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Abstract: Spontaneous vortex motion in thin ferromagnetic nanodisks of elliptical shape is dominated
by a natural gyrotropic orbital part, whose resonance frequency ωG = k/G depends on a force constant
and gyrovector charge, both of which change with the disk size and shape and applied in-plane or
out-of-plane fields. The system is analyzed via a dynamic Thiele equation and also using numerical
simulations of the Landau-Lifshitz-Gilbert (LLG) equations for thin systems, including temperature
via stochastic fields in a Langevin equation for the spin dynamics. A vortex is found to move in
an elliptical potential with two principal axis force constants kx and ky, whose ratio determines the
eccentricity of the vortex motion, and whose geometric mean k =

√
kxky determines the frequency.

The force constants can be estimated from the energy of quasi-static vortex configurations or from an
analysis of the gyrotropic orbits. kx and ky get modified either by an applied field perpendicular to the
plane or by an in-plane applied field that changes the vortex equilibrium location. Notably, an out-of-
plane field also changes the vortex gyrovector G, which directly influences ωG. The vortex position
and velocity distributions in thermal equilibrium are found to be Boltzmann distributions in appropriate
coordinates, characterized by the force constants.

Keywords: magnetic vortex; force constants; effective potential; gyrovector; Thiele equation; LLG
equation; stochastic dynamics

1. Introduction

Magnetic vortices in thin ferromagnetic disks of sub-micron size offer an interesting system for the
study of collective dynamics of fundamental excitations [1]. A single vortex centered in a circular disk
can be the absolute minimum energy state or it can be metastable, separated from a nearby quasi-single-
domain state by a weak energy barrier. A vortex experiences a restoring force F = −kFR dependent
on its displacement R = (X,Y) from the center, mostly caused by demagnetization effects from weak
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pole formation on the disk edges, where kF is a force constant [2]. The response to this force is the
gyrotropic orbital vortex motion at a frequency ωG, which can be detected in resonance experiments
[3].

While much work has been developed for disks with a circular boundary, less studied are disks
with an elliptical boundary [4]. Quite generally in physical problems, deviation of a circular system
into one with elliptical symmetry leads to interesting modifications, due to the breaking of the circular
symmetry. We consider an elliptical edge characterized by semi-major radius a along the x-axis and
a semi-minor radius b along the y-axis, for a disk of thickness L with L � a. In a circular disk, the
in-plane angle of local magnetization in a vortex state is determined by vorticity charge q = ±1, and a
chirality or circulation charge c = ±1, via a relation

φ(x, y) = q tan−1
( y − Y

x − X

)
+ c

π

2
. (1)

The gyrotropic charge is G = 2πqp, or gyrovector G = Gẑ, where p = ±1 is the polarization
direction (magnetization along ±z) of the vortex core. Simulations show that the vortex structure itself
is not squeezed along the narrow direction of the ellipse. Rather, the vortex retains close to a circular
shape, but experiences a modified potential. When taken as an assumption, this is the rigid vortex
approximation. In numerical simulations, it need not hold precisely. Regardless of that, the deviation
of the disk edge from circular symmetry is found to introduce two non-equivalent force constants kx

and ky, corresponding to the principal axes of the ellipse. The force constants change with the shape
of the disk [5], until reaching a high in-plane aspect ratio b/a � 1, where the vortex becomes unstable
and a nearly uniform quasi-single-domain state or possibly a two-domain state emerges, similar to
those found [6] in circular nanodisks. Here only the vortex state is considered.

With a magnetic field applied in the plane of the disk, the vortex equilibrium position will be
displaced away from the disk center, perpendicular to the field in a direction depending on chirality c.
In an elliptic disk, displacements along the two principal directions are non-equivalent. Buchanan et
al. [7] have noted that a field Hext

y applied along the shorter (y) axis, that shifts the vortex minimum
position along the long (x) axis, results in an increase in its gyrotropic frequency. To the contrary, a
field Hext

x along the long axis, shifting the vortex minimum position along the short axis, does not
significantly change the frequency. We confirm these results, showing how the vortex effective
potential and force constants are modified by the displaced vortex equilibrium location. The
gyrotropic resonant frequency is then seen to shift, without any modification of the gyrotropic charge
or gyrovector G. If a field is applied instead perpendicular to the disk plane (z-axis), there will be two
non-degenerate vortex gyrotropic modes, as has been seen in resonance experiments [8] and
micromagnetics [9] for circular disks. Here further analysis of this effect is given, and we find how a
perpendicular applied field modifies both the force constants and gyrotropic frequencies. The
gyrovector is shifted with an out-of-plane applied field Hext

z , such that the resonant frequency changes
nearly linearly with Hext

z . A field pointing out-of-plane in the same direction as the vortex core
magnetization increases ωG.

