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ABSTRACT
Since the volume accessible to galaxy surveys is fundamentally limited, it is extremely im-
portant to analyse available data in the most optimal fashion. One way of enhancing the
cosmological information extracted from the clustering of galaxies is by weighting the galaxy
field. The most widely used weighting schemes assign weights to galaxies based on the av-
erage local density in the region (FKP weights) and their bias with respect to the dark matter
field (PVP weights). They are designed to minimize the fractional variance of the galaxy
power-spectrum. We demonstrate that the currently used bias dependent weighting scheme
can be further optimized for specific cosmological parameters. We develop a procedure for
computing the optimal weights and test them against mock catalogues for which the values
of all fitting parameters, as well as the input power-spectrum are known. We show that by
applying these weights to the joint power-spectrum of emission line galaxies and luminous red
galaxies from the Dark Energy Spectroscopic Instrument survey, the variance in the measured
growth rate parameter can be reduced by as much as 36 per cent.

Key words: methods: data analysis – galaxies: statistics – cosmological parameters – large-
scale structure of Universe.

1 IN T RO D U C T I O N

Future galaxy redshift surveys, such as the Dark Energy Spec-
troscopic Instrument survey (DESI; Schlegel et al. 2011; Levi
et al. 2013), the Extended Baryon Oscillation Spectroscopic survey
(eBOSS; Schlegel et al. 2009), the Euclid satellite surveys (Laureijs
et al. 2011), and the Wide Field Infrared Survey Telescope surveys
(Spergel et al. 2013) will cover vast cosmological volumes with a
high number density of galaxies. Since the available cosmic volume
is fundamentally limited, a lot of effort is going into developing op-
timal ways of analysing galaxy clustering data (see e.g. Eisenstein
et al. 2007; Blazek et al. 2014; Bianchi et al. 2015; Scoccimarro
2015; Slepian & Eisenstein 2016).

One way of improving the variance of measured 2-point statistics
is to weight the galaxy field to achieve the optimal signal to noise.
The most commonly used weighting scheme is the one developed
by Feldman, Kaiser & Peacock (1994, hereafter FKP), which is
used in all analyses employing 2-point statistics (see e.g. Percival
et al. 2001; Reid et al. 2010; Beutler et al. 2011, 2012, 2014; Blake
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et al. 2011; Anderson et al. 2012; Ross et al. 2013; Gil-Marı́n et al.
2015). The FKP weights,

wFKP(r) ∝ 1

1 + n(r)P (k)
, (1)

where n(r) is the average number density of galaxies at a position
r and P (k) is the power-spectrum at a wavelength of interest k, are
straightforward to apply and reduce the variance of the measured
power-spectrum when the completeness of the galaxy sample is
significantly non-uniform.

Percival, Verde & Peacock (2004, hereafter PVP) further op-
timized the FKP scheme for samples that include galaxies with a
range of biases with respect to the dark matter. If the number density
is uniform, the PVP weights are

wPVP ∝ b, (2)

where b is the bias with respect to the dark matter, and will minimize
the fractional variance in the measured power-spectrum.

If a galaxy sample covers such a wide redshift range that the
effects of cosmic evolution are significant, the measured power-
spectrum will be a weighted average of power spectra at dif-
ferent redshifts within that range. Since the sensitivity of the
power-spectrum to cosmological parameters also varies with red-
shift, it is possible to construct redshift-dependent weights which
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maximize the constraining power of the measured power-spectrum
for specific cosmological parameters. This optimal weighting
scheme obviously depends on which cosmological parameters we
want to optimize. Recently, Zhu, Padmanabhan & White (2015) de-
rived redshift weights that optimize the measurement of the baryon
acoustic oscillation (BAO) peak position, while Ruggeri et al. (2016)
derived similar weights that optimize the redshift space distortion
(RSD) parameter. Both works built on the formalism developed in
Tegmark, Taylor & Heavens (1997).

