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Abstract—Age of information is a newly proposed metric that
captures delay from an application layer perspective. The age
measures the amount of time that elapsed from the moment the
mostly recently received update was generated until the present
time. In this paper, we study an age minimization problem over
a wireless broadcast network with many users, where only one
user can be served at a time. We formulate a Markov decision
process (MDP) to find dynamic transmission scheduling schemes,
with the purpose of minimizing the long-run average age. While
showing that an optimal scheduling algorithm for the MDP is
a simple stationary switch-type, we propose a sequence of finite-
state approximations for our infinite-state MDP and prove its
convergence. We then propose both optimal off-line and on-
line scheduling algorithms for the finite-approximate MDPs,
depending on knowledge of time-varying arrivals.

I. INTRODUCTION

Ideas of traditional networks have been focused on network
throughput or delay. In addition to those concerns, in recent
years there has been growing interest in an age of information.
The age is defined to capture the freshness of information;
more precisely, it is the time elapsed since the generation of
the information. This is motivated by a variety of network
applications requiring timely information, e.g., traffic, trans-
portation, air quality, and typhoon.

While the packet delay is usually referred to as the elapsed
time from the generation to its delivery, the age includes not
only the packet delay but the inter-delivery time because the
age of information increases until the information is updated.
We hence need to jointly consider the two parameters so as to
design an age-optimal network. Moreover, while traditional
relays need to keep all packets that are not served yet,
the relays for the timely information only store the latest
information, but remove those out-of-date packets, i.e. a new
arrival always replaces the old packet in a buffer. Due to the
distinctions, we need to re-consider networks for the timely
information.

In resource-shared networks, the scheduling is a critical
issue to optimize network performance. For delivering clean
theoretical results and clear engineering insights, we look
at the simplest and fundamental problem by considering a
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Fig. 1. A base-station updates N users u1, · · · , uN on information of source
si.

wireless broadcast network, where many network users share
the common wireless medium, as shown in Fig. 1.

A. Contribution

We consider the broadcast network in Fig. 1 associated with
time-varying arrivals at the base station (BS). By formulating a
Markov decision process (MDP) in Section II, we show that an
optimal scheduling algorithm is stationary and deterministic;
in particular, it is a simple switch-type algorithm, i.e., given
the ages of other users, an optimal decision for a user is based
on a threshold and the BS optimally update the user if the age
of the user is larger than the threshold.

Since no practical algorithm can work on infinite-state
MDPs like ours, we propose a sequence of finite-state approx-
imations and rigorously show its convergence in Section IV-A.
In Section IV-B, we proposed an optimal off-line scheduling
algorithm based on the finite-state approximate MDPs. Even
without knowing the arrival statistics, we also propose an
optimal on-line scheduling algorithm in Section IV-C.

B. Related work

The age of information was proposed in [1]; since then,
numerous works [1–7] study the age of information for a single
link. The papers [1–3] consider queues to store all unserved
packets (i.e., out-of-date packets are stored) and analyze the
long-run average age, based on various queueing models. They
show that the optimal sampling rate for minimizing the average
age will not be consistent with the throughput optimum or
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delay optimum. The paper [4] considers a smart update and
shows the always update scheme does not minimize the
average age. Moreover, [5, 6] develop power-efficient updating
algorithms for minimizing the average age. The model in [7]
uses a small buffer to store the latest information.

Of the most relevant work to us about scheduling for
multiple users is [8–10]. Both [8, 9] consider queues at a BS,
while [8] develops some hueristic scheduling algorithms and
[9] analyzes the complexity of scheduling for minimizing the
average age. The paper [10] considers a frame-based system,
where all packets arrive at a BS at the beginning of each frame,
while developing an index policy. Our work is the first one to
consider the age minimization problem with general arrivals,
which can happen at any slot, and propose both optimal off-
line and on-line scheduling algorithms.