In this article vortex motion in elliptic disks is considered, as obtained from two-dimensional
micromagnetics simulations, and from analysis of the Thiele equation [10] for magnetization
dynamics of a collective excitation such as a domain wall or vortex. The Thiele equation analysis
depends directly on the force or the effective potential that the vortex moves in. This analysis is
considered first for the zero temperature motion as obtained from Landau-Lifshitz-Gilbert (LLG)
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equations. The studies verify that the Thiele equation gives a good description of the motion and can
predict the gyrotropic frequencies, based on the force constants, even in the presence of applied fields.

Quasi-static vortex structures and their energies can be used to estimate the force constants. The
dynamic motion itself can also be used to estimate the force constants, especially for vortices displaced
by an in-plane applied field. In the first set of studies presented here, some of the behaviors of the
force constants and the gyrovector with disk geometry and applied field are discussed. Note that the
gyrovector only changes significantly for an out-of-plane applied field. In a second set of studies, the
stochastic effects due to finite temperature are included, by using the Langevin-LLG equations for the
micromagnetics. The simulations can be compared with the vortex statistics expected from applying
the principle of equipartition, not to the numerous spin degrees of freedom, but rather, to only the two
degrees of freedom for the position of the vortex core. That is, good agreement is found for the vortex
position statistics, based on a theory with only two degrees of freedom, when analyzing simulation data
for the 2N degrees of freedom represented in the dynamics of N micromagnetics cells for an elliptical
nanodisk of magnetic material.

2. The System, Energetics and Dynamic Equations

The magnetic medium is assumed be of thickness L along the z-axis and have an elliptical boundary
in the xy-plane,

x2

a2 +
y2

b2 = 1. (2)

The vortex magnetization structure is not strongly modified by the boundary, however, the vortex
experiences a non-circular effective potential U(R) caused by the boundary. R = (X,Y) represents the
vortex core location, measured from the disk center. For slight deviations from its equilibrium position,
the potential experienced by a vortex is found to be of elliptical form,

U(R) = U(X,Y) = U0 +
1
2

(
kxX2 + kyY2

)
. (3)

The in-plane aspect ratio or ellipticity b/a ≤ 1 controls the properties of the potential in which
the vortex moves, which is represented in terms of the force constants kx and ky. When the ratio b/a
becomes too small, a vortex will be destabilized, and some other vortex-free state such as a quasi-
single-domain state will be prefered.

The underlying dynamics is that of the local magnetization M(r) = Msm(r). Analyzed numerically
in the micromagnetics approximation, the magnitude is fixed at the saturation value Ms and only the
direction m(r) is changing. A continuum energy function for the system includes isotropic exchange,
and demagnetization (HM) and applied (Hext) fields:

E[m] =

∫
dV

{
Aex∇m · ∇m − µ0

(
1
2HM + Hext

)
·M

}
. (4)

The exchange is characterized by the exchange stiffness Aex in units of J/m. Its competition with
magnetostatic energy due to demagnetization effects leads to the exchange length, that sets a length
scale for the problem:

λex =

√
2Aex

µ0M2
s
. (5)
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The magnetization tends to preserve its direction over this length scale. Two-dimensional (2D)
micromagnetics is based on the idea of using a 2D grid with cells not larger than this scale, so that the
spatial variations in m can be correctly described. For Permalloy with Aex ≈ 13 pJ/m and Ms ≈ 860
kA/m, and µ0Ms ≈ 1.08 T, that gives λex ≈ 5.3 nm. In these micromagnetics simulations we have
used cells of size acell × acell × L, with acell = 2.0 nm, so that weak changes in magnetization direction
will be included. This 2D analysis is based on the assumption that there is little dependence of m on
the z-coordinate, through the thickness of the disk. That should be true for thin disks. The numerical
simulations keep track of cell magnetic dipoles ~µi = µmi where i labels the cells, and µ ≡ La2

cellMs

is their fixed magnitude. Neighboring cells have an effective exchange constant, J = 2AexL. The
demagnetization fields HM

i are produced as a result of the current state of the mi. Their calculation
is based on magnetostatics theory for an isolated thin 2D system, using effective Green’s functions
appropriate for the thin disk problem [11]. The calculations of HM

i can be accelerated somewhat
through the use of fast Fourier transforms applied to the defining convolution integrals.