Future surveys will observe emission line galaxies (ELGs), lu-
minous red galaxies (LRGs), and quasars (QSOs), in overlapping
volumes. Computing power spectra of all tracers individually is sub-
optimal as important information encoded in the cross-correlation
of the tracers will be lost. A promising way of taking advantage
of the presence of multiple tracers was proposed in McDonald &
Seljak (2009). The method, however, has not yet been implemented
in practice and will only result in a significant improvement in con-
straining power when the number density of tracers is high (which
is not the case, e.g. in the eBOSS survey). Computing all auto
and cross-power spectra is possible (Ross et al. 2012) but will re-
quire accurate estimation of large covariance matrices which may
be problematic for future surveys (Pope & Szapudi 2008; Schneider
et al. 2011; de Putter et al. 2012; Xu et al. 2012; de la Torre et al.
2013; Mohammed & Seljak 2014; Paz & Sanchez 2015; Grieb et al.
2016; Pearson & Samushia 2016). The most straightforward way is
to compute a single power-spectrum for all tracers while differen-
tially weighting them to achieve optimal signal to noise by applying
the PVP weights.

While the PVP weights are designed to minimize the frac-
tional variance in the power-spectrum, this does not necessarily
translate into minimal variance on measured cosmological param-
eters. A good example of this is the growth rate parameter, f.1

The growth rate is measured from an anisotropic signature in the
power-spectrum which is more pronounced for low-biased tracers.
The power-spectrum signal, on the other hand, is stronger in the
high-biased tracers. The weights in equation (2) upweight high-
bias galaxies to achieve the optimal power-spectrum signal, but the
measured power-spectrum becomes less sensitive to f. The optimal
weighting for the growth rate parameter must counterbalance these
two tendencies by producing a power-spectrum with a small (not
necessarily minimal) variance that is, at the same time, sensitive
enough to the f parameter.

In this work, we generalize the PVP weighting scheme to min-
imize the variance of specific cosmological parameters measured
from the power-spectrum (Section 2). We assume that the galaxy
samples will be analysed in narrow redshift bins of δz ∼ 0.1, elimi-
nating the need to consider the redshift evolution weights (Zhu et al.
2015; Ruggeri et al. 2016) as the effect will be small. We test our
new weighting scheme on mock catalogues of the eBOSS and DESI
surveys (Section 3) and show that they could improve the variance
of the measured f parameter by up to 36 per cent. As expected, the
optimal weights differ for different cosmological parameters (Sec-
tion 4). This weighting scheme is straightforward to compute and
implement and should result in reduced variance on cosmological
parameters measured from future galaxy surveys (Section 5).

1 In practice, from the galaxy clustering data alone, the growth rate parameter
is measured up to a normalization constant fσ 8. We will be using f to mean
the fσ 8 combination for brevity. This has no effect on our results.

2 O P T I M A L W E I G H T I N G

For simplicity, we will assume that the galaxies of two types with
densities n1(r) and n2(r) are present in an overlapping volume and
the average number densities, n1 and n2, do not vary significantly
within the volume. The formalism is easy to generalize for more than
two tracers and varying number densities. If we assign weights w1

and w2 to these galaxies, then the number density of the combined
field is

n(r) = w1n1(r) + w2n2(r) (3)

and the overdensity field is

δ(r) ≡ n(r) − n

n
= A1δ1(r) + A2δ2(r), (4)

where the overdensities are defined by

δi(r) = ni(r) − ni

ni

, (5)

and

Ai = wini

w1n1 + w2n2
(6)

is the weighted fractional density. We will assume the weights to
be normalized by w1 + w2 = 1. This will shorten some of our
formulas, although, in practice, only the ratio of weights is relevant.
The power-spectrum of the overdensity field,

P (k) ≡
∣∣∣δ̃(k)

∣∣∣2
, (7)

can be estimated from the squared modulus of the Fourier trans-
form,

δ̃(k) =
∫

dr e−ikrδ(r), (8)

We will assume that the overdensity fields are Gaussian (this is a
common assumption when deriving optimal weights) with〈

δ̃i(k)̃δ�
j (k)

〉
=

[(
bi + μ2f

) (
bj + μ2f

)
Pm(k) + δC

ij

ni

]
Vs, (9)

where the angular brackets denote the expectation value, δC is a
Kronecker delta function, Vs is the survey volume, and Pm(k) is the
matter power-spectrum that can be computed in any given cosmo-
logical model (Kaiser 1987; Hamilton 1997). The last term in equa-
tion (9) is the shot-noise term due to the sampling of the overdensity
field with a finite number of galaxies (FKP).2 For the weighted field
in equation (4), this results in

