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Lattice QCD calculations of transverse momentum-dependent parton distribution functions (TMDs) in
nucleons are presented, based on the evaluation of nucleon matrix elements of quark bilocal operators with
a staple-shaped gauge connection. Both time-reversal odd effects, namely, the generalized Sivers and Boer-
Mulders transverse momentum shifts, as well as time-reversal even effects, namely, the generalized
transversity and one of the generalized worm-gear shifts, are studied. Results are obtained on two different
nf ¼ 2þ 1 flavor ensembles with approximately matching pion masses but very different discretization
schemes: domain-wall fermions (DWF) with lattice spacing a ¼ 0.084 fm and pion mass 297 MeV, and
Wilson-clover fermions with a ¼ 0.114 fm and pion mass 317 MeV. Comparison of the results on the two
ensembles yields insight into the length scales at which lattice discretization errors are small, and into the
extent to which the renormalization pattern obeyed by the continuum QCD TMD operator continues to
apply in the lattice formulation. For the studied TMD observables, the results are found to be consistent
between the two ensembles at sufficiently large separation of the quark fields within the operator, whereas
deviations are observed in the local limit and in the case of a straight link gauge connection, which is
relevant to the studies of parton distribution functions. Furthermore, the lattice estimates of the generalized
Sivers shift obtained here are confronted with, and are seen to tend towards, a phenomenological estimate
extracted from experimental data.
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I. INTRODUCTION

An important aspect of nucleon internal dynamics
is the three-dimensional momentum carried by quarks,
comprising not only the longitudinal momentum fraction x
encoded in standard parton distribution functions, but also
momentum in the transverse plane. It is characterized by
transverse momentum-dependent parton distribution func-
tions (TMDs). TMDs enter in, for example, angular
asymmetries measured in semi-inclusive deep inelastic
scattering (SIDIS) processes of electrons off nucleons.
Depending on the polarizations of the nucleon and the
struck quark, a number of correlations can be studied,
including the time-reversal odd (T-odd) effects encoded in
the Sivers [1] and Boer-Mulders [2] TMDs. These are a
consequence of final state interactions in the SIDIS process,
and analogously manifest themselves via initial state
interactions in the Drell-Yan (DY) process. TMDs are a
focus of experiments at the JLab 12 GeV facility [3,4] and
at RHIC [5], and constitute an important component
of the motivation for the proposed electron-ion collider
(EIC) [6].

To obtain first-principles, nonperturbative input for the
theoretical study of TMDs, a method to evaluate TMD
observables in lattice QCD has been developed and explored
in [7–9]. In the present work, we report results obtained on
two gauge ensembles at approximately matching pion
masses, but with substantially differing fermion discretiza-
tion schemes: one is a 2þ 1-flavor RBC/UKQCD domain-
wall fermion ensemble with lattice spacing a ¼ 0.084 fm
and pion mass 297 MeV [10]; the other is a 2þ 1-flavor
isotropic clover fermion ensemble generated by R. Edwards,
B. Joó and K. Orginos [11] with lattice spacing a ¼
0.114 fm and pion mass 317MeV. Aside from being located
closer to the physical pion mass than the aforementioned
previous investigations, the availability of data on these two
separate ensembles allows us to investigate two specific
facets of the lattice TMD calculational scheme pursued here;
namely, discretization effects and the renormalization of the
quark bilocal operators used in the definition and evaluation
of TMDs, laid out in detail in Sec. II.
The composite operator used to extract TMDs consists of

a quark and an antiquark field connected by an intrinsically
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nonlocal gauge connection—a path ordered product of
gauge links. The divergences associated with the quantum
fluctuations of the latter are absorbed into a multiplicative
“soft factor” in the continuum QCD scheme developed in
Refs. [12,13].1 In addition, renormalization factors are
attached to the quark fields. This multiplicative nature of
renormalization in continuum QCD is central to the
construction of the TMD observables considered here, in
which the renormalization factors are canceled by forming
suitable ratios. Whether this multiplicative nature of
renormalization carries over into the lattice framework
is, however, a point which demands further investigation.
One possible manifestation of the violation of multiplica-
tivity would be if results for the aforementioned TMD
ratios vary with the lattice discretization scheme, and the
difference persists as the lattice spacing is taken to zero.
The availability of lattice TMD data on two ensembles

with approximately matching pion masses, but differing
discretizations provides an opportunity for an empirical
test of the universality of TMD ratios. This is a primary
focus of the present work. One would expect that the lattice
operators approximate the continuum operators well at
finite physical extent, and that results obtained on the two
ensembles therefore match. On the other hand, the local
limit may exhibit additional ultraviolet divergences, as well
as signatures of operator mixing attributable to the breaking
of continuum symmetries, such as rotational symmetry
and, in the case of clover fermions, chiral symmetry. It is
well known that in the local limit, renormalization con-
stants of composite operators become dependent on the
Dirac structure, whereas the soft factors and quark wave
function renormalizations used to renormalize the nonlocal
TMD operators do not depend on the Dirac structure.
The working assumption underlying the construction of the
TMD observables considered in this work is that, at large
enough separation, the renormalization factors become
independent of the Dirac structure and cancel in ratios.
Comparing the results obtained on the two ensembles is
expected to uncover whether, at what length scales, and
under what conditions this assumption holds, and whether
any signatures of deviations from this simple renormaliza-
tion pattern can be detected.
This paper is organized as follows. Section II lays out the

definition of TMDs and the construction of TMD ratio
observables in which multiplicative soft factors and
renormalization constants cancel. Particulars of the lattice
QCD evaluation of these quantities are given in Sec. III.
Results for the Sivers shift, Boer-Mulders shift, transversity
h1 and the g1T worm-gear shift are given in Sec. IV. Some
results pertinent to the calculation of parton distribution
functions (PDFs) are given in Sec. IV E. A comparison of
our estimate of the generalized Sivers shift with that

extracted from SIDIS experiments is presented in Sec. V.
Conclusions are given in Sec. VI.

II. CONSTRUCTION OF TMD OBSERVABLES

The calculational scheme employed to arrive at lattice
TMD observables has been laid out in detail in [9]; cf. also
[7,8]. The following synopsis emphasizes, in particular,
how multiplicative soft factors enter the scheme, and the
consequent construction of TMD ratios in which these
factors cancel. TMDs are derived from the fundamental
correlator

~Φ½Γ�
unsubtrðb; P; S;…Þ

≡ 1

2
hP; Sjq̄ð0ÞΓU½0; ηv; ηvþ b; b�qðbÞjP; Si ð1Þ

where the subscript “unsubtr.” indicates that no provision
has been made yet to absorb ultraviolet and soft divergen-
ces into appropriate renormalization factors. The nucleon
states are characterized by the longitudinal momentum P
and the spin S. We will consistently use the tilde, as in ~Φ, to
denote position space correlation functions and the same
symbols without the tilde for their Fourier transforms. The
quark fields, separated by a displacement b, are connected
by the gauge connection U½0; ηv; ηvþ b; b�, the arguments
of which denote space-time positions connected by path-
ordered products of gauge links approximating straight
Wilson lines. The full gauge connection thus has the shape
of a staple, with the direction of the staple encoded in the
vector v, and its length in the scalar η as shown in Fig. 1.
We are specifically interested in the limit jηj → ∞, in which
this gauge connection represents gluon exchange in semi-
inclusive deep inelastic scattering (SIDIS) and Drell-Yan
(DY) processes. The directions of the staples in the two
cases are opposite to one another; in the SIDIS case, the
staple-shaped gauge connection incorporates final state

P

b
v

FIG. 1. Illustration of the TMD operator with staple-shaped
gauge connection. The four-vectors v and P give the direction of
the staple and the momentum, while b defines the separation
between the quark operators. The values of these variables used in
the lattice calculation are given in Table II. In the present
calculation, b · P ¼ b · v ¼ 0 is chosen, corresponding to evalu-
ating the first moment of the TMDs with respect to the quark
momentum fraction x.

