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Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have 
attracted a great deal of attention1,2, much remains unknown about ZIKV disease epidemiology 
and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in 
knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical 
and mosquito samples from 10 countries and territories, greatly expanding the observed viral 
genetic diversity from this outbreak. We analysed the timing and patterns of introductions into 
distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in 
Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, 
other Caribbean islands, and the continental United States. We find that ZIKV circulated 
undetected in multiple regions for many months before the first locally transmitted cases were 
confirmed, highlighting the importance of surveillance of viral infections. We identify mutations 
with possible functional implications for ZIKV biology and pathogenesis, as well as those that 
might be relevant to the effectiveness of diagnostic tests.  

Since its introduction into the Americas, mosquito-borne ZIKV (family: Flaviviridae) has spread rapidly, 
causing hundreds of thousands of cases of ZIKV disease, as well as ZIKV congenital syndrome and 
probably other neurological complications1–3. Phylogenetic analysis of ZIKV can reveal the trajectory of 
the outbreak and detect mutations that may be associated with new disease phenotypes or affect 
molecular diagnostics. Despite the 70 years since its discovery and the scale of the recent outbreak, 
however, fewer than 100 ZIKV genomes have been sequenced directly from clinical samples. This is 
due in part to technical challenges posed by low viral loads (for example, these are often orders of 
magnitude lower than in Ebola virus or dengue virus infection4–6), and by loss of RNA integrity in 
samples collected and stored without sequencing in mind. Culturing the virus increases the material 
available for sequencing but can result in genetic variation that is not representative of the original 
clinical sample.  

We sought to gain a deeper understanding of the viral populations underpinning the ZIKV epidemic by 
extensive genome sequencing of the virus directly from samples collected as part of ongoing 
surveillance. We initially pursued unbiased metagenomic sequencing to capture both ZIKV and other 
viruses known to be co-circulating with ZIKV5. In most of the 38 samples examined by this approach 
there proved to be insufficient ZIKV RNA for genome assembly, but it still proved valuable to verify 
results from other methods. Metagenomic data also revealed sequences from other viruses, including 41 
likely novel viral sequence fragments in mosquito pools (Extended Data Table 1). In one patient we 
detected no ZIKV sequence but did assemble a complete genome from dengue virus (type 1), one of the 
viruses that co-circulates with and presents similarly to ZIKV7.  

To capture sufficient ZIKV content for genome assembly, we turned to two targeted approaches for 
enrichment before sequencing: multiplex PCR amplification8 and hybrid capture9. We sequenced and 
assembled complete or partial genomes from 110 samples from across the epidemic, out of 229 
attempted (221 clinical samples from confirmed and possible ZIKV disease cases and eight mosquito 
pools; Table 1, Supplementary Table 1). This dataset, which we used for further analysis, includes 110 
genomes produced using multiplex PCR amplification (amplicon sequencing) and a subset of 37 
genomes produced using hybrid capture (out of 66 attempted). Because these approaches amplify any 
contaminant ZIKV content, we relied heavily on negative controls to detect artefactual sequence, and we 
established stringent, method-specific thresholds on coverage and completeness for calling high-
confidence ZIKV assemblies (Fig. 1a). Completeness and coverage for these genomes are shown in Fig. 
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1b, c; the median fraction of the genome with unambiguous base calls was 93%. Per-base discordance 
between genomes produced by the two methods was 0.017% across the genome, 0.15% at polymorphic 
positions, and 2.2% for minor allele base calls. Concordance of within-sample variants is shown in more 
detail in Fig. 1d–f. Patient sample type (urine, serum, or plasma) made no significant difference to 
sequencing success in our study (Extended Data Fig. 1).  

To investigate the spread of ZIKV in the Americas we performed a phylogenetic analysis of the 110 
genomes from our dataset, together with 64 published genomes available on NCBI GenBank and in refs 
10 and 11 (Fig. 2a). Our reconstructed phylogeny (Fig. 2b), which is based on a molecular clock 
(Extended Data Fig. 2), is consistent with the outbreak having originated in Brazil12: Brazil ZIKV 
genomes appear on all deep branches of the tree, and their most recent common ancestor is the root of 
the entire tree. We estimate the date of that common ancestor to have been in early 2014 (95% credible 
interval (CI) August 2013 to July 2014). The shape of the tree near the root remains uncertain (that is, 
the nodes have low posterior probabilities) because there are too few mutations to clearly distinguish the 
branches. This pattern suggests rapid early spread of the outbreak, consistent with the introduction of a 
new virus to an immunologically naive population. ZIKV genomes from Colombia (n = 10), Honduras 
(n = 18), and Puerto Rico (n = 3) cluster within distinct, well-supported clades. We also observed a clade 
consisting entirely of genomes from patients who contracted ZIKV in one of three Caribbean countries 
(the Dominican Republic, Jamaica, and Haiti) or the continental United States, containing 30 of 32 
genomes from the Dominican Republic and 19 of 20 from the continental United States. We estimated 
the within-outbreak substitution rate to be 1.15 × 10−3 substitutions per site per year (95% CI (9.78 × 
10−4, 1.33 × 10−3)), similar to prior estimates for this outbreak12. This is 1.3–5 times higher than 
reported rates for other flaviviruses13, but is measured over a short sampling period, and therefore may 
include a higher proportion of mildly deleterious mutations that have not yet been removed through 
purifying selection.  

Determining when ZIKV arrived in specific regions helps to elucidate the spread of the outbreak and 
track rising incidence of possible complications of ZIKV infection. The majority of the ZIKV genomes 
from our study fall into four major clades from different geographic regions, for which we estimated a 
likely date for ZIKV arrival. In each case, the date was months earlier than the first confirmed, locally 
transmitted case, indicating ongoing local circulation of ZIKV before its detection. In Puerto Rico, the 
estimated date was 4.5 months earlier than the first confirmed local case14; it was 8 months earlier in 
Honduras15, 5.5 months earlier in Colombia16, and 9 months earlier for the Caribbean–continental US 
clade17. In each case, the arrival date represents the estimated time to the most recent common ancestor 
(tMRCA) for the corresponding clade in our phylogeny (Fig. 2c; see Extended Data Fig. 3 and Extended 
Data Table 2 for details). Similar temporal gaps between the tMRCA of local transmission chains and 
the earliest detected cases were seen when chikungunya virus emerged in the Americas18. We also 
observed evidence for several introductions of ZIKV into the continental United States, and found that 
sequences from mosquito and human samples collected in Florida cluster together, consistent with the 
finding of local ZIKV transmission in Florida in ref. 11.  

Principal component analysis (PCA) is consistent with the phylogenetic observations (Fig. 2d). It shows 
tight clustering among ZIKV genomes from the continental United States, the Dominican Republic, and 
Jamaica. ZIKV genomes from Brazil and Colombia are similar and distinct from genomes sampled in 
other countries. ZIKV genomes from Honduras form a third cluster that also contains genomes from 
Guatemala or El Salvador. The PCA results show no clear stratification of ZIKV within Brazil. 
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Genetic variation can provide important insights into ZIKV biology and pathogenesis and can reveal 
potentially functional changes in the virus. We observed 1,030 mutations in the complete dataset, and 
they were well distributed across the genome (Fig. 3a). Any effect of these mutations cannot be 
determined from these data; however, the most likely candidates for functional mutations would be 
among the 202 nonsynonymous mutations (Supplementary Table 2) and the 32 mutations in the 5′ and 3′ 
untranslated regions (UTRs). Adaptive mutations are more likely to be found at high frequency or to be 
seen multiple times, although both effects can also occur by chance. We observed five positions with 
nonsynonymous mutations at more than 5% minor allele frequency that occurred on two or more 
branches of the tree (Fig. 3b); two of these (at positions 4,287 and 8,991) occurred together and might 
represent incorrect placement of a Brazil branch in the tree. The remaining three are more likely to 
represent multiple nonsynonymous mutations; one (at 9,240) appears to involve nonsynonymous 
mutations to two different alleles.  