P (k) =
[(

b
w1w2
eff + μ2f

)2
Pm(k) + Sw1w2

]
Vs, (10)

with the weighting dependent effective bias,

b
w1w2
eff = A1b1 + A2b2, (11)

and the shot-noise term,

Sw1w2 = A2
1

n1
+ A2

2

n2
. (12)

Since we assumed the overdensity field to be Gaussian, the vari-
ance of the galaxy power-spectrum estimator is simple to compute
and is

Var [P (k)] ∝
[(

b
w1w2
eff + μ2f

)2
Pm(k) + Sw1w2

]2
(13)

2 The power-spectrum estimators are usually defined after subtracting the
shot-noise term, but this is irrelevant for our results.
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(FKP, PVP; Tegmark et al. 1997). The fractional variance in the
galaxy power-spectrum is then

P (k)

Var [P (k)]
∝

(
b

w1w2
eff + μ2f

)2
Pm(k)[(

b
w1w2
eff + μ2f

)2
Pm(k) + Sw1w2

]2 . (14)

This expression is minimized3 by

w1 = b1

b1 + b2
,

w2 = b2

b1 + b2
,

(15)

which, for constant number densities, is equivalent to PVP
weighting.4

The minimum fractional variance in the power-spectrum, how-
ever, does not necessarily correspond to the minimum variance
in the cosmological parameters derived from the power-spectrum.
The power-spectrum is most sensitive to the bias – beff, growth rate
– f, and the Alcock–Paczinsky parameters α‖ and α⊥ (Alcock &
Paczynski 1979; Kaiser 1987). The dependence on b and f is al-
ready in equation (10), and the dependence on α⊥ and α‖ can be
introduced by replacing

k −→ k

α⊥

[
1 + μ2

(
α2

⊥
α2

‖
− 1

)]1/2

, (16)

μ −→ μα⊥
α‖

[
1 + μ2

(
α2

⊥
α2

‖
− 1

)]−1/2

, (17)

and dividing the power-spectrum by a factor of α‖α2
⊥ (Ballinger,

Peacock & Heavens 1996; Simpson & Peacock 2010; Samushia
et al. 2011). The Fisher information matrix of these parameters is

Fij =
∫

dk
∂P (k)

∂θi

1

Var [P (k)]

∂P (k)

∂θj

, (18)

where θ = (beff, f , α‖, α⊥) is a parameter vector, and the integration
is over all wavevectors, the power-spectrum measurements of which
were used in the analysis. The inverse of the Fisher matrix gives a
covariance matrix

C = F−1, (19)

and the diagonal elements of the covariance matrix correspond to
the expected variance of the parameters measured from the power-
spectrum. Because of the presence of the derivative terms (that also
depend on the weights) in equation (18), the weighting scheme
that minimizes the variance of the power-spectrum does not neces-
sarily minimize the diagonal elements of the covariance matrix in
equation (19).

A simple analytic solution for the optimal weights in this case
does not exist, but they are relatively straightforward to find nu-
merically. To find the optimal weights, we numerically compute
the variance and the derivatives in equation (18) and take the inte-
gral over the wavevectors of interest. We then numerically find the
weights that minimize the diagonal elements of the inverse Fisher

3 This can be verified by simply equating the partial derivatives of equa-
tion (14) with respect to the weights to zero along with the Legandre multi-
pliers to enforce the condition w1 + w2 = 1.
4 For a more rigorous derivation also accounting for the number density
variations, see PVP.

matrix of equation (19).5 These weights will, in general, be different
for each parameter. In the tradition of FKP and PVP, we refer to
these as PSG weights in what follows.

3 DATA A N D M E A S U R E M E N T PRO C E D U R E S

3.1 The sample

In order to test our weighting scheme, we generated lognormal
mock catalogues (Coles & Jones 1991) giving us control over the
input power-spectrum and linear growth rate.

We computed the matter power-spectrum using the CAMB soft-
ware (Lewis, Challinor & Lasenby 2000) via the web interface
hosted at Legacy Archive for Microwave Background Data Analy-
sis (LAMBDA)6 for a spatially flat �cold dark matter cosmology
with �M = 0.276, and �bh2 = 0.0226. We use the fiducial value
of

f (�M, z) ≈ �0.6
M (z), (20)

where

�M(z) = �M,0(1 + z)3

�M,0(1 + z)3 + ��,0
, (21)

which is the value predicted by general relativity (Peebles 1980;
Martı́nez & Saar 2002).

