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Abstract

With the continued extension of lifespan, aging and age related diseases have become a major 

medical challenge to our society. Aging is accompanied by changes in multiple systems. Among 

these, the aging process in the central nervous system is critically important but very poorly 

understood. Neurons, as post-mitotic cells, are devoid of replicative associated aging processes, 

such as senescence and telomere shortening. However, because of the inability to self-replenish, 

neurons have to withstand challenge from numerous stressors over their lifetime. Many of these 

stressors can lead to damage of the neurons’ DNA. When the accumulation of DNA damage 

exceeds a neuron’s capacity for repair, or when there are deficiencies in DNA repair machinery, 

genome instability can manifest. The increased mutation load associated with genome instability 

can lead to neuronal dysfunction and ultimately to neuron degeneration. In this review, we first 

briefly introduce the sources and types of DNA damage and the relevant repair pathways in 

nervous system (summarized in Figure 1). We then discuss the chromatin regulation of these 

processes and summarize our understanding of the contribution of genomic instability to 

neurodegenerative diseases.

DNA damage and repair in the central nervous system

DNA is constantly faces attack from both exogenous and endogenous sources. The most 

common environmental related DNA damage is caused by excessive exposure to sunlight 

(UV radiation) and tobacco smoke, which primarily affect skin and lung cells, respectively. 

Protected by the skull, spine and the blood-brain/spinal cord-barrier, the central nervous 

system is guarded from most exogenous sources of DNA damage, but remains vulnerable to 

ionizing radiation, including X-rays and cosmic rays, and certain chemotherapeutic reagents 
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that penetrate these barriers. This is typically manifested as DNA strand breaks, which must 

be efficiently repaired to maintain genome integrity.

Primarily due to the brain’s high demand for energy, the endogenous sources, such as the 

metabolic products, are responsible for most of the DNA damage that occurs in the brain [1]. 

It is estimated that about 20% of the oxygen and 25% of the glucose that are consumed by 

our body are devoted to brain functions [2]. Mitochondria use this oxygen and glucose to 

generate ATP primarily through oxidative phosphorylation. The by products of this reaction, 

reactive oxygen species (ROS), and their reaction products, such as reactive nitrogen species 

(RNS) and lipid peroxidation products, are very harmful to DNA. The most common lesions 

created by these metabolism products include apurinic/apyrimidinic (AP) sites (abasic sites), 

oxidized base, such as 7,8-dihydro-8-oxoguanine (8-oxoG) and 8-hydroxy-2-

deoxyguanosine (OHdG), and single stranded breaks (SSBs). It is also possible that one 

form of lesion can be turned into another form. For example, AP sites, if not repaired, can be 

converted to SSBs. The estimated number of DNA lesions caused by endogenous sources is 

in the range of 104 to 105 per cell per day [3, 4].

To preserve genomic integrity, there are at least four active DNA repair pathways in nervous 

system [1, 5], each corresponding to particular types of DNA lesions (Figure 1). In each case 

the DNA damage must be detected, the lesion removed or the ends processed, the gaps filled 

and ligated and the chromatin state returned to the pre-lesion state. Base excision repair 

(BER) mechanisms correct DNA base modifications such as those produced by ROS. 

Nucleotide excision repair (NER) pathways remove helix distorting lesions and cross-links 

caused by UV radiation and chemical agents. There are two sub-pathways of mammalian 

NER: global genome nucleotide excision repair (GG-NER) and transcription-coupled 

nucleotide excision repair (TC-NER), which differ in the initial detection step. GG-NER 

repairs general helix distorting lesions anywhere in the genome, while TC-NER recognizes 

DNA damage that blocks RNA polymerase II. Additionally, single strand break repair 

(SSBR) and double strand break repair (DSBR) pathways mend DNA strand breaks caused 

by ionizing irradiation or chemotherapy reagents. Importantly, SSBs are also intermediate 

products of BER, thus there is significant overlap between SSBR and BER pathways. 

Double-strand breaks are repaired through one of two mechanisms: nonhomologous end 

joining (NHEJ) or homologous recombination (HR) repair. HR is the major pathway used 

during S/G2 phase, where the broken DNA is repaired using sister chromatid as template. 

NHEJ repair can happen during any phase of cell cycle and it is the primary means for 

repairing DSBs in post-mitotic neurons. Because the damaged DNA terminals need to be 

processed before rejoining, errors can be introduced during NHEJ repair.