II. SYSTEM MODEL

We consider a network consisting of a base-station (BS), and
N wireless users u1, · · · , uN as illustrated in Fig. 1, where
each user ui is interested in the information generated by an
associated source si. The information is transmitted through
the BS in the form of packets. Our focus in this paper is on
the noiseless channels, where all transmissions from the BS to
each user are considered to be successful with a sufficiently
high probability, i.e., we ignore transmission errors. Please see
our technical report [11] for unreliable channels.

We consider a discrete-time system with slots t = 0, 1, · · · .
The packets from the sources (if any) arrive at the BS at
the beginning of each slot. Without loss of generality, we
assume that the BS can transmit at most one packet during
each slot, i.e., the BS can update at most one user at each slot.
We assume that the arrivals at the BS for different users are
independent of each other and also independent and identically
distributed (i.i.d.) over slots, following a Bernoulli distribution.
Precisely, by Λi(t), we indicate if a packet from source si
arrives at the BS at slot t, in which Λi(t) = 1 if there is a
packet; otherwise, Λi(t) = 0, where P [Λi(t) = 1] = pi.

In the applications of interest in this paper, only the fresh
information is significant for the users; as such, the BS needs
to buffer at most one packet for each user, i.e., an arriving
packet always replaces the old one in the buffer. However, in
this paper we focus on the scenario without any buffer, where
the arrivals are discarded if not transmitted in the current slot.
The no-buffer system is simple for practical systems as well
as results in good performance in a single link (see [7]). In our
technical report [11], we have extended our results successfully
by considering the buffers. It turns out that the main results
hold for the buffer-network; moreover, the performance of the
no-buffer system is very close to the buffer-network.

A. Age of information model

The age of information represents the freshness of the
information at the users. We assume that the ages of the
packets are zero when reaching the BS. On receiving a packet,
the age of information for the user is reset to be one due to
one slot of the transmission time.

Let Ai(t) be the age of information for user ui at slot
t before the BS makes a decision. Considering a linearly

increasing age over slots, the age of user ui at slot t is
Ai(t) = t−ri(t), where ri(t) is the time that the most recently
received packet by user ui was generated.

We remark that since the BS can update at most one user
for each slot, Ai(t) ≥ 1 for all i, Ai(t) 6= Aj(t) for all i 6= j,
and

∑N
i=1Ai(t) ≥ 1 + 2 + · · ·+N for all t.

B. Markov decision process model

We use a Markov decision process (MDP) to develop
scheduling algorithms for the BS to update a user at each
transmission opportunity. According to [12], we describe the
components of our MDP in detail below.

Decisions and decision epochs: For each slot, the BS makes
a decision immediately after receiving packets. By D(t) ∈
{0, 1, · · ·N} we denote a decision of the MDP at slot t, where
D(t) = 0 if the BS does not transmit any packet and D(t) = i
for i = 1, · · · , N if user ui is scheduled to be updated at slot
t. Considering the no-buffer network, for each slot the BS
updates a user with an arrival at the BS, i.e., D(t) ∈ {i :
Λi(t) = 1}. Note that the action-space is finite.

States: We define the state S(t) of the system at slot t
as S(t) = (A1(t), · · · , AN (t),Λ1(t), · · · ,ΛN (t)). By S we
define the state-space including all possible states. Note that
S is a countable infinite set because the ages are possibly
unbounded.

Transition probabilities: Under decision D(t) = d, as
the transmission time is one slot, the age of the next
slot is Ad(t + 1) = 1 and Ai(t + 1) = Ai(t) +
1 for i 6= d. Let Ps,s′(d) be the transition probability
from state s = (a1, · · · , aN , λ1, · · · , λN ) to state s′ =
(a′1, · · · , a′N , λ′1, · · · , λ′N ) under decision D(t) = d, and then
the probability law is

Ps,s′(d) =

 Πi:λ′i=1piΠi:λ′i=0(1− pi) if a′d = 1 and
a′i = ai + 1 for i 6= d;

0 else.