1Throughout this paper, the label “soft factor” denotes both
soft and collinear divergences.
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interactions of the struck quark, whereas in the DY case, it
incorporates initial state interactions.
An additional important specification regarding the

concrete choice of the staple direction v is needed. In
the definition of TMDs, v is taken to have no transverse
component, vT ¼ 0. Furthermore, in a hard scattering
process, the rapidity difference between the incoming
hadron and the struck quark is very large, and a natural
choice for v would therefore be a light-cone vector.
However, such a choice leads to severe rapidity divergences
beyond tree level [14], which are regulated by taking v off
the light cone into the spacelike region. Consequently,
TMDs depend on an additional Collins-Soper type param-
eter ζ̂ characterizing how close v is to the light cone,

ζ̂ ¼ v · Pffiffiffiffiffiffiffiffi
jv2j

p ffiffiffiffiffiffi
P2

p : ð2Þ

The light-cone limit corresponds to ζ̂ → ∞. Note that this
limit can be approached even with a purely spatial choice of
v, as used in lattice calculations, by making the spatial
momentum P large. For a given jPj, the maximum of v · P
is obtained by choosing P to be aligned with the staple
direction v. In that case ζ̂ ¼ jPj=mN . In practice, lattice
QCD calculations only access a fairly limited range of ζ̂
because of limitations in performing simulations at large P;
ultimately, one aims to connect to the region of sufficiently
large values in which perturbative evolution equations
become applicable [12,15]. At this time, perturbative
evolution formulas for the specific quantities we study
are not available; having them would be useful to constrain
the form of the high ζ̂ behavior. A dedicated lattice study of
the ζ̂-scaling of a TMD observable was performed in [16].
A perspective for extending lattice TMD calculations to
higher nucleon momenta, and therefore higher ζ̂, is given
by the recently developed momentum smearing method
described in [17].
To regulate the TMD correlator defined in Eq. (1), one

considers subtracted correlation functions [12,13]

~Φ½Γ�
subtrðb; P; S;…Þ
¼ ~Φ½Γ�

unsubtrðb; P; S;…Þ · S · ZTMD · Z2; ð3Þ

in which divergences have been absorbed into three
separate factors: S regulates the soft and collinear diver-
gences associated with the gauge connection, Z2 is the
quark field renormalization factor, and the rest, ZTMD,
contains the dependence on the specific tensor structure of
the TMD operator under consideration. As discussed in
Refs. [12,13], the factor S is defined only in terms of
Wilson lines, and Z2 is also independent of the particular
choice of the TMD operator. In Eqs. (21), (22), (23), and
(24), we define the four observables we calculate as ratios,

in which the unpolarized TMD moment ~f½1�ð0Þ1 [cf. Eqs. (5)
and (19)] is used to define the denominator. The reason for
studying ratios rests on the assumption that the full
renormalization Z continues to factor in the lattice formu-
lation; i.e., the renormalization pattern given in Eq. (3) with
Z ¼ S · ZTMD · Z2 also holds on the lattice. In that case, the
two factors S · Z2 would cancel in the ratios. The additional
assumption is that for finite physical separation, b, the
factor ZTMD becomes independent of the spin (γ-matrix)
structure of the TMD operator, and therefore it also cancels
in the ratio. Note that, at finite lattice cutoff, there is no hard
separation between the local limit and finite physical
distances, and a smooth transition in behavior occurs over
several lattice spacings. A similar multiplicative renorm-
alization is used to regulate the operator used in studies of
PDFs [18–21].
The analysis of TMDs in the continuum is in terms of the

subtracted correlation function ~Φ½Γ�
subtr, which upon Fourier

transformation yields the momentum space correlator

Φ½Γ�ðx; kT; P; S;…Þ

¼
Z

d2bT
ð2πÞ2

Z
dðb · PÞ
2πPþ eixðb·PÞ−ibT·kT ~Φ½Γ�

subtrjbþ¼0; ð4Þ

in which the suppressed momentum component k− is
integrated over, leading to the specification bþ ¼ 0. The
transverse components bT of the quark separation b are
Fourier conjugate to the quark transverse momentum kT,
whereas the longitudinal component b · P is Fourier con-
jugate to the longitudinal momentum fraction x ¼ kþ=Pþ.
In the present work we restrict to the case b · P ¼ 0, thus
obtaining only the integral with respect to x of the
correlatorΦ½Γ� and all TMDs derived from it. It is, however,
important to note that lattice calculations can be extended to
scan the b · P-dependence2 and obtain, after Fourier trans-
formation, the x-dependence of Φ½Γ� and the TMDs under
consideration. Studies of the b · P-dependence in the case
of straight gauge links (ηv ¼ 0) were carried out in
Refs. [7,8], and a related project to obtain the x-dependence
of parton distribution functions (PDFs) has been developed
in Refs. [18–26].
At leading twist, Eq. (4) defines eight TMDs as coef-

ficient functions with the parametrization

Φ½γþ� ¼ f1 −
ϵijkiSj
mN

f⊥1T ð5Þ

Φ½γþγ5� ¼ Λg1 þ
kT · ST
mN

g1T ð6Þ

2In a practical calculation, the range of accessible b · P is
limited by the available b and P, jb · Pj ≤ jPj

ffiffiffiffiffiffiffiffi
−b2

p
, leading to an

increasing systematic uncertainty at small x.
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Φ½iσiþγ5� ¼ Sih1 þ
ð2kikj − k2TδijÞSj

2m2
N

h⊥1T

þ Λki
mN

h⊥1L þ ϵijkj
mN

h⊥1 ð7Þ

where mN denotes the mass, Λ the helicity and ST the
transverse spin of the nucleon. On the lattice, we instead
calculate directly the position space correlation function
given in Eq. (1) using unrenormalized operators, which,
analogous to Eqs. (5)–(7), can also be parametrized in terms
of Lorentz invariant amplitudes. Specializing to bþ ¼ 0 and
vT ¼ PT ¼ 0, and working again at leading twist, one has

1

2Pþ ~Φ½γþ�
unsubtr ¼ ~A2B þ imNϵijbiSj ~A12B ð8Þ

1

2Pþ ~Φ½γþγ5�
unsubtr ¼ −Λ ~A6B

þ i½ðb · PÞΛ −mNðbT · STÞ� ~A7B ð9Þ

1

2Pþ ~Φ½iσiþγ5�
unsubtr ¼ imNϵijbj ~A4B−Si ~A9B− imNΛbi ~A10B

þmN ½ðb ·PÞΛ−mNðbT ·STÞ�bi ~A11B: ð10Þ

Note that the Lorentz invariant amplitude combinations ~AiB
are suitable linear combinations of the amplitudes one finds
in the most general decomposition, in the absence of the
aforementioned constraints on b, v and P. The detailed
decomposition into the various amplitudes as calculated by
us on the lattice is given in Eqs. (16)–(20) of Ref. [9].
Clearly, there are parallels between Eqs. (5)–(7) and