Our lognormal code was largely based on the description given
in Weinberg & Cole (1992) and appendix A of Beutler et al. (2011),
with modifications required to obtain a distribution of two tracers
cross-correlated by the same underlying matter field.

We started by distributing the power to two grids – one for LRGs
and one for ELGs – in k-space as

P (k) = (
bi + μ2f

)2
Pm(k), (22)

where μ = kz/k and bi is the bias of LRGs or ELGs for the redshift
bin. This was assigned to the real part only, with the imaginary part
being set to zero. After performing inverse Fourier transforms us-
ing the complex-to-real transform in the Fastest Fourier Transform
in the West (FFTW) library7 (Frigo & Johnson 2005), we took the
resulting correlation functions and calculated ln[1 + ξ i(r)] at each
grid point, then performed real-to-complex transforms. The result
of these transforms, P i

LN(k), was then normalized by the number
of grid points, since FFTW produces the unnormalized Fourier trans-
form.

At this stage, we took the ratio of the P i
LN(k) at each grid point in

k-space and stored that in memory. We then constructed Gaussian
random realizations by drawing from a normal distribution, cen-
tred on zero, with σ = √

max{0, Re[PLN(k)]}/2, at each grid point
for both the real and imaginary parts, in order to obtain a well-
behaved power-spectrum (Weinberg & Cole 1992). We took care
that δLN(−k) = δ∗

LN(k), and that the values at grid points whose in-
dices are combinations of zero and Ni/2, where Ni is the number of
grid points in dimension i, were purely real. This ensured that when
we inverse Fourier transformed δLN(k), the result was purely real.
We only did the random draw for the higher bias tracer, then using
the ratio previously calculated, we scaled the random realization to
obtain the values on the grid for the lower bias tracer. In this way,

5 Since we adopt the normalization w1 + w2 = 1, this turns into a simple
one-parameter minimization procedure.
6 http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
7 http://fftw.org/

MNRAS 463, 2708–2715 (2016)

http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
http://fftw.org/


Optimal multitracer weights 2711

Table 1. Mock catalogue properties. Column 1 list the redshift range. Columns 2–4 list the volume of the cube and the number densities for LRGs and ELGs
to match the eBOSS survey, respectively. Columns 5–7 list the volume of the cube and the number densities for LRGs and ELGs to match that expected in the
DESI survey, respectively. Columns 8 and 9 list the biases for the LRGs and ELGs, respectively. Lastly, column 7 lists the dimensionless linear growth rate for
the redshift bin.

Redshift VeBOSS n̄LRG,eBOSS n̄ELG,eBOSS VDESI n̄LRG,DESI n̄ELG,DESI bLRG bELG f
(h−3 Gpc3) (10−4 h3 Mpc−3) (10−4 h3 Mpc−3) (h−3 Gpc3) (10−4 h3 Mpc−3) (10−4 h3 Mpc−3)

0.6 ≤ z < 0.7 0.272 0.772 1.345 2.538 4.589 1.704 2.339 1.376 0.759
0.7 ≤ z < 0.8 0.325 0.642 2.051 3.031 4.555 10.482 2.450 1.441 0.787
0.8 ≤ z < 0.9 0.374 0.330 1.559 3.491 2.655 7.711 2.563 1.508 0.812
0.9 ≤ z < 1.0 0.419 0.091 0.586 3.914 0.973 7.490 2.678 1.575 0.834

we were able to effectively obtain mock samples with two tracers,
each following the same underlying matter distribution.

The last step was then to take the inverse Fourier transforms of
the random realization for the higher bias tracer, and the scaled
realization for the lower bias tracer. This resulted in overdensity
fields for both tracers, δi(r), having zero mean and variance σ 2

G.
From these overdensity fields, we calculated the lognormal density
field

δLN,i(r) = exp
[
δi(r) − σ 2

G/2
]
. (23)

This was then multiplied by the average number of galaxies per cell
to give the desired number density, and Poisson sampled to create
our final galaxy catalogues, placing the galaxies randomly within a
given cell.