Cost: Let C(S(t), D(t) = d) be the immediate cost if
decision D(t) = d is taken at slot t under system state S(t).
We consider the total age of the system after making a decision
at slot t:

C(S(t), D(t) = d) ,
N∑
i=1

Ai(t+ 1)

=

N∑
i=1

(Ai(t) + 1)−Ad(t) · Λd(t),

where we define A0(t) = 0 and Λ0(t) = 0 for all t (for the
case of d = 0), while the last term indicates that user ud is
updated at slot t. We remark that our analysis and design can
also work perfectly with the weighted sum of the ages.

C. Average-optimal scheduling algorithm design

A scheduling algorithm θ specifies decisions at all deci-
sion epochs, i.e., θ = {D(1), D(2), · · · }. An algorithm is
history dependent if D(t) depends on D(1), · · · , D(t − 1)
and S(1) · · · ,S(t), while it is Markov if D(t) only depends
on S(t). An algorithm is stationary if D(t1) = D(t2)
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when S(t1) = S(t2) for any t1, t2. Moreover, A randomized
algorithm specifies a probability distribution on the set of ac-
tions for each decision epoch, while a deterministic algorithm
chooses an action with certainty.

The long-run average cost for some history dependent
algorithm θ is given by

V (θ) = lim sup
T→∞

1

T + 1
Eθ

[
T∑
t=0

C(S(t), D(t))|S(0)

]
,

where Eθ represents the conditional expectation, given that
the policy θ is employed.

Definition 1. A scheduling algorithm θ is average-optimal if
it minimizes the long-run average cost V (θ).

Our goal is to characterize and obtain an average-optimal
algorithm. However, according to [12], there may not exist a
stationary or deterministic algorithm that is average-optimal
for an infinite state-space MDP. Due to the space limitation,
we present our main results in this paper, and please see our
technical report in [11] for the complete proofs.

III. CHARACTERIZATIONS OF THE AVERAGE-OPTIMALITY

We begin with an infinite horizon α-discounted cost case,
where 0 < α < 1; we then tie to the average cost case because
structures of the average-optimal algorithm usually rely on the
discounted cost case. Given initial state S(0) = s, the total
expected discounted cost under an algorithm θ is

Vα(s; θ) = lim
T→∞

Eθ

[
T∑
t=0

αtC(S(t), D(t))|S(0) = s

]
.

Definition 2. A scheduling algorithm θ is α-optimal if it
minimizes the total expected discounted cost Vα(s; θ). In
particular, we define

Vα(s) = min
θ
Vα(s; θ).

We first introduce the discounted cost optimality equation
for Vα(s) as below.

Proposition 3. The optimal expected discounted cost Vα(s),
for state s, satisfies the following discounted cost optimality
equation:

Vα(s) = min
d∈{0,1,··· ,N}

C(s, d) + αE[Vα(s′)], (1)

where the expectation is taken over all possible next state s′

reachable from the state s. A deterministic stationary algo-
rithm that realizes the minimum of the right hand side (RHS)
of the discounted cost optimality equation will be an α-optimal
algorithm. Moreover, we define Vα,n(s) by Vα,0(s) = 0 and
for any n ≥ 0

Vα,n+1(s) = min
d∈{0,1,··· ,N}

C(s, d) + αE[Vα,n(s′)]. (2)

Then, Vα,n(s)→ Vα(s) as n→∞ for every s, and α.

Proof. (Sketch) Basically, we need to verify that Vα(s) is finite
for all possible α and s. Please see [11] for details.

Lemma 4. There exists a deterministic stationary algorithm
that is average-optimal. Moreover, there exists a finite constant

g = limα→1(1 − α)Vα(s) for every state s such that the
average-optimal cost is g, independent of the initial state S(0).

Proof. Please see [11].

We remark that even though the average-optimality of a
deterministic stationary algorithm is shown in Lemma 4, we
might not arrive at an average cost optimaility equation like
Eq. (1) or the value iteration like Eq. (2) (see [13, 14] for
details).

In addition to the average-optimality of a deterministic sta-
tionary algorithm, we show that an average-optimal scheduling
algorithm has a nice structure facilitating the scheduling algo-
rithm design in the next section.

