝑚 87.7	𝑐𝑚 

≈ 119	𝑐𝑚 191.3	𝑐𝑚 

≈ 130.5	𝑐𝑚 209.7	𝑐𝑚 

≈ 187.5	𝑐𝑚 𝑁/𝐴 
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Initial observations of Table 7 between the ruler 

measured and experimental path length differences show a 

large discrepancy between them that seems to get larger as 

the path length difference is increased. In order to get a 

visual of how the ruler measured 𝛥𝐿 and the experimental 𝛥𝐿 

vary, they were both plotted. For the value of < 1 cm, a 

value of 0 was used for this purpose. This graph can be 

found in Figure 4-15.  

 
Figure 4-15 - Comparison of ruler measured 𝛥𝑳 and 
experimental 𝛥𝑳 for various path length measurements. 
 
Although many more data points would have to be taken to 

speak with confidence, there seems to be an exponential 

increase in the error between the ruler measured and 

experimental path length differences as can be seen in the 

spacing between the two for each of the measurements as 

seen in Figure 4-15. Perhaps with more data points, the 
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mathematical model can be derived for the error and can be 

compensated so that the experimental and ruler measured 

match up together closer for a more accurate ranging.  

 Moving on to more about coherence time and coherence 

length, and how they hold up with the data that was found 

in Section 4.3, the max path length difference in which a 

frequency was discernible from the noise for this 

experiments was at a ruler measured 𝛥𝐿 of 130.5 cm. With the 

max coherence length found to be 129.92 cm found in 

Appendix A, 130.5 cm is a fraction of a cm longer than the 

max coherence length found from the linewidth test in 

Chapter 3. Though it must be stated that although the 

frequency is discernible in the spectrum analyzer, it is by 

such a slight amount that the opposite can be argued. Not 

to mention the fact that the time domain interference 

fringes is almost completely destructive such that one 

would have to look at the frequency domain to obtain a 

frequency for it. It is fair to say that at 130.5 cm, the 

coherence is being stretched. Nonetheless, there is also a 

possibility there may be a maximum coherence length 

(minimum linewidth) that was not seen in the specific 

wavelengths tested across the range of theoretically 

infinite wavelengths. The interference fringes for the path 

length difference of 130.5 cm can be seen in time domain 
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with the oscilloscope in Figure 4-16 and in frequency 

domain with the spectrum analyzer in Figure 4-17.  

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 130.5	𝑐𝑚 
𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 12.5	𝑛𝑠/𝑑𝑖𝑣 

Figure 4-16 - Barely discernible interference fringes at a 
ruler measured path length difference of 130.5 cm. 
 

 
 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 130.5	𝑐𝑚	
𝑓� = 633.57	𝑀𝐻𝑧	

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 1	𝐺𝐻𝑧	

Figure 4-17 - Barely discernible frequency of interference 
fringes at a ruler measured path length difference of 130.5 
cm.  

 
In the larger 𝛥𝐿 of 187.5 cm that was also tested, 

there was neither a discernible waveform in the time domain 

as seen in Figure 4-18 nor a discernible frequency peak 

above the noise floor as seen in Figure 4-19. As such, the 
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𝑓� is labeled as N/A and an experimental path length 

difference cannot be calculated for this case.   

 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 187.5	𝑐𝑚 
𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 12.5	𝑛𝑠/𝑑𝑖𝑣 

Figure 4-18 - Indiscernible interference fringes at a ruler 
measured path length difference of 187.5 cm. 
 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 187.5	𝑐𝑚	
𝑓� = 𝑁/𝐴	

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 1	𝐺𝐻𝑧	

Figure 4-19 - Indiscernible frequency of interference 
fringes at a ruler measured path length difference of 187.5 
cm.  
 
Given that a path length difference of 187.5 cm is 

approximately 57.5 cm longer than the maximum calculated 

coherence length of 129.92 cm, it is understandable that 

there is no discernable frequency.  
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Chapter 5. Conclusions 

 The Insight VT-DBR Akinetic laser source has been 

characterized for ranging performance through both a 

linewidth experiment and ranging experiments using 

interference fringes. Conclusions on the experiments, 

possible applications, and future work are presented. The 

purpose of this study was to investigate into the 

feasibility of using this laser for ranging purposes 

similar to how the FMCW method works for radar in order to 

combine the benefits of both a lidar and radar into one 

FMCW lidar sensor. The overall goals of such a sensor are 

outlined in Table 8. 
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Table 8 - Goals of the FMCW Lidar sensor within various 
parameters.  

Parameter Goal Value Comments 
Range/Sensitivity 100 m Should be 

able to sense 
something 
like a stop 
sign at 100 m 
with adequate 
signal to 
noise ratio. 

Distance 
Resolution 

10 cm  N/A 

Time to take a 
single data 
point. 

2	𝜇𝑠 Corresponds 
to taking 500 
kSamples/s  

Security of 
system against 
other lidars. 

TBD Must be able 
to work in an 
environment 
with many 
simultaneous 
LIDARs in 
operation, 
with little 
interference. 

Security against 
intentional 
jamming. 

TBD Must still 
work even 
with 
intentional 
laser jamming 
signal. 

Cost TBD  Minimal part 
of autonomous 
system cost 

Eye Safety IEC Class 1 Class 1 
lasers are 
very low risk 
and “safe 
under 
reasonably 
foreseeable 
use” [14].  

 
5.1 Insight Laser Linewidth 

 In summary of the laser linewidth characterization 

performed in Chapter 3, the Insight VT-DBR akinetic laser 

was put through a linewidth test in which the purpose was 
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to find the magnitude and variation of linewidths across 

its sweep range of 1522.13 to 1566.18 nm. This was done to 

investigate where there may be lower linewidths across the 

sweep range of the laser and what causes then. In order to 

capture linewidths of the laser, the laser was placed into 

fixed wavelength mode to output across the range in integer 

wavelengths of 1523 nm to 1566 nm in steps of 1 nm. The 

linewidth at these wavelengths were extracted using the 

Delayed Self-Homodyne technique using a Mach-Zehnder 

Interferometer. The largest linewidth captured was 300 MHz 

at a fixed wavelength laser output of 1562 nm while the 

smallest linewidth was captured to be 50 MHz found at fixed 

wavelength laser outputs of 1523, 1525, 1539, 1545, and 

1546 nm. With the linewidths obtained across the range of 

the laser, the laser pump currents at these different 

wavelengths were investigated in order to find a 

correlation between the laser currents and the linewidth.  

It was found that there was not a simple correlation 

or obvious correlation as would be hoped between the laser 

currents and the linewidth. However, there seems to be a 

loose correlation, but a correlation nonetheless, between 

the where one is in the wavelength range able to be output, 

the currents at those wavelengths, and low linewidth. 

Across the range of 1523 to 1566 nm, this experiment found 
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a somewhat linear, albeit low correlation, area of low 

linewidths depending on the front mirror and back mirror 

currents. It is suggested that the front mirror and back 

mirror currents must both be within their respective area 

of low linewidths for the overall laser to have a low 

linewidth. The front mirror currents of low linewidths vs 

high linewidths are shown in Figure 5-1 while the same 

except for back mirror currents is shown in Figure 5-2. 

 

 

Figure 5-1 - Low linewidth front mirror (trough fm) and 
high linewidth front mirror (peak fm) currents plotted on 
same graph to highlight deviation of high linewidth 
currents from proposed trend of low linewidth currents. 
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Figure 5-2 - Low linewidth back mirror (trough bm) and high 
linewidth back mirror (peak bm) currents plotted on same 
graph to highlight deviation of high linewidth currents 
from proposed trend of low linewidth currents. 
 

