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Abstract

Awan, Khalid, Zainab, Masters:

June: 2017, Master of Computing

Title: Conceptual Data Sampling for Image Segmentation- An Application for

Breast Cancer Images

Supervisor of Thesis: Dr. Ali Jaoua

At the present time data analytics have become a buzzword for the in-

formation technology sector. In an attempt to analyze data; one may follow

various paths. Be it deploying sophisticated technologies to process big data or

using commodity hardware while applying data reduction/sampling techniques

to draw meaningful insights from a data. In this thesis, we aim to reduce data

size in terms of th e number of tuples/objects for a given data. Our method

has driven its roots from formal concept analysis (FCA); which is a mathemat-

ical framework for data analysis. The proposed transformation is preserving

functional dependencies/implications in a database. Consequently, we can gen-

erate a much smaller data sample that is able to help in making decisions. In

this study, we analyze a variety of reduction methods in order to recognize

the best one(s), including randomized object selection procedures. The accu-

racy of the decision s made on generated sample is comparable to accuracy of

the decision made of whole/original data. To illustrate the concept we have

chosen data from medical image domain. The data used for experimentation

contains microscopic images of breast cancer that need to be segmented into

two categories; i.e. benign or malignant. Extensive set of experiments have

been performed to show the strength of the proposed reduction method.
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Chapter 1: Introduction

Data mining on complete datasets may take very long time. To prevent

delays data reduction strategies are used to have a reduced representation

of data yet analytically sound decisions. In order to do that one may apply

dimensionality/attribute reduction or numerosity reduction. In former the

number of features is reduced by applying for example principal component

analysis. While in later, the volume of data gets reduced by applying for

example, sampling.

Our work revolves around proposing a novel sampling method that could

save computation burden for computers. Sampling refers to the process of

taking a predetermined number of observations from the total population to

have a smaller representative subset of a whole dataset.

While one might argue that this is an era of Big Data with availability

of High Performance Computing ; we no longer need sampling methods. But

the truth is contrary to this; simply throwing mountains of data to conven-

tional machine learning algorithms will not help to build accurate models.

With bigger data accurate models could be built. Accurate models add greater

business value. But for that; we need to pay the price, in terms of high end and

sophisticated big data technologies. Our sampling method shows the potential

of not losing subtle patterns of a data in its generated sample. The proposed

method is non-parametric, hence does not impose strict assumptions on data

1



distributions.

1.1 Image Segmentation

To provide experimental evidence we have chosen breast cancer microscopic

images data. We opted for cancer images as cancer is reported [4] to be

the 5th cause of death in the world. The purpose here is to perform image

segmentation on cancer images. Image segmentation is the process of assigning

class labels to pixels in an image i.e. tumor (malignant) or non-tumor (benign)

in our case. Image pixels that are annotated with same label, together form a

region or segment. Within that region the physical characteristics are same.

To illustrate this process, we have given Figure 1.1. Wherein, Figure 1.1a

shows the initial microscopic image that is obtained from a patients’ tissue. It

serves as an input to the segmentation process. This image is then converted

to a mineable data by extracting features from it. If necessary, feature space

is reduced before applying machine learning techniques to annotate the pixels.

Figure 1.1b is output of the segmentation process. Image segmentation should

result into clear boundaries between different kinds of regions as in Figure 1.1b

the white regions indicate cancer and black regions are non-cancer..

Breast cancer is increasingly becoming a commonly occurring disease. To

determine the stage and severity of the disease, a histopathologist needs to

sit in lab and examine microscopic image of breast tissue. The idea here is to

automate this grunt work in order to save time and define treatment plan for

a patient in timely manner.

In order to further speed-up the process data reduction strategies can be

applied. This is why, we apply our sampling method on pre-processed im-

2



(a) Microscopic image of breast cancer-
ous tissue

(b) Ground truth

Figure 1.1: An instance of image segmentation; where first subfigure in the
input and second is the output

ages data and compare it with two existing sampling methods. We apply

this on a public dataset, made available by ICPR 20121. The data has

50 H& E stained breast cancer tissue images from 5 patients. Each patient

has contributed for 10 images. We elaborate more on the dataset in section 4.1.

1.2 Research Questions

In this thesis we pursue the following research questions:

• Is the proposed sampling method able to extract a subset of a given

dataset that could generate sufficiently accurate classification that is as

good as the classification done on complete dataset?

• How applicable is the proposed framework in the field of breast cancer

image segmentation?

1http://ipal.cnrs.fr/ICPR2012

3



1.3 Contributions

Our contribution in this work is two-fold;

1. Our first contribution is developing a framework that enables us to extract

representative subset/sample from datasets. Our framework is currently

a working implementation in JAVA.

2. Secondly, extensive experiments have been performed on a dataset from

medical image domain to provide experimental evidence of efficacy of the

proposed framework. Experiments have been done using statistics and

machine learning toolbox MATLAB2.

1.4 Outline

We describe pertinent background literature in chapter 2. We dedicate chap-

ter 3 to explain the proposed method. In chapter 4 we address the evaluation

of our method. We finish with chapter 5, which gives concluding remarks and

presents future directions.

2https://www.mathworks.com/products/statistics.html
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Chapter 2: Background and Literature Review

In this chapter we provide related background concepts, theories and state-

of-the-art that has been done in this domain. This will serve as a basis for

what we will propose in the next chapter. We discuss formal concept analysis,

sampling methods and image segmentation.

2.1 Formal Concept Analysis FCA

It is generally believed that origin of Formal Concept Analysis FCA can be

dated back to 1982 with work of [35] with some previous attempts. FCA is

a method of data analysis that has been applied across various domains such

as information visualisation [29], feature reduction [21],image mining [36] and

decision making [37]. FCA is mathematical tool that is used to build a concept

lattice for a binary relation by using its attributes and objects. In FCA data

is formally represented as a formal context (FC). The process of building FC

has been very well explained in [26].

”A Formal Context (FC) is a triplet k=<G,M,I> where G is a finite set of

elements called objects, M is a finite set of elements called attributes and I is

a binary relation between G and M” [13]. Table 2.1 is an example of FC with

G= {Lion, Finch, Eagle, Hare, Ostrich} and M= {Prey, Fly, Bird, Mammal}

with I(Lion, Mammal)=1.

5



Table 2.1: Formal Context example

k Prey Fly Bird Mammal
Lion 1 0 0 1
Finch 0 1 1 0
Eagle 1 1 1 0
Hare 0 0 0 1

Ostrich 0 0 1 0

2.2 Functional Dependency

Attribute implications in FCA enable data analysis. Attribute implications

convey a dependency that is valid in data. For example, if two employees of

a company have same zip code in a database then they belong to the same

city. Dependencies are a form of constraint that exists between attributes of

database. A functional dependency can be formally defined as;

”If R is a relational schema and X⊆R and tuples are represented by t then,

functional dependency, represented by X→A holds in r if and only if ∀ ti,tj ∈ r,

ti[X]=tj[X]⇒ ti[A]=tj[A]”. To illustrate the concept see Table 2.2. Functional

dependencies in a database are equivalent to attribute implications in FCA [8].

Table 2.2: Relation in which functional dependency holds from w→z and vice
versa. When attribute w takes the same value attribute z also takes the same
value

w x y z
1 2 9 3
8 9 16 5
1 4 1 3
8 0 0 5

6



2.3 Incremental Lukasiewicz Data Reduction

A data reduction algorithm for formal contexts, based on Lukasiewicz implica-

tion is proposed in [12] and has been updated by the work of Eman et al. [26].

The original algorithm followed two steps;

• Apply Lukasiewicz implication to find any objects in a database that can

be verified by other objects

• Remove the objects that could be verified by other objects

2.3.1 Definition

We are using standard definition from [26]. Let R be a fuzzy binary relation

defined on universal set U. If we have two sets, A⊆G and B is a fuzzy set defined

on M. Where, G is a finite set of objects and M is finite set of attributes and

precision level, delta δ ∈[0,1]. The two operators f(A) and hδ are defined as;

• f(A)={ d/α, α=min(µR(g,d)|g∈A)}, d∈ P. Where, A⊆G and P⊆M

• hδ(B)={g|d∈p⇒ (µB(d)→L µR(g,d))≥ δ. Where, →L is known as

Lukasiewicz implication

• a→Lb is given as min(1,1-a+b) ; a,b ∈ [0,1]

Eman et al. [26] have made this approach incremental. By incremental

means, instead of waiting for whole FC to be built and then apply reduction

rather reduction is applied on the fly while FC is being built. It serves two

purposes, firstly, it minimizes idle time as reduction is applied on package sized

FC. Secondly, it reduces memory overload by not building FC of size n2. This

approach allows us to reduce the number of objects in database. We started

off our work with applying this method on our data and have discussed the

results in Chapter 4.