Definition 5. A switch-type algorithm is a deterministic sta-
tionary algorithm: for every user ui, if an average-optimal
decision for state s = (a1, · · · , ai, · · · , aN , λ1, · · · , λN ) is
d∗s = i, then an optimal decision at state s′ = (a1, · · · , ai +
1, · · · , aN , λ1, · · · , λN ) is d∗s′ = i as well.

Theorem 6. An average-optimal scheduling algorithm is the
switch-type algorithm.

Proof. (Sketch) We first prove that an α-optimal scheduling
algorithm is the switch-type by applying the value iteration in
Eq. (2). Then, we show that the structure holds for the average-
optimum by letting α→ 1. Please see [11] for details.

In particular, if the arrival rates of all information sources
are the same, we can obtain a nice index algorithm as follows.

Corollary 7. If the arrival rates of all information sources
are the same, i.e., pi = pj for all i 6= j, then an optimal
scheduling algorithm updates the user with the largest age,
i.e., D(t) = arg maxiAi(t) for each time t.

Proof. Please see [11].

We also notice that the index algorithm is indeed an on-line
algorithm, without the knowledge of the arrival statistics in
advance. For general asymmetric arrivals, an average-optimal
scheduling algorithm depends on both the arrival statistics and
the current ages. However, it is not obvious how to get an
average-optimal scheduling for the asymmetric arrivals. This
key challenge hence motivates us to investigate both off-line
and on-line scheduling algorithms in the next section.

IV. SCHEDULING ALGORITHM DESIGN

We start with proposing finite-state approximations to the
original MDP as in practice we can only work on a finite-
state MDP to avoid formidably high computation complexity.
We will rigorously show the convergence of the proposed
truncation as in general a MDP truncation might not converge
to the original MDP according to [14].

Based on the finite-state MDPs, we first propose a structural
value iteration algorithm in Section IV-B to pre-compute an
optimal decision for each state, whose complexity would
be lower than the conventional value iteration algorithm by
employing the switch structure. Moreover, we propose an on-
line algorithm leveraging the stochastic approximation [15] in
Section IV-C
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A. Finite-state MDP approximations

Let ∆ be the Markov decision process defined in Sec-
tion II-B. By {∆m} we define a sequence of approximate
MDPs for ∆ whose state-space is Sm = {s ∈ S : ai ≤ m}
with the bounded virtual ages, while the decision-space and
cost definition are the same as ∆.

Let A(m)
i (t) be the age of information for user ui at time t

for ∆m. Different from ∆, under decision D(t) = d the age
of the next slot for ∆m is A(m)

d (t+1) = 1 and A(m)
i (t+1) =[

A
(m)
i (t) + 1

]+
m

if i 6= d, where we define the notation [x]+m
by [x]+m = x if x ≤ m and [x]+m = m if x > m.

Let P (m)
s,s′ (d) be the transition probability for ∆m. Then,

P
(m)
s,s′ (d) = Ps,s′(d) if s′ ∈ Sm; otherwise,

P
(m)
s,s′ (d) = Ps,s′(d) +

∑
r∈S−Sm

Ps,r(d),

for some excess probabilities on state r ∈ S− Sm.
Next, we show that the proposed finite-state approximations

will be asymptotically average-optimal.

Theorem 8. Let V ∗ and V ∗m be the average-optimal cost to
∆ and ∆m, respectively. Then, V ∗m → V ∗ as m→∞.

Proof. Please see [11].

Now, we are ready to propose scheduling algorithms based
on ∆m. In other words, the BS make decisions according to
the virtual age A(m)

i (t) on Sm, instead of the real age Ai(t)
on S. The real age can increase beyond m but the virtual age
will be smaller than m+ 1.