Failure to properly repair damaged DNA can result in mutations that have dire consequences 

on cell function. Mis-repaired DNA in actively transcribed regions can cause altered 

expression or function of the corresponding proteins. Some transcription blocking lesions 

can even directly lead to cell death. Such mutagenesis in dividing cells can impose 

substantial risk for developing cancer in some cases; however, in the post-mitotic cells of the 

nervous system, it mostly results in milder cellular dysfunction, possibly culminating in 

neurodegeneration.
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In addition to permanent alteration of potentially important DNA sequences, the DNA 

damage response is a very energy consuming process that can in and of itself perturb cellular 

function if over-activated. For instance, as described in next section, in response to DSB, 

histone H2A.X is phosphorylated, and this phosphorylation spreads in both directions 

surrounding the damage site for at least megabase of chromatin. It is estimated that 104 ATP 

molecules are necessary to repair a single DSB [3]. Similarly, PARP1 (Poly(ADP-ribose) 

polymerase-1) activation during the DNA damage response can lead to nicotinamide adenine 

dinucleotide (NAD+) depletion, which can in turn disrupt the functions of NAD+ dependent 

enzymes (such as Sirtuins) and/or promote cell death through mitochondrial release of 

apoptosis-inducing factor (AIF) [6]. Thus, energy starvation resulting from deregulated 

DNA damage responses (DDRs) can also perturb neuronal function and ultimately 

contribute to neurodegeneration.

In addition to nuclear DNA (nDNA), mitochondrial DNA (mtDNA) is also subject to 

endogenous and exogenous damages. In fact, the mutation rate of mtDNA is at least 10 fold 

greater than that of nDNA [7]. Recent studies show that, although the chromatin regulation 

of DNA repair is absent due to the lack of histones, the major repair pathways are preserved 

in mitochondria. Readers are referred to these excellent reviews addressing mtDNA integrity 

and its link to aging and neurodegeneration [8, 9].

DNA damage repair in the chromatin context

DNA is organized into nucleosome core particles, where 147 bp of DNA wraps in 1.67 left-

handed superhelical turns around a histone octamer. The histone octamer is composed of 

H3-H4 tetramer flanked by two H2A-H2B dimers. Their exposed histone tails are enriched 

with post-translational modifications. The nucleosome core particles are connected through 

linker DNA to form the structure of “beads on a string”. The chromatin can also be further 

packed into 30nm fibers or higher level with linker histone (H1) and other scaffold proteins 

depending on the nuclear context. These various types of chromatin packing must be highly 

regulated during gene expression to allow the transcription machinery access to DNA. 

Likewise, chromatin modification is essential for DNA repair proteins to reach sites of DNA 

damage, though chromatin modifiers also play more active roles in DNA damage signaling.

Researchers appreciated as far back as the 1990’s that chromatin modifications were likely 

to play important roles in DNA damage repair. An “access-repair-restore” model was 

initially proposed for NER [10] and was later extended to DSB [11]. In this model, the 

compact organization of chromatin is thought to act as a barrier for efficient DNA repair. 

Thus, chromatin decondensation is necessary to allow the repair machinery to access DNA 

damage sites, and the original nucleosome-DNA structure must be restored after repair. 

Accordingly, multiple histone remodeling proteins and histone modifying factors that help to 

open up chromatin structure to allow initial signaling of DNA damage have been identified. 

At the same time, evidence has accumulated showing that chromatin modifiers can play 

more active roles in DNA damage repair. Histone variants and histone modifications can 

function to organize and stabilize DNA repair machinery. Chromatin structure can also help 

to restrain DNA damage signaling and suppress transcription in the vicinity of the damage 
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site. A revised “prime-repair-restore” model emphasizes these positive players and considers 

the whole process a more concerted effort [10, 12].

Certain types of repair, such as DSB repair through the HR pathway (which requires 

searching for a homologous template), or NER repair of distorted double helices, are likely 

to require significant chromatin remodeling and modification. And indeed, we gained most 

of our knowledge about chromatin remodeling from the studies of DSB and NER pathways. 

It has become increasingly clear that these processes involve at least 4 distinct mechanisms 

of chromatin remodeling: 1. Histone chaperones that regulate histone deposition, exchange, 

etc.[13]; 2. Histone variants that are differentially incorporated into chromatin in different 

cellular context. For example, the incorporation and modifications of H2A variants H2A.X 

and H2A.Z are dynamically regulated at DNA damage sites and play important roles in 

DNA damage repair [12]; 3. Histone post-translational modifications; 4. ATP-dependent 

chromatin remodeling. In this review, we will focus on histone modifications and ATP-

dependent chromatin remodeling in mammalian systems. Although most of the current 

literature is based on non-neuronal systems, a number of recent studies have shown the 

conservation of these mechanisms in the central nervous system; we will pay special 

attention to those in the following section. It is also important to note that there is extensive 

functional crosstalk among all of these mechanisms in the processes of DNA damage 

detection, repair and restoration. For instances, histone modifiers and chromatin remodelers 

frequently form complexes and act in the concerted way, i.e. histone deacetylases HDAC1 

and/or HDAC2 and chromatin remodeler CHD3 or CHD4 together form the NuRD complex. 

Similarly, specific histone variants or histone modifications usually associate with designate 

histone chaperons [12, 14].

Histone post-translational modifications are important ways of regulating DNA 

accessibility, chromatin dynamics and the binding of non-histone proteins. Most 

modifications occur in the N-terminal extensions of histones (histone tails), including but not 

limit to serine and threonine phosphorylation, lysine acetylation, lysine and arginine 

methylation, ubiquitination, sumoylation and poly-ADP-ribosylation.