Eqs. (8)–(10). Since the left-hand sides are essentially
Fourier transforms of one another, the amplitude combi-
nations ~AiB are related to Fourier-transformed TMDs
through the following relations, as explained in detail in
Ref. [9]:

~f½1�ð0Þ1 ¼ 2 ~A2B=Zf ð11Þ

~g½1�ð0Þ1 ¼ −2 ~A6B=Zg ð12Þ

~g½1�ð1Þ1T ¼ −2 ~A7B=Zg ð13Þ

~h½1�ð0Þ1 ¼ −2ð ~A9B − ðm2
Nb

2=2Þ ~A11BÞ=Zh ð14Þ

~h⊥½1�ð1Þ
1L ¼ −2 ~A10B=Zh ð15Þ

~h⊥½1�ð2Þ
1T ¼ 4 ~A11B=Zh ð16Þ

~f⊥½1�ð1Þ
1T ¼ −2 ~A12B=Zf ð17Þ

~h⊥½1�ð1Þ
1 ¼ 2 ~A4B=Zh ð18Þ

where the superscript “½1�” indicates that the first Mellin
moment with respect to quark momentum fraction x of
the Fourier transform of a generic TMD fðx; k2T;…Þ has
been taken [16],

~f½m�ðnÞðb2T;…Þ≡ n!

�
−

2

m2
N
∂b2T

�
n
Z

1

−1
dxxm−1·

·
Z

d2kTeibT·kTfðx; k2T;…Þ: ð19Þ

We have introduced three renormalization factors Zf;g;h

in Eqs. (11)–(18) reflecting the tensor structure of the three
TMD operators considered. It is important to note that there
is a different Zf;g;h for each staple geometry (soft factor)
and separation b. In the generalized Sivers shift, defined in

Eq. (21), the two terms, ~f⊥½1�ð1Þ
1T ðb2T;…Þ and ~f½1�ð0Þ1 ðb2T;…Þ,

are obtained via Eqs. (11) and (17), in conjunction with
Eq. (8), from the matrix element of the same operator with
the same value of b and η. The two terms ~A2B and ~A12B are
isolated, cf. Eq. (8), by using different values of ϵijbiSj.
Thus we expect the factor Zf to be the same and to cancel
in the ratio. For the Boer-Mulders, transversity and worm-
gear shifts defined in Eqs. (22), (23), and (24), the
renormalization factor, a priori, does not cancel in the
ratio even if renormalization is multiplicative. Ignoring
discretization errors, we would then attribute the difference
in results between different fermion formulations to ZTMD.
It is at this point that the assumption underlying lattice
calculations stated previously, that at sufficiently large b in
physical units all the ZTMD become independent of the spin
structure of the operator, is important. In that case, the full
renormalization factor would again cancel in the ratios
constructed for fixed but large b and fixed η, i.e., for the
same staple geometry.
Clearly, such full cancellation will not extend to the

b → 0 limit in general. As a case in point, consider the ratio
of matrix elements of the (isovector) local axial vector and
vector currents within any state jP; Si,

hP; Sjq̄γþγ5qjP; Si
hP; Sjq̄γþqjP; Si

����
ren

¼ ZA

ZV

hP; Sjq̄γþγ5qjP; Si
hP; Sjq̄γþqjP; Si

����
bare

: ð20Þ

This ratio is related to, though not identical to, the b → 0
limit of the ratio in Eq. (24); while the denominator of
Eq. (24) indeed reduces to the vector current for b → 0, the
numerator corresponds to a higher kT-moment of the
nonlocal axial vector operator. Nonetheless, if discrepan-
cies between different fermion discretizations arise for
Eq. (20), then they must also be countenanced for the
b → 0 limit of Eq. (24). Indeed, chiral symmetry implies
ZA ¼ ZV , such that the renormalization factors in Eq. (20)
cancel in lattice QCD as long as one uses a (to a good
approximation) chirally symmetric discretization; two exam-
ples are domain-wall and overlap fermions. However, they
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do not cancel for clover fermions; for the clover ensemble
considered here, ZA=ZV ¼ 1.096ð22Þ [27]. A discrepancy
between the unrenormalized ratios obtained in the two
fermion discretization schemes thus arises, over and above
that expected from finite lattice spacing effects alone.
Evidence of such a difference in theworm-gear ratio defined
in Eq. (24) at small bT is discussed in Sec. IV D. In the cases
of the generalized Boer-Mulders shift and the tensor charge,
chiral symmetry arguments do not constrain the ratio ZT=ZV
of a local tensor to vector operator, and this ratio can be
significantly different for DWF versus clover fermions at
finite lattice spacinga. Thus the ratioZh=Zf need not cancel
and the results can be b-dependent at small b.
Expanding upon a point mentioned above, the b ¼ 0

limit of the TMD operator contains additional divergences,
which in general also depend on the order of the bT-
derivative being taken, i.e., on which kT-moment is
considered. In the case of higher kT-moments, the TMD
operator does not reduce to a local operator in the b → 0
limit, but becomes a Qiu-Sterman type quark-gluon-quark
operator. In general, different renormalization factors could
arise depending on which kT-moment is being considered;
i.e., the renormalization factors in Eqs. (12) and (13), or
within the group of relations Eqs. (14), (15), (16) and (18),
need not be the same for b → 0.
Finally, whereas the above discussion is premised on a

multiplicative renormalization pattern, it is not guaranteed
that such a pattern continues to hold when continuum
symmetries, such as rotational symmetry and chiral sym-
metry, are broken by the lattice formulation. Absence of
these symmetries often gives rise to operator mixing, under
which the numerators and denominators of the TMD ratios
considered here become sums of several terms, destroying
multiplicativity and the cancellation of renormalization
factors in the ratios. An example of such mixing, at one
loop in lattice perturbation theory, for bilocal operators
separated by a straight-link path has recently been reported
in Ref. [28].
The numerical data discussed in Sec. IV below yield a

varied picture with respect to these diverse possibilities,
including close agreement, within the present level of
statistical accuracy, between the two lattice ensembles
for the three ratios, Eqs. (21), (22) and (23), even at small
b. On the other hand, at short b, significant differences exist
in the ratio defining the generalized g1T worm-gear shift in
the TMD limit jηj → ∞, Eq. (24). Surprisingly, as dis-
cussed in Sec. IV E, these differences persist even at large b
for the straight-link path, i.e., in the case η ¼ 0. As
discussed in Sec. IV E, it is very likely that the observed
effect is due to the mixing reported in Ref. [28] between
the axial and tensor operators that are used to calculate the
generalized worm-gear shift and the transversity. While the
straight-link case is not directly relevant for TMD observ-
ables, it bears on operators used in studies of PDFs [18–26]
and challenges our understanding of the renormalization of
quark bilocal operators.