7



Table 2.3: Formal Context on which Lukasiewicz Reduction will be applied

- a b c d
(t1,t2) 0 0 1 0
(t1,t3) 1 1 1 0
(t1,t4) 1 1 1 0
(t2,t3) 0 0 1 0
(t2,t4) 1 1 1 0
(t3,t4) 1 1 1 1

As an example of application of Lukasiewicz Reduction we consider a formal

context in Table 2.3. The precision level, δ is ’1’. Let X be first tuple (t1,t2)

and A is the second tuple (t2,t3) from Table 2.3. We want to know if X can

be verified by other objects. For this we apply Lukasiewicz implication.

• min(1,1-X(a)+A(a))=min(1,1-0+1)=1 ≥ 1

• min(1,1-X(b)+A(b))=min(1,1-0+1)=1 ≥ 1

• min(1,1-X(c)+A(c))=min(1,1-1+1)=1 ≥ 1

• min(1,1-X(d)+A(d))=min(1,1-0+0)=1 ≥ 1

A is verifying X, in this way we check for all the remaining objects if they

verify X. We found that all the objects verify X. As a last step we compute

the difference between X and the minimum. Minimum values are bold faced in

Table 2.3. Minimum is found by taking minimum along each attribute. X can

be removed if its values are ≥ to the minimum. In the same way all objects

are checked for the possibility of being verified by other objects. The reduced

F is given in Table 2.4.

Table 2.4: Reduced Formal Context after applying Lukasiewicz Reduction

- a b c d
(t2,t4) 1 1 1 0
(t3,t4) 1 1 1 1
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Figure 2.1: Sampling Process

2.4 Sampling Methods

Data analytics involve examining data in order to draw meaningful information

from it. Since, the data available for analysis from different domains such as

social media, medicine and web is increasing at an unprecedented pace. If the

goal is not to analyze whole available data the solution is to perform sampling.

Sampling refers to the process of drawing representative data points from any

data that helps in making inferences as shown in Figure 2.1.

The accuracy of decision making is primarily dependant on the quality of

sample generated. Therefore the sampling process should be reliable, robust

and representative.

Sampling designs are categorized to two main types; probabilistic sam-

pling and non-probabilistic sampling. In former type, the points are chosen

randomly and the probability of a point being chosen is known beforehand. In

later type, probabilities are not assigned rather samples are drawn based on

the purpose of analysis, this is why this is referred to as purposive sampling.

Non-probabilistic methods are purely subjective as to it depends on the reason

why one wants to extract a sample. Therefore, we have narrowed down our
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Figure 2.2: Random Sampling [1]

focus to probabilistic methods. Widely used probabilistic sampling methods

include simple random sampling, stratified sampling, cluster sampling and

systematic sampling. Each one of them has been discussed in upcoming

sections.

2.4.1 Simple Random Sampling (SRS)

In this straightforward method each point in the population stands equal

chance of being chosen. This is easy to implement but it is not efficient [32].

As the points in the sample might not be discriminative and representative of

data. Figure 2.2 shows a population of twelve data points. When a sample of

size 4 was to be chosen from population; data point 2, 5, 8 and 10 was chosen

randomly.

For mass spectrometry data [7], a sampling technique based on simple

random sampling is proposed. Mass spectrometry data is obtained in chemical

labs by ionizing chemicals and is useful for many biological applications. The

data obtained is quite big and need big data technologies. In this work, the

authors were able to reduce data by 20% by systematically doing random

sampling.
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Figure 2.3: Stratified Sampling [1]

2.4.2 Stratified Sampling (SS)

In this method whole population is first divided into groups or stratum based

on certain demographics such as age or gender. Afterwards, random data

points are chosen from each stratum based on the proportions [9]. It is

more efficient as compared to SRS. Figure 2.3 shows an instance of stratified

sampling. In which one-fourth of original data is blue points so the sample

should also contain one-fourth blue points. This applies to rest of the strata

as well.

Most naive way to do image segmentation is by doing thresholding of a

grayscale image. If intensity of image pixel is greater than a certain threshold

than the binary image contains 1 otherwise 0. Yunzhi et. al [19] have pro-

posed automatic multilevel thresholding based image segmentation by doing

stratified sampling as their first step.

2.4.3 Cluster Sampling

In this type of sampling the population is divided in to clusters/groups and

then randomly some clusters (whole) are picked to be included in sample. The
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Figure 2.4: Cluster Sampling [1]

samples generated are not representative of population. This must not be

confused with stratified sampling. It is applied only when a population is

already divided in the form of clusters or groups. Figure 2.4 shows an example

of cluster sampling. Wherein, we have six clusters in total and we want a

sample of 4 data points. So we will choose two clusters randomly.

2.4.4 Systematic Sampling

In systematic sampling, samples are chosen based on a parameter called sam-

pling interval which is represented by k . Sampling interval is calculated by

dividing size of total population with the size of desired sample. In figure 2.5

where the size of k is 2; every third data point will be included in the sample.

It gives best results when the data points depict linear ordering [6].

2.5 Image Segmentation

Image segmentation refers to the process of assigning labels to each pixel of an

image to a particular category. Appropriate example for this is its application

to a microscopic image of a cancerous tissue. Pathologist is a person who
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Figure 2.5: Systematic Sampling [1]

studies the cell structure in microscopic image of tissues and decides on the

category of cell to be benign or malignant. There have been attempts in the

literature to make this process automatic for colon cancer [15],lung cancer [31],

pancreatic cancer [30] and breast cancer [24], [25]. For our purposes we have

investigated breast cancer images. There is no universal method that exists

for this process and it is an area of ongoing research. Different methods have

been adopted to perform image segmentation which includes classification and

clustering. The main work-flow includes following steps

1. Pre-processing is a preliminary step for any image analysis task [17]

as the image data is inconsistent and noisy. It involves removal of noise

and distortions. In [20] RGB images were converted to grey scale and

noise was removed by using median filter. Histogram based noise removal

method was adopted in [38]. In which only those pixels were chosen for

further processing that have passed a certain threshold in gray scale.

In our work the pre-processing is done in three steps; images are first

subjected to stain normalization then conversion to gray scale and lastly

smoothing is applied.

2. Feature Extraction The preprocessed images are then used for feature

extraction task. For image segmentation purpose three main kinds of

features can be used; spectral, contextual and textural [16]. Spectral
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features signify the tonal variations in infra-red and visible parts of elec-

tromagnetic spectrum. Contextual features contain information about

the surroundings of an image segment that is being analysed. Textural

features contain information that is much more meaningful than spectral

or contextual features. Texture contains information about structural

arrangement of tumor regions. The feature vector used in our work con-

tains 8 features in total called MR8 features which are textural features.

Those features have been extracted by applying MR8 filter bank [2]. The

feature extraction task has been done and kindly provided to us by [3].

These features are used for learning process.

3. Feature Reduction/Selection This step involves reducing the dimen-

sionality of feature vector if it is very large. In the past FCA has been

applied to the reduce the feature dimensionality in the image data [21].

Maximum relevance and minimum redundancy techniques have also been

applied to select most relevant features [11]. However, for our work we

have not implemented this step as the feature vector is already small.

4. Classification/Clustering In this step machine learning frameworks

are used to classify the data that we get from previous step. There have

been attempts in the literature that employ neural networks [33], [27] and

support vector machines [34], [28], [14].

Breast cancer grading is another important area relevant to classification

of tumor to benign and malignant. This is used to determine the severity of

the malignancy. For that glandular segmentation has been reported in [23] ,

[22]. For glandular segmentation morphology features are used in addition to

texture features [23].
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2.6 Summary

In this chapter we have explained the relevant background that includes FCA,

sampling methods and image segmentation. We have also pointed out some

closely related research attempts in those areas. On the basis of the concepts

discussed here we detail our methodology in the next Chapter.
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Chapter 3: Approach/Methodology

This chapter introduces the methodology that we have adopted to pursue our

goals. On the top level it involves; acquiring images, preprocessing and extract-

ing features from images, applying our sampling method, testing on machine

learning classifiers. The first two steps were done by [3]. We have applied our

method on the given data and test it on machine learning algorithms.

Our goal here is to explain in depth the proposed technique. In upcoming

sections sampling method is presented along with a concrete example to ma-

terialize our method. The method encompasses four steps to generate subset

of a given data. Those steps include; building formal context of data, mapping

formal context to pattern table, estimating pattern proportions and linking back

to original data to get a subset/sample.

3.1 Nomenclature

Here we explain some of the terms that are used in the upcoming sections; to

prevent a reader from confusion.

Pattern Table (PT) It is a table that contains binary combinations for

a given feature vector. The number of combinations is equal to 2no.offeatures..

For a feature vector of size two, Table 3.1, shows its corresponding pattern

table.
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Table 3.1: Pattern Table for two features

0 0

0 1
1 0
1 1

Counter Table (CT) It contains the count/frequencies of occurrence

each pattern.