For the discretized 2D system, the dynamic equations of motion resulting from (4), and including
an additional damping term with dimensionless parameter α, are the Landau-Lifshitz-Gilbert (LLG)
torque equations,

d~µi

dt
= γ~µi × Bi −

α

µ
~µi ×

(
γ~µi × Bi

)
. (6)

This includes the gyromagnetic ratio γ and the effective local magnetic induction Bi acting on a cell,

Bi = µ0Hi = −
δE
δ~µi

. (7)

Of course, there are contributions to Bi due to exchange fields, demagnetization fields, and the
externally applied field. For numerics, we measure Bi in a basic unit B0 ≡ J/µ = 2Aex/(a2

cellMs),
defining dimensionless fields as bi = Bi/B0. With cell size acell = 2.0 nm, this is B0 ≈ 7.59 T for
the simulations described here using Permalloy parameters. Then the time is measured in units t0 ≡

(γB0)−1, leading to dimensionless time variable τ = t/t0. Thus the dynamics follows the dimensionless
equations,

dmi

dτ
= mi × bi − αmi × (mi × bi) , (8)

For the numerical simulations, the magnetization unit vectors mi(t) are evolved forward by some
updating procedure. The method used depends on whether static or dynamic results are desired. Static
or quasi-static vortex structures were used to get force constants, as an example. Dynamic simulation
is necessary to obtain the gyrotropic frequencies.

3. Quasi-Static Vortex Properties

For finding quasi-static or relaxed structures, a local spin alignment relaxation scheme has been
used, iteratively pointing each magnetic moment to align with its effective field, until some convergence
is reached. The vortex energy (same as total system energy) was evaluated for different positions, which
were enforced by a Lagrange constraint [12] on the vortex core, explained briefly here. The constraint
is included by adding additional terms to the energy functional, creating the modified energy functional
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on the 2D grid with N cells,

Λ[m] = E[m] +

N∑
i=1

αi(m2
i − m2) − ~λ ·

Nc∑
i=1

mi. (9)

Here the set of αi at N grid sites are Lagrange multipliers used to enforce ultimately a fixed length
m = 1 for the reduced magnetization vectors. The vector ~λ = (λx, λy) with only xy components is a
pair of Lagrange multipliers for enforcing the position constraint. ~λ is a fictitious field applied only to
a limited set of grid sites Nc = 24 symmetrically surrounding the vortex core. One can note that the
in-plane magnetization structure of a vortex is highly symmetrical around its core, with the in-plane
components of m pointing in opposite directions on opposing sides of the vortex. This is the reason for
including the last term in the expression for Λ. The requirements that Λ be an extremum with respect
to variations in the set of αi and λx, λy leads to a set of equations that can be solved iteratively for
the cell magnetizations mi and the constraining field. This works for a desired core position exactly
between four nearest grid cells. A slight modification to this scheme allows for securing the position
offset arbitrarily from these symmetrical positions, see Ref. [12] for further details.
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Figure 1. Vortex force constants versus disk ellipticity, from static vortices obtained by
spin alignment relaxation. The quantity Aex/λex serves as the unit of kx, ky and k̄ ≡

√
kxky.

These increase quickly with disk thickness, due to stronger pole density at the disk edge.

For elliptical nanodisks without applied fields, Figure 1 shows results for the vortex force constants
obtained by this scheme, for vortices near the center of elliptical disks. The semi-major radius is
a = 120 nm, while the semi-minor radius b takes on a range of values, corresponding to ellipses of
different shapes. The force constants were estimated by using the energy change for a displacement of
∆X = 4.0 nm or ∆Y = 4.0 nm away from the disk center, where the vortex energy is the minimum value,
U0. Assuming the potential in Eq. (3), the force constants are obtained quasi-statically by expressions,

kx =
2 [U(∆X, 0) − U0]

(∆X)2 , ky =
2 [U(0,∆Y) − U0]

(∆Y)2 . (10)

The results in Figure 1 show some interesting features. First, the potential is stiffer for vortex motion
along the shorter (y) direction. Thus, ky ≥ kx, where the equality holds only in the circular limit. The
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vortex moves much more freely along the longer (x) axis. Secondly, for ellipses with a higher in-plane
aspect ratio (i.e., smaller b/a), kx reduces slightly while ky increases more rapidly. At the same time,
the geometric mean force constant k̄ remains nearly constant. Eventually all of the force constants tend
towards zero for small enough b/a, where the vortex is destabilized. Finally, also note that the force
constants increase with the thickness of the disk, more than linearly with L. The disk with greater
thickness have a much stronger demagnetization effect, which leads to a much stronger restoring force
on the vortex.