B. Structural off-line scheduling algorithm

The relative value iteration algorithm (RVIA), as follows,
can be applied to get an optimal deterministic stationary
algorithm on ∆m:

Vn+1(s) = min
d∈{0,1,··· ,N}

C(s, d) + E[Vn(s′)]− Vn(0), (3)

for all s ∈ Sm, where 0 is a reference state and we can arbitrar-
ily choose the reference state by 0 = (1, 2, · · · , N, 1, · · · , 1).
For each iteration n, we need to update the decisions for all
virtual states by minimizing the RHS of Eq. (3) as well as
update V (s) for all s ∈ Sm. The complexity is very high due
to many users (i.e., curse of dimensionality [16]). Therefore,
we propose in Alg. 1 a structural off-line algorithm based on
the RVIA along with the switch structure.

In Alg. 1, we seek an optimal decision d∗s for each virtual
state s ∈ Sm by iteration. For each iteration, we update both
optimal decision d∗s and V (s) for all virtual states. If the
switch property holds, we can determine an optimal decision
immediately in Line 5; otherwise we find an optimal decision
according to Line 7. By Vtmp(s) in Line 9 we temporarily
keep the updated value, which will replace V (s) in Line 11.
Using the switch structure to prevent from the minimum
operations on all virtual states in the RVIA, we can reduce
the computational complexity accordingly. We conclude the
optimality of Alg. 1 in the following.

Algorithm 1: Structural off-line scheduling algorithm
1 V (s)← 0 for all states s ∈ Sm;
2 while 1 do
3 forall s = (a1, · · · , ai, · · · , aN , λ1, · · · , λN ) ∈ Sm do
4 if there exists ζ > 0 and i ∈ {1, · · · , N} such that

d∗
(a1,··· ,ai−ζ,··· ,aN ,λ1,··· ,λN )

= i then
5 d∗s ← i;
6 else
7 d∗s ← arg mind∈{0,1,··· ,N} C(s, d) + E[V (s′)];
8 end
9 Vtmp(s)← C(s, d∗s ) + E[V (s′)]− V (0);

10 end
11 V (s)← Vtmp(s) for all s ∈ Sm.
12 end

Theorem 9. The limit point of d∗s of Alg. 1 is an average-
optimal decision for all virtual state s ∈ Sm. In particular,
Alg. 1 converges in a finite number of iterations.

Proof. (Sketch) We need to verify that the finite-state approx-
imate MDPs are unichain. Please see [11] for details.

C. On-line scheduling algorithm

We notice that Alg. 1 needs the arrival statistics to pre-
compute an optimal decision for each virtual state. We will
propose an on-line scheduling algorithm in case that the
statistics is unavailable. Instead of updating V (s) for all states
at each iteration, we update V (s) following a sample path,
which is a set of outcomes of the arrivals over slots. It turns
out that the sample-path updates will converge to the average-
optimal solution.

To that end, we need a stochastic version of the RVIA.
However, the RVIA in Eq. (3) is not suitable because the
expectation is inside the minimization (see [16] for details).
Moreover, minimizing the RHS of Eq. (3) for a given current
state needs the transition probabilities to calculate the expec-
tation. To tackle these challenges, we design post-decision
states [16] for our problem.

We define the post-decision state s̃ as the ages and
the arrivals after a decision. The state we used be-
fore is referred to as the pre-decision state. If s =
(a1, · · · , aN , λ1, · · · , λN ) ∈ Sm is a virtual state of the
system, then the virtual post-decision state after decision d
is s̃ = (ã1, · · · , ãN , λ̃1, · · · , λ̃N ), where ãi = 1 if i = d and
ãi = [ai + 1]

+
m otherwise, as well as λ̃i = λi for all i.

Let Ṽ (s̃) be a value function based on the post-decision
states:

Ṽ (s̃) = Es[V (s)],

where the expectation Es is taken over all the pre-
decision states reached from the post-decision state. We
can then write down the post-decision average cost opti-
mality equation [16] for the virtual post-decision age s̃ =
(ã1, · · · , ãN , λ̃1, · · · , λ̃N ) with s̃ ∈ Sm:

Ṽ (s̃) + g

=E

[
min

d∈{0,1,··· ,N}
C
(

(ã, λ̃
′
), d
)

+ Ṽ ([ã + 1− ãd]
+
m, λ̃

′
)