Furthermore, as a precursor to the interference fringe 

experiment and to gain an understanding of the possible 

range of the laser in terms of ranging, coherence numbers 

were also calculated utilizing the linewidths captured with 

the minimum coherence time and coherence length of 1.061 ns 

and 21.65 cm respectively at the maximum linewidth found of 

300 MHz, and with the maximum coherence time and coherence 

length of 6.366 ns and 129.92 cm respectively at the 

minimum linewidth found of 50 MHz. This is far from the 

goal range/sensitivity of 100 m as was outlined in Table 1 

of Section 1.3 in Chapter 1. The linewidth required for 100 

m within optical fiber requires a much narrower linewidth 

of 649.6 kHz. The linewidth of the laser needs to be 
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reduced by approximately 100 times to meet the 100 m goal 

outlined in Table 8.    

5.2 Ranging with Insight Laser 

 In summary of the ranging with interference fringes 

experiment in Chapter 4, the Insight VT-DBR akinetic laser 

was put through a series of ranging tests with different 

path length differences of an interferometer in order to 

obtain interference fringes from which path length can be 

calculated. This was done to investigate the coherence 

lengths as was proposed by the linewidth experiment in 

Chapter 3, but was also to get an initial idea of how well 

the laser may work in terms of ranging. In order to capture 

the interference fringes of varying lengths, the laser was 

placed into swept wavelength mode across the the range of 

1522.13 to 1566.18 nm. The interference fringes were 

extracted using a homemade Mach-Zehnder interferometer with 

interchangeable path length differences around the 

coherence length of the laser as was found in Chapter 4. 

The largest path length difference in this experiment in 

which a frequency of the interference fringes was 

discernible in the frequency spectrum was at a ruler 

measured path length difference of 130.5 cm which is very 

close to the max coherence length found in the linewidth 

experiment of 129.92 cm.  
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It was found that the interference fringes in this 

experiment was not very accurate in terms of larger path 

length differences. At a small ruler measured path length 

difference of < 1 cm (no observable measurable path length 

difference), the interference fringes indicated an 

experimental path length difference of 1.075 cm which is 

approximately 1 cm off from the ruler measured. However, as 

the ruler measured path length difference increases, the 

difference between the ruler measured and experimental 

increased as well. For example, at a ruler measured path 

length difference of 130.5 cm, the interference fringes 

indicated an experimental path length difference of 209.7 

cm. This can be observed in Table 9, along with the rest of 

the path length differences tested.  

Table 9 - The increase in error as the ruler measured path 
length 𝛥𝑳 difference increases. 

Ruler Measured 𝛥𝐿 Experimental 𝛥𝐿 

< 1	𝑐𝑚 1.075	𝑐𝑚 

 ≈ 1	𝑐𝑚 3.145	𝑐𝑚 

≈ 11.5	𝑐𝑚 17.66	𝑐𝑚 

≈ 22.5	𝑐𝑚 36.4	𝑐𝑚 

≈ 34	𝑐𝑚 54.8	𝑐𝑚 

≈ 56.5	𝑐𝑚 87.7	𝑐𝑚 
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≈ 119	𝑐𝑚 191.3	𝑐𝑚 

≈ 130.5	𝑐𝑚 209.7	𝑐𝑚 

≈ 187.5	𝑐𝑚 𝑁/ "A 

 
 
A visual representation of the error between the ruler 

measured path lengths and experimental path lengths can be 

seen in Figure 5-3.  

 

 

Figure 5-3 - Difference between the ruler measured path 
length differences and experimental path length differences 
as the ruler measured path length difference increases from 
Measurement Number 1 to 9. 
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used to compensate for the error found in ranging via 

interference fringes, making it much more accurate. 

5.3. Future Work  

 This thesis was able to provide an initial 

investigation into the the possibility of the Insight VT-

DBR akinetic laser source used for ranging, and the laser 

shows promise. Nonetheless, there is still much 

investigation that needs to be done. 

 First, although the linewidth characterization done in 

Chapter 3 gives one an idea of how the linewidth varies 

over the laser sweep range in 1 nm increments, it would not 

be unwise to take even more data points. For example, 

although the linewidth experiment captured a minimum 

linewidth of 50 MHz, there may be another wavelength output 

that provides an even narrower linewidth located between 

the 1 nm increments. Theoretically, within the range of the 

laser of 1522.13 and 1566.18 there are an infinite number 

of points that can be taken. As such, in order to make the 

data taking simpler on the user and more efficient, one 

might look into the possibility of implementing an 

automated system, whether it be by LabVIEW or another 

program. This would allow one to set up the delayed self-

homodyne test and simply plug in the laser to the input of 

the test set up and take the output of the test setup into 
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a spectrum analyzer, and step through a smaller increment 

of waveforms to capture many more points in between the 

minimum and maximum wavelengths of the laser. Taking more 

linewidth data points and capturing the laser currents 

associated with these data points would allow a user to 

further define the range of the currents across the sweep 

that lead to good linewidths as was attempted in Chapter 3 

with fewer linewidths.  

Further work regarding linewidth, would be to find a 

method by which one can minimize the linewidth of the 

laser. With the current linewidths of the laser, the 

maximum coherence length is around 130 cm. In order for 

this sensor to be applicable to most systems, a range of 

100 meters would be ideal. Beginning with the areas of 

lower linewidth to maximize effectiveness, one may want to 

implement a system similar to a phase-locked loop to 

minimize phase jumps thus allowing the linewidth to be 

narrower and the coherence length to be longer. 

Second, although the interference fringe ranging test 

done in Chapter 4 was an initial investigation and was able 

to provide an idea of how the tunable laser would measure 

distance, there is much more that needs to be added on to 

this experiment to confidently come to the conclusion that 
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this laser would be successful in real world ranging 

applications.  

The first area that needs to be investigated for 

ranging is to find out why the path length difference 

indicated by the interference fringes is not accurate to 

the ruler measured path length difference and how it can be 

fixed. What would really help in this aspect is also to 

take more data points to investigate if there is a 

mathematical relationship of the errors between the ruler 

measured and experimental. An off the shelf variable length 

interferometer would be extremely helpful in this case due 

to the fact that in the interferometer made in Chapter 4, 

one would have to be extremely careful with lengths due to 

the unpredictable lengths inherent in the process of fusion 

splicing, not to mention that it takes a very long time to 

make the variable lengths to be inserted into the 

interferometer of Chapter 4. If a mathematical model of the 

error can be found, the errors can be removed for agreement 

between the ruler measured and experimental path length 

differences. 

The second area that needs to be done for ranging is 

for it to be done in air rather than in optical fiber as 

was the case in this thesis. Although for initial 

investigation optical fiber was used, the end goal is to 
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make this ranging possible in the open. This would bring in 

a variety of different factors into play such as 

scattering. 

The third area to be investigated is how well the 

laser is able to perform ranging when the object is moving. 

In this thesis, the experiments were done with a constant 

path length difference, but it is necessary to investigate 

how the laser performs with a changing path length 

difference and see if it can detect the rate of change. 