We generated 1024 mock catalogues for four redshift bins in
0.6 < z < 1.0. They contained two tracers designed to mimic
LRGs and ELGs. This led to a total of 4096 mock catalogues with
number densities to match those expected in the eBOSS survey, and
4096 with number densities to match those expected in the DESI
survey. Table 1 lists the specific properties for the mock catalogues.
For the eBOSS mocks, the number densities were calculated from
information in Zhao et al. (2016). The volumes were calculated for
the 1500 deg2 region were the ELGs and LRGs would overlap. The
DESI number densities were calculated from information in the
DESI Science Final Design Report (DESI Collaboration 2016), and
the volumes assume the 14 000 deg2 baseline survey footprint. The
biases for the different redshift bins were given by Dawson et al.
(2016).

To have a clean separation between number density-dependent
and bias-dependent weights, our mock catalogues have a constant
number density. Since there are no number density gradients, the
FKP weights reduce to a simple uniform weighting (see Section 4),
meaning that any improvements are only coming from the differen-
tial weighting of tracers based on their bias.

3.2 Measuring the power-spectrum

We followed the general methods of FKP for measuring the power-
spectrum from our mock catalogues. We generated random cata-
logues with 10 or 30 times the number of each tracer for the DESI
and eBOSS mocks, respectively. The galaxies and randoms were
binned using cloud-in-cell interpolation (Birdsall & Fuss 1969) with
one of the three different weighting schemes – see Section 4 for de-
tails. Since we used a discrete Fourier transform of boxes with a
finite linear size L = V1/3 (see Table 1 for volumes), our δ̃(k) (and
correspondingly P (k) measurements) were given on a discrete cu-
bic grid with a resolution of 2π/L. To compress this information,
we computed the spherically averaged power-spectrum monopole

Figure 1. Here we show the effects of the discreteness of the grid on the
quadrupole for the number densities and volume of the first redshift bin
of eBOSS. The solid circles (purple) show the model power after being
distributed to the grid, binned as in equation (24) and adding the expected
shot noise calculated as in equation (26). The open circles (green) show
the effects of the correction in equation (28). It is clear that even after
applying that correction, there is a small positive bias (∼5 per cent). The
open squares (light blue) show the measured quadrupole after correcting for
the discreteness in the shot noise as well, at which point we have recovered
the expected quadrupole quite well.

and quadrupole (l = 0, 2) in 24 bins of width 
k = 0.008 for
0.008 ≤ k ≤ 0.2 via

Pl(k) = 2l + 1

2

∑ ∣∣∣δ̃(k)
∣∣∣2
Pl [μ(k)] G2(k), (24)

where the sum is over all wavevectors in the range k − 
k/2 ≤
|k| < k + 
k/2, Pl(x) are the Legendre polynomials, and G(k) is
a grid correction term

G(k) =
∏

i

[sinc(
Liki)]
−2 , (25)
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Figure 2. Comparison of the expected power-spectrum monopole and quadrupole with the measured values after applying all corrections for LRGs (left),
ELGs (middle) and the combined sample (right) with equal weighting in the first redshift bin with eBOSS number densities. The plotted error bars are

√
Cii/N ,

where Cii are the diagonal elements of the sample covariance matrix, and N is the number of mocks.

Table 2. The PSG weights for the free parameters in our model. Column 1 indicates the target survey for the weights. Column 2
gives the redshift range. Columns 3–6 give the optimal weights for each parameter individually.

Survey Redshift range b f α⊥ α‖

DESI 0.6 ≤ z < 0.7 (0.279, 0.721) (0.207, 0.793) (0.546, 0.454) (0.464, 0.536)
0.7 ≤ z < 0.8 (0, 1) (0, 1) (0.516, 0.484) (0.347, 0.653)
0.8 ≤ z < 0.9 (0, 1) (0, 1) (0.547, 0.453) (0.429, 0.571)
0.9 ≤ z < 1.0 (0, 1) (0, 1) (0.568, 0.432) (0.472, 0.528)

eBOSS 0.6 ≤ z < 0.7 (0.427, 0.573) (0.367, 0.633) (0.589, 0.411) (0.547, 0.453)
0.7 ≤ z < 0.8 (0.405, 0.595) (0.326, 0.674) (0.589, 0.411) (0.544, 0.456)
0.8 ≤ z < 0.9 (0.447, 0.553) (0.385, 0.615) (0.597, 0.403) (0.559, 0.441)
0.9 ≤ z < 1.0 (0.501, 0.499) (0.471, 0.529) (0.609, 0.391) (0.580, 0.420)

with sinc(x) = sin (x)/x, 
Li = Li/Ni, i denotes one of the three
Cartesian coordinates, Li is the length of the cube in that coordinate
direction, and Ni is the corresponding number of grid points.

