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Abstract

Single cell RNA-Seq provides rich information about cell types and states. However, it is difficult 

to capture rare dynamic processes, such as adult neurogenesis, because isolation of rare neurons 

from adult tissue is challenging and markers for each phase are limited. Here, we develop Div-Seq, 

which combines scalable single nucleus RNA-Seq (sNuc-Seq) with pulse labeling of proliferating 

cells by EdU to profile individual dividing cells. sNuc-Seq and Div-Seq can sensitively identify 

closely related hippocampal cell types and track transcriptional dynamics of newborn neurons 

within the adult hippocampal neurogenic niche, respectively. We also apply Div-Seq to identify 

and profile rare newborn GABAergic neurons in the adult spinal cord, a non-canonical neurogenic 

region. sNuc-Seq and Div-Seq open the way for unbiased analysis of diverse complex tissues.
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Single cell RNA-Seq (scRNA-Seq) has extended our understanding of heterogeneous tissues 

including the central nervous system (CNS) (1–3). However, dynamic processes, such as 

adult neurogenesis, remain challenging to study using scRNA-Seq. First, scRNA-Seq 

requires enzymatic tissue dissociation (Fig. 1A), which may compromise the integrity of 

neurons and their RNA content, skew data towards easily dissociated cell types, and is 

restricted to fetal or young animals (1). Second, it is difficult to capture rare cell types, such 

as adult newborn neurons (4), because of limitations in cell tagging and isolation at each 

phase of the dynamic process.

We therefore developed Div-Seq, a method for RNA-seq of individual, recently-divided 

cells. Div-Seq relies on sNuc-Seq, a single-nucleus isolation and RNA-Seq method 

compatible with frozen or fixed tissue (Fig. 1A), which enables enrichment of rare labeled 

cell populations by fluorescence-activated cell sorting (FACS) (fig. S1). Div-Seq combines 

sNuc-Seq with pulse labeling of dividing cells by 5-ethynyl-2′-deoxyuridine (EdU) (5, 6).

We validated that sNuc-Seq on population of nuclei faithfully represents tissue level RNA 

(7) (fig. S2A–B), in agreement with earlier studies on the feasibility of single nucleus RNA-

seq (7, 8). Next, we analyzed 1,367 single nuclei from hippocampal anatomical sub-regions 

(DG, CA1, CA2, and CA3) from adult mice, including enrichment of genetically-tagged 

lowly abundant GABAergic neurons (9) (fig. S1). sNuc-Seq robustly generated high quality 

data across animal age groups (including 2 years old mice, fig. S2C–H, S3), detecting 5,100 

expressed genes per nucleus on average, with comparable complexity to single neuron RNA-

Seq from young mice (1–3) (fig. S3A–C).

Analysis of sNuc-Seq data revealed distinct nuclei clusters (Fig. 1B–D, fig. S4–S5, S6A–C 

and table S1) corresponding to known cell types and anatomical distinctions in the 

hippocampus. Analysis was consistent with microdissections, in situ hybridization (Allen 

ISH (10), fig. S5), and bulk RNA-Seq (11) (fig. S6D). We captured finer distinctions 

between closely related cells using a new clustering algorithm, biSNE (biclustering on 

Stochastic Neighbor Embedding) (fig. S7), which partitioned the GABAergic neurons into 

sub-clusters (fig. S8 and table S2), and associated each sub-cluster with combinations of 

canonical markers (fig. S8C). We validated selected markers using fluorescent RNA in situ 
hybridization (FISH) (fig. S9).

BiSNE also distinguished between spatial hippocampal sub-regions with divergent 

transcriptional profiles. BiSNE partitioned glutamatergic cells into sub-clusters (Fig. 2A and 

fig. S10), which were further mapped to hippocampal sub-regions, using ISH of spatial 

landmark genes (10) (Fig. 2B and fig. S11–S13). We validated our mapping by confirming 

expression patterns using the Allen ISH dataset (10) (Fig. 2C and fig. S14). While some sub-

regions were assigned to a single sub-cluster (e.g., dorsal lateral CA1, Fig. 2B), most sub-

regions were assigned partially overlapping sub-clusters, suggesting a gradual transition of 

transcriptional profiles between neighboring sub-regions. This extends current anatomical 

resolutions of the hippocampus (figure S15), and support the notion that cellular diversity 

does not always partition into discrete sub-types (12).
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We identified genes that are indicative of specific cell type or position (tables S1–S3). For 

example, Penk, encoding an opioid neuropeptide (Enkephalin), and its receptor Oprd1 (13), 

were expressed in mutually exclusive sub-clusters of cells (Fig. 2D), which we validated by 

FISH and the Allen ISH dataset (10) (Fig 2E, fig. S16). These cell types and spatial 

positions may be involved in Enkephalin signaling within the hippocampus.