To assess the possible biological significance of these mutations, we looked for evidence of selection in 
the ZIKV genome. Viral surface glycoproteins are known targets of positive selection, and mutations in 
these proteins can confer adaptation to new vectors19 or aid immune escape20,21. We therefore searched 
for an excess of nonsynonymous mutations in the ZIKV envelope glycoprotein (E). However, the non-
synonymous substitution rate in E proved to be similar to that in the rest of the coding region (Fig. 3c, 
left); moreover, amino acid changes were significantly more conservative in that region than elsewhere 
(Fig. 3c, middle and right). Any diversifying selection occurring in the surface protein thus appears to be 
operating under selective constraint. We also found evidence for purifying selection in the ZIKV 3′ UTR 
(Fig. 3d, Supplementary Table 3), which is important for viral replication22.  

While the transition-to-transversion ratio (6.98) was within the range seen in other viruses23, we 
observed a considerably higher frequency of C-to-T and T-to-C substitutions than other transitions (Fig. 
3d, Extended Data Fig. 4, Supplementary Table 3). This enrichment was apparent both in the genome as 
a whole and at fourfold degenerate sites, where selection pressure is minimal. Many processes could 
contribute to this conspicuous mutation pattern, including mutational bias of the ZIKV RNA-dependent 
RNA polymerase, host RNA editing enzymes (for example, APOBECs, ADARs) acting upon viral RNA, 
and chemical deamination, but further investigation is required to determine the cause of this 
phenomenon.  

Mismatches between PCR assays and viral sequence are a potential source of poor diagnostic 
performance in this outbreak24. To assess the potential influence of ongoing viral evolution on 
diagnostic function, we compared eight published qRT–PCR-based primer/probe sets to our data. We 
found numerous sites at which the probe or primer did not match an allele found among the 174 ZIKV 
genomes from the current dataset (Fig. 3e). In most cases, the discordant allele was shared by all 
outbreak samples, presumably because it was present in the Asian lineage that entered the Americas. 
These mismatches could affect all uses of the diagnostic assay in the outbreak. We also found 
mismatches from new mutations that occurred after ZIKV entry into the Americas. Most of these were 
present in less than 10% of samples, although one was seen in 29%. These observations suggest that 
genome evolution has not caused widespread degradation of diagnostic performance during the course 
of the outbreak, but that mutations continue to accumulate and ongoing monitoring is needed.  

Analysis of within-host viral genetic diversity can reveal important information for understanding virus–
host interactions and viral transmission. However, accurately identifying these variants in low-titre 
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clinical samples is challenging, and further complicated by potential artefacts associated with 
enrichment before sequencing. To investigate whether we could reliably detect within-host ZIKV 
variants in our data, we identified within-host variants in a cultured ZIKV isolate used as a positive 
control throughout our study, and found that both amplicon sequencing and hybrid capture data 
produced concordant and replicable variant calls (Fig. 1d). In clinical and mosquito samples, hybrid 
capture within-host variants were noisier but contained a reliable subset: although most variants were 
not validated by the other sequencing method or by a technical replicate, those at high frequency were 
always replicable, as were those that passed a previously described filter25 (Fig. 1e, f, Extended Data 
Table 3). Within this high confidence set we looked for variants that were shared between samples as a 
clue to transmission patterns, but there were too few variants to draw any meaningful conclusions. By 
contrast, within-host variants identified in amplicon sequencing data were unreliable at all frequencies 
(Fig. 1f, Extended Data Table 3), suggesting that further technical development is needed before 
amplicon sequencing can be used to study within-host variation in ZIKV and other clinical samples with 
low viral titres.  

Sequencing low-titre viruses such as ZIKV directly from clinical samples presents several challenges 
that are likely to have contributed to the paucity of genomes available from the current outbreak. While 
the development of technical and analytical methods will surely continue, we note that factors upstream 
in the process, including collection site and cohort, were strong predictors of sequencing success in our 
study (Extended Data Fig. 1). This finding highlights the importance of continuing development and 
implementation of best practices for sample handling, without disrupting standard clinical workflows, 
for wider adoption of genome surveillance during outbreaks. Additional sequencing, however 
challenging, remains critical to ongoing investigation of ZIKV biology and pathogenesis. Together with 
refs 10 and 11, this study advances both technological and collaborative strategies for genome 
surveillance in the face of unexpected outbreak challenges.  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Figures and Tables 

Table 1 | Samples and genomes by region. 
Sample source information and sequencing results for 229 clinical and mosquito pool samples. Continental United 
States includes eight mosquito pool samples; all others are clinical samples from the Americas. In the final 
column, genomes generated by both methods are counted only once. ‘Other’ includes regions without a ZIKV 
genome included in downstream analysis.  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Country or territory Samples sequencing

genomes

Amplicon

capture

genomes

Hybrid
Total

genomes

Brazil 53 27 7 27
Colombia 20 4 2 4

Dominican Republic 45 30 9 30
Guatemala/El Salvador 3 1 0 1

Haiti 4 1 0 1
Honduras 20 18 8 18

Jamaica 20 5 0 5
Martinique 3 1 0 1

Puerto Rico 15 3 1 3
Continental US 36 20 10 20

Other 10 0 0 0
Total 229

metagenomic

data

Samples with

12
0
7
0
0
6
0
0
0

12
1
38 110 37 110



 
Figure 1 | Sequence data from clinical and mosquito samples. 
a, Thresholds used to select samples for downstream analysis. Each point is a replicate. Red and blue shading: 
regions of accepted amplicon sequencing and hybrid capture genome assemblies, respectively. Not shown: hybrid 
capture positive controls with depth >10,000×. b, Amplicon sequencing coverage by sample (row) across the ZIKV 
genome. Red, sequencing depth ≥100×; heatmap (bottom) sums coverage across all samples. White horizontal lines 
on heatmap, amplicon locations. c, Relative sequencing depth across hybrid capture genomes. d, Within-sample 
variants for a single cultured isolate (PE243) across seven technical replicates. Each point is a variant in a replicate 
identified using amplicon sequencing (red) or hybrid capture (blue). Variants are plotted if the pooled frequency 
across replicates by either method is ≥1%. e, Within-sample variant frequencies across methods. Each point is a 
variant in a clinical or mosquito sample and points are plotted on a log–log scale. Green points, ‘verified’ variants 
detected by hybrid capture that pass strand bias and frequency filters. Frequencies <1% are shown at 0%. f, Counts of 
within-sample variants across two technical replicates for each method. Variants are plotted in the frequency bin 
corresponding to the higher of the two detected frequencies.  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Figure 2 | Zika virus spread throughout the Americas. 
a, Samples were collected in each of the coloured countries or territories. Specific state, department, or province of 
origin for samples in this study is highlighted if known. b, Maximum clade credibility tree. Dotted tips, genomes 
generated in this study. Node labels are posterior probabilities indicating support for the node. Violin plots denote 
probability distributions for the tMRCA of four highlighted clades. c, Time elapsed between estimated tMRCA and 
date of first confirmed, locally transmitted case. Colour, distributions based on relaxed clock model (also shown in 
b); grey, strict clock. Caribbean clade includes the continental United States. d, Principal component analysis of 
variants. Circles, data generated in this study; diamonds, other publicly available genomes from this outbreak. 
Percentage of variance explained by each component is indicated on axis.  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Figure 3 | Geographic and genomic distribution of Zika virus variation. 
a, Location of variants in the ZIKV genome. The minor allele frequency is the proportion of the 174 genomes from 
this outbreak that share a variant. Dotted bars, <25% of samples had a base call at that position. b, Phylogenetic 
distribution of nonsynonymous variants with minor allele frequency >5%, shown on the branch where the mutation is 
most likely to have occurred. Grey outline, variant might be on next-most ancestral branch (in two cases, two 
branches upstream), but exact location is unclear because of missing data. Red circles, variants occurring at more 
than one location in the tree. c, Conservation of the ZIKV envelope (E) region.  Left, nonsynonymous variants per 
amino acid for the E region (dark grey) and the rest of the coding region (light grey). Middle, proportion of 
nonsynonymous variants resulting in negative BLOSUM62 scores, which indicate unlikely or extreme substitutions 
(P < 0.039, χ2 test). Right, average of BLOSUM62 scores for nonsynonymous variants (P < 0.037, two-sample t-test). 
d, Constraint in the ZIKV 3′ UTR and observed transition rates over the ZIKV genome. e, ZIKV diversity in 
diagnostic primer and probe regions. Top, locations of published probes (dark blue) and primers (cyan)26–31 on the 
ZIKV genome. Bottom, each column represents a nucleotide position in the probe or primer. Colours in the column 
indicate the fraction of ZIKV genomes (out of 174) that matched the probe/primer sequence (grey), differed from it 
(red), or had no data for that position (white).  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Methods 
No statistical methods were used to predetermine sample size. The experiments were not randomized and the 
investigators were not blinded to allocation during experiments and outcome assessment. 
 