1) Poly-ADP-ribosylation (PARylation) and PARP1

Poly(ADP-ribose) polymerase-1 (PARP-1) is an ubiquitous nuclear protein that transfers 

ADP-ribose from NAD+ to protein acceptors. It contains zinc fingers mediating DNA 

binding and a BRCT (BRCA1 [breast cancer 1] C terminus) motif for interaction with other 

DNA repair proteins [15]. PARP1 is thought to act as a sensor that binds to DNA strand 

breaks and is activated to catalyze the assembly of poly(ADP-ribose) (PAR) chains onto 

histones and other protein substrates including itself. PARP1 facilitates DNA repair by 

attracting PAR interacting factors and inducing chromatin relaxation [16–20]. In addition, 

PARP1 recruits macroH2A (an H2A variant), which binds to PAR and mediates chromatin 

looping and compaction [21]. Furthermore, since PAR is a bulky, negatively charged adduct, 

its attachment often changes protein properties and interferes with nucleosome/DNA 

interactions. Besides its important roles in the DDR, PARP overactivation can lead to cell 

death due to NAD+ and ATP depletion [22, 23]. Therefore, PARP1 activity and the 

assembly/disassembly of PAR and PAR interacting proteins at the DNA damage sites need 
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to be tightly regulated to ensure both efficient DNA repair and proper cellular function [24, 

25].

2) Acetylation/deacetylation

Hyperacetylation of histone following UV radiation is one of the first identified chromatin 

modifications associated with DNA damage [26]. Acetylation of histone H4 and H2A by the 

histone acetyltransferase (HAT) Tip60/KAT5 promotes an open chromatin structure and the 

recruitment of repair proteins [27, 28]. In particular, acetylation of histone H4 on lysine 16 

(ac H4K16) is known to induce decondensation of compact chromatin fibers [29, 30]. 

Moreover, acetylation of histone H3 on Lys56 (ac H3K56) is believed to promote 

nucleosome reassembly following DNA repair or DNA synthesis [14]. Consistently, HATs 

catalyzing these modifications, including MOF/MYST1, Tip60 and CBP/P300 (CREB 

[cAMP response element binding protein] binding protein), are known to play pivotal roles 

in DNA repair [14, 27, 31, 32].

Histone deacetylation was long thought to only participate at the late stages of DNA repair 

to restore chromatin structures. Recently though, several studies have revealed 

underappreciated roles of histone deacetylases (HDACs), the enzymes remove acetyl groups 

from lysine residues on histones, in early phases of DNA repair, and their roles are 

particularly relevant to neurodegeneration [33–37]. In neurons, the NAD+-dependent 

deacetylase Sirtuin 1 (SIRT1) is required not only for efficient DNA damage repair, but also 

for initial DNA damage signaling [34]. SIRT1 is recruited to DSB sites within seconds of 

damage and its deletion leads to the diminished phosphorylation of both H2A.X (Ser139) 

and ATM (ataxia telangiectasia mutated, on Ser1981), both early markers of DNA damage. 

Interestingly, SIRT1 deacetylates HDAC1, which also plays important roles in DNA repair, 

to stimulate its enzymatic activity. Consistently, increased acetylation of HDAC1 at Lys432 

is found in two mouse models of neurodegeneration that exhibit increased DNA damage. In 

addition to HDAC1, DSB repair protein NBS1 is also deacetylated by SIRT1 in response to 

DNA damage.

Deacetylation of H3K56 is an early event in the DDR, whereas the H3K56 re-acetylation is 

usually observed hours after DNA damage, concomitantly with chromatin reassembly [38]. 

SIRT6, HDAC1 and HDAC2 are all able to deacetylate H3K56 [33, 37]. Interestingly, in 

parallel with H3K56 deacetylation, SIRT6 also simultaneously promotes the binding of 

ATP-dependent chromatin remodeler SNF2H to nucleosomes [37]. Although ATM 

phosphorylation (Ser1981) is not disrupted in the absence of SIRT6, the recruitment of 

downstream factors, including γH2A.X, 53BP1 (p53-binding protein 1), RPA (replication 

protein A) and BRCA1, are significantly impaired. Importantly, SIRT6 plays a direct role in 

maintaining genome integrity in the central nervous system. The reduced chromatin 

association of SNF2H, H3K56 hyperacetylation and DNA damage accumulation are all 

detected in the brain of SIRT6 KO mice [37, 39]. In addition to its deacetylase activity, 

SIRT6 also acts as a mono-ADP ribosyltransferase that activates PARP1 to promote BER 

repair [40, 41].