Next, to study transcriptional dynamics during adult neurogenesis we developed Div-Seq by 

combining sNuc-Seq with EdU labeling of dividing cells (Fig. 3A). Unlike genetic labeling 

(2, 14), EdU tags proliferating cells at any time window, marking stem cells and their 

progeny with high temporal resolution. We applied Div-Seq in the DG, a canonical 

neurogenic niche (4), over multiple time points (1–14 days after cell division, Fig. 3B, fig. 

S17, Table S4). Div-Seq enriched for diverse newborn cell types and neurogenic stages (fig. 

S17F–G), from proliferating stem cells to immature neurons (4).

BiSNE analysis of neuronal lineage nuclei placed the DG newborn neurons on a continuous 

trajectory. The order of nuclei along the trajectory matched the EdU labeling time (Fig. 3C), 

was independent of animal age (fig. S17H) and recapitulated known dynamics of 

neurogenesis markers (2, 3, 15) (fig S18A), indicating that the trajectory indeed captured the 

neuronal maturation process.

To characterize the transcriptional program of adult neurogenesis, we identified and 

clustered genes with dynamic expression patterns along the trajectory (Fig. 3D and table 

S5). We found major coordinated transcriptional waves, involving hundreds of genes, and 

aligned with known transitions between neurogenic stages, with expression shifts from 

proliferation to neuronal differentiation (consistent with (2)), and then to neuronal 

integration and maturation (Fig. 3D). We identified genes with restricted expression in 

specific stages of neurogenesis (fig. S18–S19), including transcription factors and chromatin 

regulators (fig. S18). We confirmed the early neurogenic stage-specific expression of the 

axon guidance molecule Draxin and the ribonucleotide reductase Rrm2 by FISH (fig. S19).

Accumulating evidence suggests that adult neurogliogenesis occurs in multiple non-

canonical regions (16), but traditional methods are limited for the characterization of rare 

newborn cells, and can lead to less definitive findings, as in the spinal cord (SC) (17) (18). 

We applied Div-Seq over multiple time points (1–7 days) in the SC (fig. S20). SC nuclei 6–7 

days post labeling (Fig. 4A–B) comprised a diverse population of newborn cells including 

oligodendrocyte precursor cells (OPCs, 44%) and immature neurons (19%), in contrast to 

4% OPCs and no immature neurons in the non-EdU labeled population. The SC newborn 

neurons expressed the GABAergic markers Gad1 and Gad2, suggesting GABAergic 

neurogenesis (18) (Fig. 4B). Notably, we found a set of immature neuronal nuclei (10%) at 

23–24 days post EdU labeling (fig. S21), suggesting survival of newborn neurons in the SC.

The full set of neuronal lineage nuclei (fig. S20A) map to a continuous trajectory (Fig. 4C), 

that matched labeling time and expression dynamics of known markers (fig. S20C). 

Comparison of dynamically expressed genes along the SC and DG trajectories (fig. S20B) 

identified 347 (28%) common neurogenesis genes (Fig. 4D, fig. S20C), and revealed notable 

distinctions in expression dynamics and branching in the DG and SC (Fig. 4D–E and (6)), 
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which can result from differences in time scales, cell populations, or parallel gliogenesis and 

neurogenesis processes.

The immature neurons from SC and DG are comprised of different neuronal types 

(GABAergic in SC, granule cells in DG). To identify candidate genes driving neuronal 

lineage specification, we first identified differentially expressed genes between SC and DG 

(t-test), and then compared their expression patterns to those of newborn neurons in the 

olfactory bulb (OB), where GABAergic neurons are born (Fig. 4F). A set of SC-specific 

genes was also up-regulated in the OB relative to the DG, including the transcription factors 

Pbx3 and Meis2. This is consistent with previous reports (19, 20), and with 

immunohistochemistry of Pbx3 showing expression in newborn cells both in the OB and SC 

but not in the DG (fig. S22–S24).

