
Leveraging Learners for Teaching
Programming and Hardware Design
at Scale

Elena L. Glassman
MIT CSAIL
Cambridge, MA 02139, USA
elg@mit.edu

Robert C. Miller
MIT CSAIL
Cambridge, MA 02139, USA
rcm@mit.edu

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
CSCW ’16 Companion, February 27 - March 02, 2016, San Francisco, CA, USA 
ACM 978-1-4503-3950-6/16/02.
http://dx.doi.org/10.1145/2818052.2874319

Abstract
In a massive open online course (MOOC), a single pro-
gramming or digital hardware design exercise may yield
thousands of student solutions that vary in many ways,
some superficial and some fundamental. Understand-
ing large-scale variation in student solutions is a hard but
important problem. For teachers, this variation can be a
source of pedagogically valuable examples and expose cor-
ner cases not yet covered by autograding. For students, the
variation in a large class means that other students may
have struggled along a similar solution path, hit the same
bugs, and can offer hints based on that earned expertise.
We developed three systems to take advantage of the solu-
tion variation in large classes, using program analysis and
learnersourcing. All three systems have been evaluated us-
ing data or live deployments in on-campus or edX courses
with thousands of students.

Author Keywords
crowdsourcing; learnersourcing; learning at scale; educa-
tion

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

37

CSCW '16 COMPANION, FEBRUARY 27–MARCH 2, 2016, SAN FRANCISCO, CA, USA

http://dx.doi.org/10.1145/2818052.2874319


Introduction
Learners individually solving programming or digital hard-
ware design problems can collectively generate a wide va-
riety of possible bugs and solutions. We have developed
three systems to explore these many bugs and solutions
and make the variation useful to teachers and fellow stu-
dents. All three systems have been evaluated using data or
live deployments in on-campus or edX courses with thou-
sands of students.

OverCode [3] visualizes thousands of programming solu-
tions using static and dynamic analysis to cluster similar
solutions. It lets teachers quickly develop a high-level view
of student understanding and misconceptions and provide
feedback that is relevant to many student solutions.

Foobaz [1] clusters variables in student programs by their
names and behavior so that teachers can give feedback
on variable naming. Rather than requiring the teacher to
comment on thousands of students individually, Foobaz
generates personalized quizzes that help students evaluate
their own names by comparing them with good and bad
names from other students.

ClassOverflow [2] collects and organizes solution hints in-
dexed by the autograder test that failed or a performance
characteristic like size or speed. It helps students reflect on
their debugging or optimization process, generates hints
that can help other students with the same problem, and
could potentially bootstrap an intelligent tutor tailored to the
problem.

OverCode
In MOOCs, a single programming exercise may produce
thousands of solutions from learners. Understanding so-
lution variation is important for providing appropriate feed-
back to students at scale. The wide variation among these

Figure 1: The OverCode user interface. The top left panel shows
the number of clusters, called stacks, and the total number of
solutions visualized. The next panel down in the first column
shows the largest stack, while the second column shows the
remaining stacks. The third column shows the lines of code
occurring in the cleaned solutions of the stacks together with their
frequencies.

solutions can be a source of pedagogically valuable ex-
amples, and can be used to refine the autograder for the
exercise by exposing corner cases. We developed Over-
Code to visualize and explore thousands of small Python
programs that solve the same problem. OverCode uses
both static and dynamic analysis to cluster similar solu-
tions, and lets teachers further filter and cluster solutions
based on different criteria. We evaluated OverCode against
a non-clustering baseline in a within-subjects study with 24
teaching assistants, and found that the OverCode interface
allows teachers to more quickly develop a high-level view of
student understanding and misconceptions, and to provide
feedback that is relevant to more student solutions.

38

SESSION: DEMOS



Foobaz
Traditional feedback methods, such as hand-grading stu-
dent code for substance and style, are labor intensive and
do not scale. We created a new user interface that ad-
dresses feedback at scale for a particular and important
aspect of code quality: variable names (see Figure 2).
Foobaz distinguishes variables by their behavior in the
program, allowing teachers to comment not only on poor
names, but also on names that mislead the reader about
the variable’s role. We ran two lab studies of Foobaz, one
with teachers and the other with students. In the first study,
10 Python teachers used Foobaz to comment on variable
names in thousands of student solutions from an introduc-
tory programming MOOC. In the second study, 6 students
composed fresh solutions to the same programming prob-
lems, and immediately received personalized variable-name
quizzes composed in the previous user study.

ClassOverflow
Personalized support for students is a gold standard in ed-
ucation, but it scales poorly with the number of students.
Prior work on learnersourcing presented an approach for
learners to engage in human computation tasks while trying
to learn a new skill. Our key insight is that students, through
their own experience struggling with a particular problem,
can become experts on the particular optimizations they im-
plement or bugs they resolve. The students can then gen-
erate hints for fellow students based on their new expertise.
ClassOverflow uses new workflows to harvest and organize
students’ collective knowledge and advice for helping fel-
low novices through design problems in engineering (see
Figure 3). ClassOverflow was evaluated in an undergrad-
uate digital hardware design class with hundreds of stu-
dents. We show that, given our design choices, students
can create helpful hints for their peers that augment or even

Figure 2: The Foobaz teacher interface. The teacher is presented
with a scrollable list of normalized solutions, each followed by a
table of student-chosen variable names. Some names shown here
have been labeled by the teacher as “misleading or vague,” “too
short,” or “fine.”

39

CSCW '16 COMPANION, FEBRUARY 27–MARCH 2, 2016, SAN FRANCISCO, CA, USA



Figure 3: In the self-reflection workflow, students generate hints
by reflecting on an obstacle they themselves have recently
overcome. In the comparison workflow, students compare their
own solutions to those of other students, generating a hint as a
byproduct of explaining how one might get from one solution to the
other.

replace teachers’ personalized assistance, especially when
that assistance is not available.

Discussion
Learnersourcing has been a recurring topic at CSCW re-
cently, and these systems show various mechanisms for
leveraging learners in large engineering classes. Learners
produce many variations of solutions to a problem, running
into common and uncommon bugs along the way. Learners
can be part of a closed system workflow that prompts them
to generate analysis of their own activity and sends it to se-
lected fellow learners as feedback. Alternatively, learners
can be pure producers whose activity is analyzed by sys-
tems and distilled by teachers into personalized feedback
for fellow learners. We would like to demo these systems
together, as a suite of learnersourcing systems that allow
teachers to turn the challenges of teaching at scale into an
opportunity for discussion, self-reflection, peer-teaching,
and more learning from examples.

References
[1] Elena L Glassman, Lyla Fischer, Jeremy Scott, and

Robert C Miller. 2015a. Foobaz: Variable Name Feed-
back for Student Code at Scale. In Proceedings of the
28th annual ACM symposium on User Interface Soft-
ware and Technology (UIST ’15). ACM, New York, NY,
USA.

[2] Elena L Glassman, Aaron Lin, Carrie J Cai, and
Robert C Miller. 2015b. Learnersourcing Personalized
Hints. In Proceedings of the 19th ACM Conference on
Computer Supported Cooperative Work and Social
Computing (CSCW ’15). ACM, New York, NY, USA.

[3] Elena L Glassman, Jeremy Scott, Rishabh Singh,
Philip J Guo, and Robert C Miller. 2015c. Over-
Code: Visualizing variation in student solutions to pro-
gramming problems at scale. ACM Transactions on
Computer-Human Interaction (TOCHI) 22, 2 (2015), 7.

40

SESSION: DEMOS


	Introduction
	OverCode
	Foobaz
	ClassOverflow
	Discussion
	References