3.1. About Finding the Vortex Location

The vortex core position R = (X,Y) can be determined with a precision much smaller than the
numerical grid. This is done by first locating the set of four cells that surround the vorticity center
or vortex core, among which the change in in-plane angle φ changes by 2π as expected from Eq. (1).
Then, using a set of the cells within about 4 exchange lengths from that preliminary position estimate
rv, an improved estimate is found from an average weighted by the squares of out-of-plane scaled
magnetization components mz

i . This uses the fact that the magnetization tilts out of the disk plane at
the vortex center, with mz

i decaying away towards its boundary value over a distance on the order of
the exchange length. We use an expression to estimate the position,

R =

∑
|ri−rv |<4λex

(mz
i )

2 ri∑
|ri−rv |<4λex

(mz
i )2 . (11)

Each ri is the center position of a cell, with the sum restricted to the core region. Especially for
zero-temperature simulations this weighted location gives a very smoothly changing vortex position,
even when following the dynamics. It is verified by comparison with the time-dependent plots of the
magnetization as it evolves in the simulations. It is used below for the comparison of simulations with
the Thiele theory for vortex core motion, and also in the study of vortex position statistics in Section 7.

4. Thiele Equation Analysis

The results found for vortex dynamics based on numerics can be analyzed in light of the Thiele
collective coordinate equation for a localized magnetic excitation. If the effective force F = −~∇U(R)
is acting on the vortex core, then the Thiele equation for the core velocity V = Ṙ predicts the motion
by

F + G × V = 0. (12)

This depends on the topological charge or gyrovector G of the vortex, which is determined by
the vorticity charge q = +1 (antivorticity with q = −1 is not considered here), the out-of-plane core
polarization p = ±1, and the magnetic dipole moment per unit area, m0 = LMs,

G = Gẑ = 2πpqm0γ
−1ẑ. (13)

The potential in (3) is assumed, which depends on force constants kx and ky. With the gyrovector
having only an out-of-plane component, the equations of motion are equivalent to those of an elliptical
oscillator, e.g.,

Fx = −kxX = −(G × V)x = GẎ (14)
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Fy = −kyY = −(G × V)y = −GẊ (15)

Starting at location (X0,Y0) at time t = 0, the solution is that of elliptical motion,

X(t) = X0 cosωGt + (Y0ky/k̄) sinωGt (16)
Y(t) = Y0 cosωGt − (X0kx/k̄) sinωGt (17)

k̄ =

√
kxky, ωG = −k̄/G. (18)

The geometric mean of the force constants, k̄, determines the gyrotropic frequency ωG, which can
also be taken as a vector perpendicular to the plane, ~ωG = ωGẑ. The minus sign is included in (18)
to indicate clockwise motion in the xy-plane when the gyrovector has a positive z-component. While
the mean force constant determines ωG, the ratio of those force constants controls the shape of the
orbit. Considering using Y0 = 0, one gets the ratio of maximum displacements on the two axes (orbital
ellipticity e, or ratio of semi-minor to semi-major axes) to be

e ≡
Ymax

Xmax
=

kx

k̄
=

√
kx

ky
. (19)

Thus, the magnetic dynamics leads to vortex elliptical motion, whose ellipticity is directly related
to the square root of the force constant ratio. Simulations of static vortex structure that lead to kx and
ky, such as in Figure 1, show that to a good approximation, e ≈ b/a for adequately large nanodisks.

For some analysis, a stretching of the coordinate system into a new variable is useful,

~ρ ≡ (
√

eX,
1
√

e
Y), (20)

because it returns the potential to a circular symmetry:

U(~ρ ) =
1
2

k̄~ρ 2. (21)

For the same reason, the vortex core motion then takes a simple form,

~̇ρ = (ρ̇x, ρ̇y) = ~ωG × ~ρ. (22)

The variable, ~ρ and especially its magnitude is convenient for analysis of vortex position statistics.

4.1. Vortex Gyrotropic Frequencies

For zero temperature dynamics, fourth order Runge-Kutta (RK4) scheme has been used to get the
time evolution. For finite temperature dynamics, additional stochastic fields are included into the
equations (8), and the resulting Langevin-LLG equations (also known as the stochastic LLG
equations) can be evolved forward in time using a second order Heun method. The chosen
temperature T determines the relative strength of the stochastic magnetic fields. See Refs. [2, 5] for
further details.