This would be followed by an in the open test (not in 

optical fiber) with a moving object and analysis of if the 

laser can not only detect the object and how far it is 

away, but also how fast the object is moving. This would 

being in a variety of different factors into play such as 

the Doppler Effect. 
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APPENDICES 
 

Appendix A. Captured Laser Linewidths 
 

Video BW = 300 Hz  
Resolution BW = 300 kHz  
𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 1	𝐺𝐻𝑧 

 

𝑤𝑙	 = 1523	𝑛𝑚	 
𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝜏\ = 6.366	𝑛𝑠 
𝐿\ = 	129.92	𝑐𝑚 
𝑓𝑚	 = 13016 
𝑏𝑚	 = 49647	 
𝑝ℎ𝑎𝑠𝑒	 = 11712 
𝑠𝑜𝑎	 = 	14657 

 

𝑤𝑙	 = 1524	𝑛𝑚 
𝛥𝑣	 = 	85	𝑀𝐻𝑧	 
𝜏\ = 3.745	𝑛𝑠 
𝐿\ = 	76.43	𝑐𝑚 
𝑓𝑚	 = 8689 
#𝑚	 = 35317	 

𝑝ℎ𝑎𝑠𝑒	 = 10602 
𝑠𝑜𝑎	 = 	13899 

 

 

𝑤𝑙	 = 1525	𝑛𝑚 
𝛥𝑣	 = 50	𝑀𝐻𝑧	 
𝜏\ = 6.366	𝑛𝑠 
𝐿\ = 129.92	𝑐𝑚	 
𝑓𝑚	 = 4173 
𝑏𝑚	 = 22664	 
𝑝ℎ𝑎𝑠𝑒	 = 10276 
𝑠𝑜𝑎	 = 	13119 
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𝑤𝑙	 = 1526	𝑛𝑚 
𝛥𝑣	 = 	100	𝑀𝐻𝑧	 
𝜏\ = 3.183	𝑛𝑠 
𝐿\ = 	64.96	𝑐𝑚 
$𝑚	 = 43725 
𝑏𝑚	 = 15396	 
𝑝ℎ𝑎𝑠𝑒	 = 15538 
𝑠𝑜𝑎	 = 	13821 

 

 

𝑤𝑙	 = 1527	𝑛𝑚 
𝛥𝑣	 = 	130	𝑀𝐻𝑧	 
𝜏\ = 2.449	𝑛𝑠 
𝐿\ = 	49.98	𝑐𝑚 
𝑓𝑚	 = 32425 
𝑏𝑚	 = 8872	 

𝑝ℎ𝑎𝑠𝑒	 = 14129 
𝑠𝑜𝑎	 = 13233	 

 

 

𝑤𝑙	 = 1528	𝑛𝑚 
𝛥𝑣	 = 125	𝑀𝐻𝑧	 
𝜏\ = 2.546	𝑛𝑠 
𝐿\ = 51.96	𝑐𝑚	 
𝑓𝑚	 = 22274 
𝑏𝑚	 = 4265	 

𝑝ℎ𝑎𝑠𝑒	 = 13441 
𝑠𝑜𝑎	 = 12667	 
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𝑤𝑙	 = 1529	𝑛𝑚 
𝛥𝑣	 = 	75	𝑀𝐻𝑧 
	𝜏\ = 4.244	𝑛𝑠 
𝐿\ = 86.61	𝑐𝑚 
𝑓𝑚	 = 14717 
𝑏𝑚	 = 39474	 
𝑝ℎ𝑎𝑠𝑒	 = 8864 
𝑠𝑜𝑎	 = 12563	 

 

 

𝑤𝑙	 = 1530	𝑛𝑚 
𝛥𝑣	 = 	100	𝑀𝐻𝑧 
𝜏\ = 3.183	𝑛𝑠 
𝐿\ = 	64.96	𝑐𝑚 
𝑓𝑚	 = 9395 
𝑏𝑚	 = 	27618 
𝑝ℎ𝑎𝑠𝑒	 = 7264 
𝑠𝑜𝑎	 = 	12136 

 

 

𝑤𝑙	 = 1531	𝑛𝑚 
𝛥𝑣	 = 100	𝑀𝐻𝑧	 
𝜏\ = 3.183	𝑛𝑠 
𝐿\ = 	64.96	𝑐𝑚 
𝑓𝑚	 = 4898 
𝑏𝑚	 = 17744	 
𝑝ℎ𝑎𝑠𝑒	 = 6899 
𝑠𝑜𝑎	 = 	11696 
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𝑤𝑙	 = 1532	𝑛𝑚 
𝛥𝑣	 = 140	𝑀𝐻𝑧	 
𝜏\ = 2.274	𝑛𝑠 
𝐿\ = 	46.41	𝑐𝑚 
𝑓𝑚	 = 	2022 
𝑏𝑚	 = 	11437 
𝑝ℎ𝑎𝑠𝑒	 = 5732 
𝑠𝑜𝑎	 = 	11264 

 

 

𝑤𝑙	 = 1533	𝑛𝑚 
𝛥𝑣	 = 115	𝑀𝐻𝑧	 
𝜏\ = 2.768	𝑛𝑠 
𝐿\ = 	56.49	𝑐𝑚 
𝑓𝑚	 = 33960 
𝑏𝑚	 = 	5780 

𝑝ℎ𝑎𝑠𝑒	 = 31581 
𝑠𝑜𝑎	 = 	12069 

 

 

𝑤𝑙	 = 1534	𝑛𝑚 
𝛥𝑣	 = 75	𝑀𝐻𝑧	 
𝜏\ = 4.244	𝑛𝑠 
𝐿\ = 86.61	𝑐𝑚	 
𝑓𝑚	 = 22116 
𝑏𝑚	 = 45904	 
𝑝ℎ𝑎𝑠𝑒	 = 7610 
𝑠𝑜𝑎	 = 11932	 
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𝑤𝑙	 = 1535	𝑛𝑚 
𝛥𝑣	 = 80	𝑀𝐻𝑧	 
𝜏\ = 3.979	𝑛𝑠 
𝐿\ = 81.2	𝑐𝑚	 
𝑓𝑚	 = 15742 
𝑏𝑚	 = 32907	 
𝑝ℎ𝑎𝑠𝑒	 = 46252 
𝑠𝑜𝑎	 = 11924	 

 

 

𝑤𝑙	 = 1536	𝑛𝑚 
𝛥𝑣	 = 80	𝑀𝐻𝑧	 
𝜏\ = 3.979	𝑛𝑠 
𝐿\ = 	81.2	𝑐𝑚 
𝑓𝑚	 = 9897 
𝑏𝑚	 = 21193	 
𝑝ℎ𝑎𝑠𝑒	 = 18251 
𝑠𝑜𝑎	 = 11359	 

 

 

𝑤𝑙	 = 1537	𝑛𝑚 
𝛥𝑣	 = 150	𝑀𝐻𝑧	 
𝜏\ = 2.122	𝑛𝑠 
𝐿\ = 43.31	𝑐𝑚	 
𝑓𝑚	 = 6108 
𝑏𝑚	 = 14066	 
𝑝ℎ𝑎𝑠𝑒	 = 14583 
𝑠𝑜𝑎	 = 10958	 
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𝑤𝑙	 = 1538	𝑛𝑚 
𝛥𝑣	 = 125	𝑀𝐻𝑧	 
𝜏\ = 2.546	𝑛𝑠 
𝐿\ = 51.96	𝑐𝑚	 
𝑓𝑚	 = 2299 
𝑏𝑚	 = 7220	 

𝑝ℎ𝑎𝑠𝑒	 = 15071 
𝑠𝑜𝑎	 = 10569	 

 

 