Like H3K56, acetylation of H4K16 (acH4K16) also shows a biphasic response in borh non-

neuronal and neuronal cells [33, 34],. Its deacetylation at DNA damage sites has a similar 
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fast kinetics, however the renewal of acH4K16 occurs around 2 hours after DNA damage, 

while it takes more than 6 hours for re-acetylation of H3K56 [33], indicating an active 

involvement of acH4K16 in the repair step of DDR [32]. HDAC1 and HDAC2 are 

responsible for deacetylating H4K16 at DNA damage sites [33]. The rapid deacetylation of 

H4K16 may regulate DNA damage repair in several ways. First, it has been shown to 

facilitate 53BP1 binding to the DSBs and promote NHEJ repair [42]. Second, as we 

increasingly appreciate the balance and coordination among various cellular processes, 

H4K16 deacetylation may help setting boundaries by condensing chromatin adjacent to 

DNA damage sites, which would not only prevent the uncontrolled expansion of repair 

proteins and excessive processing of DNA ends, but also inhibit local transcription from 

unrepaired DNA template [43, 44]. All of these remains to be proven in the nervous system.

Knock-down of both HDAC1 and HDAC2 in tumor cell lines results in greater defects in 

NHEJ repair compared to HR [33]. However, in central nervous system, HDAC1 seems to 

play a dominant role in DSB repair. HDAC1, but not HDAC2, directly interacts with both 

SIRT1 and FUS (Fused in sarcoma), two upstream factors of the DDR. SIRT1 deacetylates 

HDAC1 and stimulates its activity (see above). FUS mutations are linked to familial 

amyotrophic lateral sclerosis (fALS) and disease associated mutations are enriched in the 

HDAC1 interacting domains of the FUS protein. Several of the most frequently identified 

FUS mutants are defective in recruiting HDAC1 in response to DNA damage. 

Concomitantly, these FUS mutations also result in DNA repair deficits in vitro, and 

accumulated DNA damage in the motor cortex of fALS patients [45].

3) Phosphorylation, ubiquitination and methylation

The phosphorylation of H2A.X at Ser139 (γH2A.X) is one of the best-studied DSB induced 

histone modifications [46]. Three PI-3 kinases, ATM, ATR (ataxia telangiectasia and Rad3-

related) and DNAPK (DNA-dependent protein kinase), are known to be capable of 

phosphorylating H2A.X [47–49]. γH2A.X appears immediately following DSB, and spreads 

at least a megabase of chromatin in both directions adjacent to DSB sites [50, 51]. γH2A.X 

serves as a center to organize the repair machinery and coordinate the DDR with other 

cellular functions such as cell cycle arrest [52].

Histone ubiquitination is found following both UV induced DNA damage and DNA DSB 

and can increase the accessibility of chromatin. For example, polyubiquitination of H2A by 

the E3 ligases RNF8 (RING finger protein 8) and RNF168 facilitates the binding of 

downstream factors, such as BRCA1, 53BP1 [53–56]. Similarly, H2B ubiquitination by 

RNF20 is required for recruitment of SNF2H [57].

Proper histone methylation is also important for DNA damage repair. For example, 

trimethylated histone H3 on lysine 9 (H3K9me3) at DSBs is required to activate the 

acetyltransferase activity of Tip60 and to successfully repair DSBs [58]. Likewise, the 

recruitment of 53BP1 to DNA damage sites depends on its interaction with dimethylated 

histone H4 on lysine 20 (H4K20me2) [59].

ATP-dependent chromatin remodelers are usually multi-subunit protein complexes that 

use the energy of ATP hydrolysis to alter DNA-nucleosome interactions. They can slide, 
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exchange or evict histone H2A-H2B dimers or whole histone octamers. They all contain an 

ancient SWI2/SNF2 ATPase subunit and based on the identity of this subunit, they are 

categorized into 4 major families named after their founding members: SWI/SNF (SWItch/

Sucrose Non-Fermentable), ISWI (Imitation SWI), INO80 (INOsitol requiring) and CHD 

(CHromodomain helicase DNA-binding) [60]. Other uncategorized ATPase remodelers 

include ERCC6-CSB complex, ATRX (Alpha Thalassemia/mental Retardation syndrome X-

linked) and RAD54L [61–65]. Members of each group are important for DDR pathways.

Mammalian SWI/SNF ATPases BRG1 and BRM stimulate efficient NER repair and DSB 

repair. They both have C- terminal bromodomains that mediate interactions with acetylated 

histones. Their recruitment to the damage sites is part of the activation loop of the DDR and 

helps facilitate functional factor recruitment, phosphorylation of H2A.X and histone 

acetylation [66–68]. Similarly, both ATPases of the ISWI family complexes, SNF2H and 

SNF2L, are recruited to DNA damage sites, with SNF2H recruitment dependent on SIRT6 

and H2B ubiquitination by RNF20 [37] [57]. The exact role of these ISWI family members 

in the DDR remains unclear, however, their reduced expression renders cells hypersensitive 

to DNA damage indicating they do play an important role in the repair process [69, 70].