Multiplier It is a number that is multiplied with proportions obtained

from the counter table. The resultant is used to extract sample from the

original dataset. Larger databases need bigger multiplier values as compare to

smaller ones.

Terms that are used interchangeably include;

• Relation/database/dataset

• subset/sample

• attributes/features

3.2 Input Data

As explained in the feature extraction step of the section 2.5 the input data

has 8 features. To illustrate, we have randomly chosen 8 data points from

whole data. The Table 3.2 has 9 columns, wherein first 8 of them from x1-x8

represent the feature vector and the 9th column in class label. If the class label

is 0 then it is benign otherwise malignant. After we get our data in the form

shown in Table 3.2 we split the data into its respective classes. In our case we

have only two classes i.e. 1 and 0, so we have two datasets. Idea of splitting
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Table 3.2: Input Data

- x1 x2 x3 x4 x5 x6 x7 x8 label

t1 3.4148 1.015 1.2909 1.1316 1 1.1461 1.0805 1.0239 0

t2 2.21 1.0052 1.1696 1.1191 1.0517 1.0602 1.0135 1.0002 0

t3 2.1354 1.0124 1.0151 1 1.0123 1.1693 1.071 1.0172 0

t4 1.3433 1.0144 1.0662 1.0613 1.0397 1.1184 1.0547 1.0121 0

t5 1.4644 1.0068 1.032 1.0262 1.0228 1.0638 1.0236 1.0115 1

t6 1.8885 1.0085 1.0988 1.0599 1.0199 1.0289 1.0192 1.0122 1

t7 1.7668 1.0095 1.0611 1.0927 1.0828 1.0544 1.0336 1.0176 1

t8 1.0265 1.0056 1.0454 1.0252 1 1.0557 1.0259 1.0098 1

is influenced by the concept of stratified sampling. As we want to take sample

size of each class which is proportionate to its size in whole dataset.

3.3 Formal Context Generation

To build a binary FC of data in Table 3.2 a pairwise comparison is performed

among all the tuples. If a data has n rows, the FC of that data would be of

the size, Equation 3.1,

FC size = Min(2no.offeatures, n ∗ (n− 1)

2
) (3.1)

An FC object corresponds to a pairwise comparison of two objects in a given

data. Binary FC object is combination of 1’s and 0’s based on the similarity

between the two objects that together constitute it. If two data objects are

similar we put 1 in FC and 0 otherwise. We can decide on the similarity of

pairwise comparison. It could be either pure equality ’==’ or based on the

similarity measure [10]. The similarity measure algebraically is in Equation

3.2;

SimilarityMeasure = 1− |n1 − n2|
max(n1, n2)

(3.2)
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If the similarity is greater than a specific threshold, for example 90%, then

FC value would be 1 otherwise 0. As we can see from the table 3.2 that none

of the two values across the tuples are exactly equal to each other. By virtue

of this, FC for 100% equality contains all rows as ’0’ .

Therefore, we consider the similarity index 90%. While building FC, we do not

consider the last column in the Tables 3.3 and 3.5 as it contains class labels

only. The given databases in Tables 3.3 and 3.5 have been converted to their

respective formal contexts in Tables 3.4 and 3.6.

Table 3.3: DBI Malignant

ID x1 x2 x3 x4 x5 x6 x7 x8 label

t1 1.4644 1.0068 1.032 1.0262 1.0228 1.0638 1.0236 1.0115 1

t2 1.8885 1.0085 1.0988 1.0599 1.0199 1.0289 1.0192 1.0122 1

t3 1.7668 1.0095 1.0611 1.0927 1.0828 1.0544 1.0336 1.0176 1

t4 1.0265 1.0056 1.0454 1.0252 1 1.0557 1.0259 1.0098 1

Table 3.4: FC for DBI Malignant

– x1 x2 x3 x4 x5 x6 x7 x8

(t1,t2) 0 1 1 1 1 1 1 1

(t1,t3) 0 1 1 1 1 1 1 1

(t1,t4) 0 1 1 1 1 1 1 1

(t2,t3) 1 1 1 1 1 1 1 1

(t2,t4) 0 1 1 1 1 1 1 1

(t3,t4) 0 1 1 1 1 1 1 1

Table 3.5: DBI Benign

ID x1 x2 x3 x4 x5 x6 x7 x8 label

t1 3.4148 1.015 1.2909 1.1316 1 1.1461 1.0805 1.0239 0

t2 2.21 1.0052 1.1696 1.1191 1.0517 1.0602 1.0135 1.0002 0

t3 2.1354 1.0124 1.0151 1 1.0123 1.1693 1.071 1.0172 0

t4 1.3433 1.0144 1.0662 1.0613 1.0397 1.1184 1.0547 1.0121 0
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Table 3.6: FC for DBI Benign

– x1 x2 x3 x4 x5 x6 x7 x8

(t1,t2) 0 1 1 1 1 1 1 1
(t1,t3) 0 1 0 0 1 1 1 1
(t1,t4) 0 1 0 1 1 1 1 1
(t2,t3) 1 1 0 0 1 1 1 1
(t2,t4) 0 1 1 1 1 1 1 1
(t3,t4) 0 1 1 1 1 1 1 1

3.4 Mapping Formal Context to Pattern Table

In this step a set of binary patterns is generated, which is called pattern table.

Total number of binary patterns is less than or equal to 2no.offeatures.

For the current DBI as we have 8 features so the PT is going to have 28=256

patterns. Now, each FC object is linked to its corresponding binary combina-

tion in pattern table. Table 3.7 shows the pattern table, whose first column

indicates nothing but decimal equivalent of a binary combination. For the sake

of brevity only those patterns are shown which actually correspond to FCs (ta-

bles 3.6 and 3.4) of the two databases (tables 3.3 and 3.5). Each time when a

FC object matches a binary pattern in PT, its associated counter is increased

in the CT. Last two columns of Table 3.7 are the counter tables for data. For

example the 127th row in Table 3.7 which is 01111111 occurs 5 times in Malig-

nant DBI 3.4 and 3 times in Benign DBI 3.6, so these are the counts in counter

tables.

3.5 Calculation of Pattern Proportions

After mapping each FC object to its corresponding binary pattern, now we

calculate the proportion of occurrence of each binary pattern. Last two column

of Table 3.7 give the frequency of each pattern in FC. We calculate proportions
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Table 3.7: Mapping FC to PT

- - - - - - - - - Count for DBI Malignant Count for DBI Benign
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 1 0 0 0
3 0 0 0 0 0 0 1 1 0 0
4 0 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 1 0 1 0 0
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

79 0 1 0 0 1 1 1 1 0 1
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

95 0 1 0 1 1 1 1 1 0 1
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

127 0 1 1 1 1 1 1 1 5 3
. . . . . . . . . . .

207 1 1 0 0 1 1 1 1 0 1
. . . . . . . . . . .

255 1 1 1 1 1 1 1 1 1 0

Table 3.8: Calculation of Proportions

(a) Malignant DBI

Pattern No. Proportion

127 5/6=0.83
255 1/6=0.16

(b) Benign DBI

Pattern No. Proportion

79 1/6=0.16
95 1/6=0.16
127 3/6=0.5
207 1/6=0.16

based on the following formula, Equation 3.3;

Pattern Proportion =
Count of Pattern from CT

No. of FC objects
(3.3)

The proportions for the PT 3.7 are given in Table 3.8 ;
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Table 3.9: Sample Size

(a) Malignant DBI Sample Size

Pattern No. Sample Count

127 1
255 1

(b) Benign DBI Sample Size

Pattern No. Sample Count

79 1
95 1
127 1
207 1

3.6 Generating Sample based on Pattern Pro-

portions

In this last step of our method we link back PT to FC and from FC to DBI.

From the Table 3.8 we have the proportions of each pattern. We need to

multiply those values with a number called multiplier. It could be 7, 20 or 100

even bigger. If the proportions values are already big enough we might not

even need to multiply. But if proportions are very small as in this case we may

multiply if we need a bigger sample or we can just round those proportions

to 1. The size of the input data tells us what a multiplier should be. In this

example, since the data is already very small, only 10 rows, still we multiply

proportions with a number then as a result our sample will cover whole dataset.

Then there is no point in applying this method. So, we round the proportions

to 1 and link back to FCs.

Table 3.9 is rounded off version of Table 3.8. So now we take one sample

from 127th and 255th row of pattern table for Malignant DBI. Similarly, 1

sample from 79th, 95th, 127th and 207th row of Benign DBI.

From the Table 3.4 we take first row (t1,t2),which corresponds to 127th row in

PT, and fourth row (t2,t3), which corresponds to 255th row in PT.