Ethics statement. 
The clinical studies from which samples were obtained were evaluated and approved by the relevant Institutional 
Review Boards/Ethics Review Committees at Hospital General de la Plaza de la Salud (Santo Domingo, Dominican 
Republic), University of the West Indies (Kingston, Jamaica), Universidad Nacional Autónoma de Honduras 
(Tegucigalpa, Honduras), Oswaldo Cruz Foundation (Rio de Janeiro, Brazil), Centro de Investigaciones 
Epidemiologicas—Universidad Industrial de Santander (Bucaramanga, Colombia), Massachusetts Department of 
Public Health (Jamaica Plain, Massachusetts), and Florida Department of Health (Tallahassee, Florida). Informed 
consent was obtained from all participants enrolled in studies at Hospital General de la Plaza de la Salud, Universidad 
Nacional Autónoma de Honduras, Oswaldo Cruz Foundation, and Universidad Industrial de Santander. IRBs at the 
University of West Indies, Massachusetts Department of Public Health, and Florida Department of Health granted 
waivers of consent given this research with leftover clinical diagnostic samples involved no more than minimal risk. 
Harvard University and Massachusetts Institute of Technology (MIT) Institutional Review Boards/Ethics Review 
Committees provided approval for sequencing and secondary analysis of samples collected by the aforementioned 
institutions. 

Sample collections and study subjects. 
Patients with suspected ZIKV infection (including high-risk travellers) were enrolled through study protocols at 
multiple aforementioned collection sites. Clinical samples (including blood, urine, cerebrospinal fluid, and saliva) 
were obtained from suspected or confirmed ZIKV cases and from high-risk travellers. De-identified information 
about study participants and other sample metadata are reported in Supplementary Table 1. 

Viral RNA isolation. 
RNA was isolated following the manufacturer’s standard operating protocol for 0.14–1-ml samples32 using the 
QIAamp Viral RNA Minikit (Qiagen), except that in some cases 0.1 M final concentration of β-mercaptoethanol (as a 
reducing agent) or 40µg/ml final concentration of linear acrylamide (Ambion) (as a carrier) were added to AVL buffer 
before inactivation. Extracted RNA was resuspended in AVE buffer or nuclease-free water. In some cases, viral 
samples were concentrated using Vivaspin-500 centrifugal concentrators (Sigma-Aldrich) before inactivation and 
extraction. In these cases, 0.84 ml of sample was concentrated to 0.14 ml by passing through a 30-kDa filter and 
discarding the flow-through. 

Carrier RNA and host rRNA depletion. 
In a subset of human samples, carrier poly(rA) RNA and host rRNA were depleted from RNA samples using RNase 
H selective depletion9,33. In brief, oligo d(T) (40 nt long) and/or DNA probes complementary to human rRNA were 
hybridized to the sample RNA. The sample was then treated with 15 units Hybridase (Epicentre) for 30 min at 45 °C. 
The complementary DNA probes were removed by treating each reaction with an RNase-free DNase (Qiagen) 
according to the manufacturer’s protocol. Following depletion, samples were purified using 1.8× volume AMPure 
RNAclean beads (Beckman Coulter Genomics) and eluted into 10 µl water for cDNA synthesis. 

Illumina library construction and sequencing. 
cDNA synthesis was performed as described in previously published RNA-seq methods9. To track potential cross-
contamination, 50 fg synthetic RNA (gift from M. Salit, NIST) was spiked into samples using unique RNA for each 
individual ZIKV sample. ZIKV negative control cDNA libraries were prepared from water, human K-562 total RNA 
(Ambion), or EBOV (KY425633.1) seed stock; ZIKV positive controls were prepared from ZIKV Senegal (isolate 
HD78788) or ZIKV Pernambuco (isolate PE243; KX197192.1) seed stock. The dual index Accel-NGS 2S Plus DNA 
Library Kit (Swift Biosciences) was used for library preparation. Approximately half of the cDNA product was used 
for library construction, and indexed libraries were generated using 18 cycles of PCR. Each individual sample was 
indexed with a unique barcode. Libraries were pooled at equal molarity and sequenced on the Illumina HiSeq 2500 or 
MiSeq (paired-end reads) platforms. 
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Amplicon-based cDNA synthesis and library construction. 
ZIKV amplicons were prepared as described8,11, similarly to ‘RNA jackhammering’ for preparing low-input viral 
samples for sequencing34, with slight modifications. After PCR amplification, each amplicon pool was quantified on 
a 2200 Tapestation (Agilent Technologies) using High Sensitivity D1000 ScreenTape (Agilent Technologies). Two 
microlitres of a 1:10 dilution of the amplicon cDNA was loaded and the concentration of the 350–550-bp fragments 
was calculated. The cDNA concentration, as reported by the Tapestation, was highly predictive of sequencing 
outcome (that is, whether a sample passed genome assembly thresholds) (Extended Data Fig. 5). cDNA from each of 
the two amplicon pools was mixed equally (10–25 ng each) and libraries were prepared using the dual index Accel-
NGS 2S Plus DNA Library Kit (Swift Biosciences) according to the manufacturer’s protocol. Libraries were indexed 
with a unique barcode using seven cycles of PCR, pooled equally and sequenced on the Illumina MiSeq (250-bp 
paired-end reads) platform. Primer sequences were removed by hard trimming the first 30 bases for each insert read 
before analysis. 
 
Zika virus hybrid capture. 
Virus hybrid capture was performed as previously described9. Probes were created to target ZIKV and chikungunya 
virus (CHIKV). Candidate probes were created by tiling across publicly available sequences for ZIKV and CHIKV 
on NCBI GenBank35. Probes were selected from among these candidate probes to minimize the number used while 
maintaining coverage of the observed diversity of the viruses. Alternating universal adapters were added to allow two 
separate PCR amplifications, each consisting of non-overlapping probes. (To download probe sequences, see 
Supplementary Information.)  