The mammalian INO80 complex functions in the early stage of NER repair by facilitating 

the assembly of NER factors at the damage sites [71]. Recently, the yeast INO80 complex 

has also been shown to promote global chromatin mobility upon DNA DSB, which could 

facilitate the search for homologous DNA templates required for HR [72]. Another INO80 

family member, p400, is recruited as part of NuA4 HAT complex through the interactions 

with γH2A.X. p400 is able to substitute H2A-H2B dimers with H2A.Z-H2B dimers. H2A.Z 

exchange at DSBs is required for acetylation of histone H4 by Tip60, another subunit of 

NuA4 complex. These two actions together create an open and relaxed chromatin 

microenvironment adjacent to DSB, which in turn promotes the ubiquitination of histones 

and the loading of multiple proteins important for NHEJ and HR [73, 74].

CHD family proteins all contain tandem chromodomains N-terminal to their ATPase 

domains. Among them, CHD3 and CHD4, two different catalytic subunits of the NuRD 

(NUcleosome Remodeling Deacetylase) complex, have been directly implicated in DNA 

repair. Interestingly though, NuRD complexes containing CHD3 versus CHD4 appear to 

play very different roles in DDR. CHD3 interacts with SUMO1 (Small Ubiquitin-like 

MOdifier 1) modified TRIM28 (TRIpartite Motif containing 28; also known as KAP-1), a 

key component of heterochromatin, through its C-terminal SUMO-interacting motif. Upon 

DNA damage, ATM phosphorylates KAP-1 at Ser824 promoting dissociation of CHD3 and 

concomitant chromatin relaxation [75]. This release of CHD3 from heterochromatin is 

required for efficient DSB repair. In contrast, CHD4 has been found to play a positive role in 

DSB repair. CHD4 is quickly recruited to DSB sites by RNF8, an ubiquitin ligase, to 

promote chromatin decondensation. This recruitment facilitates the assembly of RNF168 

and BRCA1 at the break sites and the further ubiquitination of H2A, which together amplify 

the DDR signal [76, 77]. In addition, the recruitment of CHD4 containing NuRD complex is 

also partially dependent on the enzymatic activity of PARP [17, 18]. In the latter case, 

CHD4 is thought to block transcription close to DNA damage sites and to support repair and 

cell survival by regulating p53 deacetylation.
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Another CHD family chromatin-remodeling enzyme, ALC1 (Amplified in Liver Cancer 1, 

also known as CHD1L), is also recruited to DNA damage sites through a PARP1 dependent 

mechanism. PAR binding activates ALC1 which can then catalyze nucleosome sliding [19, 

78]. Either depletion or overexpression of ALC1 results in sensitivity to DNA-damaging 

agents. Moreover, ALC1 is recruited and functions through similar mechanism in (UV)-

induced NER repair [20].

Is genome instability a general contributor to neurodegeneration?

Early studies on a number of neurodegenerative disorders revealed a hypersensitivity of non-

neuronal cells derived from Xeroderma Pigmentosum, Cockayne Syndrome, Huntington’s 

disease, Alzheimer’s disease and Parkinson’s disease patients to DNA damaging agents [79–

85]. These observations strongly suggest that these cells are either more prone to DNA 

damage, or that their DNA repair pathways are compromised. Further, the finding that even 

non-neuronal cells from these patients had compromised ability to deal with DNA damage 

suggests the presence of intrinsic defects in these cells. That is, their DNA damage 

sensitivity is not likely a secondary consequence of neurodegeneration. These studies were 

conducted before the genetics of any of these diseases was understood; more recent research 

using genetic models of such disorders has found evidence of increased DNA damage in the 

CNS in many cases [34, 45, 86]. Similarly, postmortem studies of human brain tissue also 

demonstrate increased DNA damage in these disorders [45, 87, 88]. Thus, there is often a 

strong correlation between neurodegeneration and DNA damage sensitivity and/or DNA 

repair deficits. While a causative role for DNA repair defects in the most common 

neurodegenerative diseases remains to be established, a number of rare disorders clearly 

demonstrate that perturbation of DNA repair pathways can lead to neurodegeneration.

Genome instability can lead to neurodegeneration: Lessons from genetic diseases

The best evidence supporting a causal role for DNA repair deficiency in neurodegeneration 

comes from the studies of a number of rare genetic diseases. Patients with mutations in NER 

molecules develop Xeroderma Pigmentosum, Trichothiodystrophy or Cockayne Syndrome, 

which share common clinical features, including UV sensitivity and progressive 

neurodegeneration [89–91]. Two specific form of ataxia, Ataxia with Occulomotor 

Apraxia-1 (AOA1) and Spinocerebellar Ataxia with Axonal Neuropathy (SCAN1) are linked 

to mutations in APTX (aprataxin) and TDP1 (tyrosyl-DNA phosphodiesterase 1) 

respectively [92–94], both molecules involved in SSBR. In contrast, mutations in key 

molecules of DSBR are usually associated with human syndromes characterized by 

microcephaly, such as ATR-Seckel Syndrome, Nijmegen Breakage Syndrome, LIG4 

(LIGase IV, DNA, ATP dependent) Syndrome and XLF (XRCC4 [X-ray Repair Cross 

Complementing protein 4]-Like Factor, also known as nonhomologous end joining factor 1) 

Syndrome, indicating the importance of DSBR pathway during neurogenesis [95, 96]. 