III. LATTICE CALCULATIONAL SCHEME

In order to utilize lattice QCD techniques for the
evaluation of the fundamental correlator, Eq. (1), it is
necessary to boost the problem to a Lorentz frame in which
the vectors b and v in Eq. (1) are purely spatial; Minkowski
temporal separations cannot be accommodated in the
Euclidean lattice setup. For this reason, it is crucial to
employ a definition of TMDs in which all separations are
spacelike; cf. the discussion in conjunction with Eq. (2)
above. With both b and v spacelike, there is no obstacle to
the aforementioned boost. In addition, the decomposition
given in Eqs. (8)–(10) of the correlator into the invariant
amplitudes ~AiB facilitates translating the obtained data back
into the original Lorentz frame; i.e., results for observables
cast in terms of these amplitudes in the boosted frame are
immediately valid also in the latter.
The lattice parameters of the Wilson-clover and domain-

wall fermion (DWF) ensembles analyzed in this work are
summarized in Table I. The two ensembles have roughly
the same pion mass, about 300 MeV, but differ in the lattice
spacing. In contrast to the previous study presented in
Ref. [9], we use unitary combinations of sea and valence
quarks; i.e., we use the same fermion discretization scheme
for the sea and valence quarks and the same values of the
sea and valence quark masses.
For the calculation of the quark propagators, we used

Wuppertal smeared sources. The smearing parameters were
fσ ¼ 7.284; N ¼ 84g for the DWF ensemble and fσ ¼
4.70; N ¼ 35g for the clover ensemble using the conven-
tions given in [30]. In both cases, the gauge configurations
were smoothed using 25 iterations of APE smearing with
the staples added to the straight link with weight 0.35.
To describe the SIDIS and DY processes, we vary the

nucleon three-momentum P, the separation b, the staple
direction v and the corresponding length η of the staple as
specified for both the clover and the DWF ensemble in

TABLE I. Lattice parameters of the nf ¼ 2þ 1 flavor domain-
wall ensemble generated by the RBC/UKQCD Collaboration and
the clover ensemble generated by the JLab/W&M Collaboration.
The lattice spacings a and pion masses mπ for the clover and the
DWF ensembles are quoted from Refs. [29,30], respectively.
Note that a different estimate of a ¼ 0.127ð1Þ fm is reported in
[27] for the clover ensemble, set using the Wilson flow parameter
w0, indicating that discretization errors are significant on these
coarse lattices.

ID Clover DWF

Fermion type Clover Domain wall
Geometry 323 × 96 323 × 64
a (fm) 0.11403(77) 0.0840(14)
mπ (MeV) 317(2)(2) 297(5)
mN (MeV) 1077(8) 1119(20)
Number of configurations 967 533
Number of measurements 23208 4264
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Table II. The resulting maximum magnitude of the Collins-
Soper parameter ζ̂ in this study is jζ̂j ¼ 0.32 for the clover
ensemble and jζ̂j ¼ 0.41 for the DWF ensemble.
In this study, we work in the isospin symmetric limit and

calculate matrix elements of only the isovector combination
(u − d) of operators. In this combination, the contributions
of the disconnected quark loop diagrams cancel.

IV. NUMERICAL RESULTS

Results for four TMD observables are presented in this
section: the T-odd Sivers and Boer-Mulders shifts, as well
as the T-even generalized transversity and worm-gear shift
associated with the worm-gear TMD g1T . A more detailed
description and physical interpretation of these observables
is given in Ref. [9].

A. The generalized Sivers shift

The generalized Sivers shift addresses the distribution of
transverse momentum of unpolarized quarks in a trans-
versely polarized nucleon, where the transverse momentum
direction and the nucleon polarization direction are
orthogonal to each other. It is defined by

hkyiTUðb2T;…Þ≡mN

~f⊥½1�ð1Þ
1T ðb2T;…Þ
~f½1�ð0Þ1 ðb2T;…Þ

; ð21Þ

where mN is the nucleon mass, f⊥1T is the Sivers TMD [1],
and f1 is the unpolarized TMD. In constructing this ratio,
we use unrenormalized operators; cf. Eqs. (8), (11)
and (17). Our assumption of the cancellation of the
renormalization factors is discussed in Sec. II.

The dependence of the generalized Sivers shift on ηjvj is
shown in Fig. 2. In order to describe the SIDIS or the DY
process, the length of the staple jηjjvj connecting the quark
bilocal operator needs to be extrapolated to infinity. In our
setup, the DY process is obtained in the limit ηjvj → −∞,
and SIDIS in the limit ηjvj → ∞.
The data in Fig. 2 indicate the onset of a plateau for

jηjjvj ≥ 6a. A more stringent estimate of the plateau value
is obtained in the clover case that has roughly a factor of six
larger statistics. Exploiting the evident T-odd behavior, we
appropriately average the data for �jηjjvj and fit them to a
constant for jηjjvj ≥ 6a with an upper cutoff of jηj ¼ 10 for
the DWF and jηj ¼ 12 for the clover data, beyond which
the data are noisy. The choice jηjjvj ≥ 6a is based on the
observation that the results of fits starting at jηjjvj ¼ 5a; 6a
and 7a are consistent within 1σ. For the error estimate, we
quote the jackknife error and ignore the smaller systematic
uncertainty associated with the change in the estimate on
starting with jηj ¼ 5 or jηj ¼ 7 since this paper is not
attempting to provide precision estimates. Also, in the
constant fit, we do not weight the data by the statistical
errors since the points at smaller jηjjvj have smaller
statistical errors but larger unquantified systematic errors.
These fits give the magnitude of the results for both DY

and SIDIS processes and the sign is taken from the data
shown in Fig. 2. The error estimates are obtained using a
jackknife method. We find that the statistical uncertainties
in the data increase with both ηjvj and jbTj.
The dependence of the generalized Sivers shift on jbTj in

the SIDIS limit is compared for the two different ensembles
in Fig. 3 and the dependence on ζ̂ in Fig. 4. The small jbTj

TABLE II. The parameters of the staple-shaped gauge connection, characterized by b and ηv, and the nucleon
momenta P simulated in both the clover and the domain-wall fermion calculations. L is the spatial size of the lattice
and for each n, the range of integers n0 is chosen to be large enough to cover the values for which one obtains a useful
signal in the three-point correlation functions. For example, in the clover fermion zero momentum case, n0max is 15
for jbTj ¼ 0.11 fm, 12 for jbTj ¼ 0.23 fm, 11 for jbTj ¼ 0.34 fm and 10 for jbTj ¼ 0.45 fm. In the case of off-axis
Wilson lines, the TMD operator was improved by averaging over lattice paths approximating the continuum one;
e.g., for b ¼ 2ðe2 þ e3Þ, where ei denotes the lattice link vector in the i-direction, data were generated for both the
sequence of links ðe2; e3; e2; e3Þ and the sequence of links ðe3; e2; e3; e2Þ.
b=a ηv=a P · aL=ð2πÞ ζ̂DWF ζ̂clover

n · ð0; 0; 1Þ �n0 · ð1; 0; 0Þ (0,0,0) 0 0
ð−1; 0; 0Þ 0.412 0.315

n ¼ −7;…; 7 (clover) �n0 · ð1; 1; 0Þ ð−1; 0; 0Þ 0.292 0.223
n ¼ −9;…; 9 (DWF) �n0 · ð1;−1; 0Þ 0.292 0.223

n · ð0; 1; 0Þ �n0 · ð1; 0; 0Þ (0,0,0) 0 0
ð−1; 0; 0Þ 0.412 0.315

n ¼ −7;…; 7 (clover) �n0 · ð0; 0; 1Þ ð−1; 0; 0Þ 0 0
n ¼ −9;…; 9 (DWF) �n0 · ð1; 0; 1Þ 0.292 0.223