The probes were synthesized on a 12k array (CustomArray). The synthesized oligos were amplified by two separate 
emulsion PCR reactions with primers containing T7 RNA polymerase promoter. Biotinylated baits were in vitro 
transcribed (MEGAshortscript, Ambion) and added to prepared ZIKV libraries. The baits and libraries were 
hybridized overnight (~16 h), captured on streptavidin beads, washed, and re-amplified by PCR using the Illumina 
adaptor sequences. Capture libraries were then pooled and sequenced. In some cases, a second round of hybrid 
capture was performed on PCR-amplified capture libraries to further enrich the ZIKV content of sequencing libraries 
(Extended Data Fig. 6). In the main text, ‘hybrid capture’ refers to a combination of hybrid capture sequencing data 
and data from the same libraries without capture (unbiased), unless explicitly distinguished. 

Genome assembly. 
We assembled reads from all sequencing methods into genomes using viral-ngs v1.13.3 (refs 36, 37). We 
taxonomically filtered reads from amplicon sequencing against a ZIKV reference, KU321639.1. We filtered reads 
from other approaches against the list of accessions provided in the Supplementary Information. To compute results 
on individual replicates, we de novo assembled these and scaffolded against KU321639.1. To obtain final genomes 
for analysis, we pooled data from multiple replicates of a sample, de novo assembled, and scaffolded against 
KX197192.1. For all assemblies, we set the viral-ngs ‘assembly_min_ length_fraction_of_reference’ and 
‘assembly_min_unambig’ parameters to 0.01. For amplicon sequencing data, unambiguous base calls required at least 
90% of reads to agree in order to call that allele (‘major_cutoff ’ = 0.9); for hybrid capture data, we used the default 
threshold of 50%. We modified viral-ngs so that calls to GATK’s UnifiedGenotyper set 
‘min_indel_count_for_genotyping’ to 2.  

At three sites with insertions or deletions (indels) in the consensus genome CDS, we corrected the genome using 
Sanger sequencing of the RT–PCR product (namely, at 3,447 in the genome for sample DOM_2016_BB-0085-SER; 
at 5,469 in BRA_2016_FC-DQ12D1-PLA; and at 6,516–6,564 in BRA_2016_FC-DQ107D1-URI, coordinates as in 
KX197192.1). At other indels in the consensus genome CDS, we replaced the indel with ambiguity. 

Depth-of-coverage values from amplicon sequencing include read duplicates. In all other cases, we removed 
duplicates with viral-ngs. 
 
Identification of non-ZIKV viruses in samples by unbiased sequencing. 
Using Kraken v0.10.638 in viral-ngs, we built a database that included its default ‘full’ database (which incorporates 
all bacterial and viral whole genomes from RefSeq39 as of October 2015). Additionally, we included the whole human 
genome (hg38), genomes from PlasmoDB40, sequences covering mosquito genomes (Aedes aegypti, Aedes 
albopictus, Anopheles albimanus, Anopheles quadrimaculatus, Culex quinquefasciatus, and the outgroup Drosophila 
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melanogaster) from GenBank35, protozoa and fungi whole genomes from RefSeq, SILVA LTP 16 S rRNA 
sequences41, and all sequences from NCBI’s viral accession list42 (as of October 2015) for viral taxa that have human 
as a host. (To download the database, see Supplementary Information.)  

For each sample, we ran Kraken on data from unbiased sequencing replicates (not including hybrid capture data) and 
searched its output reports for viral taxa with more than 100 reported reads. We manually filtered the results, 
removing ZIKV, bacteriophages, and known laboratory contaminants. For each sample and its associated taxa, we 
assembled genomes using viral-ngs as described above; the results are in Extended Data Table 1a. We used the 
following genomes for taxonomically filtering reads and as the reference for assembly: KJ741267.1 (cell fusing agent 
virus), AY292384.1 (deformed wing virus), NC_001477.1 (dengue virus type 1) and LC164349.1 (JC polyomavirus). 
When reporting sequence identity of an assembly to its taxon, we used BLASTN43 to determine the identity between 
the sequence and the reference used for its assembly.  

To focus on metagenomics of mosquito pools (Extended Data Table 1b), we considered unbiased sequencing data 
from eight mosquito pools (not including hybrid capture data). We first ran the depletion pipeline of viral-ngs on raw 
data and then ran the viral-ngs Trinity44 assembly pipeline on the depleted reads to assemble them into contigs. We 
pooled contigs from all mosquito pool samples and identified all duplicate contigs with sequence identity >95% using 
CD-HIT45. Additionally, we used predicted coding sequences from Prodigal 2.6.3 (ref. 46) to identify duplicate 
protein sequences at >95% identity. We classified contigs using BLASTN43 against nt and BLASTX43 against nr (as 
of February 2017) and discarded all contigs with an E value greater than 1 × 10−4. We define viral contigs as contigs 
that hit a viral sequence, and we manually removed all reverse-transcriptase-like contigs owing to their similarity to 
retrotransposon elements within the Aedes aegypti genome. We categorized viral contigs with less than 80% amino 
acid identity to their best hit as likely novel viral contigs. Supplementary Table 4 lists the unique viral contigs we 
found, their best hit, and information scoring the hit. 

Relationship between metadata and sequencing outcome. 
To determine whether available sample metadata are predictive of sequencing outcome, we tested the following 
variables: sample collection site, patient gender, patient age, sample type, and the number of days between symptom 
onset and sample collection (collection interval). To describe sequencing outcome of a sample S, we used the 
following response variable YS: 
    mean({ I(R) * (number of unambiguous bases in R) for all amplicon sequencing replicates R of S }), where I(R) = 
1 if median depth of coverage of R ≥ 275 and I(R) = 0 otherwise. 

This value is listed in Supplementary Table 1 under ‘Dependent variable used in regression on metadata’. We 
excluded the saliva, cerebrospinal fluid, and whole blood sample types owing to sample number (n = 1), and also 
excluded mosquito pool samples and rows with missing values. We excluded samples from one collection site (prefix 
JAM_2016_WI-) because most had missing values. We treated samples with type ‘Plasma EDTA’ as having type 
‘Plasma’. We treated the collection interval variable as categorical (0–1, 2–3, 4–6, and 7+ days). 

With a single model we underfit the zero counts, possibly because many zeros (samples without a replicate that 
passed ZIKV assembly) are truly ZIKV-negative. We thus view the data as coming from two processes: one 
determining whether a sample is ZIKV-positive or ZIKV-negative, and another that determines, among the observed 
passing samples, how much of a ZIKV genome we are able to sequence. We modelled the first process, predicting 
whether a sample is passing, with logistic regression (in R using GLM47 with binomial family and logit link); here, 
the observed passing samples are the samples S for which YS ≥ 2,500. For the second, we performed a beta regression, 
using only the observed passing samples, of YS divided by ZIKV genome length on the predictor variables. We 
implemented this in R using the betareg package48 and transformed fractions from the closed unit interval to the open 
unit interval as the authors suggest. 

To test the significance of predictor variables, we used a likelihood ratio test. For variable Xi we compared a full 
model (with all predictors) against a model that used all predictors except Xi. The results of these tests are shown in 
Extended Data Fig. 1a, d. We explored the effects of sample type and collection interval on obtaining a passing 
assembly in Extended Data Fig. 1b, c, respectively. Error bars are 95% confidence intervals derived from binomial 
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distributions. We explored the effects of these same two variables on YS (in passing samples only) in Extended Data 
Fig. 1e, f. 
 