Application of Div-Seq to the adult CNS highlighted potential regulators and the neurogenic 

potential of the SC, though the functional roles of these SC newborn neurons remained to be 

elucidated. Future technology developments may increase the sensitivity, throughput, and 

cell types amenable to these methods. sNuc-Seq and Div-Seq open new avenues in the study 

of neuronal diversity and dynamic processes in the CNS, and can be readily applied to 

diverse biological systems and human tissues.
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Fig. 1. 
sNuc-Seq identifies cell types in adult mouse brain. (A) Representative images of isolated 

nuclei are more uniform than of dissociated neurons from adult brain. Scale = 10μm. sNuc-

Seq method (right): nuclei are isolated, FACS sorted and profiled using modified Smart-

Seq2 (21). (B) Major cell types identified from sNuc-Seq data reflected by clusters, shown 

as 2-D embedding of 1,188 nuclei from adult mouse hippocampus. (C) Cluster-specific 

genes across single nuclei. Color bar matches cluster color in B. (D) Identification of DG 

granule cell, CA1, CA2, and CA3 pyramidal cell clusters, by marker genes, shown as: 1, 

ISH image in hippocampus section (10) (arrowhead: high expression; Scale = 400μm.); 2, 

histogram quantifying expression in relevant cluster; and 3, 2-D embedding of nuclei (as in 

B) colored by relative expression.

Habib et al. Page 7

Science. Author manuscript; available in PMC 2017 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
sNuc-Seq and biSNE distinguish cell subtypes and spatial expression patterns. (A) 

Pyramidal CA1 and CA3 biSNE sub-clusters. Shown is a 2-D embedding of the CA1 and 

CA3 pyramidal nuclei (colored by cluster). Inserts: the CA1 cluster (orange) and CA3 

cluster (green) within all other clusters from Fig. 1B. (B) Mapping of CA1 and CA3 

pyramidal sub-clusters to sub-regions. Sub-cluster assignments are numbered and color 

coded as in A. Top: hippocampus schematic. (C) Predictions by CA1 and CA3 sub-cluster 

spatial mapping match with Allen ISH data (10). Left illustrations: boxes: predicted 

differential expression regions; arrowhead: high expression; asterisk: low expression. (D) 

Mutually exclusive expression of Penk (facing up) and its receptor Oprd1 (facing down) 

across neuronal sub-clusters. Red line: median, box: 75% and 25% quantile. Single and 

double asterisks: GABergic clusters associated with Pvalb or Vip markers, respectively. (E) 

co-FISH of Penk or Oprd with markers of GABAergic sub-types (Pvalb and Vip as in D). 

Arrowheads: co-expression. Scale = 20μm.

Habib et al. Page 8

Science. Author manuscript; available in PMC 2017 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Transcriptional dynamics of adult neurogenesis by Div-Seq. (A) Div-Seq. EdU is injected 

into adult mice and incorporates into dividing cells (5), isolated EdU labeled nuclei are 

fluorescently tagged and captured by FACS for sNuc-Seq. (B) Adult neurogenesis in the DG 

(4). Tan box: timing of EdU labeling. Bottom panel: EdU labeling and tissue dissection 

(grey) time course. (C) A continuous trajectory of newborn cells in the DG. biSNE 2-D 

embedding of neuronal lineage nuclei (n = 269). Arrow: direction of trajectory determined 

by labeling time and marker expression. Top: Colored by labeling time (1–14 days). Bottom: 

Expression of markers, shown as: 1, 2-D embedding colored by the expression level; 2, 

average expression along the trajectory. Markers (clockwise from top left): Sox9 (NSC), 

Notch1 (proliferation/differentiation), Neurod1 (immature neurons), Eomes/Tbr2 (neuronal 

precursor). (D) Expression waves along the trajectory. Left: average expression of cluster 

genes along the trajectory. Middle: heatmap of average expression of each gene along the 

trajectory and neurogenic stages (labeled as in B). Right: representative enriched biological 

pathways.
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Fig. 4. Dynamics of adult newborn GABAergic neurons in SC
(A) Div-Seq in SC captures OPCs and immature neurons. Distribution of cell types in non-

EdU-labeled and 6–7 days EdU labeled nuclei. (B) Div-Seq captured nuclei expressing 

marker genes of immature (Sox11) and GABAergic (Gad1) neurons. Box plots for immature 

neurons, mature neurons and OPCs. Red: median, box: 75% and 25% quantiles. (C) 

Newborn cells in SC form a continuous trajectory. 2-D embedding of 1–7 days EdU labeled 

and non-labeled nuclei (n=184, neuronal lineage nuclei), colored by labeling time. 

Trajectory directionality is EdU labeling time and marker genes. (D) Dynamically expressed 

genes shared in SC and DG neurogenesis (347 genes from fig. S22B and Fig. 3D). (E) 

Gradual transition from a glia-like to neuronal state. Neuronal trajectories in the SC (as in C) 

and DG (as in Fig. 3C) colored by a glia-neuron RNA expression score. (F) Region specific 

gene expression in immature neurons (6–7 days post EdU). 236 genes differentially 

expressed between SC and DG (t-test FDR<0.05, log-ratio>1), in olfactory bulb (OB), SC 

and DG. Box: average expression of example genes up-regulated in OB and SC compared to 

DG.
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