𝑤𝑙	 = 1539	𝑛𝑚 
𝛥𝑣	 = 50	𝑀𝐻𝑧	 
𝜏\ = 6.366	𝑛𝑠 
𝐿\ = 129.92	𝑐𝑚	 
𝑓𝑚	 = 34746 
𝑏𝑚	 = 53504	 
𝑝ℎ𝑎𝑠𝑒	 = 16493 
𝑠𝑜𝑎	 = 11849 

 

 

𝑤𝑙	 = 1540	𝑛𝑚 
𝛥𝑣	 = 55	𝑀𝐻𝑧	 
𝜏\ = 5.787	𝑛𝑠 
𝐿\ = 	118.1	𝑐𝑚 
𝑓𝑚	 = 25850 
𝑏𝑚	 = 39301	 
𝑝ℎ𝑎𝑠𝑒	 = 14324 
𝑠𝑜𝑎	 = 11456	 
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𝑤𝑙	 = 1541	𝑛𝑚 
𝛥𝑣	 = 	80	𝑀𝐻𝑧	 
𝜏\ = 3.979	𝑛𝑠 
𝐿\ = 	81.2	𝑐𝑚 
𝑓𝑚	 = 17602 
𝑏𝑚	 = 26305	 
𝑝ℎ𝑎𝑠𝑒	 = 14758 
𝑠𝑜𝑎	 = 11035	 

 

 

𝑤𝑙	 = 1542	𝑛𝑚 
𝛥𝑣	 = 90	𝑀𝐻𝑧	 
𝜏\ = 3.537	𝑛𝑠 
𝐿\ = 72.18	𝑐𝑚	 
𝑓𝑚	 = 11316 
𝑏𝑚	 = 17043	 
𝑝ℎ𝑎𝑠𝑒	 = 14503 
𝑠𝑜𝑎	 = 10686	 

 

 

 

𝑤𝑙	 = 1543	𝑛𝑚 
𝛥𝑣	 = 115	𝑀𝐻𝑧	 
𝜏\ = 2.768	𝑛𝑠 
𝐿\ = 56.49	𝑐𝑚	 
𝑓𝑚	 = 6339 
𝑏𝑚	 = 9848	 

𝑝ℎ𝑎𝑠𝑒	 = 11499 
𝑠𝑜𝑎	 = 10282	 
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𝑤𝑙	 = 1544	𝑛𝑚 
𝛥𝑣	 = 140	𝑀𝐻𝑧	 
𝜏\ = 2.274	𝑛𝑠 
𝐿\ = 	46.41	𝑐𝑚 
𝑓𝑚	 = 2834 
𝑏𝑚	 = 4711	 

𝑝ℎ𝑎𝑠𝑒	 = 10339 
𝑠𝑜𝑎	 = 9849	 

 

 

𝑤𝑙	 = 1545	𝑛𝑚 
𝛥𝑣	 = 50	𝑀𝐻𝑧	 
𝜏\ = 6.366	𝑛𝑠 
𝐿\ = 129.92	𝑐𝑚	 
𝑓𝑚	 = 39503 
𝑏𝑚	 = 46982	 
𝑝ℎ𝑎𝑠𝑒	 = 12729 
𝑠𝑜𝑎	 = 11218	 

 

 

𝑤𝑙	 = 1546	𝑛𝑚 
𝛥𝑣	 = 50	𝑀𝐻𝑧	 
𝜏\ = 6.366	𝑛𝑠 
𝐿\ = 129.92	𝑐𝑚	 
𝑓𝑚	 = 27048 
𝑏𝑚	 = 31647	 
𝑝ℎ𝑎𝑠𝑒	 = 13278 
𝑠𝑜𝑎	 = 10796	 
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𝑤𝑙	 = 1547	𝑛𝑚 
𝛥𝑣	 = 	80	𝑀𝐻𝑧	 
𝜏\ = 3.979	𝑛𝑠 
𝐿\ = 81.2	𝑐𝑚	 
𝑓𝑚	 = 19605 
𝑏𝑚	 = 22286	 
𝑝ℎ𝑎 %𝑒	 = 29276 
𝑠𝑜𝑎	 = 10577	 

 

 

𝑤𝑙	 = 1548	𝑛𝑚 
𝛥𝑣	 = 100	𝑀𝐻𝑧	 
𝜏\ = 3.183	𝑛𝑠 
𝐿\ = 	64.96	𝑐𝑚 
𝑓𝑚	 = 11883 
𝑏𝑚	 = 13593	 
𝑝ℎ𝑎𝑠𝑒	 = 31370 
𝑠𝑜𝑎	 = 10600	 

 

 

𝑤𝑙	 = 1549	𝑛𝑚 
𝛥𝑣	 = 145	𝑀𝐻𝑧	 
𝜏\ = 2.195	𝑛𝑠 
𝐿\ = 44.8	𝑐𝑚	 
𝑓𝑚	 = 7220 
𝑏𝑚	 = 7629	 

𝑝ℎ𝑎𝑠𝑒	 = 31801 
𝑠𝑜𝑎	 = 10086	 
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𝑤𝑙	 = 1550	𝑛𝑚 
𝛥𝑣	 = 145	𝑀𝐻𝑧	 
𝜏\ = 2.195	𝑛𝑠 
𝐿\ = 44.8	𝑐𝑚	 
𝑓𝑚	 = 3377 
𝑏𝑚	 = 3213	 

𝑝ℎ𝑎𝑠𝑒	 = 29276 
𝑠𝑜𝑎	 = 10050	 

 

 

𝑤𝑙	 = 1551	𝑛𝑚 
𝛥𝑣	 = 60	𝑀𝐻𝑧	 
𝜏\ = 5.305	𝑛𝑠 
𝐿\ = 	108.27	𝑐𝑚 
𝑓𝑚	 = 45088 
𝑏𝑚	 = 39538	 
𝑝ℎ𝑎𝑠𝑒	 = 9810 
𝑠𝑜𝑎	 = 10567	 

 

 

𝑤𝑙	 = 1552	𝑛𝑚 
𝛥𝑣	 = 80	𝑀𝐻𝑧	 
𝜏\ = 3.979	𝑛𝑠 
𝐿\ = 81.2	𝑐𝑚	 
𝑓𝑚	 = 33830 
𝑏𝑚	 = 28172	 
𝑝ℎ𝑎𝑠𝑒	 = 56822 
𝑠𝑜𝑎	 = 10443	 
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𝑤𝑙	 = 1553	𝑛𝑚 
𝛥𝑣	 = 100	𝑀𝐻𝑧	 
𝜏\ = 3.183	𝑛𝑠 
𝐿\ = 64.96	𝑐𝑚	 
𝑓𝑚	 = 23726 
𝑏𝑚	 = 18353	 
𝑝ℎ𝑎𝑠𝑒	 = 8944 
𝑠𝑜𝑎	 = 9608	 

 

 

𝑤𝑙	 = 1554	𝑛𝑚 
𝛥𝑣	 = 115	𝑀𝐻𝑧	 
𝜏\ = 2.768	𝑛𝑠 
𝐿\ = 	56.49	𝑐𝑚 
𝑓𝑚	 = 15857 
𝑏𝑚	 = 11153	 
𝑝ℎ𝑎𝑠𝑒	 = 9362 
𝑠𝑜𝑎	 = 9316	 

 

 

𝑤𝑙	 = 1555	𝑛𝑚 
𝛥𝑣	 = 110	𝑀𝐻𝑧	 
𝜏\ = 2.894	𝑛𝑠 
𝐿\ = 	59.06	𝑐𝑚 
𝑓𝑚	 = 8605 
𝑏𝑚	 = 5001	 