Criteria for pooling across replicates. 
We attempted to sequence one or more replicates of each sample and attempted to assemble a genome from each 
replicate. We discarded data from any replicates whose assembly showed high sequence similarity, in any part of the 
genome, to our assembly of the genome in a sample consisting of an African (Senegal) lineage (strain HD78788) of 
ZIKV. We used this sample as a positive control throughout this study, and considered its presence in the assembly of 
a clinical or mosquito pool sample to be evidence of contamination. Similarly, we discarded data from four replicates 
belonging to samples from the Dominican Republic because they yielded assemblies that were unexpectedly identical 
or highly similar to our assembly of the ZIKV isolate PE243 genome, another positive control used in this study. We 
also discarded data from replicates that showed evidence of contamination, at the RNA stage, by the baits used in 
hybrid capture; we detected these by looking for adapters that were added to these probes for amplification. 

For amplicon sequencing, we considered an assembly of a replicate to be ‘passing’ if it contained at least 2,500 
unambiguous base calls and had a median depth of coverage of at least 275× over its unambiguous bases (depth 
includes duplicate reads). For the unbiased and hybrid capture approaches, we considered an assembly of a replicate 
‘passing’ if it contained at least 4,000 unambiguous base calls. For each approach, the unambiguous base threshold 
was based on an observed density of negative controls below the threshold (Fig. 1a). For amplicon sequencing 
assemblies, we added a coverage depth threshold because coverage depth was roughly binary across replicates, with 
negative controls falling in the lower class. On the basis of these thresholds, 0 of 99 negative controls used 
throughout our sequencing runs yielded passing assemblies and 32 of 32 positive controls yielded passing assemblies. 

We considered a sample to have a passing assembly if any of its replicates, by either method, yielded an assembly 
that passed the above thresholds. For each sample with at least one passing assembly, we pooled read data across 
replicates for each sample, including replicates with assemblies that did not pass the assembly thresholds. When data 
were available from both amplicon sequencing and unbiased/hybrid capture approaches, we pooled amplicon 
sequencing data separately from data produced by the unbiased and hybrid capture approaches, the latter two of 
which were pooled together (henceforth, the ‘hybrid capture’ pool). We then assembled a genome from each set of 
pooled data. When assemblies on pooled data were available from both approaches, we selected for downstream 
analysis the assembly from the hybrid capture approach if it had at least 10,267 unambiguous base calls (95% of the 
reference genome used, GenBank accession KX197192.1); when this condition was not met, we selected the one that 
had more unambiguous base calls. 

The number of ZIKV genomes publicly available before this study was the result of an NCBI GenBank35 search for 
ZIKV in February 2017. We filtered any sequences with length <4,000 nt, excluded sequences that are being 
published as part of this study or in refs 10, 11, excluded sequences from non-human hosts, and excluded sequences 
labelled as having been passaged. We counted fewer than 100 sequences, the precise number depending on details of 
the count. 

Visualization of coverage depth across genomes. 
For amplicon sequencing data, we plotted coverage across the 110 samples that yielded a passing assembly by 
amplicon sequencing (Fig. 1b). With viral-ngs, we aligned depleted reads to the reference sequence KX197192.1 
using the novoalign aligner with options ‘-r Random -l 40 -g 40 -x 20 -t 100 -k’. Because of the nature of amplicon 
sequencing, duplicates were not identified or removed. We binarized depth at each nucleotide position, showing red if 
depth of coverage was at least 100×. Rows (samples) are hierarchically clustered to ease visualization. 

For hybrid capture sequencing data, we plotted depth of coverage across the 37 samples that yielded a passing 
assembly (Fig. 1c). We aligned reads as described above for amplicon sequencing data, except we removed 
duplicates. For each sample, we calculated the depth of coverage at each nucleotide position. We then scaled the 
values for each sample so that each would have a mean depth of 1.0. At each nucleotide position, we calculated the 
median depth across the samples, as well as the 20th and 80th percentiles. We plotted the mean of each of these 
metrics within a 200-nt sliding window.  

Multiple sequence alignments. 
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We aligned ZIKV consensus genomes using MAFFT v7.221 (ref. 49) with the following parameters: ‘--maxiterate 
1000 --ep 0.123 --localpair’. 

In Supplementary Data, we provide sequences and alignments used in analyses. 

Analysis of within- and between-sample variants. 
To measure overall per-base discordance between consensus genomes produced by amplicon sequencing and hybrid 
capture, we considered all sites at which base calls were made in both the amplicon sequencing and hybrid capture 
consensus genomes of a sample, and we calculated the fraction in which the bases were not in agreement. To measure 
discordance at polymorphic sites, we searched for positions with a polymorphism in all genomes generated in this 
study that we selected for downstream analysis (see ‘Criteria for pooling across replicates’ for choosing among the 
amplicon sequencing and hybrid capture genome when both are available). We then looked at these positions in 
genomes that were available from both methods, and we calculated the fraction in which the alleles were not in 
agreement. 

To measure discordance at minor alleles, we searched for minor alleles in all genomes generated in this study that we 
selected for downstream analysis. We then looked at all sites at which there was a minor allele and for which 
genomes from both methods were available, and we calculated the fraction in which the alleles were not in 
agreement. For these calculations, we tolerated partial ambiguity (for example, ‘Y’ is concordant with ‘T’). If one 
genome had full ambiguity (‘N’) at a position and the other genome had an indel, we counted the site as discordant; 
otherwise, if one genome had full ambiguity, we did not count the site. 

After assembling genomes, we identified within-sample variants by running V-Phaser 2.0 via viral-ngs37 on all pooled 
reads mapping to each sample assembly. When determining per-library allele counts at each variant position, we 
modified viral-ngs to require a minimum base (Phred) quality score of 30 for all bases, discard anomalous read pairs, 
and use per-base alignment quality (BAQ) in its calls to SAMtools50 mpileup. This is particularly helpful for filtering 
spurious amplicon sequencing variants because all generated reads start and end at a limited number of positions 
(owing to the pre-determined tiling of amplicons across the genome). Because amplicon sequencing libraries were 
sequenced using 250-bp paired-end reads, bases near the middle of the ~450-nt amplicons fall at the end of both 
paired reads, where quality scores drop and incorrect base calls are more likely. To determine the overall frequency of 
each variant in a sample, we summed allele counts (calculated using SAMtools50 mpileup via viral-ngs) across 
libraries. 

When comparing variant frequencies between amplicon sequencing (seven technical replicates) and hybrid capture 
(seven technical replicates) replicates of the PE243 positive control (Fig. 1d), we included only positions at which the 
mean (pooled) frequency across replicates within at least one method was ≥1%. When comparing allele frequencies 
between replicate libraries, we restricted the sample set to only samples with a passing assembly in both methods, and 
included only samples with two or more replicates. By contrast, when comparing alleles across methods, we included 
samples that have a passing assembly by either method, with any number of replicates. For these comparisons, we 
included only positions with a minor variant; that is, positions for which both libraries/methods had an allele at 100% 
were removed, even if the single allele differed between the two libraries/methods. Additionally, we considered any 
allele with frequency <1% as not found (0%).  