�n0 · ð1; 0;−1Þ 0.292 0.223

n · ð0; 1; 1Þ �n0 · ð1; 0; 0Þ ð−1; 0; 0Þ 0.412 0.315
n ¼ −4;…; 4

n · ð0; 1;−1Þ �n0 · ð1; 0; 0Þ ð−1; 0; 0Þ 0.412 0.315
n ¼ −4;…; 4
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region, jbTj ≤ 3aDWF ≈ 0.25 fm, in which lattice artifacts
and incomplete cancellation of renormalization factors
could be expected, is highlighted by the shaded region
in Fig. 3, and also in Figs. 6, 9, 12, and 14 for the other
TMD observables. For larger jbTj, the data in the SIDIS
and DY limit from the clover and the DWF ensembles are
consistent for all four TMDs analyzed in this work,
suggesting that the fermion discretization scheme and
the lattice spacing effects are small. An exception to this

pattern is found, however, for the straight-link case, η ¼ 0,
discussed in Sec. IV E.
The data for the Sivers shift in Fig. 3, and also the Boer-

Mulders shift in Fig. 6, start to show about 2σ deviation
between the two ensembles for jbTj > 0.6 fm. At this
separation, the statistical errors in the DWF data are large
and we ascribe these deviations to statistical fluctuations; it
should be noted that, at these separations, contractions at
large jηj, which cease to provide a useful signal, are not

FIG. 2. Dependence of the generalized Sivers shift on the staple extent ηjvj for the clover (left) and the DWF (right) ensembles at
jbTj ¼ 3a (top) and 4a (bottom). The Collins-Soper parameter is fixed at the highest value for which data are available, ζ̂ ¼ 0.41 and
0.32 for the DWF and the clover ensembles, respectively. The line shows the central value obtained using a constant fit to the�ηjvj data
analyzed separately. The asymptotic estimate (shown using the diamond symbol in the margins on the left and right) is obtained by
averaging the �ηjvj fit results and the error is obtained by a jackknife procedure.

FIG. 3. Dependence of the generalized Sivers shift on jbTj. In the left panel we compare DWF and clover results for ζ̂ ≈ 0.3 and in the
right panel we show the higher precision clover data for three values of ζ̂. The shaded area, jbTj ≤ 3aDWF ≈ 0.25 fm, marks the region in
which discretization effects could be expected.
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evaluated and therefore do not enter the plateau fits. This
may also lead to an underestimate of the uncertainty of the
plateau value. On the other hand, for the Sivers shift as well
as the Boer-Mulders shift discussed in Sec. IV B, the
agreement between the DWF and clover data persists into
the region of small jbTj. Our conclusion is that, within
errors, no significant differences are seen between data
from the two ensembles for these two T-odd TMD
observables, even in the limit of small bT.
In Fig. 4, we show the dependence of the generalized

Sivers shift on the Collins-Soper evolution parameter ζ̂ for
fixed jbTj ¼ 0.34 and 0.68 fm. The data from the two
ensembles are consistent, with the data for jbTj ¼ 0.68 fm
showing less dependence on ζ̂. Since we have estimates
only up to ζ̂ ¼ 0.41, a future goal is to extend the
calculation of the TMD observables to large enough ζ̂,
from where they can be evolved to the light-cone limit,
ζ̂ → ∞, using perturbation theory [12].
In Sec. V, we compare these lattice estimates for the

generalized Sivers shift with one extracted from exper-
imental data at ζ̂ ¼ 0.83. While the trend in the lattice data
with ζ̂ < 0.4 suggests agreement at ζ̂ ∼ 0.8, we consider it
important to obtain data for 0.4 < ζ̂ < 0.8 to establish this
connection. To increase ζ̂, however, requires simulations
with larger nucleon momenta. A recently developed
method [17] that controls the rapid growth in statistical
errors with momenta [9] is under investigation.

B. The generalized Boer-Mulders shift

The second T-odd TMD observable we evaluate is the
generalized Boer-Mulders shift defined by

hkyiUTðb2T;…Þ≡mN

~h⊥½1�ð1Þ
1 ðb2T;…Þ
~f½1�ð0Þ1 ðb2T;…Þ

: ð22Þ

The Boer-Mulders function h⊥1 [2] describes the distribu-
tion of the transverse momentum of transversely polarized
quarks in an unpolarized hadron, where the quark

transverse momentum and polarization are orthogonal to
one another.
The dependence of the generalized Boer-Mulders shift

on ηjvj is shown in Fig. 5. The data show a plateau at earlier
jηjjvj as compared to the Sivers shift; nevertheless, to
preserve uniformity we again extrapolate to the DY and
SIDIS limits using a constant fit to data with jηjjvj ≥ 6a.
Again these results are consistent with those obtained with
jηjjvj ≥ 5a or 7a.
The comparison of the dependence of the Boer-Mulders

shift on jbTj and ζ̂ between the clover and the DWF
ensembles is shown in Figs. 6 and 7. We again find that the
results are compatible within their statistical uncertainty
over the entire range of jbTj; no dependence on the lattice
action is observed even in the limit of small jbTj. In
Ref. [16], the dependence of the generalized Boer-
Mulders shift on ζ̂ for pions was studied up to ζ̂ ¼ 2.03
by taking advantage of the lighter mass and better signal-to-
noise ratio in pion correlation functions as compared to
those for nucleons. Results for the pion show that a
significant portion of the evolution to large ζ̂ is already
achieved when ζ̂ ∼ 2.
The higher statistics clover data in the right panels of

Figs. 3 and 6 show that the two T-odd TMD observables
of the nucleon, the Sivers and the Boer-Mulders shifts
(SIDIS case), increase with ζ̂ and jbTj, and the data at the
three values of ζ̂ have, within 1σ errors, converged by
jbTj ≈ 0.8 fm.

C. The transversity h1
The T-even TMDs, unlike the T-odd TMDs such as the

Sivers and Boer-Mulders distributions, are process inde-
pendent, i.e., the same for DY and SIDIS processes. They
were initially studied in lattice QCD in a truncated fashion
by using a straight Wilson line [7,8] and the treatment was
subsequently extended to the physically relevant case of
staple-shaped paths describing the SIDIS and DY proc-
esses. It has been observed that the difference between the
two approaches is in many cases small for T-even TMDs

FIG. 4. Dependence of the generalized Sivers shift on ζ̂ for the two different ensembles and for two values of jbTj ¼ 0.34 fm (left) and
0.68 fm (right).
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[9]; i.e., there is only a mild η-dependence. In this study, our
observations are similar for the two different lattice dis-
cretization schemes, and at the lighter pion masses inves-
tigated, although the picture for the g1T worm-gear shift
discussed in Secs. IV D and IV E is not as clear cut.
The first T-even observable we present is the generalized

tensor charge defined by the ratio between the transversity
and the unpolarized function:

~h½1�ð0Þ1 ðb2T;…Þ
~f½1�ð0Þ1 ðb2T;…Þ

: ð23Þ

It is called the generalized tensor charge because the
integral of the transversity, obtained in position space by
setting b2T ¼ 0, formally gives the nucleon tensor charge:

gu−dT ¼ R
dxd2kTh1ðx; k2TÞ ¼ ~h½1�ð0Þ1 ðb2T ¼ 0Þ.