From the Table 3.6 we take (t1,t3) for 79th row in PT, (t1,t4) for 95th row

in PT, (t3,t4) for 127th in PT and (t2,t3) for 207th row in PT. Our sam-
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pled database for Malignant class contains tuples t1,t2 and t3 and t4 is being

removed. Whereas for benign class all the tuples are required to generate a

sample. Hence, we are not loosing too much information. This signifies that

benign class needs more instances to represent its distribution. At the end

we combine the samples from both classes and the final output. Our sam-

pled database is in Table 3.10 which has 7 rows in total as compared to whole

dataset which was 8 rows. This might look insignificant, because the example

is quite small. However, in the evaluation chapter we show the real strength of

our method where, for example, in some cases the whole data had 30,000 rows

it could be represented as 1300 rows only by using our method.

Table 3.10: Sampled Data

- x1 x2 x3 x4 x5 x6 x7 x8 label

t1 3.4148 1.015 1.2909 1.1316 1 1.1461 1.0805 1.0239 0

t2 2.21 1.0052 1.1696 1.1191 1.0517 1.0602 1.0135 1.0002 0

t3 2.1354 1.0124 1.0151 1 1.0123 1.1693 1.071 1.0172 0

t4 1.3433 1.0144 1.0662 1.0613 1.0397 1.1184 1.0547 1.0121 0

t5 1.4644 1.0068 1.032 1.0262 1.0228 1.0638 1.0236 1.0115 1

t6 1.8885 1.0085 1.0988 1.0599 1.0199 1.0289 1.0192 1.0122 1

t7 1.7668 1.0095 1.0611 1.0927 1.0828 1.0544 1.0336 1.0176 1
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3.7 Pseudocode

Algorithm 1: Pattern based Proportional Sampling

1: X=Input Dataset

2: Transform X to Formal Context

3: Map Formal Context to Pattern Table

4: Estimate Proportion of each pattern

5: Link back Pattern Table to X

6: Generate Sample

3.8 Efficient Variants of Baseline PPS Method

based on Objects

We have two variants of the basic algorithm. These two tweaks are done at the

stage where we link pattern table back to FC and choose objects that are to

be included in the final sample.

3.8.1 Maximize Overlap

After we link back PT to FC we choose objects from FC by maximizing overlap

between objects. For example in Table 3.4 (01111111) from PT is linked back

to (t1,t2), (t1,t3), (t1,t4),(t2,t4) and (t3,t4). If we had to choose 2 objects, for

the baseline method we will choose randomly any two out of the five objects.

But, to maximize overlap we will choose objects that correspond to same rows

in the DBI. So, if we choose (t1,t2) then the other object must be (t1, t3) ,

(t1,t4) or (t2,t4) but it cannot be (t3,t4).
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3.8.2 Minimize Overlap

As opposed to the concept of maximizing overlap, continuing with the same

example as in last section 3.8.1, the two objects must be (t1,t2) and (t3,t4).

3.9 Efficient Variants of Baseline PPS Method

based on Proportions

In an attempt to improve over the basic method we did some tweaks to the

algorithm, mainly in the last step, where we choose samples. In the section 3.6

we have explained how we pick our samples based on the calculated proportions.

3.9.1 Pattern Based Proportional Sampling with Minor-

ity Bias MB-PPS

In this variant of the algorithm, we take into consideration all the patterns with

proportion >=0. For the patterns with proportion <1 we take one sample only.

3.9.2 Pattern Based Sampling- Without Proportions PS

Here we force the algorithm, to choose only one sample corresponding to each

pattern. We neglect the proportions here. This way the sample size gets

reduced even more than previous methods.

3.10 Supervised Learning Frameworks

In this section we explain the tools and metrics that have been used to evaluate

our method. Supervised learning, also referred to as classification means that

machine learning algorithms learn from labelled data. The data contains fea-
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ture vectors and categories/labels across each instance of feature vector. This

data is used for training a model. At the end, the trained model is tested on

completely unseen data. Testing gives us clear idea about how well the model

has generalized with the given set of examples/data. The problem at hand is

a binary classification problem. We have tested our samples on five different

classifiers. Those are artificial neural networks (patternet PN, cascadeforward-

net CFN and feedforwardnet FFN), support vector machine SVM, and naive

bayes NB. We discuss them one by one in next subsections.

3.10.1 Artificial Neural Network

Artificial Neural Networks have been inspired from human brain. ANN tries

to mimic the way in which human brain works. There are 60 trillion neurons

in the human brain and they are massively interconnected with each other.

There are three layers in ANN; (1)input layer, (2)hidden layer and (3)output

layer. Input layer has the number of neurons which is equal to the number of

features. There can be more than one hidden layer and number of neurons can

be adjusted. Output layer has neurons equal to number of classes. Weights of

neurons are adjusted during the training by iteratively propagating back the

error and reaching a stable state. We have used three types of ANN ; patternnet

PN in Figure 3.1, cascadeforwardnet CFN Figure 3.2 and feedforwardnet FFN

Figure 3.3. In FFN each layer is connected with its subsequent layer and PN is a

FFN for which target data is represented differently than FFN. Whereas, CFN

are similar to FFN but each hidden layer and even output layer is connected

with input layer.
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Figure 3.1: ANN Patternnet - MATLAB

Figure 3.2: ANN Cascadeforwardnet - MATLAB

3.10.2 Support vector Machines

This is a kind of classifier that maximises the margin between itself and nearest

data points of two distinct categories to find optimal hyperplane. Figure 3.4

shows hyperplane which not only linearly classifies data but also maximise the

margin between itself and two support vectors. Linear SVM can be represented

in the form of Equation 3.4. Where x is actually the feature vector, w is called

weights and b is a bias. In our case we have used linear SVM.

f(x) = w(x) + b (3.4)

Figure 3.3: ANN Feedforwardnet - MATLAB
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Figure 3.4: SVM Hyperplane

3.10.3 Naive Bayes

Naive Bayes is a ’simple’ classifier as its name suggests, based on Bayesian

rule. It assumes that all the attributes are conditionally independent. Each

feature and class label is treated as a random variable. If class is represented

by c and features by (x1,x2,x3,...,xn), then our goal is to predict class c. That

is done by finding value of c that maximizes P(c| x1x2...xn).

P(c | x1x2...xn) = P (x1x2...xn|c)P (c)
P (x1x2...xn)

(3.5)

3.11 Evaluation Metrics

We have used two evaluation metrics to quantify performances over different

machine learning algorithms. Those metrics are accuracy and f1-measure. In

order to understand these metrics, we must know meaning of true positive

TP, false positive FP, true negative TN and false negative FN.

True Positive (TP): This includes the cases where predicted yes is ac-

tually a yes.

False Positive (FP): These are the cases where predicted yes is actually a
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no.

True Negative (TN): It represents the cases where predicted no is in reality

a no.

False Negative (FN): It includes the cases where predicted no was actually

a yes.

3.11.1 Accuracy

Accuracy is defined as the proportion of observations that are correctly classi-

fied over total number of instances in a dataset. Higher accuracy means that

most of the instances were classified correctly. Accuracy is defined algebraically

in Equation 3.6;

Accuracy =
TP + TN

FP + TP + FN + TN
(3.6)

3.11.2 F1-Measure

F1 measure is defined on the basis of two measures precision P and recall R.

Precision P can be defined as in Equation 3.7;

Precision =
TP

TP + FP
(3.7)

Whereas Recall R is defined as in Equation 3.8;

Recall =
TP

TP + FN
(3.8)

Finally, the F1 measure is a harmonic mean of P and R, given in Equation

3.9;

F1 = 2 ∗ P ∗R
P +R

(3.9)
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3.12 Summary

In this chapter we have explained the methodology in depth along with an ex-

ample from the dataset used for experiments purposes. We have also explained

the learning frameworks that have been used to evaluate the method. We have

also discussed some variants to the baseline algorithm. This chapter provides

sound understanding of the experiments that are given in the next chapter.
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Chapter 4: Evaluation/Validation

The content of this chapter describes all the experiments that have been done

to assess the quality of the proposed sampling method. Moreover,it gives in-

formation about the dataset and machine learning frameworks that were used

to classify the dataset.

4.1 Dataset-MITOSIS 2012-ICPR

The dataset used is publicly available and is called MITOSIS-2012 given by In-

ternational Conference on Pattern Recognition-ICPR1 for automatically detect-

ing and grading mitotic cells. This was originally prepared by the team of pro-

fessor Fr ed erique Capron at the pathology department at Piti e-Salpˆetri‘ere

Hospital in Paris, France. However, for the purpose of our study we have

employed the dataset for tumor segmentation. This dataset comprises of 5

patients and 50 images in which each patient has contributed 10 images.Size

of each image is relatively small 512*512 [5]. The images are Haematoxylin &

Eosin (H & E) stained. The breast cancer tissues are stained [18] in order to

get a detailed view of cancerous tissue which otherwise will appear transparent.