When comparing allele frequencies across methods: let fa and fhc be frequencies in amplicon sequencing and hybrid 
capture, respectively. If both are non-zero, we included an allele only if the read depth at its position was ≥1/min(fa, 
fhc) in both methods, and if depth at the position was at least 100× for hybrid capture and 275× for amplicon 
sequencing. If fa = 0, we required a read depth of max(1/fhc, 275) at the position in the amplicon sequencing method; 
similarly, if fhc = 0 we required a read depth of max(1/fa, 100) at the position in the hybrid capture method. This was 
to eliminate lack of coverage as a reason for discrepancy between two methods. When comparing allele frequencies 
across sequencing replicates within a method, we imposed only a minimum read depth (275× for amplicon 
sequencing and 100× for hybrid capture), but required this depth in both libraries. In samples with more than two 
replicates, we considered only the two replicates with the highest depth at each variant position. 
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We considered allele frequencies from hybrid capture sequencing ‘verified’ if they passed the strand bias and 
frequency filters described in ref. 25, with the exception that we imposed a minimum allele frequency of 1% and 
allowed a variant identified in only one library if its frequency was ≥5%. In Fig. 1f and Extended Data Table 3, we 
considered variants ‘validated’ if they were present at ≥1% frequency in both libraries or methods. When comparing 
two libraries for a given method M (amplicon sequencing or hybrid capture): the proportion unvalidated is the 
fraction, among all variants in M at ≥1% frequency in at least one library, of the variants that are at ≥1% frequency in 
exactly one of the two libraries. Similarly, when comparing methods: the proportion unvalidated for a method M is 
the fraction, among all variants at ≥1% frequency in M, of the variants that are at ≥1% frequency in M and <1% 
frequency in the other method. 

We called SNPs on the aligned genomes using Geneious version 9.1.7 (ref. 51). We converted all fully or partially 
ambiguous calls, which are treated by Geneious as variants, into missing data. We then removed all sites that were no 
longer polymorphic from the SNP set and re-calculated allele frequencies. A nonsynonymous mutation is shown on 
the tree (Fig. 3b) if it includes an allele that is nonsynonymous relative to the ancestral state (see ‘Molecular clock 
phylogenetics and ancestral state reconstruction’ section below) and has a minor allele frequency of >5%; all 
occurrences of nonsynonymous alleles are shown. (Two mutations, at positions 2,853 and 7,229, had nominal derived 
allele frequencies over 95%; in both cases, the ‘ancestral’ allele was seen only in a small clade within the tree, 
suggesting that the ancestral allele was incorrectly assigned. These are not shown.) We placed mutations at a node 
such that the node leads only to samples with the mutation or with no call at that site. Uncertainty in placement 
occurs when a sample lacks a base call for the corresponding mutation; in this case, we placed the mutation on the 
most recent branch for which we have available data. We also used this ancestral ZIKV state to count the frequency 
of each type of substitution over various regions of the ZIKV genome, per number of available bases in each region 
(Fig. 3d and Supplementary Table 3). 

We quantified the effect of nonsynonymous mutations using the original BLOSUM62 scoring matrix for amino 
acids52, in which positive scores indicate conservative amino acid changes and negative scores unlikely or extreme 
substitutions. We assessed statistical significance for equality of proportions by χ2 test (Fig. 3c, middle), and for 
difference of means by two-sample t-test with Welch– Satterthwaite approximation of d.f. (Fig. 3c, right). Error bars 
are 95% confidence intervals derived from binomial distributions (Fig. 3c, left and middle; Fig. 3d) or Student’s t 
distributions (Fig. 3c, right). 

Maximum likelihood estimation and root-to-tip regression. 
We generated a maximum likelihood tree using a multiple sequence alignment that included genomes generated in 
this study, as well as a selection of other available sequences from the Americas, Southeast Asia, and the Pacific. The 
sequences are listed in Supplementary Information. We ran PhyML53 with the GTR substitution model and 4 gamma 
substitution rate categories; for the tree search operation, we used ‘BEST’ (best of NNI and SPR). In FigTree v1.4.2 
(ref. 54), we rooted the tree on the oldest sequence used as input (GenBank accession EU545988.1). 

We used TempEst v1.5 (ref. 55), which selects the best-fitting root with a residual mean squared function, to estimate 
root-to-tip distances. We performed regression in R with the lm function47 of distances on dates. The relationship 
between root-to-tip divergence and sample dates (Extended Data Fig. 2) supports the use of a molecular clock 
analysis in this study. 

In Supplementary Data, we provide the output of PhyML, as well as the dates and distances used for root-to-tip 
regression. 
 
Molecular clock phylogenetics and ancestral state reconstruction. 
For molecular clock phylogenetics, we made a multiple sequence alignment from the genomes generated in this study 
combined with a selection of other available sequences from the Americas. We did not use sequences from outside the 
outbreak in the Americas. Among ZIKV genomes published and publicly available on NCBI GenBank35, we selected 
32 from the Americas that had at least 7,000 unambiguous bases, were not labelled as having been passaged more 
than once, and had location metadata. We also used 32 genomes from Brazil published in ref. 10 that met the same 
criteria. The sequences are listed in Supplementary Information. 
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We used BEAST v1.8.4 to perform molecular clock analyses56. We used sampled tip dates to handle inexact dates57. 
Because of sparse data in non-coding regions, we used only the CDS as input. We used the SRD06 substitution model 
on the CDS, which uses HKY with gamma site heterogeneity and partitions codons into two partitions (positions 
(1+2) and 3)58. To perform model selection, we tested three coalescent tree priors: a constant-size population, an 
exponential growth population, and a Bayesian Skyline tree prior (ten groups, piecewise-constant model)59. For each 
tree prior, we tested two clock models: a strict clock and an uncorrelated relaxed clock with log-normal distribution 
(UCLN)60. In each case, we set the molecular clock rate to use a continuous time Markov chain rate reference prior61. 
For all six combinations of models, we performed path-sampling (PS) and stepping-stone sampling (SS) to estimate 
marginal likelihood62,63. We sampled for 100 path steps with a chain length of 1 million, with power posteriors 
determined from evenly spaced quantiles of a Beta(alpha = 0.3; 1.0) distribution. The Skyline tree prior provided a 
better fit than the two other (baseline) tree priors (Extended Data Table 2), so we used this tree prior for all further 
analyses. Using a constant or exponential tree prior, a relaxed clock provides a better model fit, as shown by the log 
Bayes factor when comparing the two clock models. Using a Skyline tree prior, the log Bayes factor comparing a 
strict and relaxed clock is smaller than it is using the other tree priors, and it is similar to the variability between 
estimated log marginal likelihood from PS and SS methods. We chose to use a relaxed clock for further analyses, but 
we also report key findings using a strict clock. 

For the tree and tMRCA estimates in Fig. 2, as well as the clock rate reported in main text, we ran BEAST with 400 
million MCMC steps using the SRD06 substitution model, Skyline tree prior, and relaxed clock model. We extracted 
clock rate and tMRCA estimates, and their distributions, with Tracer v1.6.0 and identified the maximum clade 
credibility (MCC) tree using TreeAnnotator v1.8.4. We visualised the tree in FigTree v1.4.2 (ref. 54). The reported 
credible intervals around estimates are 95% highest posterior density (HPD) intervals. When reporting substitution 
rate from a relaxed clock model, we give the mean rate (mean of the rates of each branch weighted by the time length 
of the branch). Additionally, for the tMRCA estimates in Fig. 2c with a strict clock, we ran BEAST with the same 
specifications (also with 400M steps) except using a strict clock model. The resulting data are also used in the more 
comprehensive comparison shown in Extended Data Fig. 3. 

For the data with an outgroup in Extended Data Fig. 3, we ran BEAST as specified above (with strict and relaxed 
clock models), except with 100 million steps and with outgroup sequences in the input alignment. The outgroup 
sequences were the same as those used to make the maximum likelihood tree (see Supplementary Information). For 
the data excluding sample DOM_2016_MA-WGS16-020-SER in Extended Data Fig. 3, we ran BEAST as specified 
above (with strict and relaxed clocks), except we removed the sequence of this sample from the input and ran 100 
million steps. 