At zero temperature, the validity of the Thiele analysis is confirmed by simulating vortices starting
with a small displacement (4.0 nm) from the disk center, and evolving the undamped LLG equations
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forward in time with an RK4 scheme. The motion can be followed over 10 to 20 periods, from which
the frequency is measured. The frequencies obtained dynamically are found to be directly proportional
to the mean force constants k̄ obtained from statics. Results versus disk ellipticity are summarized in
a compact form in Figure 2. The frequencies follow closely the prediction (18) of the Thiele equation,
which for q = 1 can be transformed to a form:

LωG

k̄
=
−pγ
2πMs

= −pλex

(
µ0

4π
γMs

) (
λex

Aex

)
(23)

The RHS contains λex as length unit, a frequency unit ω0 ≡
µ0
4πγMs, and the force constant unit

k0 ≡ Aex/λex. Thus, the Thiele equation predicts in these units:

(L/λex)(ωG/ω0)
(k̄/k0)

= −p. (24)

This is confirmed in the simulations for various disk geometries to within a few percent, except for
small ellipticity, for which there is limited vortex stability, see Figure 2.
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Figure 2. Summary of vortex gyrotropic frequencies in elliptical nanodisks, using p =

−1 and frequency unit ω0 ≡
µ0
4πγMs, force constant unit k0 ≡ Aex/λex and λex as the unit

of length. These data fall very close to the prediction of the Thiele equation, which is
the unit value, LωG/k̄ = λexω0/k0.

5. Vortex in an Out-of-plane Applied Field

Next, consider an applied field Hext
z , or in dimensionless simulation units, include a nonzero field

bext
z = µ0Hext

z /B0. Circular magnetic disks with this field orientation have been considered by Loubens
et al. [8] and more recently by Fried et al. [9], where it was found that the two opposite vortex
polarizations become energy- and frequency-split by the field. Here we consider a vortex with q =

p = +1, and positive (negative) values of bext
z correspond to the applied field pointing in the same

(opposite) direction as the magnetization in the vortex core region. The effect on the vortex effective
potential for a system with b/a = 0.5 is shown in Figure 3, for applied fields bext

z = 0,±0.05. The
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total system energy is plotted as a function of the vortex displacement from the disk center. Generally,
the total energy is reduced with an applied field, and due to the symmetry, the disk center remains the
location of the minimum. A positive field causes the larger reduction in total energy, as more of the
magnetization is strongly aligned to the applied field.
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Figure 3. Vortex effective potential curves for an elliptical nanodisk with b/a = 0.5,
at the indicated applied fields. The vortex configurations were found quasi-statically,
using a Lagrange constraint on the vortex position. The energy unit is J = 2AexL. This
type of result is used to make estimates of the force constants, which are clearly different
for x and y displacements.
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Figure 4. More vortex effective potential curves for an elliptical nanodisk with b/a =

0.5, at the indicated applied fields, like those in Figure 3.

Another example for the same system, but with bext
z = ±0.15, is shown in Figure 4. Obviously, an

even greater field causes a larger downward energy shift. More importantly, the force constants are
also modified by bext

z , although this effect is difficult to see in the plots of U(R). Using Eq. (10), the
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results for kx, ky and k̄ are shown in Figure 5. This clearly shows how all of these are maximized at
zero field, and tend towards kx = ky = k̄ → 0 at an upper positive field limit, where the vortex is
destabilized. Similarly, the vortex will be destabilized by a strong enough negative field, however, this
takes place partly because the vortex core region in that case will acquire a very short radius (the core
will be oppositely polarized to its surroundings). Note that the gyrotropic frequency ωG = k̄/G would
be diminished by positive or negative bext

z , if the gyrovector were constant. However, that is not the
case, and the gyrotropic frequencies versus bext

z does not have the shape of the k̄ curves.
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Figure 5. Vortex force constants versus the dimensionless out-of-plane applied field, in
an elliptical system of indicated parameters, obtained by applying Eq. 10 to potentials
like those in Figs. 3 and 4. The force constants go to zero near bext

z =≈ 0.7 (a very strong
field, equivalent to Bext

z ≈ 5.3 T in Permalloy) as the magnetization becomes uniformly
out-of-plane and the vortex is destabilized.