4.1.1 Ground Truth (GT)

This dataset comes with three sets of ground truth. Of which, two GT sets are

prepared manually by senior pathologists Dr. Asha Rupani and Dr. Hesham

1http://ipal.cnrs.fr/ICPR2012

31



(a) Microscopic Cancerous Tissue Image (b) Fused Ground Truth

Figure 4.1: Microscopic image of breast cancer tissue with corresponding
ground truth; the white patches are cancerous and black patches are non-
cancerous

El. Daly at Addenbrookes Hospital, Cambridge, UK. Since, the two GT sets

were prepared individually there stood good chance of difference between them.

To overcome that, a fused GT was prepared. In which a pixel is assigned as

tumor only when both of the pathologists had agreed , otherwise, non-tumor.

We have fused GT only for the purpose of our experiments.

Figures 4.1a and 4.1b show the breast cancer tissue image and its corresponding

ground truth. White area in the Figure 4.1b indicates cancerous/malignant

segments whereas black segments are non-cancerous/benign.

4.2 Experiment with Lukasiewicz Reduction

As detailed in Section 2.3, we had started our work with the existing data

reduction algorithm. For this purpose we split our dataset to 50%/50% for

training/testing. We had input data of size 137,500 tuples, out of which,

87,500 belonged to cancer class and 50,000 belonged to benign class. We had
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applied this method at four similarity levels , 70, 80, 90 and 100%. The concept

of similarity level has been well explained in Section 3.3. The number of tuples

after applying reduction is given in Table 4.1. The number of instances have

been reduced big time. From 137,500 tuples in the input data the reduced

data could be represented with as less as 22 tuples only.

Table 4.1: Data Size after applying Lukasiewicz Reduction

Similarity Level Total Instances After Reduction

70% 22
80% 23
90% 30
100% 46

For this set of experiments we had used SVM, NB, sequential minimal

optimization SMO, random forest RF and multilayer perceptron from WEKA

toolkit. Evaluation results are shown in Table 4.2. The best results are obtained

with 100% precision level with 46 tuples only, with the accuracy and f1 measure

of 79.49 and 79.95.

Table 4.2: Evaluation of Lukasiewicz Reduction

- Accuracy F1 100% Accuracy F1 90% Accuracy F1 80% Accuracy F1 70%

NB 66.73 70.11 68.02 70.87 56.37 59.95 59.02 62.68
SVM 79.49 79.95 79.36 79.18 79.01 78.08 78.3 76.6
SMO 78.5 77.8 74.2 75.3 69.7 71.05 68.4 79.5
RF 60.59 64.28 55.47 59.64 70.30 70.00 69.3 72.5

MLP 62.9 66.7 68.68 72.25 63.33 66.9 61.50 65.04

4.3 Evaluation of the Proposed Sampling

Method-PPS

In this section we show the performances of the obtained samples from our own

method on different classifiers;namely, Support Vector Machine, Naive Bayes,

Artificial Neural Network (Patternnet, Cascadeforwardnet and Feedforward-

net).
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4.3.1 Train and Test Split

For the purpose of experiments the dataset has been split to 50%/50% for

training/testing. The training dataset has 25 images of 512*512 pixels, which

makes it 25*512*512=6553600 pixels. For each pixel we have different number

of features. In case of MR8 features, we have 8 features so 8*6553600 is a

huge number. In order to reduce the computation time, class based (stratified)

random sampling has been done on the training data. In which 200 cancerous

and 200 non-cancerous pixels from each image have been chosen randomly.So,

now we have 10000 pixels only for training. Out of which 5000 belong to

cancerous and other 5000 belong to non-cancerous.

4.3.2 Evaluation Configurations

We have generated samples from three variants of our method under three

levels of similarity index i.e. 70%, 80% and 90% where the multiplier used

was 1000. All of the three samples have been tested through 5 classifiers. We

provide the details of evaluation for those samples in terms of Accuracy and

F1 Measure in the upcoming sections.

4.3.3 Baseline PPS Results

This is the basic algorithm wherein we consider only those patterns that have

proportion >=1. Table 4.3 shows the number of instances after applying PPS

to 3 similarity levels. From 10,000 tuples we have managed to reduce to as low

as 1149 tuples. The evaluation of the three samples is given in Table 4.4; where

SVM outperforms all other classifiers with highest accuracy and f1 measure of

79.1 and 84.9.
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Table 4.3: Data Size after applying PPS

Similarity Index Benign Instances Malignant Instances Total Instances

70% 570 579 1149
80% 664 681 1345
90% 791 773 1564

Table 4.4: Results for PPS

Classifier Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

NB 71.9 79.6 71.9 79.4 72.9 82.5
SVM 79.1 84.9 78.9 84.7 78.7 84.5
PN 76.2 82.8 76.9 83.2 78.02 84.1
CFN 75.7 82.5 76 82.6 77.8 83.9
FFN 76 82.4 75.7 82.3 78 84.1

4.3.4 Minority Biased PPS

Here, we consider all the patterns with proportion >=0. If the proportion is

less than 1 we take one sample from that pattern. Table 4.5 gives the number of

instances after applying MB-PPS. Sample sizes here are slightly bigger than in

Table 4.3 as we consider even those patterns that have very small proportions

with the exception of 70% similarity level for which sample size here is slightly

smaller. Table 4.6 shows the evaluation. SVM is again outperforming rest of

the classifiers.

Table 4.5: Data Size after applying MB-PPS

Similarity Index Benign Instances Malignant Instances Total Instances

70% 557 568 1125
80% 669 637 1336
90% 815 787 1602

Table 4.6: Results for MB-PPS

Classifier Accuracy and F1 70% Accuracy and F1 80% Accuracy and F1 90%

NB 72.5 80.1 72.6 80.1 73.6 81.3
SVM 78.9 84.7 78.3 84.1 78.4 84.3
PN 76.8 83.3 76.3 82.7 77.8 83.8
CFN 74.7 81.5 76.5 82.9 78.04 84.1
FFN 76.01 82.5 76.9 83.2 77.6 83.8
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4.3.5 Without Proportions

In this scenario, we take one sample for each pattern. Sample sizes are given

in Table 4.7 and the smallest is just 25 tuples. Evaluations are given in Table

4.8. SVM, as previously performs best with accuracy of 79% and f1 measure

85.2. This value of accuracy is by far the highest value obtained ever in our

work.

Table 4.7: Data Size after applying PPS-no proportions

Similarity Index Benign Instances Malignant Instances Total Instances

70% 12 13 25
80% 41 23 64
90% 89 80 169

Table 4.8: Results for PBS

Classifier Accuracy and F1 70% Accuracy and F1 80% Accuracy and F1 90%

NB 66.8 76.6 74.8 82.7 73.7 82.4
SVM 78.5 84.5 74.7 80.6 79 85.2
PN 65.4 71.5 65.2 72.2 78.3 84.6
CFN 62.7 69.3 53.9 56.7 70.6 77.2
FFN 63.5 70.3 61.8 67.6 69.9 74.3

4.4 Cross Validation

In order to prevent over-fitting and let our models generalize well, we have

performed 10 fold cross validation. For this purpose the dataset has been

randomly split to 10 disjoint subsets.

• In total, we have 50 images.Where each subset contains 5 images.

• For each image we do stratified random sampling by taking 450 malign

pixels and 300 benign pixels. In total we take 750 pixels from each image

for training purpose.
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• For 10 fold cross validation, we train/test the data for 10 iterations.

• For each iteration we give 750*45=33750 pixels to PPS algorithm.

• However, for testing purpose, we test on whole image(512*512 pixels).

• In first iteration; first 9 subsets are used for training and the 10th(last)

subset is used for test.

• For the second iteration; first 8 subsets and 10th subset is used for training

and this time 9th subset is used for testing.

• This process is repeated 10 times until each subset has been used for

testing exactly one.

• Each subset of data has been fed as an input to PPS algorithm to generate

samples. We have applied PPS 10 times for 10 subsets.

• We have applied this for all the three variants of PPS.

For the comparison we have compared accuracy and F1 Measure before and

after sampling for all the subsets. We have also shown the size of training data

before and after applying for each training set. Multiplier used was 10000. We

have performed cross-validation for three levels of similarity; 90%, 80% and

70% and to all the three variants discussed in 3.9.1,3.9.2 .

4.4.1 Evaluation of subsets before sampling

We have tested all the ten training sets with five classifiers before applying

PPS on them. Table 4.9 for patternnet, Table 4.10 for cascadeforwardnet,

Table 4.11 for feedforwardnet, Table 4.12 for SVM and Table 4.13 for NB.

Highest average accuracy and f1 measure have achieved by SVM which is 78.3

and 84.3. Whereas, lowest accuracy and f1 is gained by NB, with the values of
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71.9 and 79.7. PN, CFN and FFN are not far from SVM and have achieved

accuracy and f1 measure with a difference of very small fractions.