𝑝ℎ𝑎𝑠𝑒	 = 11165 
𝑠𝑜𝑎	 = 8910	 
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𝑤𝑙	 = 1557	𝑛𝑚 
𝛥𝑣	 = 65	𝑀𝐻𝑧	 
𝜏\ = 4.897	𝑛𝑠 
𝐿\ = 99.94	𝑐𝑚	 
𝑓𝑚	 = 52534 
𝑏𝑚	 = 35049	 
𝑝ℎ𝑎𝑠𝑒	 = 16698 
𝑠𝑜𝑎	 = 10696	 

 

 

𝑤𝑙	 = 1558	𝑛𝑚 
𝛥𝑣	 = 95	𝑀𝐻𝑧	 
𝜏\ = 3.351	𝑛𝑠 
𝐿\ = 	68.39	𝑐𝑚 
𝑓𝑚	 = 38973 
𝑏𝑚	 = 24404	 
𝑝ℎ𝑎𝑠𝑒	 = 16472 
𝑠𝑜𝑎	 = 10277	 

 

 

𝑤𝑙	 = 1559	𝑛𝑚 
𝛥𝑣	 = 95	𝑀𝐻𝑧	 
𝜏\ = 3.351	𝑛𝑠 
𝐿\ = 68.39	𝑐𝑚	 
𝑓𝑚	 = 27077 
𝑏𝑚	 = 15359	 
𝑝ℎ𝑎𝑠𝑒	 = 21790 
𝑠𝑜𝑎	 = 9822	 
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𝑤𝑙	 = 1560	𝑛𝑚 
𝛥𝑣	 = 95	𝑀𝐻𝑧	 
𝜏\ = 3.351	𝑛𝑠 
𝐿\ = 68.39	𝑐𝑚	 
𝑓𝑚	 = 17764 
𝑏𝑚	 = 8494	 

𝑝ℎ𝑎𝑠𝑒	 = 28083 
𝑠𝑜𝑎	 = 9495	 

 

 

𝑤𝑙	 = 1562	𝑛𝑚 
𝛥𝑣	 = 300	𝑀𝐻𝑧	 
𝜏\ = 1.061	𝑛𝑠 
𝐿\ = 	21.65	𝑐𝑚 
𝑓𝑚	 = 6572 
𝑏𝑚	 = 47277	 
𝑝ℎ𝑎𝑠𝑒	 = 11626 
𝑠𝑜𝑎	 = 9787	 

 

 

𝑤𝑙	 = 1563	𝑛𝑚 
𝛥𝑣	 = 290	𝑀𝐻𝑧	 
𝜏\ = 1.098	𝑛𝑠 
𝐿\ = 	22.41	𝑐𝑚 
𝑓𝑚	 = 2715 
𝑏𝑚	 = 31196	 
𝑝ℎ𝑎𝑠𝑒	 = 15063 
𝑠𝑜𝑎	 = 9736	 
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𝑤𝑙	 = 1564	𝑛𝑚 
𝛥𝑣	 = 100	𝑀𝐻𝑧	 
𝜏\ = 3.183	𝑛𝑠 
𝐿\ = 64.96	𝑐𝑚	 
𝑓𝑚	 = 39771 
𝑏𝑚	 = 21950	 
𝑝ℎ𝑎𝑠𝑒	 = 19923 
𝑠𝑜𝑎	 = 10987	 

 

 

 

𝑤𝑙	 = 1565	𝑛𝑚 
𝛥𝑣	 = 125	𝑀𝐻𝑧	 
𝜏\ = 2.546	𝑛𝑠 
𝐿\ = 51.96	𝑐𝑚	 
𝑓𝑚	 = 29805 
𝑏𝑚	 = 13905	 
𝑝ℎ𝑎𝑠𝑒	 = 19948 
𝑠𝑜𝑎	 = 10630	 

 

 

𝑤𝑙	 = 1566	𝑛𝑚 
𝛥𝑣	 = 120	𝑀𝐻𝑧	 
𝜏\ = 2.653	𝑛𝑠 
𝐿\ = 54.14	𝑐𝑚	 
𝑓𝑚	 = 20252 
𝑏𝑚	 = 6830	 

𝑝ℎ𝑎𝑠𝑒	 = 21046 
𝑠𝑜𝑎	 = 10240	 
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Appendix B. Laser Lineshapes 
 

Laser 
Wavelength 

Experimental Laser 
Lineshape 

Lorentzian Laser 
Lineshape 

1523	𝑛𝑚 𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 160	𝑀𝐻𝑧 
𝛥𝑣*'() = 350	𝑀𝐻𝑧 
𝛥𝑣+'() = 700	𝑀𝐻𝑧 

𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 150	𝑀𝐻𝑧 
𝛥𝑣*'() = 497.5	𝑀𝐻𝑧 
𝛥𝑣+'() = 1580	𝑀𝐻𝑧 

1524	𝑛𝑚 𝛥𝑣	 = 85	𝑀𝐻𝑧 
𝛥𝑣&'() = 200	𝑀𝐻𝑧 
𝛥𝑣*'() = 400	𝑀𝐻𝑧 
𝛥𝑣+'() = 850	𝑀𝐻𝑧 

𝛥𝑣	 = 85	𝑀𝐻𝑧 
𝛥𝑣&'() = 255	𝑀𝐻𝑧 
𝛥𝑣*'() = 845.7	𝑀𝐻𝑧 
𝛥𝑣+'() = 2687	𝑀𝐻𝑧 

1525	𝑛𝑚 𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 169	𝑀𝐻𝑧 
𝛥𝑣*'() = 335	𝑀𝐻𝑧 
𝛥𝑣+'() = 600	𝑀𝐻𝑧 

𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 150	𝑀𝐻𝑧 
𝛥𝑣*'() = 497.5	𝑀𝐻𝑧 
𝛥𝑣+'() = 1580	𝑀𝐻𝑧 

1526	𝑛𝑚 𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 230	𝑀𝐻𝑧 
𝛥𝑣*'() = 470	𝑀𝐻𝑧 
𝛥𝑣+'() = 875	𝑀𝐻𝑧 

𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 300	𝑀𝐻𝑧 
𝛥𝑣*'() = 995	𝑀𝐻𝑧 
𝛥𝑣+'() = 3161	𝑀𝐻𝑧 

1527	𝑛𝑚 𝛥𝑣	 = 130	𝑀𝐻𝑧 
𝛥𝑣&'() = 250	𝑀𝐻𝑧 
𝛥𝑣*'() = 490	𝑀𝐻𝑧 
𝛥𝑣+'() = 870	𝑀𝐻𝑧 

𝛥𝑣	 = 130	𝑀𝐻𝑧 
𝛥𝑣&'() = 390	𝑀𝐻𝑧 

𝛥𝑣*'() = 1293.5	𝑀𝐻𝑧 
𝛥𝑣+'() = 4109	𝑀𝐻𝑧 

1528	𝑛𝑚 𝛥𝑣	 = 125	𝑀𝐻𝑧 
𝛥𝑣&'() = 250	𝑀𝐻𝑧 
𝛥𝑣*'() = 500	𝑀𝐻𝑧 
𝛥𝑣+'() = 850	𝑀𝐻𝑧 

𝛥𝑣	 = 125	𝑀𝐻𝑧 
𝛥𝑣&'() = 375	𝑀𝐻𝑧 

𝛥𝑣*'() = 1243.7	𝑀𝐻𝑧 
𝛥𝑣+'() = 3951	𝑀𝐻𝑧 

1529	𝑛𝑚 𝛥𝑣 = 75	𝑀𝐻𝑧 
𝛥𝑣&'() = 185	𝑀𝐻𝑧 
𝛥𝑣*'() = 380	𝑀𝐻𝑧 
𝛥𝑣+'() = 725	𝑀𝐻𝑧 

𝛥𝑣	 = 75	𝑀𝐻𝑧 
𝛥𝑣&'() = 225	𝑀𝐻𝑧 
𝛥𝑣*'() = 746	𝑀𝐻𝑧 
𝛥𝑣+'() = 2370.5	𝑀𝐻𝑧 

1530	𝑛𝑚 𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 200	𝑀𝐻𝑧 
𝛥𝑣*'() = 459	𝑀𝐻𝑧 
𝛥𝑣+'() = 825	𝑀𝐻𝑧 

𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 300	𝑀𝐻𝑧 
𝛥𝑣*'() = 995	𝑀𝐻𝑧 
𝛥𝑣+'() = 3161	𝑀𝐻𝑧 

1531	𝑛𝑚 𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 215	𝑀𝐻𝑧 

𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 300	𝑀𝐻𝑧 
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𝛥𝑣*'() = 440	𝑀𝐻𝑧 
𝛥𝑣+'() = 750	𝑀𝐻𝑧 

𝛥𝑣*'() = 995	𝑀𝐻𝑧 
𝛥𝑣+'() = 3161	𝑀𝐻𝑧 

1532	𝑛𝑚 𝛥𝑣	 = 140	𝑀𝐻𝑧 
𝛥𝑣&'() = 300	𝑀𝐻𝑧 
𝛥𝑣*'() = 530	𝑀𝐻𝑧 
𝛥𝑣+'() = 900	𝑀𝐻𝑧 

𝛥𝑣	 = 140	𝑀𝐻𝑧 
𝛥𝑣&'() = 420	𝑀𝐻𝑧 
𝛥𝑣*'() = 1393	𝑀𝐻𝑧 
𝛥𝑣+'() = 4425	𝑀𝐻𝑧 

1533	𝑛𝑚 𝛥𝑣	 = 115	𝑀𝐻𝑧 
𝛥𝑣&'() = 230	𝑀𝐻𝑧 
𝛥𝑣*'() = 465	𝑀𝐻𝑧 
𝛥𝑣+'() = 865	𝑀𝐻𝑧 

𝛥𝑣	 = 115	𝑀𝐻𝑧 
𝛥𝑣&'() = 345	𝑀𝐻𝑧 
𝛥𝑣*'() = 1144	𝑀𝐻𝑧 
𝛥𝑣+'() = 3635	𝑀𝐻𝑧 

1534	𝑛𝑚 𝛥𝑣	 = 75	𝑀𝐻𝑧 
𝛥𝑣&'() = 160	𝑀𝐻𝑧 
𝛥𝑣*'() = 325	𝑀𝐻𝑧 
𝛥𝑣+'() = 640	𝑀𝐻𝑧 

𝛥𝑣	 = 75	𝑀𝐻𝑧 
𝛥𝑣&'() = 225	𝑀𝐻𝑧 
𝛥𝑣*'() = 746	𝑀𝐻𝑧 
𝛥𝑣+'() = 2370.5	𝑀𝐻𝑧 

1535	𝑛𝑚 𝛥𝑣	 = 80	𝑀𝐻𝑧 
𝛥𝑣&'() = 195	𝑀𝐻𝑧 
𝛥𝑣*'() = 415	𝑀𝐻𝑧 
𝛥𝑣+'() = 850	𝑀𝐻𝑧 

𝛥𝑣	 = 80	𝑀𝐻𝑧 
𝛥𝑣&'() = 240	𝑀𝐻𝑧 
𝛥𝑣*'() = 796	𝑀𝐻𝑧 
𝛥𝑣+'() = 2528.6	𝑀𝐻𝑧 

1536	𝑛𝑚 𝛥𝑣	 = 80	𝑀𝐻𝑧 
𝛥𝑣&'() = 190	𝑀𝐻𝑧 
𝛥𝑣*'() = 400	𝑀𝐻𝑧 
𝛥𝑣+'() = 820	𝑀𝐻𝑧 

𝛥𝑣	 = 80	𝑀𝐻𝑧 
𝛥𝑣&'() = 240	𝑀𝐻𝑧 
𝛥𝑣*'() = 796	𝑀𝐻𝑧 
𝛥𝑣+'() = 2528.6	𝑀𝐻𝑧 

1537	𝑛𝑚 𝛥𝑣	 = 150	𝑀𝐻𝑧 
𝛥𝑣&'() = 270	𝑀𝐻𝑧 
𝛥𝑣*'() = 550	𝑀𝐻𝑧 
𝛥𝑣+'() = 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 150	𝑀𝐻𝑧 
𝛥𝑣&'() = 450	𝑀𝐻𝑧 

𝛥𝑣*'() = 1492.5	𝑀𝐻𝑧 
𝛥𝑣+'() = 4741	𝑀𝐻𝑧 

1538	𝑛𝑚 𝛥𝑣	 = 125	𝑀𝐻𝑧 
𝛥𝑣&'() = 250	𝑀𝐻𝑧 
𝛥𝑣*'() = 515	𝑀𝐻𝑧 
𝛥𝑣+'() = 940	𝑀𝐻𝑧 

𝛥𝑣	 = 125	𝑀𝐻𝑧 
𝛥𝑣&'() = 375	𝑀𝐻𝑧 

𝛥𝑣*'() = 1243.7	𝑀𝐻𝑧 
𝛥𝑣+'() = 3951	𝑀𝐻𝑧 

1539	𝑛𝑚 𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 135	𝑀𝐻𝑧 
𝛥𝑣*'() = 310	𝑀𝐻𝑧 
𝛥𝑣+'() = 620	𝑀𝐻𝑧 

𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 150	𝑀𝐻𝑧 
𝛥𝑣*'() = 497.5	𝑀𝐻𝑧 
𝛥𝑣+'() = 1580	𝑀𝐻𝑧 

1540	𝑛𝑚 𝛥𝑣	 = 55	𝑀𝐻𝑧 
𝛥𝑣&'() = 175	𝑀𝐻𝑧 
𝛥𝑣*'() = 375	𝑀𝐻𝑧 
𝛥𝑣+'() = 890	𝑀𝐻𝑧 

𝛥𝑣	 = 55	𝑀𝐻𝑧 
𝛥𝑣&'() = 165	𝑀𝐻𝑧 
𝛥𝑣*'() = 796	𝑀𝐻𝑧 
𝛥𝑣+'() = 2528.6	𝑀𝐻𝑧 
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1541	𝑛𝑚 𝛥𝑣	 = 80	𝑀𝐻𝑧 
𝛥𝑣&'() = 190	𝑀𝐻𝑧 
𝛥𝑣*'() = 400	𝑀𝐻𝑧 
𝛥𝑣+'() = 895	𝑀𝐻𝑧 

𝛥𝑣	 = 80	𝑀𝐻𝑧 
𝛥𝑣&'() = 240	𝑀𝐻𝑧 
𝛥𝑣*'() = 796	𝑀𝐻𝑧 
𝛥𝑣+'() = 2528.6	𝑀𝐻𝑧 

 