Without applied fields, the dimensionless gyrovector γG/m0 = 2πpq represents the total steradians
of a unit sphere covered by the magnetization direction of the vortex, which is half of the unit sphere.
G is also given by a formula involving the out-of-plane reduced magnetization at the core, mz(0) = p
and at infinite radius, mz(∞) = 0,

G = G0
[
mz(0) − mz(∞)

]
, (25)

where the scale is determined by the zero-field continuum gyrovector value,

G0 ≡ 2πqLMsγ
−1. (26)

Once a field is applied along the z-axis, the boundary value mz(∞) will be modified, which directly
leads to a modification of G. Considering the case p = +1, G is reduced (increased) for positive
(negative) bext

z , compared to its value at zero field. For a large enough system, the vortex core region is
small compared to the rest of the area. Then an approximate expression for the value at large radius is
to use the average over the whole system, mz(∞) ≈ 〈mz〉. This gives a rough estimate of the gyrovector,

G ≈ G0
[
p − 〈mz〉

]
. (27)
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A plot showing the behaviors of 〈mz〉 and the resulting G for an elliptical system with a = 120 nm,
b = 60 nm, is displayed in Figure 6. There results close to a linear dependence of G on the out-of-plane
field.
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Figure 6. For a moderately sized elliptical disk, the magnitude of the gyrovector
versus out-of-plane applied field, as estimated from the average out-of-plane reduced
magnetization via Eq. (27). Note that G → 0 at the same field value (bext

z ≈ 0.7) as where
k̄ → 0, compare Figure 5. This occurs where 〈mz〉 → 1 and the vortex out-of-plane
component becomes indistinguishable from the uniform background.
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Figure 7. From a set of zero-temperature LLG simulations, the gyrotropic periods τG

(in simulation units t0 on right axis) and frequenciesωG (in units ofω0 =
µ0
4πγMs, left axis)

for an elliptical disk as a function of the out-of-plane field. Solid symbols connected by
dotted lines are derived from the numerical simulations. Open symbols with solid lines
result from the theory expression (18) using the estimates of force constants and G as in
Figure 6. Note that the field dependence of ωG is nearly linear at small field values, but
exhibits a strong nonlinearity at the upper destabilizing field.
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Using LLG simulations of vortex motions, starting from small displacements X = 4.0 nm, many
orbits can be followed, from which the periods tG can be determined, then leading to the gyrotropic
frequencies ωG = 2π/tG. Note that in dimensionless units the period is τG = tG/t0, where t0 = (γB0)−1

is the simulation time unit. For the example system with a = 120 nm, b = 60 nm, L = 20 nm, the
resulting periods and frequencies are shown in Figure 7 over a range of out-of-plane applied field.
There is very good agreement between the frequencies from the simulations, and those derived from
the Thiele theory expression (18), using the gyrovector G that varies with field in Figure 6. One finds
a rather strong effect of the field on ωG. The frequency exhibits a nearly linear dependence on bext

z at
weaker fields, and even for negative fields, where there is little destabilization of the vortex. At the
higher positive field values, the frequency deviates from the linear behavior, as the vortex becomes
unstable. The weak-field linear behavior is consistent with that found by Loubens et al. [8], while
the nonlinear dependence at higher field strength may be explained by core deformation, according to
Fried et al. [9].

6. Effect of an In-plane Applied Field

A magnetic field applied within the plane of the disk will displace the equilibrium vortex position
away from the disk center, along a line perpendicular to that field; the direction depends on the vortex
chirality c or twist direction, Eq. (1). Doing simulations of the quasi-static vortex potentials, results
such as those in Fig. 8 are found.
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Figure 8. Example of the effects of an in-plane applied field along the shorter side of the
ellipse, on a vortex with chirality c = +1, see Eq. (1). The different curves are labeled
by values of bext

y . The vortex potentials are shifted such that the minima (shown as
asterisks) move perpendicular to the field, and the effective force constants are modified.

A field applied along the y direction, for positive chirality c, displaces the vortex in the −x direction,
all the more so for stronger field. Similar potential curves were obtained by Buchanan et al. [7] using
what they called a “static approach” in micromagnetics. A field applied on the whole system was
used to move the vortex around to different equilibrium positions. Then the system energy for the
vortex relaxed through micromagnetics at different equilibrium positions gives the potential curves.

AIMS Materials Science Volume 4, Issue 2, 421-438.



433

The Lagrange-constrained approach used here appears to give equivalent potential curves, and has the
advantage that this iterative scheme is faster than running a micromagnetics relaxation for every desired
point on the potential curve. However, one could argue that the scheme applied by Buchanan et al. is
conceptually simpler and numerically more straightforward.