However, Ataxia Telangiectasia (A-T) and A-T Like Disease (ATLD) are the exceptions [97, 

98]. The exact mechanisms for this discrepancy remain elusive.
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DNA damage, cell cycle re-entry and copy number variations

It has been well established that cell cycle activity is abnormally upregulated in the early 

stage of AD progression by the re-expression of a number of cell cycle regulators, such as 

PCNA, Cyclin B1, Cyclin D, Ki-67, p16, CDK4 and others [99–101]. As noted above, there 

is also evidence that DNA damage is increased in AD patients [102]. Interestingly, there 

seems to be a reciprocal relationship between cell cycle activation and genome instability. 

On one hand, DNA damage is able to initiate cell cycle progression [103]. On the other 

hand, this aberrant cell cycle activity leads to partial or full DNA replication in normally 

post-mitotic neurons which ultimately triggers cell death [101, 103]. Such relationships and 

their contributions to neurodegeneration are corroborated in an inducible p25 overexpression 

mouse model, although the cause and effect relationships remain unclear [104]. p25 is a 

regulatory binding subunit of Cyclin-dependent kinase 5 (Cdk5), that is upregulated in 

various neurodegenerative conditions [105]. When it is overexpressed in forebrain excitatory 

neurons, the transgenic mice recapitulate several characteristics of AD, such as neuronal 

death, glial activation, amyloid beta elevation, tau hyperphosphorylation and aggregation, as 

well as cognitive decline [106, 107]. Importantly, in this mouse model, genes involved in 

cell cycle regulation and the DNA damage response are upregulated. Moreover, abnormal 

cell cycle activity and DSBs are simultaneously detected in hippocampal neurons at an early 

stage before any other disease-associated phenotypes can be detected. It was further 

demonstrated that reduced HDAC1 activity contributes to the effect of p25 on DNA damage 

and cell cycle alterations. Interestingly, HDAC1 overexpression can rescue neurons from 

DNA damage and ischemia associated cell death [104], suggesting that HDAC1 activation 

could provide therapeutic benefit for at least certain aspects of AD pathology.

A possible consequence of aberrant cell cycle activity and/or defective DNA damage repair 

is the production and/or propagation of copy number variations (CNVs) within the genome. 

Recent advances in sequencing technologies make single cell whole genome sequencing 

possible, allowing for the discovery of such small, low frequency deletions and duplications. 

In addition, developing induced pluripotent stem cell (iPSC) technologies allow us to 

monitor the same cell colony at different developmental stages. Using these techniques, 

significantly elevated numbers of CNVs have been found in both iPSC derived and 

postmortem neurons compared to fibroblasts or neural progenitors [108], indicating that 

post-mitotic neurons may be particularly prone to these types of mutations. Interestingly, 

41% of postmortem neurons carry at least 1 CNV, whereas 15% of neurons account for the 

majority of all CNV calls, indicating that a subset of neurons have highly altered genomes. 

Also surprisingly, more deletion than duplication events are found, a feature only observed 

in neurons but not in fibroblasts or neural progenitors [108]. It remains to be determined 

whether these CNVs contribute to genome rearrangement, altered epigenetic landscape and 

neuron degeneration [109] as well as whether the degree of chromosomal alteration is 

associated with aging and degenerative status.

Stalled Transcription, R-loops and genome instability

The relationship between transcription and DNA damage is both intimate and intricate. In 

the aging human brain, there is a significant reduction in expression of genes responsible for 

neuronal functions. This reduction is concomitant with the increased oxidative DNA damage 
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in the promoters of down-regulated genes, which may interfere with binding of transcription 

factors [110]. If a DNA lesion occurs in the transcribed region, it may cause persistent 

stalling of RNA polymerase II and activate p53 dependent apoptosis. Moreover, transcription 

itself can introduce genome instability through R-loop (RNA/DNA hybrids) formation. In 

most cases, R-loops are formed when nascent RNA invades the DNA duplex during 

transcription. This nascent RNA can replace the un-transcribed strand of DNA and 

recombine into the genome. Since RNA is much more prone to breakage than DNA, R-loops 

are frequently processed to SSBs or DSBs [111]. Important evidence suggesting such a 

mechanism may play a role in neurodegeneration comes from the study of senataxin 

(SETX), the causal gene of AOA2 (ataxia with oculomotor apraxia type 2) and ALS4 

(amyotrophic lateral sclerosis 4). SETX is an RNA/DNA helicase that protects genome 

integrity by resolving R-loops and promoting pause site-dependent transcriptional 

termination [112–114].