1542	𝑛𝑚 𝛥𝑣	 = 90	𝑀𝐻𝑧 
𝛥𝑣&'() = 215	𝑀𝐻𝑧 
𝛥𝑣*'() = 440	𝑀𝐻𝑧 
𝛥𝑣+'() = 930	𝑀𝐻𝑧 

𝛥𝑣	 = 90	𝑀𝐻𝑧 
𝛥𝑣&'() = 270	𝑀𝐻𝑧 
𝛥𝑣*'() = 895.5	𝑀𝐻𝑧 
𝛥𝑣+'() = 2844.6	𝑀𝐻𝑧 

1543	𝑛𝑚 𝛥𝑣	 = 115	𝑀𝐻𝑧 
𝛥𝑣&'() = 250	𝑀𝐻𝑧 
𝛥𝑣*'() = 510	𝑀𝐻𝑧 

𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 115	𝑀𝐻𝑧 
𝛥𝑣&'() = 345	𝑀𝐻𝑧 
𝛥𝑣*'() = 1144	𝑀𝐻𝑧 
𝛥𝑣+'() = 3635	𝑀𝐻𝑧 

1544	𝑛𝑚 𝛥𝑣	 = 140	𝑀𝐻𝑧 
𝛥𝑣&'() = 315	𝑀𝐻𝑧 
𝛥𝑣*'() = 590	𝑀𝐻𝑧 

𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 140	𝑀𝐻𝑧 
𝛥𝑣&'() = 420	𝑀𝐻𝑧 
𝛥𝑣*'() = 1393	𝑀𝐻𝑧 
𝛥𝑣+'() = 4425	𝑀𝐻𝑧 

1545	𝑛𝑚 𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 130	𝑀𝐻𝑧 
𝛥𝑣*'() = 325	𝑀𝐻𝑧 
𝛥𝑣+'() = 880	𝑀𝐻𝑧 

𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 150	𝑀𝐻𝑧 
𝛥𝑣*'() = 497.5	𝑀𝐻𝑧 
𝛥𝑣+'() = 1580	𝑀𝐻𝑧 

1546	𝑛𝑚 𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 130	𝑀𝐻𝑧 
𝛥𝑣*'() = 320	𝑀𝐻𝑧 
𝛥𝑣+'() = 885	𝑀𝐻𝑧 

𝛥𝑣	 = 50	𝑀𝐻𝑧 
𝛥𝑣&'() = 150	𝑀𝐻𝑧 
𝛥𝑣*'() = 497.5	𝑀𝐻𝑧 
𝛥𝑣+'() = 1580	𝑀𝐻𝑧	

1547	𝑛𝑚 𝛥𝑣	 = 80	𝑀𝐻𝑧 
𝛥𝑣&'() = 215	𝑀𝐻𝑧 
𝛥𝑣*'() = 450	𝑀𝐻𝑧 
𝛥𝑣+'() = 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 80	𝑀𝐻𝑧 
𝛥𝑣&'() = 240	𝑀𝐻𝑧 
𝛥𝑣*'() = 796	𝑀𝐻𝑧 
𝛥𝑣+'() = 2528.6	𝑀𝐻𝑧 

1548	𝑛𝑚 𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 215	𝑀𝐻𝑧 
𝛥𝑣*'() = 450	𝑀𝐻𝑧 
𝛥𝑣+'() = 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 300	𝑀𝐻𝑧 
𝛥𝑣*'() = 995	𝑀𝐻𝑧 
𝛥𝑣+'() = 3160.7	𝑀𝐻𝑧 

1549	𝑛𝑚 𝛥𝑣	 = 145	𝑀𝐻𝑧 
𝛥𝑣&'() = 250	𝑀𝐻𝑧 
𝛥𝑣*'() = 515	𝑀𝐻𝑧 

𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 145	𝑀𝐻𝑧 
𝛥𝑣&'() = 435	𝑀𝐻𝑧 

𝛥𝑣*'() = 1442.7	𝑀𝐻𝑧 
𝛥𝑣+'() = 4583	𝑀𝐻𝑧 
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1550	𝑛𝑚 
 
 

𝛥𝑣	 = 145	𝑀𝐻𝑧 
𝛥𝑣&'() = 310	𝑀𝐻𝑧 
𝛥𝑣*'() = 610	𝑀𝐻𝑧 

𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 145	𝑀𝐻𝑧 
𝛥𝑣&'() = 435	𝑀𝐻𝑧 

𝛥𝑣*'() = 1442.7	𝑀𝐻𝑧 
𝛥𝑣+'() = 4583	𝑀𝐻𝑧 

1551	𝑛𝑚 𝛥𝑣	 = 60	𝑀𝐻𝑧 
𝛥𝑣&'() = 150	𝑀𝐻𝑧 
𝛥𝑣*'() = 340	𝑀𝐻𝑧 
𝛥𝑣+'() = 920	𝑀𝐻𝑧 

𝛥𝑣	 = 60	𝑀𝐻𝑧 
𝛥𝑣&'() = 180	𝑀𝐻𝑧 
𝛥𝑣*'() = 597	𝑀𝐻𝑧 
𝛥𝑣+'() = 1896.4	𝑀𝐻𝑧 

1552	𝑛𝑚 𝛥𝑣	 = 80	𝑀𝐻𝑧 
𝛥𝑣&'() = 185	𝑀𝐻𝑧 
𝛥𝑣*'() = 400	𝑀𝐻𝑧 
𝛥𝑣+'() = 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 80	𝑀𝐻𝑧 
𝛥𝑣&'() = 240	𝑀𝐻𝑧 
𝛥𝑣*'() = 796	𝑀𝐻𝑧 
𝛥𝑣+'() = 2528.6	𝑀𝐻𝑧 

1553	𝑛𝑚 𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 220	𝑀𝐻𝑧 
𝛥𝑣*'() = 500	𝑀𝐻𝑧 

𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 300	𝑀𝐻𝑧 
𝛥𝑣*'() = 995	𝑀𝐻𝑧 
𝛥𝑣+'() = 3160.7	𝑀𝐻𝑧 

1554	𝑛𝑚 𝛥𝑣	 = 115	𝑀𝐻𝑧 
𝛥𝑣&'() = 250	𝑀𝐻𝑧 
𝛥𝑣*'() = 540	𝑀𝐻𝑧 

𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 115	𝑀𝐻𝑧 
𝛥𝑣&'() = 345	𝑀𝐻𝑧 
𝛥𝑣*'() = 1144	𝑀𝐻𝑧 
𝛥𝑣+'() = 3635	𝑀𝐻𝑧 

1555	𝑛𝑚 𝛥𝑣	 = 110	𝑀𝐻𝑧 
𝛥𝑣&'() = 225	𝑀𝐻𝑧 
𝛥𝑣*'() = 450	𝑀𝐻𝑧 

𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 110	𝑀𝐻𝑧 
𝛥𝑣&'() = 330	𝑀𝐻𝑧 

𝛥𝑣*'() = 1094.5	𝑀𝐻𝑧 
𝛥𝑣+'() = 3476.8	𝑀𝐻𝑧 

1557	𝑛𝑚 𝛥𝑣	 = 65	𝑀𝐻𝑧 
𝛥𝑣&'() = 165	𝑀𝐻𝑧 
𝛥𝑣*'() = 365	𝑀𝐻𝑧 
𝛥𝑣+'() = 990	𝑀𝐻𝑧 

𝛥𝑣	 = 65	𝑀𝐻𝑧 
𝛥𝑣&'() = 195	𝑀𝐻𝑧 
𝛥𝑣*'() = 646.7	𝑀𝐻𝑧 
𝛥𝑣+'() = 2054.5	𝑀𝐻𝑧 

1558	𝑛𝑚 𝛥𝑣	 = 95	𝑀𝐻𝑧 
𝛥𝑣&'() = 215	𝑀𝐻𝑧 
𝛥𝑣*'() = 485	𝑀𝐻𝑧 

𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 95	𝑀𝐻𝑧 
𝛥𝑣&'() = 285	𝑀𝐻𝑧 
𝛥𝑣*'() = 945	𝑀𝐻𝑧 
𝛥𝑣+'() = 3002.7	𝑀𝐻𝑧 