The asterisks in Figure 8 indicate the minima of the different potential curves. The resulting
equilibrium vortex locations, as functions of the applied field, are those shown in Figure 9. The vortex
appears to become unstable when reaching some edge region of the disk, which is about the same
distance for the two disk thicknesses tested here.
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Figure 9. From the vortex potentials such as those in Fig. 8, the equilibrium vortex
locations as functions of the in-plane applied field. The vortex becomes unstable if
pushed too close to the edge, hence the curves end at specific field strengths. A larger
maximum field is needed to eject the vortex in the thicker disk.

Buchanan et al. [7] have noticed further that in addition to this displacement, there is an upward
shift in the gyrotropic frequency, resulting in close to a 100% increase, as long as the vortex has been
shifted on the longer axis of the ellipse. Here we give further analysis to this effect; we find that the
shifted location changes the force constants, but k̄ still primarily determines ωG, because for the most
part G is unaffected by an in-plane field.

Initially a vortex is relaxed with damping, in the presence of an in-plane field, bext
y along the shorter

ellipse axis. This produces some equilibrium location (Xeq, 0) away from the center, on the longer axis,
and a corresponding minimum energy Eeq. Then, another simulation is done without damping, starting
from a nearby position, which results in gyrotropic motion around location (Xeq, 0), at some higher
energy E, whose period tG is measured. The resulting orbital shape (X(τ), Y(τ)) has a semi-major axis
Apath and semi-minor axis Bpath. Fitting the energy difference E − Eeq to expression (3) for U(R), gives
a dynamic evaluation of the force constants by

kx =
2(E − Eeq)

A2
path

, ky =
2(E − Eeq)

B2
path

. (28)

Some typical results for kx, ky, and the resulting k̄ are indicated in Figure 10, for different disk
thicknesses. At least at weaker field magnitude, the force constants increase with bext

y . This is the
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primary cause of an increasing gyrotropic frequency. It appears that there is a greater tendency for kx

to increase rather than ky. As the vortex is pushed into the narrower end of the disk, it experiences
stronger demagnetization fields and a resulting stiffer potential.
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Figure 10. From the vortex potentials such as those in Figure 8, the vortex force
constants obtained dynamically using expressions (28), as functions of the in-plane
applied field. The vortex becomes unstable if pushed too close to the disk edge; for
example, see the lowest curve in Figure 8. Hence, these curves drop off and then
terminate at the limiting field that expels the vortex from the disk.
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Figure 11. Vortex gyrotropic frequencies (for p = −1) under the presence of an in-
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Thiele prediction, Eq. (18), using k̄ evaluated from the orbital shape via Eq. (28) and
assuming fixed G = G0 (open symbols with solid lines). Beyond the ends of the curves,
the vortex is ejected from the disk, see also Figure 9.
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The gyrotropic frequency ωG = 2π/tG then is compared with the Thiele prediction, ωG = −k̄/G,
using their geometric mean value k̄, and assuming the zero-field gyrovector value, G = G0. Results
are shown in Figure 11, as functions of the dimensionless applied field bext

y , up to a limit where the
vortex is forced out the edge of the disk. The increase of ωG with applied field is seen to be significant,
consistent with the results of Buchanan et al. [7]. The largest frequency change takes place as the
vortex is forced to move close to the disk edge. A weakening in the effect takes place near the limiting
value of bext

y , which is most simply explained by the reduction of k̄ when the vortex is near the disk
edge.

7. Thermally Induced Spontaneous Motion

It was pointed out by Machado et al. [13] and studied further by Wysin and Figueiredo [2] that
gyrotropic motion can be spontaneously generated at finite temperature. The motion can self-generate
even for a vortex initially at the disk center (no applied field is considered here). The amplitude of
the motion is determined by equipartition, which can be analyzed under the assumption that the vortex
core obeys the Thiele equation. This means that the vortex is considered to possess only two primary
degrees of freedom, being the two Cartesian coordinates (X,Y) of its core position. A short exercise
shows that a Lagrangian that leads back to the Thiele equation with elliptic potential is [5]

L = −
1
2

G(XẎ − YẊ) −
1
2

(
kxX2 + kyY2

)
. (29)
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Figure 12. Vortex core radial position distributions for Permalloy parameters in disks
at T = 300 K. Symbols are from Langevin LLG simulations to time τ = 2.5 × 105. Solid
curves are theory expression Eq. (30) with k̄ = 4.551 × 10−4 N/m for L = 5.0 nm and
k̄ = 1.632×10−3 N/m for L = 10 nm, from quasi-static relaxed vortex calculations. These
data result from approximately 100 (170) vortex revolutions for L = 5.0 nm (L = 10 nm).