The data for the transversity ratio given in Fig. 8 show
that the ηjvj-dependence is much smaller than for the T-odd
TMDs but nonzero. The DWF data are noisy and do not
show a clear plateau. The higher statistics clover data, and a
previous study using a mixed-action DWF-on-AsqTad
lattice scheme at mπ ¼ 518 MeV with ζ̂ ¼ 0.39 [9], show
a plateau from which the asymptotic value can be extracted.
We again fit the data with jηjjvj ≥ 6a to a constant for both

FIG. 5. Dependence of the generalized Boer-Mulders shift on the staple extent ηjvj for the clover (left) and the DWF (right) ensembles.
The rest is the same as in Fig. 2.

FIG. 6. Dependence of the generalized Boer-Mulders shift on jbTj for the two ensembles (left), and for three different values of ζ̂
analyzed on the clover ensemble (right). The rest is the same as in Fig. 3.
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ensembles. The jbTj and ζ̂ dependences of the transversity
ratio are illustrated in Figs. 9 and 10. The data in the left
panel of Fig. 9 for both ensembles show a consistent
plateau for jbTj > 0.3 fm. Again, as in the case of the T-odd
TMDs, the DWF and the clover data agree even in the
regime of small jbTj. Also, the data in Fig. 10 show no
significant dependence on ζ̂.

D. The generalized g1T worm-gear shift

The second T-even TMD observable considered in this
work is the generalized worm-gear shift defined by

hkxiTLðb2T;…Þ≡mN
~g½1�ð1Þ1T ðb2T;…Þ
~f½1�ð0Þ1 ðb2T;…Þ

; ð24Þ

where g1T is one of the “worm-gear” functions, the trans-
versal helicity [31]. The dependence of the generalized g1T
shift on ηjvj is shown in Fig. 11. Similar to what is observed
in the transversity ratio, the generalized g1T shift on the
clover lattices shows little change in the transition from the
straight Wilson line (η ¼ 0) to the staple-shaped path, other
than the cusp at η ¼ 0. The DWF data show a dependence
on η, but note that the uncertainties are large. Figure 12
shows the dependence of the SIDIS (or equivalently DY)
limits of the generalized g1T shift on jbTj and ζ̂ for the two
different ensembles. Again, the results from the two
ensembles are consistent, as expected, for jbTj ≥ 0.3 fm.
Both the worm-gear shift (Fig. 13) and the transversity

(Fig. 10) show little dependence on ζ̂ in contrast to the data

FIG. 7. Dependence of the generalized Boer-Mulders shift on ζ̂ for two values of jbTj ¼ 0.34 fm (left) and 0.68 fm (right).

FIG. 8. Dependence of the transversity ratio ~h½1�ð0Þ1 = ~f½1�ð0Þ1 on the staple extent ηjvj for the clover (left) and the DWF (right) ensembles.
The rest is the same as in Fig. 2.
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FIG. 9. Dependence of the transversity ratio ~h½1�ð0Þ1 = ~f½1�ð0Þ1 on jbTj for the two ensembles (left), and for three different values of ζ̂
analyzed on the clover ensemble (right). The rest is the same as in Fig. 3.

FIG. 10. Dependence of the transversity ratio ~h½1�ð0Þ1 = ~f½1�ð0Þ1 on ζ̂ for two values of jbTj ¼ 0.34 fm (left) and 0.68 fm (right).

FIG. 11. Dependence of the generalized g1T worm-gear shift on the staple extent ηjvj for the clover (left) and the DWF (right)
ensembles. The rest is the same as in Fig. 2.
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for the T-odd shifts given in Figs. 3 and 6 which show a
significant difference between the ζ̂ ¼ 0 and ζ̂ ¼ 0.22 or
0.32 cases, especially at small jbTj.
The generalized g1T worm-gear shift does differ quali-

tatively from the other TMD ratios studied, in that a
significant difference between the two ensembles is
observed when jbTj ≤ 0.25 fm. Further data are needed
to clarify whether this difference is due to the failure of the
cancellation of renormalization factors in the ratios as
discussed in Sec. II or different discretization effects in
the two lattice formulations. It is important to bear in mind
that for the TMD observable of interest, the generalized g1T
worm-gear shift, the two lattice formulations give consis-
tent results for jbTj ≥ 0.3 fm as shown in Fig. 12.
Overall, in the SIDIS and DY limit, the data presented

exhibit consistency between the two lattice ensembles for
all four observables considered once the quark separation
jbTj in the bilocal TMD operator exceeds about three lattice
spacings, indicating that, in the regime of finite physical
extent, the lattice operators approximate the expected
continuum behavior. Only in the case of the generalized
g1T worm-gear shift, significant differences between
domain-wall and clover fermions are observed at small
jbTj. For the other three observables, it is encouraging to
note that the agreement persists into the quasilocal regime.

E. Transversity and worm-gear shift from
straight gauge link paths

To obtain further insight into the discrepancy between
the data, at small bT, from the two lattice formulations in
the generalized g1T worm-gear shift and buttressed by the
superior statistical accuracy of the data when η ¼ 0, we
examined also the case of a straight gauge connection for
the T-even TMD operators. It should be emphasized that
this is not the physically relevant case for TMD studies;
both the SIDIS and the DY processes are described by a
staple-shaped gauge connection with jηj → ∞ that enc-
odes final and initial state interactions, respectively.
However, such straight-link operators are used, e.g., in
the study of PDFs in the approach developed in
Refs. [18–26].
The data for the two T-even quantities, the generalized

worm-gear shift and the transversity, for straight-link paths
connecting the quark fields are shown in Fig. 14 (the
corresponding data for the T-odd Sivers and Boer-Mulders
shifts are consistent with zero, as expected). The data for
the clover and DWF fermions agree for the transversity
~h½1�ð0Þ1 ðb2T;…Þ= ~f½1�ð0Þ1 ðb2T;…Þ for all values of bT starting at
a separation of one link, even at the improved level of
accuracy afforded by the straight-link case. This is con-
sistent with the pattern seen in Fig. 9. However, examining

FIG. 12. Dependence of the generalized g1T worm-gear shift on jbTj for the two ensembles (left), and for three different values of ζ̂
analyzed on the clover ensemble (right). The rest is the same as in Fig. 3.