1559	𝑛𝑚 𝛥𝑣	 = 95	𝑀𝐻𝑧 
𝛥𝑣&'() = 225	𝑀𝐻𝑧 
𝛥𝑣*'() = 510	𝑀𝐻𝑧 

𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 95	𝑀𝐻𝑧 
𝛥𝑣&'() = 285	𝑀𝐻𝑧 
𝛥𝑣*'() = 945	𝑀𝐻𝑧 
𝛥𝑣+'() = 3002.7	𝑀𝐻𝑧 

1560	𝑛𝑚 
 

𝛥𝑣	 = 95	𝑀𝐻𝑧 
𝛥𝑣&'() = 230	𝑀𝐻𝑧 

𝛥𝑣	 = 95	𝑀𝐻𝑧 
𝛥𝑣&'() = 285	𝑀𝐻𝑧 
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 𝛥𝑣*'() = 490	𝑀𝐻𝑧 
𝛥𝑣+'() =	> 1000𝑀𝐻𝑧 

𝛥𝑣*'() = 945	𝑀𝐻𝑧 
𝛥𝑣+'() = 3002.7	𝑀𝐻𝑧 

1562	𝑛𝑚 𝛥𝑣	 = 300	𝑀𝐻𝑧 
𝛥𝑣&'() = 550	𝑀𝐻𝑧 

𝛥𝑣*'() =	> 1000𝑀𝐻𝑧 
𝛥𝑣+'() =	> 1000𝑀𝐻𝑧 

𝛥𝑣	 = 300	𝑀𝐻𝑧 
𝛥𝑣&'() = 900	𝑀𝐻𝑧 
𝛥𝑣*'() = 2985	𝑀𝐻𝑧 
𝛥𝑣+'() = 9482	𝑀𝐻𝑧 

1563	𝑛𝑚 𝛥𝑣	 = 290	𝑀𝐻𝑧 
𝛥𝑣&'() = 585	𝑀𝐻𝑧 

𝛥𝑣*'() =	> 1000	𝑀𝐻𝑧 
𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 290	𝑀𝐻𝑧 
𝛥𝑣&'() = 870	𝑀𝐻𝑧 

𝛥𝑣*'() = 2885.5	𝑀𝐻𝑧 
𝛥𝑣+'() = 9166	𝑀𝐻𝑧 

 

1564	𝑛𝑚 𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 230	𝑀𝐻𝑧 
𝛥𝑣*'() = 460	𝑀𝐻𝑧 

𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 100	𝑀𝐻𝑧 
𝛥𝑣&'() = 300	𝑀𝐻𝑧 
𝛥𝑣*'() = 995	𝑀𝐻𝑧 
𝛥𝑣+'() = 3160.7	𝑀𝐻𝑧 

1565	𝑛𝑚 𝛥𝑣	 = 125	𝑀𝐻𝑧 
𝛥𝑣&'() = 260	𝑀𝐻𝑧 
𝛥𝑣*'() = 930	𝑀𝐻𝑧 

𝛥𝑣+'() =	> 1000	𝑀𝐻𝑧 

𝛥𝑣	 = 125	𝑀𝐻𝑧 
𝛥𝑣&'() = 375	𝑀𝐻𝑧 

𝛥𝑣*'() = 1243.7	𝑀𝐻𝑧 
𝛥𝑣+'() = 3951	𝑀𝐻𝑧 

1566	𝑛𝑚 𝛥𝑣	 = 120	𝑀𝐻𝑧 
𝛥𝑣&'() = 260	𝑀𝐻𝑧 
𝛥𝑣*'() = 600	𝑀𝐻𝑧 
𝛥𝑣+'() =	> 1000𝑀𝐻𝑧 

𝛥𝑣	 = 120	𝑀𝐻𝑧 
𝛥𝑣&'() = 360	𝑀𝐻𝑧 
𝛥𝑣*'() = 1194	𝑀𝐻𝑧 
𝛥𝑣+'() = 3793	𝑀𝐻𝑧 
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Appendix C. Time Domain Interference Fringes 
 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 =	< 1	𝑐𝑚 

𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 200	𝑛𝑠/𝑑𝑖𝑣 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 1	𝑐𝑚 

𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 100	𝑛𝑠/𝑑𝑖𝑣 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 11.5	𝑐𝑚 

𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 25	𝑛𝑠/𝑑𝑖𝑣 
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𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 22.5	𝑐𝑚 

𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 12.5	𝑛𝑠/𝑑𝑖𝑣 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 34	𝑐𝑚 

𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 12.5	𝑛𝑠/𝑑𝑖𝑣 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 56.5	𝑐𝑚 

𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 12.5	𝑛𝑠/𝑑𝑖𝑣 
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𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 119	𝑐𝑚 

𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 12.5	𝑛𝑠/𝑑𝑖𝑣 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 130.5	𝑐𝑚 

𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 12.5	𝑛𝑠/𝑑𝑖𝑣 

 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 187.5	𝑐𝑚 

𝑡𝑖𝑚𝑒	𝑠𝑐𝑎𝑙𝑒	 = 12.5	𝑛𝑠/𝑑𝑖𝑣 
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Appendix D. Frequency Domain Interference Fringes 
 

Video BW = 300 Hz 

Resolution BW = 300 kHz 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 =	< 1	𝑐𝑚 

𝑓� = 3.25	𝑀𝐻𝑧 

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 100	𝑀𝐻𝑧 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 1	𝑐𝑚 

𝑓� = 9.5	𝑀𝐻𝑧 

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 100	𝑀𝐻𝑧 
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𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 11.5	𝑐𝑚 

𝑓� = 53.35	𝑀𝐻𝑧 

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 100	𝑀𝐻𝑧 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 22.5	𝑐𝑚 

𝑓� = 110	𝑀𝐻𝑧 

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 500	𝑀𝐻𝑧 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 34	𝑐𝑚 

𝑓� = 165.54	𝑀𝐻𝑧 

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 500	𝑀𝐻𝑧 
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𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 56.5	𝑐𝑚 

𝑓� = 264.89	𝑀𝐻𝑧 

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 500	𝑀𝐻𝑧 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 119	𝑐𝑚 

𝑓� = 577.8	𝑀𝐻𝑧 

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 1	𝐺𝐻𝑧 

 

 

𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 130.5	𝑐𝑚 

𝑓� = 633.57	𝑀𝐻𝑧 

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 1	𝐺𝐻𝑧 
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𝑟𝑢𝑙𝑒𝑟	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝛥𝐿 ≈ 187.5	𝑐𝑚 

𝑓� = 𝑁/𝐴 

𝑓	𝑟𝑎𝑛𝑔𝑒	𝑠ℎ𝑜𝑤𝑛 = 0 − 1	𝐺𝐻𝑧 

 

 
 
 