Table 4.9: Before sampling results-Patternnet

Train Sets Accuracy F1 Measure

1 73.3 79.4
2 74.2 81.03
3 87.1 90
4 76.1 82.4
5 78.1 85.2
6 73.9 80.1
7 74.8 83.3
8 83.2 88
9 78.8 85.1
10 82.8 86.4
Average 78.23 84.093

Table 4.10: Before Sampling results-Cascadeforwardnet

Training Sets Accuracy F1 Measure

1 73.3 79.1
2 74.4 81.1
3 87.2 90
4 76.4 82.7
5 78 85.1
6 74.1 80.3
7 74 82.7
8 83.3 88.1
9 78.7 85.1
10 83.01 86.5
Average 78.241 84.07

4.4.2 Cross-validation PPS

Table 4.14 shows the number of instances before and after applying PPS for

three similarity levels. Higher the similarity measure, bigger is the sample.

This is why, we have sample for 90% in the range of 3000 as opposed to 70%

similarity, for which the sample is of the order of 1100.
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Table 4.11: Before Sampling results-Feedforwardnet

Training Sets Accuracy F1 Measure

1 73.2 79
2 74.4 81.1
3 87.2 90.1
4 76.4 82.7
5 77.7 84.9
6 74.1 80.1
7 74.4 83.07
8 83.2 88.09
9 78.6 84.9
10 83.04 86.5
Average 78.224 84.046

Table 4.12: Before Sampling results-SVM

Training Sets Accuracy F1 Measure

1 73.2 79.4
2 74.6 81.3
3 87.7 89.8
4 75.3 82.1
5 78.8 86.01
6 74.1 80.4
7 75.6 84.1
8 82.9 88
9 79.1 85.5
10 82.7 86.5
Average 78.3 84.311

Table 4.13: Before Sampling results-Naive Bayes

Training Sets Accuracy F1 Measure

1 69.1 76.3
2 68.5 77
3 79.9 85.2
4 67.5 76.3
5 71.9 81
6 69.4 76.9
7 72.7 81.9
8 75.5 82.6
9 71.9 80.1
10 73.5 79.7
Average 71.99 79.7
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Here we have applied the basic PPS algorithm and have tested with five clas-

sifiers and have given results in Tables 4.15, 4.16, 4.17, 4.18 and 4.19. Of all

the three similarity levels and 5 classifiers, SVM for 90% PPS have given the

best performance with accuracy and f1 measure of 77.99 and 83.93.

Table 4.14: Data size of each training set; After sampling PPS (90% , 80% and
70%)

Training Sets Before sampling PPS 90% PPS 80% PPS 70 %

1 33750 3738 1312 1151
2 33750 3661 1323 1158
3 33750 8561 1364 1176
4 33750 3821 1353 1176
5 33750 3535 1322 1142
6 33750 3644 1311 1174
7 33750 3705 1356 1137
8 33750 3791 1344 1158
9 33750 3661 1347 1179
10 33750 3726 1337 1153

4.4.3 Cross-validation Minority Biased PPS

We have performed cross-validation for three levels of similarity; 90%, 80%

and 70%. The number of instances before and after applying MB-PPS for

three similarity levels are given in Table 4.20. Sample sizes are consistent with

the sizes of prevois. Tables 4.21, 4.22, 4.23, 4.24 and 4.25 show the results

we have obtained. SVM for 90% similarity and 80% similarity has achieved

Table 4.15: Results for PPS on Patternnet; After Sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

72.4 77.9 72.3 79 70.4 78.4
74.5 81.2 71.8 79.3 71.8 79.2
86.1 89.3 83.35 87.6 83.1 87.4
74.9 81.2 76.2 81.2 68.2 75.9
80.5 87.4 76.3 83.6 71.5 79.3
72.9 79.1 72.9 79.8 72.5 79.2
73.3 82.1 71.8 81.06 71.6 80.9
82.5 87.8 82.9 87.9 80.9 85.8
76.5 83.1 75.7 81.8 68.06 73.6
80 83.5 81.9 85.3 71.7 74.4
77.36 83.26 76.5 82.8 73.03 79.4
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Table 4.16: Results for PPS Cascadeforwardnet; After sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

72.5 78.3 72.5 80.2 71.2 79.1
70.4 77.8 66.7 74.47 69.2 77.9
84.2 87.7 73.4 79.2 73.1 79.04
74.6 80.9 76.28 82.99 74.01 79.9
80.9 87.8 75.5 83.14 67.1 74.9
70.5 76.8 72.6 79.23 69.6 76.7
71.4 80.6 72.8 81.8 73.1 82.4
82.5 87.9 82.5 87.7 81.07 86.2
76.4 83.1 75.8 81.8 72.7 78.8
78.1 81.9 79.9 83.2 71.9 75.05
76.15 82.28 74.8 81.3 72.3 79.05

Table 4.17: Results for PPS Feedforwardnet; After Sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

72.3 77.9 71.4 77.7 67.8 76.3
73.6 80.5 66.04 73.9 69.04 77.13
84.4 87.8 74.8 80.6 72.8 79.1
74.4 80.7 75.6 82.2 75.07 81.16
79.6 86.7 73.5 81.2 79.2 86.8
71.3 77.7 72.2 78.4 68.8 74.6
72.01 81.07 71.6 80.8 73.1 82.4
81.2 86.5 82.6 87.7 78.7 84.2
75.7 82.4 74.5 80.6 67.6 73.09
78.7 82.3 80.4 83.7 68.8 78.8
76.76 82.85 74.3 80.7 72.1 78.5

Table 4.18: Results for PPS SVM; After sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

72.9 78.9 72.1 80.9 73.08 80.8
74.3 81.1 73.1 80.5 75.4 83.16
86.2 89.5 84.5 88.8 83.6 88.3
75.3 81.8 75.1 82.09 75.2 81.9
81.2 88.08 78.6 85.5 78.6 85.4
73.7 79.7 73.4 80.1 73.8 80.7
74.5 83.2 74.4 83.2 76.6 85.09
82.5 87.7 83.05 88.12 82.6 87.5
77 83.6 75.7 81.8 74.4 80.4

82.3 85.8 82.2 85.4 81.6 84.6
77.99 83.93 77.3 83.5 77.5 83.8
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Table 4.19: Results for PPS Naive Bayes; After sampling)

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

71.7 79.4 69.6 78 66.8 77.9
73.7 81.4 66.03 75.36 68.3 78.1
77.9 84.6 77.7 84.9 77.6 84.7
71.1 80 68.01 77.3 67.5 76.5
78.6 86.8 71.9 81.1 70.7 80.05
71.2 79.5 68.9 77.8 69.2 77.9
76.5 85.07 72.6 82.01 73.4 82.6
75.9 84.1 75.1 82.9 74.6 82.5
74.02 82.2 73.1 81.4 70.2 78.3
71.5 79.5 72.5 79.5 74.02 79.08
74.21 82.25 71.5 80.06 71.46 79.82

highest accuracy 77.76 and f1 measure 84.1. This variation to the baseline

PPS has achieved higher f1 measure than basic method by 0.17. However, the

accuracy has gone down by 0.22.

Table 4.20: Data size of each training set;MB-PPS

Training Sets Before sampling MB-PPS 90% MB-PPS 80% MB-PPS 70%

1 33750 3699 1396 1180
2 33750 3803 1396 1171
3 33750 3608 1398 1180
4 33750 3704 1397 1169
5 33750 3586 1360 1164
6 33750 3759 1417 1192
7 33750 3773 1412 1166
8 33750 3572 1407 1171
9 33750 3726 1393 1187
10 33750 3733 1415 1169
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Table 4.21: Results for MB-PPS Patternnet; After Sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

72.7 77.9 72.5 79.5 71.5 79.9
74.4 81.2 63.6 72.9 70.8 78.5
86.01 89.3 80.4 85.2 78.9 84.1
75.6 82.03 76.2 82.8 73.8 80.4
80.4 87.3 76.4 83.6 75.6 82.9
72.5 78.8 73.9 80.7 72.2 79.01
72.9 81.8 72.8 81.8 72.05 81.4
68.8 80.9 82.4 87.8 82.8 87.6
75.6 82.4 76.6 82.6 70.7 76.3
81.5 85.09 81.1 84.3 73.5 77.2
76.04 82.67 75.6 82.1 74.23 80.7

Table 4.22: Results for MB PPS cascadeforwardnet; After Sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

72.5 77.8 72.1 79.5 68.7 76.7
73.2 80.2 71.09 78.35 66.7 74.4
82.2 85.9 76.24 81.2 68.3 73.5
74.9 81.4 75.7 83.1 74.4 80.9
80.4 87.4 76.8 84.6 71.7 79.8
70.6 76.9 73.8 80.5 72.5 78.6
73.2 82.1 77.6 85.9 75.5 84.4
69.1 81.1 82.4 87.3 81.9 86.9
75.3 82.1 75.4 81.4 67.8 73.5
79.06 82.6 80.3 83.4 71.06 74.31
75.03 81.75 76.1 82.5 71.8 78.3