Using the resulting canonical momentum P, this implies a Hamiltonian that can be expressed as
purely potential energy, E = P · Ṙ − L = U(X,Y) = 1

2 k̄~ρ 2. Then assuming equipartition for only two
degrees of freedom, each with average energy of 1

2kBT , with kB is Boltzmann’s constant, the thermally
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averaged Hamiltonian takes the value, 〈E〉 = kBT ≡ β−1. This gives a prediction for the distribution of
vortex core radial position using the effective circular coordinate ρ defined in (20) as

p(ρ) = βk̄ρe−
1
2βk̄ρ2

. (30)

The most probable effective radius is given by ρmax = (βk̄)−1/2, which demonstrates how weaker
restoring force leads to a wider distribution. Simulations can be used to test these expectations, solving
the Langevin-LLG equations by a second order Heun method [11]. The integration was done out to
time τ = 2.5×105, with a weak damping constant α = 0.02, starting with a vortex at the disk center. The
vortex motion initiates spontaneously due to thermal fluctuations, then proceeds in a noisy gyrotropic
orbit for many periods, from which a histogram of ρ can be calculated. Some typical results without
an applied field are shown in Figure 12 for disks with a = 60 nm, b = 48 nm at T = 300 K using
Permalloy parameters. There is reasonable agreement between the simulation and the Thiele theory,
however, averaging over at least 100 orbits is required. The distribution of vortex velocity can also be
found to follow a Boltzmann form.
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Figure 13. Vortex core radial position distributions for Permalloy parameters in a disk
at T = 300 K. Symbols are from Langevin LLG simulations to time τ = 2.5×105. Curves
are theory expression Eq. (30) with k̄ = 1.632×10−3 N/m for bext

z = 0 and k̄ = 1.304×10−3

N/m for bext
z = 0.30, from quasi-static relaxed vortex calculations. The distribution is

shifted outward slightly due to the reduction in force constant caused by the field, see
also Figure 5.

The application of an out-of-plane field can be seen to modify the thermally generated vortex radial
distribution. For instance, for an elliptical Permalloy disk with a = 60 nm, b = 48 nm, L = 10 nm, the
zero-field mean force constant is k̄ = 1.632×10−3 N/m, as used in Figure 12. With the field bext

z = 0.30
applied, quasi-static vortex relaxation shows that the force constant is reduced to k̄ = 1.304 × 10−3

N/m. This is similar to the force constant reductions as displayed in Figure 5. A slight change in p(ρ)
results, as shown in Figure 13, where the zero-field and non-zero field cases are plotted. The slightly
weaker potential in the presence of the field allows the vortex to explore a larger area of the disk, for
fixed temperature. If a much stronger field were applied, it could be possible to weaken the potential
sufficiently for the vortex to destabilize or exit the disk.
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8. Conclusions

Magnetic vortex motion in thin elliptical nanometer scaled disks with applied fields has been
considered here. The dynamics is controlled to a great extent by the effective potential and related
force constants kx, ky, and their geometric mean value, k̄. The gyrotropic resonant frequency is given
by ωG = −k̄/G, according to the Thiele equation analysis. The Thiele equation works well in
describing magnetic vortex dynamics in elliptical nanodisks, even in the presence of applied fields,
provided that the force constants and gyrovector are known. The force constants can be found from
quasi-static vortex relaxation with a Lagrange constraint [12], however, it is also possible to infer their
values from a simple analysis of the vortex orbital shape in simulations of the zero-temperature LLG
equations. The gyrovector is fairly well estimated with Eq. (27), by assuming a core magnetization
m(0) = p and a far-field magnetization approximately equal to the system’s mean value, 〈mz〉. We do
see a limit to the applicability of the Thiele equation when the vortex is exposed to strong enough
fields that reduce its stability. For more moderate fields, an out-of-plane field increases (decreases) ωG

when parallel (antiparallel) to the vortex core magnetization, with close to a linear relationship
between bext

z and ωG, see Figure 7. The simulations also have confirmed that an in-plane field along
the shorter (y) disk axis both displaces the vortex equilibrium point along the long (x) axis, and
increases its gyrotropic frequency, as found in Figure 11. These field effects on a vortex could be very
useful in the design of new microwave oscillators and detectors.
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