We used BEAST v1.8.4 to estimate transition and transversion rates within the CDS and non-coding regions. The 
model was the same as above except that we used the Yang96 substitution model on the CDS, which uses GTR with 
gamma site heterogeneity and partitions codons into three partitions64; for the non-coding regions, we used a GTR 
substitution model with gamma site heterogeneity and no codon partitioning. There were four partitions in total: one 
for each codon position and another for the non-coding region (5′ and 3′ UTRs combined). We ran this for 200 
million steps. At each sampled step of the MCMC, we calculated substitution rates for each partition using the overall 
substitution rate, the relative substitution rate of the partition, the relative rates of substitutions in the partition, and 
base frequencies. In Extended Data Fig. 4, we plot the means of these rates over the steps; the error bars shown are 
95% HPD intervals of the rates over the steps. 

We used BEAST v1.8.4 to reconstruct ancestral state at the root of the tree using CDS and non-coding regions. The 
model was the same as above except that, on the CDS, we used the HKY substitution model with gamma site 
heterogeneity and codons partitioned into three partitions (one per codon position). On the non-coding regions we 
used the same substitution model without codon partitioning. We ran this for 50 million steps and used TreeAnnotator 
v1.8.4 to find the state with the MCC tree. We selected the ancestral state corresponding to this state. 

In all BEAST runs, we discarded the first 10% of states from each run as burn-in. 

In Supplementary Data, we provide BEAST input (XML) and output files. We also provide the sequence of the 
reconstructed ancestral state. 
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Principal component analysis. 
We carried out principal component analysis using the R package FactoMineR65. We imputed missing data with the 
package missMDA66 and we show the results in Fig. 2d. 

Diagnostic assay assessment. 
We extracted primer and probe sequences from eight published RT–qPCR assays26–31 and aligned them to our ZIKV 
genomes using Geneious version 9.1.7 (ref. 51). We then tabulated matches and mismatches to the diagnostic 
sequence for all outbreak genomes, allowing multiple bases to match where the diagnostic primer and/or probe 
sequence contained nucleotide ambiguity codes (Fig. 3e). 

Data availability. 
Sequence data that support findings of this study have been deposited in NCBI GenBank35 under BioProject 
accession PRJNA344504. Zika virus genomes have accession numbers KY014295–KY014327 and KY785409– 
KY785485. The dengue virus type 1 genome sequenced in this study has accession number KY829115. See 
Supplementary Table 1 for a mapping of sample names to accession numbers.  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Extended Data Figures and Tables 

Extended Data Figure 1 | Relationship between metadata and sequencing outcome. 
Analysis of possible predictors of sequencing outcome: the site where a sample was collected, patient gender, patient 
age, sample type, and collection interval. a, Prediction of whether a sample will pass assembly thresholds by 
sequencing. Rows show results of likelihood ratio tests on each predictor by omitting the variable from a full model 
that contains all predictors. Sample site and patient gender improve model fit, but sample type and collection interval 
do not. b, Proportion of samples that pass assembly thresholds by sequencing, divided by sample type, across six 
sample sites. c, Same as b, but divided by collection interval. d, Prediction of the genome fraction identified, using 
samples that passed assembly thresholds. Rows show results of likelihood ratio tests, as in a. Collection interval 
improves the model, but sample type does not. e, Sequencing outcome for each sample, divided by sample type, 
across six sample sites. f, Same as e, but divided by collection interval. Samples collected seven or more days after 
symptom onset produced, on average, the fewest unambiguous bases, though these observations are based on  
a limited number of data points. While the sample site variable accounts for differences in cohort composition, the 
observed effects of gender and collection interval might be due to confounders in composition that span multiple 
cohorts. These results illustrate the effects of variables on sequencing outcome for the samples in this study; they are 
not indicative of ZIKV titre more generally. Other studies67,68 have analysed the impact of sample type and collection 
interval on ZIKV detection, sometimes with differing results.  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Extended Data Figure 2 | Maximum likelihood tree and root-to-tip regression. 
a, Maximum likelihood tree. Tips are coloured by sample source location. Labelled tips indicate genomes generated 
in this study; all other coloured tips are other publicly available genomes from the outbreak in the Americas. Grey 
tips are genomes from ZIKV cases in Southeast Asia and the Pacific. b, Linear regression of root-to-tip divergence on 
dates. The substitution rate for the full tree, indicated by the slope of the black regression line, is similar to rates of 
Asian lineage ZIKV estimated by molecular clock analyses12. The substitution rate for sequences within the Americas 
outbreak only, indicated by the slope of the green regression line, is similar to rates estimated by BEAST (1.15 × 
10−3; 95% CI (9.78 × 10−4, 1.33 × 10−3)) for this dataset.  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Extended Data Figure 3 | Substitution rate and tMRCA distributions. 
a, Posterior density of the substitution rate. Shown with and without the use of sequences (outgroup) from outside the 
Americas. b–e, Posterior density of the date of the most recent common ancestor (MRCA) of sequences in four 
regions corresponding to those in Fig. 2c. Shown with and without the use of outgroup sequences. The use of 
outgroup sequences has little effect on estimates of these dates. f, Posterior density of the date of the MRCA of 
sequences in a clade consisting of samples from the Caribbean and continental United States. Shown with and 
without the sequence of DOM_2016_MA-WGS16-020-SER, a sample from the Dominican Republic that has only 
3,037 unambiguous bases; this is the most ancestral sequence in the clade and its presence affects the tMRCA. In all 
panels, all densities are shown as observed with a relaxed clock model and with a strict clock model.  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Extended Data Figure 4 | Substitution rates estimated with BEAST. 
Substitution rates estimated in three codon positions and non-coding regions (5′ and 3′ UTRs). Transversions are 
shown in grey and transitions are coloured by transition type. Plotted values show the mean of rates calculated at each 
sampled Markov chain Monte Carlo (MCMC) step of a BEAST run. These calculated rates provide additional 
evidence for the observed high C-to-T and T-to-C transition rates shown in Fig. 3d.  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Extended Data Figure 5 | cDNA concentration of amplicon primer pools predicts sequencing outcome. 
cDNA concentration of amplicon pools (as measured by Agilent 2200 Tapestation) is highly predictive  
of amplicon sequencing outcome. On each axis, 1 + primer pool concentration is plotted on a log scale. Each point is 
a technical replicate of a sample and colours denote observed sequencing outcome of the replicate. If a replicate is 
predicted to be passing when at least one primer pool concentration is ≥0.8 ng µl−1, then sensitivity is 98.71% and 
specificity is 90.34%. An accurate predictor of sequencing success early in the sample processing workflow can save 
resources.  

�23

1 + Primer pool 1 (ng/µL)

1 
+ 

Pr
im

er
 p

oo
l 2

 (n
g/

µL
)

Does not pass assembly

Passes assembly (>90% of genome)

Passes assembly (partial genome)

1

10

100

1 10 100



Extended Data Figure 6 | Evaluating multiple rounds of Zika virus hybrid capture. 
Genome assembly statistics of samples before hybrid capture (grey), and after one (blue) or two (red) rounds of 
hybrid capture. Nine individual libraries (eight unique samples) were sequenced all three ways, had more than one 
million raw reads in each method, and generated at least one passing assembly. Raw reads from each method were 
downsampled to the same number of raw reads (8.5 million) before genomes were assembled. a, Per cent of the 
genome identified, as measured by number of unambiguous bases. b, Median sequencing depth of ZIKV genomes, 
taken over the assembled regions.  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Extended Data Table 1 | Viruses other than Zika uncovered by unbiased sequencing. 
a, Viral species other than Zika were found by unbiased sequencing of 38 samples. Column 3, number of reads in 
a sample belonging to a species as a raw count and a per cent of total reads. Column 4, per cent genome 
assembled based on the number of unambiguous bases called. We identified cell fusing agent virus (a flavivirus) 
and deformed wing virus-like genomes in mosquito pools, and dengue virus type 1, JC polyomavirus, and JC 
polyomavirus-like genomes in clinical samples. All assemblies had ≥95% sequence identity to a reference 
sequence for the listed species, except cell fusing agent virus in USA_2016_FL-06-MOS (91%) and dengue virus 
type 1 in BLM_2016_MA-WGS16-006-SER (92%). The dengue virus type 1 genome showed ≥95% sequence 
identity to other available isolates of the virus. b, Contigs assembled from unbiased sequencing data of eight 
mosquito pools. Column 2, number of contigs assembled. Column 3, number of contigs classified by BLASTN/
BLASTX43. Column 4, number of contigs hitting a viral species. Column 5, number of contigs hitting a viral 
species with <80% amino acid identity to the best hit. Each column is a subset of the previous column. Contigs in 
column 5 are considered to be likely to be novel. Last row lists counts, after removing duplicate contigs, for all 
mosquito pools combined. Supplementary Table 4 lists the unique viral contigs and their best hits.  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Species Sample
# reads from species