]
,



5

Algorithm 2: On-line scheduling algorithm
/* Initialization */

1 Ṽ (s̃)← 0 for all states s̃ ∈ Sm;
2 s̃← 0;
3 v ← 0;
4 while 1 do

/* Decision at slot t */
5 We optimally make a decision D∗(t) at slot t according to the

current arrivals Λ(t) = (Λ1(t), · · · ,ΛN (t) at slot t:

D∗(t) = arg min
d∈{0,1,··· ,N}

C ((ã,Λ(t)), d)

+ Ṽ ([ã + 1− ãd]+m,Λ(t)); (5)

/* Value update */
6 v ← C ((ã,Λ(t)), D∗(t))+Ṽ ([ã+1− ãD∗(t)]

+
m,Λ(t))−Ṽ (0);

7 Ṽ (s̃)← (1− γ(t))Ṽ (s̃) + γ(t)v;
/* Post-decision state update */

8 ã← [ã + 1− ãD∗(t)]
+
m;

9 λ̃← Λ(t).
10 end

where ãi = (0, · · · , ãi, · · · , 0) is the zero vector except for
the i-th entry being substituted by ãi, and 1 = (1, · · · , 1) is
the unit vector. Moreover, λ̃′ is the next possible arrivals.

From above optimality equation, the RVIA is as follows:

Ṽn+1(s̃)

=E

[
min

d∈{0,1,··· ,N}
C
(

(ã, λ̃
′
), d
)

+ Ṽn([ã + 1− ad]
+
m, λ̃

′
)

]
− Ṽn(0). (4)

Then, we are ready to propose the on-line algorithm in
Alg. 2 based on a stochastic version of the RVIA. In Lines 1-3,
we initialize Ṽ (s̃) of all virtual post-decision states and start
from the reference point. Moreover, by v we record Ṽ (s̃) of
the current virtual post-decision state.

By observing the current arrivals Λ(t) and plugging in
Eq. (4), in Line 5 we optimally update a user by minimizing
Eq. (5); as such, the expectation in Eq. (4) is removed. Then,
we update Ṽ (s̃) of the current virtual post-decision state in
Line 7, where γ(t) is a stochastic step-size (see [16]) at slot
t and hence Ṽ (s̃) is balanced between the previous Ṽ (s̃) and
the current value v. Finally, the next virtual post-decision state
is updated in Lines 8 and 9.

Theorem 10. If
∑
t γ(t) =∞ and

∑
t γ

2(t) <∞, then Alg. 2
converges to the average-optimal value.

Proof. Please see [11].

In the above theorem,
∑
t γ(t) = ∞ implies that Alg. 2

needs infinite number of iterations to learn the average-optimal
solution, while Alg. 1 can converge to the optimal solution in
a finite number of iterations. Moreover,

∑
t γ

2(t) <∞ means
that the noise from measuring Ṽ (s̃) can be controlled.

Finally, we want to emphasize that the proposed Algs. 1 and
2 are asymptotically optimal, i.e., they converge to the optimal
solutions when the finite state-space m and the slots t go to
infinity. In Fig. 2, we show the performance of Algs. 1 and 2
over finite slots. In our technical report [11], we provide more
numerical studies and discussions of the proposed algorithms
for both no-buffer network and buffer-network.
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Fig. 2. The average total age over 100,000 slots versus the symmetric arrivals
(i.e., pi = p for all user ui) by employing Algs. 1 and 2 for two users (left
figure) and three users (right figure).

V. CONCLUSION

In this paper, we consider a broadcast network, where
many users are interested in different information that should
be delivered by a base-station. We theoretically investigate
the long-run average age of information by designing and
analyzing optimal scheduling algorithms. We show that an
optimal scheduling algorithm is a simple stationary switch-
type. To tackle the infinite state-space Markov decision process
(MDP), we propose a sequence of finite-state approximate
MDPs. Based on the approximate MDPs, we propose both
off-line and on-line scheduling algorithms. It turns out the
proposed algorithms are asymptotically optimal.
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