FIG. 13. Dependence of the generalized g1T worm-gear shift on ζ̂ for two values of jbTj ¼ 0.34 fm (left) and 0.68 fm (right).
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the generalized worm-gear shift, mN ~g
½1�ð1Þ
1T ðb2T;…Þ=

~f½1�ð0Þ1 ðb2T;…Þ, one is confronted with the surprising result
that the data on the two ensembles differ for all bT. The
discrepancy observed in the staple-link case at only small
bT with η → ∞, cf. Fig. 12, opens up for η ¼ 0 to persist for
all bT considered. This difference can be traced back to the
opposite nature of the cusp in the two data sets (DWF
versus clover) at η ¼ 0 as evident from Fig. 11.
The recent one-loop lattice perturbation theory calcula-

tion, presented in Ref. [28], shows that for clover fermions
there is a mixing of the straight-link bilocal axial and tensor
quark operators that we have used to calculate the gener-
alized worm-gear shift and the transversity. This mixing is a
lattice artifact due to the explicit breaking of the chiral
symmetry in the clover formulation. To analyze the impact
of the mixing on the clover data in detail requires calculating
the contributions of all the nonzero Lorentz invariants in the
axial (tensor) channel [see Eqs. (19) and (20) in Ref. [9]],
which we have not done. In our data, an effect is only seen
in the worm-gear shift, but not in the generalized trans-
versity. This would be the expected behavior in a scenario
where the worm-gear shift, after taking into account
kinematic factors, is much smaller than the generalized
transversity. We speculate this to be the reason for the
mixing effects being manifest in only the worm-gear shift.
To summarize, our key observation is that a difference

between DWF and clover results is observed only in the
case where there is a mixing between operators, calculated
at one loop in Ref. [28]. Whether the mixing, analyzed at
one loop, is the explanation for the full nonperturbative
effect seen remains to be confirmed by future calculations.

V. COMPARISON WITH EXPERIMENTAL
ESTIMATE OF GENERALIZED SIVERS SHIFT

In this section, we compare the lattice QCD calculation
of the generalized Sivers shift defined in Eq. (21) with the
result extracted from SIDIS experimental data.

At leading order in perturbation theory [32], the unpo-
larized function and the Sivers function are written as

~fð0Þ1;qðx; b;QÞ ¼ fqðx;QÞ; ð25Þ

~f⊥ð1Þ
1T;qðx; b2T;Q;…Þ ¼ −

1

2mN
Tq;Fðx; x;QÞ; ð26Þ

where fqðx;QÞ is the collinear PDF, and Tq;Fðx; x;QÞ is
the twist-3 Qiu-Sterman quark-gluon correlation function.
The x-integral of the collinear PDF is the number of valence
quarks in a proton, so the denominator of Eq. (21) becomes
1 for the u − d isovector combination. For the Qiu-Sterman
function, Ref. [32] uses the ansatz

Tq;Fðx; x;Q; αq; β; NqÞ

¼ Nq
ðαq þ βÞðαqþβÞ

α
αq
q ββ

xαqð1 − xÞβfqðx;QÞ; ð27Þ

with the parameters Nq, αq and β determined by a global fit
to the Sivers asymmetry data in SIDIS experiments at
HERMES, COMPASS and Jefferson Lab. Following
Ref. [32], we take the Qiu-Sterman function expressed
in terms of fit parameters with errors and ignore the smaller
uncertainties in the collinear PDF, given in Ref. [33]. Using
these parametrized functions, the error in the generalized
Sivers shift is estimated by generating a bootstrap sample
for the numerator using a normal distribution with mean
and error given in Ref. [32]. We choose the momentum
scale Q ¼ ffiffiffiffiffiffiffi

2.4
p

GeV, which is the typical momentum
scale of the HERMES experiments, large enough to expect
perturbation theory to be reliable (i.e., Q ≫ ΛQCD), and
close to the scale of our lattice calculations ðQ ≈ 1=aÞ.
TMDs also depend on the variable ζ, and the authors in
Ref. [32] use ζ ¼ Q, which corresponds to ζ̂ ¼ ζ=2mN ¼
0.83 in our calculation.

FIG. 14. Dependence of the transversity (left) and generalized g1T worm-gear shift (right) on the length of the straight-link paths, jbTj,
for the two different ensembles. The striking observation is that the difference between the DWF and clover data for the worm-gear shift
persists for all jbTj. The data shown are for nucleon momentum jPj ¼ 2π=ðaLÞ; results for P ¼ 0 coincide with these data within the
uncertainties shown.
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With these simplifications, the generalized Sivers shift is
defined via the x-integrals of the TMDs over the range
½−1; 1�, with the data at negative values of x given by the
antiquark distribution. Note that in the numerator in
Eq. (21), the quark and antiquark distributions are summed,
whereas in the denominator, the antiquark distribution is
subtracted from the quark distribution [31]. The desired
phenomenological estimate of the generalized Sivers shift
for the isovector operator is then given by

hkyiSIDISTU ¼ mN

~f⊥½1�ð1Þ
1T;u − ~f⊥½1�ð1Þ

1T;d

~f½1�ð0Þ1;u − ~f½1�ð0Þ1;d

¼ −0.146ð49Þ: ð28Þ

Note that this ratio, calculated using the leading order
expressions given in Eqs. (25) and (26), is independent of
b2T and the momentum scale. The scale dependence cancels
in the ratio at leading order in perturbation theory, and thus,
any reasonable choice should have a small impact on the
generalized Sivers shift.
In Fig. 15, we compare this result with lattice estimates

reproduced from Fig. 4 for two values of jbTj ≈ 0.35 and
0.68 fm. In the left panel, we also include previous lattice
results from a DWF-on-Asqtad study given in Ref. [9].
Note that the extraction of the experimental estimate has
been done at ζ̂ ¼ 0.83, while precise lattice results are
obtained at ζ̂ ≤ 0.41 (the earlier lattice data points at ζ̂ >
0.41 from Ref. [9] have large uncertainties). We observe the
following: First, the three lattice ensembles with different
pion masses (mπ ¼ 518 MeV versus mπ ≈ 300 MeV) and
different discretization schemes at different values of the
lattice spacing give consistent results. Second, as jbTj and/
or ζ̂ are increased, the lattice results tend toward the
phenomenologically extracted value. Third, the observed
behavior is similar to that seen in the study using pions in
Ref. [16]. Thus, taking the trend in our data between 0.2 <
ζ̂ < 0.41 at face value, it is reasonable to expect future

lattice estimates at ζ̂ ≈ 0.8 to agree with the phenomeno-
logical value.
For completeness, we applied similar considerations to

the Boer-Mulders shift. To extract the Boer-Mulders dis-
tributions, a number of assumptions have to be made since
the experimental data are limited [34]. These assumptions
have not been validated, and even the sign of the con-
tributions for the various antiquark flavors has not been
resolved. Thus, we warn the reader that the accuracy of the
following considerations is difficult to assess. One way to
obtain an estimate is to use the assumptions given in
Ref. [34] and the parametrization of the Sivers distribution
given in Ref. [32]. We furthermore assume that relations
between antiquark distributions, which are numerically
smaller than the corresponding quark distributions, used
in Ref. [34] in kT space carry over unchanged to bT space in
which we have lattice data. With these caveats, our
“phenomenological estimate” for the Boer-Mulders shift,
also for ζ̂ ¼ 0.83, is −0.07. Note that this represents the bT
independent leading order term. Our lattice estimate, given
in Fig. 7, is between −0.1 and −0.15.
On the other hand, following Ref. [35], the Boer-

Mulders distributions can be parametrized as

h⊥a
1 ðx; k2TÞ ¼ Naxαað1 − xÞβae−k2T=μ2fa1ðx; k2TÞ;

fa1ðx; k2TÞ ¼ fa1ðxÞ
e−k

2
T=μ

2

πhk2Ti
; ð29Þ

where a runs over the u and d quark flavors and Na, αa, βa
and μ are parameters to be determined from fits to the data.
An identical parametrization is made for the antiquark
distributions h̄⊥a

1 ðx; k2TÞ and f̄a1ðx; k2TÞ with parameters Nā,
αā, βā and μ. We use the values for the parameters αa, βa
and μ for both quarks and antiquarks given in Refs. [34,35],
again assuming the Boer-Mulders and the Sivers distribu-
tions to be the same up to different normalizations Na and
Nā that are determined from fits to the Boer-Mulders data.