Table 4.23: Results for MB-PPS feedforwardnet

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

72.6 77.8 71.3 78.4 67.4 76.2
70.9 78.3 70.6 78.3 72.5 80.8
80.9 85.5 73.08 79.08 75.9 82.2
74.9 81.6 75.77 82.90 74.7 81.4
78.5 85.8 76.9 84.1 75.4 82.8
70.9 77.3 73.5 80.6 69.2 75.4
73.2 82.08 74.6 83.3 74.7 83.8
68.8 81.07 81.6 87.02 81.2 86.4
75.2 82.08 75.2 81.2 70 75.7
79.2 82.07 79.2 82.7 70.22 73.08
74.51 81.4 75.2 81.8 73.1 79.8
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Table 4.24: Results for MB-PPS SVM; After sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

72.8 78.7 72.9 80.3 73.06 80.8
74.4 81.2 74.6 82.1 75.1 82.7
86.4 89.6 84.9 89.1 83.5 88.3
75.2 82.1 75.02 82.3 75.1 81.8
81.2 88 78.9 85.8 79.8 86.5
73.7 79.8 73.8 81.1 73.9 80.9
74.7 83.3 75.2 83.8 76.5 84.9
79.8 85.5 83.08 88.06 82.4 87.5
77.1 83.7 76.8 82.9 74.5 80.4
82.3 85.8 82.05 85.2 81.3 84.3
77.76 83.74 77.7 84.1 77.5 83.8

Table 4.25: Results for MB-PPS Naive Bayes; After sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

70.7 79 70.18 78.9 69.3 78.5
73.4 81 68.8 78.2 68.4 78.1
86.4 89.6 76.1 84.07 77.4 84.5
78.2 84.8 69.05 78.7 67.8 76.9
71.2 80.2 73.7 82.6 71.5 80.6
78.6 86.6 69.8 79.2 68.8 77.7
77 85.4 75.1 84.1 73.9 83.07

70.1 81.6 75.5 83.4 74.4 82.4
74.3 82.4 73.6 82.3 70.5 78.8
72.7 79.7 73.4 80.36 73.8 78.7
73.82 82.07 72.5 81.2 71.6 79.9
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4.4.4 Cross Validation -Pattern Based Sampling

We have performed cross-validation for three levels of similarity; 90%, 80% and

70%. Table 4.26 The number of instances before and after applying PBS for

three similarity levels are given.The samples generated here are of much smaller

size as compared to previous two methods. However, this method gives the best

performance with highest accuracy 78.6 and f1 measure 85.6 with SVM for

80% similarity. Tables 4.27, 4.28, 4.29, 4.30 and 4.31 show the evaluation

results for all the classifiers.

Table 4.26: Data size of each training set; PBS 90%, PBS 80% and 70%

Training Sets Before sampling PBS 90% PBS 80% PBS 70%

1 33750 180 81 33
2 33750 177 84 30
3 33750 187 89 36
4 33750 179 85 30
5 33750 179 87 30
6 33750 194 77 31
7 33750 176 81 31
8 33750 176 76 29
9 33750 183 92 33
10 33750 187 85 31

Table 4.27: Results for PBS Patternnet; After sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

71.4 80.04 70.1 79.14 71.58 78.9
76.13 84.2 65.2 73.4 71.1 81.4
82.7 86.6 74.7 79.8 33.6 31.8
74.57 80.9 72.7 80.9 32.4 0.017
81.3 87.9 80.7 88.5 71.6 79.6
74.51 82.28 71.2 78.2 63.4 72.9
79.8 87.7 76.6 85.19 65.05 76.11
78.84 85.39 49.01 52.3 35.4 28.7
79.9 86.8 79.2 86.4 66.04 72.9
80.74 85.14 59.08 55.8 78.5 82.7
78.01 84.7 69.8 75.9 58.8 57.6

45



Table 4.28: Results for PBS cascadeforwardnet; After sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

71.2 79.07 62.15 70.74 68.6 76.1
72.7 81.9 75.2 85.4 51.4 57.8
84.5 88.7 74.7 83.19 60.55 67.01
74.4 82.7 34.2 0.12 65.9 75.4
67.8 76 79.5 87.8 60.4 77.9
73.1 80.19 60.04 61.08 69.7 77.2
77.2 85.9 69.13 80.36 51.8 63.9
71.91 77.2 72.6 82.7 61.4 63.6
75.2 82.8 75.2 82 72.5 82.1
79.6 84.2 60.87 67.18 69.1 72.8
74.8 81.8 66.39 71.27 64.07 71.4

Table 4.29: Results for PBS feedforwardnet; After sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

71.2 80.5 68.1 77.05 37.9 0.19
73.6 82.6 32.8 0.192 38.4 38.3
82.6 87.8 50.28 46.8 81.2 86.5
71.8 81.05 65.9 75.14 68.8 78.4
80.8 88.01 74.17 82.9 60.7 69.9
70.81 77.6 65.7 77.3 63.3 73.6
72.2 81.4 64.7 75.3 73.2 83.2
72.18 82.4 80.39 80.06 51.7 62.1
59.3 64.5 74.3 81.4 50.7 52.3
82.1 86.04 79.06 84.19 47.99 42.2
73.6 81.1 65.5 70.5 57.4 60.6

Table 4.30: Results for PBS SVM; After sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

72.5 81.6 72.76 81.6 72.9 81.09
76.4 84.7 76 84.1 76.6 84.8
2.5 87.7 85.04 89.15 83.2 88.1
73.7 82.6 74.08 82.4 74.6 81.7
82.5 89.2 82.01 88.7 81.4 88
73.9 82.5 73.9 81.9 74.03 81.4
80.6 88.3 78.9 86.9 80.1 87.8
80.6 87.1 82.8 88.15 81.3 87.5
80.1 86.9 79.9 86.9 78.9 85.2
82.2 86.6 81.3 86.14 82.2 86.5
78.5 85.7 78.6 85.6 78.5 85.2
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Table 4.31: Results for Naive Bayes PBS; After sampling

Accuracy and F1 90% Accuracy and F1 80% Accuracy and F1 70%

69.4 80.75 69.1 81.02 68.5 80.8
69.7 80.8 69.01 80.9 68.9 80.6
69.6 80.7 71.4 79.1 68.6 80.1
70.15 80.97 69.5 80.8 67.7 78.3
70.17 81.02 69.8 80.8 68.3 78.5
69.8 80.9 72.1 80.9 69.7 79.5
69.9 80.7 69.1 80.6 67.4 77.8
69.8 80.6 69.5 80.9 68.4 79.8
69.6 80.8 68.9 80.8 68.7 80.2
71.7 81.1 70.1 80.4 66.7 77.3
70.03 80.08 69.8 80.6 68.3 79.3

4.4.5 Minimizing and Maximizing Overlap- Cross Vali-

dation

As explained in Sections 3.8.1 and 3.8.2 we have performed cross validation

for these two variant with 90% similarity and MB-PPS only. As from our

previous experiments, we have found out that 90% similarity gives best results.

Data sizes after applying sampling are given in Table 4.32. Tables 4.33, 4.34,

4.35, 4.36 and 4.37 show the evaluation results. Clearly, minimum overlapping

obtains smaller sample and better performance. As it tries to retrieve distinct

object, resulting into a better and compact representation of data. SVM yields

best results in this experiment as well.

Table 4.32: Data size of each training set; Minimum and Maximum Overlap

Training Sets Before sampling Minimum Overlap Maximum Overlap

1 33750 857 4173
2 33750 837 3514
3 33750 839 6355
4 33750 857 527
5 33750 824 719
6 33750 891 3598
7 33750 861 3533
8 33750 872 6304
9 33750 847 6326
10 33750 812 6354
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Table 4.33: Results for PPS-Overlap Patternnet; After sampling

Train sets Accuracy and F1 (Min Overlap) Accuracy and F1(Max Overlap)

1 73.4 80.3 38.5 20.1
2 68.9 76.6 27.9 55.6
3 85.5 88.6 85.6 88.7
4 74 79.8 48.1 44.9
5 73.5 80.9 48.1 44.9
6 70.6 75.9 32.2 2.03
7 70.8 80.03 0.17 0
8 80.7 85.9 83.1 87.7
9 77.8 84.2 74.5 80.6
10 77.08 81 81.8 84.9
Average 75.2 81.3 55.5 53.96

Table 4.34: Results for PPS-Overlap Cascadeforwardnnet; After sampling

Train sets Accuracy and F1 (Min Overlap) Accuracy and F1(Max Overlap)