DNA molecules are subject to torsional strain during both transcription and replication, 

which must be relieved to prevent DNA damage. Type 1 and type 2 topoisomerases (TOP1 

and TOP2) relieve such physical stress on the DNA by generating, and then repairing, single 

or double strand breaks, respectively. Despite the importance of these molecules, abortive 

topoisomerase activity, where the topoisomerase molecule becomes covalently linked to the 

DNA strand, can sometimes occur. Stalled topoisomerase I (TOP1)-DNA complexes are a 

common type of SSBs, which are normally removed by tyrosyl-DNA phosphodiesterase 1 

(TDP1, the causal gene of SCAN1). It has also been shown that camptothecin, a TOP1 

inhibitor, is able to generate DSBs and induce apoptosis in a transcription dependent 

manner. This effect could be rescued by RNase H1, which cleaves RNA/DNA hybrid [115, 

116]. These results suggest that SSBs produced by the TOP1-cleavage complex can be 

processed to DSB when they interfere with transcription. In addition to TOP1, TOP2 is also 

active in neurons and its abortive activity leads to TOP2-linked DSBs. Tyrosyl DNA 

phosphodiesterase-2 (TDP2) is able to repair this type of DSB via NHEJ in an error-free 

manner [117]. Recently, homozygous mutations of the TDP2 gene were identified as a 

potential cause of intellectual disability, epilepsy and ataxia in affected individuals. 

Hypersensitivity to TOP2-induced DSBs is observed in both lymphoblastoid cells from 

affected individuals and neural cells cultured from Tdp2 mutant mice. Moreover, there is 

reduced transcription of genes important for the development and function of nervous 

system in Tdp2 mutant mice, together with a 25–30% reduction in the density of 

interneurons in the molecular layer of the cerebellum of these mice. Collectively, these 

results suggest TDP2, like TDP1, play an important role in neurodegeneration.

Recently, the synthesis of small RNAs has also been shown to play a positive role in DNA 

damage repair. Two independent groups reported that DICER dependent 21–23 nucleotide 

RNAs are produced from sequences adjacent to DSB sites and are required for efficient 

DSBR [118, 119]. It is speculated that these small RNAs may function as guide molecules to 

recruit chromatin modifying factors and other signaling proteins to DSBs. Moreover, several 

RNA binding proteins, including FUS and RBMX, are rapidly recruited to DSBs in PARP-1 

dependent manner and act as positive regulators of DSBR [45, 120–122]. It remains 

unknown, however, if their RNA binding ability is involved in the DNA damage repair 

process.
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Neuronal activity, beta amyloid and DSBs

A recent study highlights the particular relevance of DSBR in the central nervous system. It 

was shown that physical activities such as learning and exploration induce transient DSBs in 

neurons that are readily repaired within 24 hrs. In contrast, DSBs are increased at baseline in 

an AD mouse model overexpressing human amyloid precursor protein (hAPP), and they 

persist after exploratory activity [123]. DSB induction was dependent on neuronal activity in 

both wild type and hAPP overexpressing mice. These new findings link DSBs, the most 

severe form of DNA damage, to physiological neuronal activity. They also suggest that AD 

mutations or pathologies can lead to persistent DSBs, which could in turn contribute to 

neurodegeneration. It appears important to study the physiological role of these transient 

DSBs in neurons as well as how they are produced and repaired. Similarly, understanding 

the mechanisms that contribute to persistent DNA damage in AD models could also provide 

insights into AD pathology.

DNA damage repair and trinucleotide repeat instability in neurological diseases

Several neurological diseases are caused by the expanded trinucleotide repeats in or close to 

a transcribed gene. For example, the expanded CAG repeats within the HTT (Huntingtin) 

gene lead to Huntington’s disease (HD) [124] and the CGG repeat expansion within the 

FMR1 (Fragile X Mental Retardation 1) gene is the cause of fragile X syndrome [125, 126]. 

Interestingly, although the trinucleotide expansion occurs in germ cells and is inheritable, its 

instability and mosaicism are also observed in non-dividing somatic cells including neurons 

[127].

Interestingly, evidence suggests that trinucleotide expansion could be a byproduct of BER or 

TC-NER. Loss of 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1), a BER enzyme, 

suppresses age-dependent CAG expansion in the brains of HD mice [128]. Similarly, 

knockdown of CSB (Cockayne syndrome group B), a specific TC-NER protein, in human 

cells stabilizes CAG repeat tracts [129, 130]. Several proteins in the mismatch repair (MMR) 

pathway, which normally repairs insertions, deletions or mis-incorporated bases during DNA 

replication, are also involved in the trinucleotide repeat expansions [131–135]. The 

requirement of MMR proteins for repeat expansion in post-mitotic cells may involve a non-

canonical MMR pathway, although the exact mechanism is currently not clear [136].

Metabolic and environmental regulation of DNA repair

Metabolic and environmental factors can also impact upon chromatin regulators and DNA 

damage repair pathways. For instance, Sirtuins and PARP1, which play important roles in 

DNA repair as outlined above, each require NAD+ for their functions. Similarly, the co-

factor acetyl-CoA (acetyl coenzyme A) is required for HAT activity, while SAM (S-

Adenosyl methionine) is required for methyltransferase reactions. Thus, alterations in the 

levels of NAD+, Acetyl-CoA or SAM have the potential to affect DNA repair pathways. 