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

 0  0.2  0.4  0.6  0.8

|bT| ≈ 0.35 fm

G
en

. S
iv

er
s 

S
hi

ft 
(S

ID
IS

, u
-d

; G
eV

)

ζ̂

Exp. Estimate,
DWF-on-AsqTad; 0.12 fm, 518 MeV

DWF; 0.084 fm, 297 MeV
Clover; 0.114 fm, 317 MeV

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

 0  0.2  0.4  0.6  0.8

|bT| ≈ 0.68 fm

G
en

. S
iv

er
s 

S
hi

ft 
(S

ID
IS

, u
-d

; G
eV

)

ζ̂

Exp. Estimate,
DWF; 0.084 fm, 297 MeV

Clover; 0.114 fm, 317 MeV

FIG. 15. Experimental extraction of the SIDIS generalized Sivers shift at ζ̂ ¼ 0.83, together with lattice QCD data in the SIDIS limit,
η → ∞, as a function of the Collins-Soper parameter ζ̂. Lattice data for jbTj ≈ 0.35 fm are given in the left panel where we have included
results from an earlier DWF-on-Asqtad study given in Ref. [9]. Results for jbTj ≈ 0.68 fm are given in the right panel.
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Using the parameter values given there, we carry out the
integration over x and kT with hk2Ti ¼ 0.25 GeV2 and get
−0.68 at bT ¼ 0.35 fm and −0.50 at bT ¼ 0.68 fm. The
difference between the two sets of estimates we obtain is
due to the difference in the Sivers function in Ref. [32]
versus that given in Ref. [34]. Compounding the uncer-
tainty of the analysis is the fact that the experimental data
for extracting the Boer-Mulders distributions is insufficient.
We, therefore, consider this analysis for the Boer-Mulders
shift to be preliminary and do not have a reasonable error
estimate.
In the case of transversity, the most straightforward

quantity to compare between phenomenological analyses
of the experimental data and lattice QCD calculations is the
tensor charge. A recent comparison carried out in Ref. [36]
shows that the phenomenological values are about 30%
smaller than the lattice results. Lastly, we note that, at this
point, there is very little experimental data from which to
extract the worm-gear shift.

VI. CONCLUSION

We present lattice QCD results for the time-reversal odd
generalized Sivers and Boer-Mulders transverse momen-
tum shifts applicable to SIDIS and DYexperiments; and for
the T-even generalized transversity, related to the tensor
charge, and the generalized g1T worm-gear shift. The lattice
calculations were performed on two different nf ¼ 2þ 1

flavor ensembles: a DWF ensemble with lattice spacing
a ¼ 0.084 fm and pion mass 297 MeV, and a clover
ensemble with a ¼ 0.114 fm and pion mass 317 MeV.
The high statistics analysis of the clover ensemble yields
estimates with Oð10%Þ uncertainty for all four quantities
over the range jbTj < 0.8 fm and ζ̂ ≲ 0.3. Estimates from
the DWF ensemble have appreciably higher statistical
errors owing to the more limited statistics, but are expected
to have smaller systematic uncertainties.
Our results for TMD observables on two ensembles with

comparable pion masses, but with very different discreti-
zation of the Dirac action provide an opportunity for an
empirical test of the presence of finite lattice spacing effects
and the cancellation of renormalization factors in the ratios
of correlation functions considered. Estimates with DWF at
a ¼ 0.084 fm are expected to have small discretization
errors. Apart from the notable exception of the generalized
g1T worm-gear shift, the consistency of DWF results with
those using clover fermions on coarser lattices with a ¼
0.114 fm suggests that lattice discretization effects are
small.
In continuum QCD, the nonlocal TMD operator is

renormalized multiplicatively with a renormalization factor
composed of a product of soft factors, operator specific
part, and quark wave function renormalizations. This
pattern is, a priori, not guaranteed to carry over to the
lattice formulation of the theory. Even though all the TMD

observables considered in the present work were calculated
using unrenormalized operators, the results for the ratios
obtained using DW and clover fermions are consistent
except in some specific circumstances. To the extent that
they are consistent, this can be taken as an indication that
the renormalization factors largely cancel in the ratios
considered.
The results for the TMD ratios obtained in the SIDIS and

DY limits, i.e., using staple-shaped gauge connections,
agree within uncertainties for all four observables studied
once the quark separation jbTj in the bilocal TMD operator
exceeds about three lattice spacings. The agreement fur-
thermore persists into the regime of small jbTj for all but
one of the TMD observables, namely, the generalized g1T
worm-gear shift. Thus, within the statistical accuracy of the
calculation, the discretization effects and the cancellation of
the renormalization factors in our TMD observables in the
SIDIS and DY limits appear under control at finite physical
separations jbTj.
A surprising departure from the expectation that renorm-

alization factors generally become independent of the Dirac
structure for well-separated bilocal operators is observed
for the T-even g1T worm-gear shift in the η ¼ 0 straight-link
case. The discrepancy in the g1T worm-gear shift at small
jbTj for η → ∞ is seen to persist to all values of jbTj for
η ¼ 0. As discussed in Sec. IV E, we provide a plausible
explanation based on the recent one-loop perturbative
calculation [28] of a mixing, a lattice artifact in the clover
formulation, between axial and tensor operators for our
choice of the direction of the straight-link path vis-à-vis
the operator tensor index. Further studies that include a
complete analysis of the mixing, including a nonperturba-
tive calculation of the relevant renormalization factors,
are warranted to establish our observation. Note that,
whereas the T-even functions with η ¼ 0 are not immedi-
ately relevant for TMD applications, which call for staple-
shaped gauge connections, such operator mixing would
need to be taken into account in the study of PDFs [18–26],
which employ straight gauge connections.
Compiling the lattice TMD results obtained to date, as

exhibited in Fig. 15 for the case of the Sivers shift, we
observe that three lattice ensembles with different pion
masses and different discretization effects give consistent
results. In an ideal case, in which estimates are obtained
with arbitrarily small errors, such a consistency could be
taken as evidence that the dependence on the light quark
masses and the discretization corrections are both small.
Furthermore, as discussed in Sec. II, the renormalization
factors cancel in the ratio defining the Sivers shift. We
therefore regard it as reasonable to compare lattice results
obtained to date for the Sivers shift at pion masses down to
mπ ≈ 300 MeV to a phenomenological estimate extracted
from experimental data. Indications of consistency with
the experimental result at ζ̂ ≳ 0.8 (cf. Fig. 15) suggest
that, within our uncertainties, lattice artifacts for several
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moments of TMDs are already reasonably small at the
values of the lattice parameters employed. Thus, future
higher precision calculations on ensembles with lighter
quark masses and smaller lattice spacings and incorporating
improvements such as momentum smearing are well
motivated.
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