1 72.6 78.9 37.7 20.41
2 71.04 78.28 28.7 7.9
3 82.4 85.6 84.3 87.5
4 72.8 78.8 61.5 65.3
5 70.5 78.2 59.3 70.3
6 70.6 76.1 32.1 1.7
7 71.8 81.3 18 0.6
8 81.1 86.6 81.3 86.03
9 77.01 83.34 74.16 80.23
10 79.7 84.01 79.2 82.5
Average 74.9 81.1 55.6 50.2

Table 4.35: Results for PPS-Overlap Feedforwardnet; After sampling

Train sets Accuracy and F1 (Min Overlap) Accuracy and F1(Max Overlap)

1 71.1 76.6 37.7 20.9
2 75.4 83.4 29.1 9.1
3 81.9 85.2 84.3 87.7
4 70.5 75.2 67.3 73.2
5 72.7 82.4 72.3 82.01
6 71.5 77.5 32.4 2.6
7 69.5 79.1 18.01 0.0008
8 79.8 85.3 82.05 86.8
9 76.5 82.8 74.4 80.47
10 80.28 84.1 78.2 81.3
Average 74.9 81 57.6 52.4
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Table 4.36: Results for PPS-Overlap SVM; After sampling

Train sets Accuracy and F1 (Min Overlap) Accuracy and F1(Max Overlap)

1 72.9 80.06 32.7 0
2 71.8 79.1 25.9 0
3 86.2 89.1 86.6 89.6
4 74.4 80.2 73.1 80.6
5 73.8 81.1 81.2 88.2
6 72.5 78.2 31.7 0
7 73.9 82.6 0.17 0
8 82.7 87.6 82.6 87.4
9 78.2 84.4 75.7 81.7
10 82.4 85.7 82.4 85.9
Average 76.9 82.8 59.02 59.34

Table 4.37: Results for PPS-Overlap NB; After sampling

Train sets Accuracy and F1 (Min Overlap) Accuracy and F1(Max Overlap)

1 70.32 79.8 33.16 73.9
2 70.8 79.6 32.6 0.91
3 71.2 80.16 70.54 80.05
4 71.2 80.2 68.4 78.5
5 70.6 79.6 69.9 80.6
6 71.2 79.7 32.45 4.02
7 70.12 79.6 32.6 0.58
8 70.73 80.08 70.07 80.2
9 71.19 80.26 69.5 78.05
10 70.4 79.4 69.9 79.5
Average 70.8 79.8 54.9 48.9
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4.4.6 Averaged performance of PPS and its variants in

bar plots

In this section we have put all the results collectively in the form of bar plots

to have a better visualisation. Figure 4.2, 4.3 and 4.4 show PPS accuracy and

f1 measure for 70%, 80% and 90% similarity index.
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Figure 4.2: PPS (70%); After sampling
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Figure 4.3: PPS (80%); After sampling
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Figure 4.4: PPS (90%); After sampling

Figure 4.5, 4.6 and 4.7 show MB-PPS accuracy and f1 measure for 70%,

80% and 90% similarity index.
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Figure 4.5: MB-PPS (70%); After sampling
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Figure 4.6: MB-PPS (80%); After sampling

Figure 4.8, 4.9 and 4.10 show PBS accuracy and f1 measure for 70%, 80%

and 90% similarity index.
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Figure 4.7: MB-PPS (90%); After sampling
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Figure 4.8: PBS (70%); After sampling
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Figure 4.9: PBS (80%); After sampling
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Figure 4.10: PBS (90%); After sampling

4.5 Evaluation of SRS and SS

For the sake of comparison we have performed cross-validation by applying

simple random sampling and stratified sampling as explained in Sections
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2.4.1 and 2.4.2. We have chosen 1200 tuples for SRS and 1215 tuples for SS

for each of 10 training sets. The averaged accuracies and F1 measures of 10

training sets for all the classifiers are shown in Table 4.38. We have found that,

the performance is not very far from what our method has achieved. However,

these two methods are random and will not be able to reproduce the exact

same results. It might do well sometimes and it may give poor results also.

Table 4.38: Evaluation of SRS and SS

Classifiers Accuracy and F1 (SRS) Accuracy and F1 (SS)

NB 72.09 80.09 72.1 80.2
SVM 78.2 84.5 78.1 84.3
PN 77.1 83.5 77.2 83.4

CFN 77.8 84.1 77.3 83.6
FFN 77.9 84.1 77.4 83.7

4.6 Summary

By applying multiple variations of PPS we have observed that there exists

positive correlation between similarity index and sample size. Higher similarity

index means the bigger sample. Out of the three methods, the last method

which is simple as compared to the rest of the two as it does not take into

account the proportions, yields the highest accuracy and f1 measure. But the

selection of objects here is purely random. We may not be able to get the same

result each time we run the experiment.

Of all the experiments performed; the best results obtained before and after

sampling in the cross-validation can be summarized in Table 4.39. The pattern

based sampling method, explained in Section 3.9.2 is giving us the best

results.

To summarize, we have performed mainly three sets of experiments
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Table 4.39: Best performance among all the cross-validation experiments

- Accuracy F1 Classifier Similarity Level Sample Size

Before sampling 78.3 84.3 SVM N/A 33750
After pattern based sampling 78.6 85.6 SVM 80% 84

• Incremental Lukasiewicz reduction by doing 50%/50% split (no cross-

validation) at four similarity levels 70%, 80% ,90% and 100%

• Pattern based proportional sampling method along with its variants by

doing 10 fold cross validation for three similarity levels of 70%, 80% and

90%

• Simple random sampling and stratified sampling with 10 fold cross vali-

dation

We have put the results of Dhoha Abid’s work [3] in Table 4.40. Dhoha

had used 137,500 tuples to get 77.5 accuracy and 83.5 f1 measure. This result

is not directly comparable to our work as we have performed cross validation.

Wherein [3] the evaluation was done by doing 50%/50% split of data. If we

compare this work with our experiment of Lukasiewicz Reduction in Section

4.2, the classification accuracy is higher than [3]. As in Lukasiewicz reduction

we were able to get accuracy of 79.1 with 46 tuples only as opposed to only

77.5% accuracy with 137,500 tuples.

Table 4.40: Summarized results from [3]

- Accuracy F1 Classifier Train and Test split Sample Size

Dhoha’s Work 77.5 83.5 SVM 50%/50% 137,500
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Chapter 5: Conclusions and Future Work

We conclude this thesis by summarizing our objectives, achievements,limitations

and some future directions on our proposal.

5.1 Conclusions

We have presented a sampling method based on patterns. The patterns are

obtained by building formal context of a given database. The strength of the

method arises from the fact that it preserves data characteristics in form of

functional dependencies and discards outliers. Thus helping us to perform

classification tasks with smaller datasets and reduced computation time.

To test the efficacy of proposed method we have chosen the domain of image

segmentation particularly for breast cancer images. We were motivated to

work with this particular topic due to the increasing prevalence of breast

cancer around the globe. To automatically segment the images of cancer will

save time and tireless efforts required from the pathologists. It will ensure the

timely delivery of right treatment to patients.

Image segmentation is a task that involves four main subtasks. Those

are, pre-processing, feature extraction, feature reduction and decision mak-

ing/classification. Our work revolves around the third task which is feature

reduction. We are not trying to reduce the features rather we are trying to

reduce the number of instances of given data.

We have performed extensive sets of experiments with multiple variations
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of the baseline PPS algorithm and have reached to the conclusion that it is

important to take into account each pattern even if it occurs in a very small

proportion.

Currently, our method works well with a small number of features 8 or 10.

However, if we asked were to apply PPS on a larger number of features then

one plausible route is to perform feature ranking at first to choose top 8

features and then apply our sampling method.

For the comparison purpose, we have compared our method with two conven-

tional sampling methods, SRS and SS. We are not able to compare our results

with the participants of ICPR conference MITOTIS 2012 dataset was used for

automatically detecting and grading mitotic cells. However, we have used that

dataset for tumor segmentation.

5.2 Future Work

As stated earlier in the last section, our immediate goal is to work with a much

larger feature vector, by simply taking the most discriminative of them. We

also intend to improve on the way the objects are chosen in the last step to be

considered for inclusion in the output.

Our next target is to work with multi-class classification problems. Our method

does not impose any restrictions on the kind of data we use. We will also apply

it on the text data for sentence classification.

5.3 Publication

During the course of this research, following publications were done;

• Eman Rezk, Zainab Awan, Fahad Islam, Somaya Al Madeed, Ali Jaoua,

Nan Zhang, Gautam Das, Proportional Sampling using Binary Patterns:
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Microscopic Images Tumor Classification Application in Machine Learn-

ing and Data Analytics Symposium MLDAS 2017, Doha, Qatar.

• Eman Rezk, Zainab Awan, Fahad Islam, Somaya Al Madeed, Ali Jaoua,

Nasir Rajpoot, Nan Zhang, Gautam Das, ”Conceptual Data Sampling

Applied in Microscopic Images Tumour Classification ”. (To be submitted

to Journal of Information Science)
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