Importantly, production of these molecules can be modulated by numerous nutritional and 

environmental factors, as well as by aging and in neurodegenerative disorders. A thorough 

review of the links between DNA repair and metabolism are beyond the scope of this 

manuscript but the reader is referred to recent reviews on the topic [137, 138].
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Mutations that do not directly affect DNA repair proteins likely also impinge on DNA repair 

processes in neurodegeneration. For example, the well-characterized Parkinson’s disease 

proteins Parkin, PINK1 (PTEN-induced putative kinase 1), and DJ-1 are all required for 

proper mitochondrial health and function [139]. The metabolic alterations and oxidative 

stress caused by inefficient mitochondrial respiration not only directly cause DNA damage, 

but potentially also impair the repair mechanisms that would normally counteract it [137, 

138]. Similarly, a number of environmental toxins that are thought to increase risk for PD do 

so by impairing mitochondrial function [140], likely impacting oxidative damage and DNA 

repair pathways.

Conclusions and perspectives

It is essential that neurons counteract the damaging effects of genome instability across their 

lifetimes to maintain viability and proper function. A model emerges whereby levels of 

DNA damage and/or alterations in DNA repair can tip the scales between life and death for a 

neuron. Importantly, both damage and repair can be affected by perturbations in neuronal 

metabolic pathways, toxins or other environmental factors, or by genetic factors that directly 

affect DNA repair proteins or the pathways that regulate them. Chromatin modifiers play 

important roles in promoting DNA repair, and also provide a key link to metabolic and 

environmental cues. Furthermore, metabolic and DNA damage repair pathways are affected 

by aging, the greatest risk factor for neurodegeneration. While a causative role for increased 

DNA damage and genome instability in the most prevalent neurodegenerative diseases has 

not been established, rare genetic disorders such as Cockayne Syndrome and Ataxia 

Telangiectasia clearly show that a primary defect in DNA repair processes can result in a 

neurodegenerative phenotype. As such, it appears very likely that perturbations in DNA 

repair pathways, arising in any number of ways, do contribute to the pathology of common 

neurodegenerative disorders such as AD, PD, HD and ALS.

With the help of recent technological advances, particularly new sequencing technologies, 

iPSC techniques, high resolution imaging and tools for genetic manipulation, we will be able 

to answer many unresolved questions related to DNA repair in post-mitotic neurons. Among 

these will be a more thorough understanding of the chromatin regulation of these processes 

and how environmental and metabolic factors can modulate them. Importantly, a number of 

chromatin modifying enzymes have already been proven to be viable drug targets (i.e. Ezh1, 

Dot1). As such, targeting chromatin mechanisms could provide a means to correct DNA 

repair deficiencies, which could in turn provide valuable therapeutic benefit for 

neurodegenerative disease.

List of Abbreviations

DDR DNA damage response

NHEJ nonhomologous end joining

HR homologous recombination

BER base excision repair
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NER nucleotide excision repair

GG-NER global genome NER

TC-NER transcription coupled NER

SSBs single strand breaks

DSBs double strand breaks

PAR poly- (ADP-ribose)

PARP1 poly- (ADP-ribose) polymerase-1

HAT histone acetyltransferase

HDAC histone deacetylase

ROS reactive oxygen species

RNS reactive nitrogen species

NAD nicotinamide adenine dinucleotide

BRCT BRCA1 [breast cancer 1] C terminus

53BP1 p53-binding protein 1

RPA replication protein A

ATM ataxia telangiectasia mutated

ATR ataxia telangiectasia and Rad3-related

DNAPK DNA-dependent protein kinase

TOP1 topoisomerase I

TDP1 tyrosyl-DNA phosphodiesterase 1

TDP2 tyrosyl-DNA phosphodiesterase 2

XLF (XRCC4 [X-ray Repair Cross Complementing protein 4]-Like Factor

ATRX Alpha Thalassemia/mental Retardation syndrome X-linked

OGG1 7,8-dihydro-8-oxoguanine-DNA glycosylases

FMR1 Fragile X Mental Retardation 1

MMR mismatch repair

CNVs copy number variations

iPSC induced pluripotent stem cell

A-T ataxia telangiectasia
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ATLD A-T like disease

NBS Nijmegen breakage syndrome

AOA1 ataxia with occulomotor apraxia-1

AOA2 ataxia with occulomotor apraxia-2

SCAN1 -spinocerebellar ataxia with axonal neuropathy

HD Huntington’s disease

AD Alzheimer’s Disease

PD Parkinson’s disease

ALS amyotrophic lateral sclerosis

fALS familial Amyotrophic lateral sclerosis
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highlights

• Neurons have to withstand challenge from numerous stressors that can lead to 

DNA damage

• The increased mutation load associates with genome instability, leads to 

neuronal dysfunction and ultimately to neuron degeneration

• Introducing the sources and types of DNA damage and repair pathways in 

nervous system

• Discussing the chromatin regulation of these processes

• Understanding the contribution of genomic instability to neurodegenerative 

diseases
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Figure 1. 
DNA damage and repair in central nervous system
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