(% of total)

% genome

unambiguous

Cell fusing agent virus

Cell fusing agent virus

Cell fusing agent virus

Cell fusing agent virus

Cell fusing agent virus

USA_2016_FL-01-MOS 99.1%

USA_2016_FL-04-MOS 91.1%

USA_2016_FL-05-MOS 99.9%

USA_2016_FL-06-MOS 82.2%

USA_2016_FL-08-MOS 99.4%

Deformed wing virus-like USA_2016_FL-06-MOS 8.34%

Dengue virus type 1 BLM_2016_MA-WGS16-006-SER 99.8%

JC polyomavirus BRA_2016_FC-DQ75D1-URI 99.2%

JC polyomavirus-like USA_2016_FL-032-URI

5662

(0.02%)

1588

(0.003%)

9614

(0.02%)

2646

(0.007%)

13608

(0.008%)

6580

(0.02%)

2355926

(2.6%)

8050

(0.20%)

316

(0.001%)
7.71%

Sample Total contigs
Classified contigs

(all)

Classified contigs

(viral)

Likely novel

viral contigs

USA_2016_FL-01-MOS 496 431 45 25

USA_2016_FL-02-MOS 563 463 17 14

USA_2016_FL-03-MOS 164 133 29 22

USA_2016_FL-04-MOS 679 492 25 19

USA_2016_FL-05-MOS 355 313 25 8

USA_2016_FL-06-MOS 726 635 26 14

USA_2016_FL-07-MOS 5967 5650 5 2

USA_2016_FL-08-MOS 1679 1528 39 27

All pools: unique 9013 8426 84 41

a

b



Extended Data Table 2 | Model selection for BEAST analyses. 
a, Marginal likelihoods calculated with path-sampling (PS) and stepping-stone sampling (SS) for combinations of 
three coalescent tree priors (constant size population, exponential growth population, and Skyline) and two clock 
models (strict clock and uncorrelated relaxed clock with log-normal distribution). The Bayes factor is calculated 
against the baseline model, a constant size tree prior and strict clock. b, Mean estimates and 95% credible 
intervals across evaluated models for the clock rate, date of tree root, and tMRCAs of the four regions shown in 
Fig. 2c. Under a Skyline tree prior, the use of strict and relaxed clock models yields similar estimates.  

�26

Skyline Skyline Exponential Exponential Constant Constant

Relaxed Strict Relaxed Strict Relaxed Strict

Skyline Skyline Exponential Exponential Constant Constant

Relaxed Strict Relaxed Strict Relaxed Strict

Clock rate 1.15E-03 1.09E-03 1.06E-03 9.42E-04 1.41E-03 1.18E-03
[9.78E-04, 1.33E-03] [9.32E-04, 1.25E-03] [8.38E-04, 1.29E-03] [7.42E-04, 1.14E-03] [1.15E-03, 1.69E-03] [9.97E-04, 1.36E-03]

tMRCA: all 2014.129 2013.981 2013.498 2013.401 2013.752 2013.806
[2013.621, 2014.552] [2013.531, 2014.417] [2012.772, 2014.175] [2012.724, 2014.028] [2012.897, 2014.405] [2013.349, 2014.241]

tMRCA: Puerto Rico 2015.632 2015.600 2015.599 2015.530 2015.796 2015.714
[2015.376, 2015.849] [2015.369, 2015.816] [2015.314, 2015.900] [2015.231, 2015.832] [2015.533, 2016.039] [2015.491, 2015.951]

tMRCA: Honduras 2015.300 2015.241 2015.197 2015.066 2015.527 2015.334
[2014.928, 2015.594] [2014.888, 2015.512] [2014.850, 2015.524] [2014.684, 2015.392] [2015.206, 2015.834] [2015.049, 2015.599]

tMRCA: Colombia 2015.333 2015.283 2015.246 2015.153 2015.411 2015.306
[2015.088, 2015.567] [2015.060, 2015.496] [2014.989, 2015.472] [2014.873, 2015.398] [2015.201, 2015.636] [2015.096, 2015.503]

tMRCA: Caribbean 2015.289 2015.242 2015.140 2015.007 2015.412 2015.278
[2014.933, 2015.628] [2014.876, 2015.578] [2014.798, 2015.465] [2014.623, 2015.373] [2015.073, 2015.754] [2014.952, 2015.605]

a

b

PS
log(marginal likelihood) -24952

log(Bayes factor) 74 —

SS
log(marginal likelihood) -24957

log(Bayes factor) 73

-24950

76

-24954

77

-24974

53

-24976

54

-24989

38

-24990

40

-25007

20

-25010

20

-25026

-25030

—



Extended Data Table 3 | Within-sample variant validation between and within sequencing methods. 
a, For each method (amplicon sequencing or hybrid capture), fraction of identified variants (≥1%) not identified at 
≥1% by the other method (that is, unvalidated). ‘Verified’ hybrid capture variants are those passing strand bias and 
frequency filters, as described in Methods. b, For each method, the fraction of identified variants unvalidated in a 
second library. To pass the strand bias filter, a variant must meet filter criteria in both replicates.  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a

b

Method
% unvalidated

by other method

Amplicon sequencing 87.3% n = 126

n = 113

n = 20

Hybrid capture 85.8%

Hybrid capture, verified 25.0%

n = 304

n = 98

n = 3

n = 8

Method

% unvalidated in replicate

all

variants

variants passing

strand bias filter

Amplicon sequencing 92.7% 66.7%

Hybrid capture 74.5% 0.00%
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Supplementary Information 

Supplementary Information. This file contains Supplementary Text, including links to publicly available data 
used in the analyses and listings of accession numbers of sequences used. 

Supplementary Table 1. This table contains information regarding the 229 samples that were attempted to be 
sequenced, including the 110 whose genomes were analyzed. This provides GenBank accessions, sequencing 
outcome, and metadata on the samples. 

Supplementary Table 2. This table lists observed nonsynonymous SNPs across the data used for SNP analysis. It 
includes frequency and count of ancestral and derived alleles at each position, as well as amino acid changes 
caused by each SNP. 

Supplementary Table 3. This table gives substitution rates across the 174 genomes analyzed (110 of which were 
sequenced as part of this study). It includes observed mutations per available base (used in Fig. 3d), as well as 
substitution rates estimated by BEAST (used in Extended Data Fig. 4). 

Supplementary Table 4. This table lists unique viral contigs assembled from 8 mosquito pools. It includes the 
best hit of each contig according to a BLASTN/BLASTX search and information scoring the hit. 

Supplementary Data. This zipped file contains sequences, alignments, BEAST input and output files, and root-
to-tip data used in analyses. See README.txt for details.
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