We only considered the power-spectrum measurements below
k ∼ 0.2 allowing us to safely ignore the non-linear effects at higher
wavevectors which are difficult to model and are usually excluded
from the analysis. Even though our Fisher matrix predictions in
Section 2 implicitly assumed that each P (k) measurement would
be analysed individually without reducing them to the multipoles,
we do not expect this to be a big effect as a number of recent
studies showed that reducing the power-spectrum to the first few
even multipoles retains most of the information (Taruya, Saito &
Nishimichi 2011; Kazin, Sánchez & Blanton 2012).

The measurements resulting from equation (24) were then cor-
rected for shot noise

Sl(k) = 1

Nk

⎛⎝∑
gal

w2
i + α2

∑
ran

w2
i

⎞⎠ ∑
μ

Pl(μ), (26)

where the sum is over the same modes, with α = ∑
galwi/

∑
ranwi,

and then normalized by

I = Vs (nLRGwLRG + nELGwELG)2 . (27)

Since the power-spectrum multipoles in equation (24) were com-
puted as a discrete sum over a finite number of wavevectors, mod-
elling them as angular integrals over the theoretical power-spectrum
of equation (22) would be inaccurate. To model the k-grid discrete-
ness effects, we distributed the model power to the same grid used to

calculate the power-spectrum from the mocks and binned it accord-
ing to equation (24) to give P

grid
l (k). We then adjusted the measured

value,

Pl(k) −→ Pl(k) −
[
P

grid
l (k) − P int

l (k)
]
, (28)

where

P int
l (k) = 2l + 1

2

∫ 1

−1

(
b

w1w2
eff + μ2f

)2
Pm(k)Pl(μ) dμ, (29)

is the integrated power-spectrum (Blake et al. 2011; Beutler et al.
2014). This effect (correction term in the brackets) is extremely
small for the monopole, so, in practice, we only applied the correc-
tion to the quadrupole.

We would like to emphasize that, given the small volume of
our mocks (especially the eBOSS mocks), the k-grid discreteness
effects also had to be accounted for when computing the shot-
noise correction. Even though integrals over higher order Legendre
polynomials are zero, the discrete sum over μ in equation (26) is
non-zero. This implies that the shot-noise corrections have to be
applied not only to the monopole but to the higher order multi-
poles of the power-spectrum as well. Fig. 1 explicitly shows these
effects on the quadrupole for the first redshift bin eBOSS mocks.
We found that ignoring the effects in equation (28) can bias the
quadrupole by ∼27 per cent on average, and significantly more
so at low wavenumbers. While significantly smaller, ignoring the
discreteness effects in the shot noise – equation (26) – can bias
the quadrupole by ∼5 per cent. We note that the size of these

MNRAS 463, 2708–2715 (2016)



Optimal multitracer weights 2713

Figure 3. Variance of each parameter versus the relative weight of the
LRGs for the first redshift bin of the DESI mocks. The points associated
with the FKP, PVP, and PSG weights have been labelled. The solid lines
are the theoretical predictions for the variance. In general, the points follow
the shapes of the theoretical curves. For b and f, the PSG weights are clearly
optimal, while for α⊥ and α‖, the variance is flat for a broad range of weights
leading all weighting schemes to perform equally well.

corrections decrease for increased volume, and the shot noise addi-
tionally decreases for increased number densities. For example, in
the first redshift bin of the DESI mocks, the effect in equation (28)
drops to ∼13 per cent on average, while the shot noise causes a bias
of less than 1 per cent.

Fig. 2 shows a detailed comparison of the power-spectrum which
we expected to recover and the power-spectrum that we actually
measured for the first redshift bin (0.6 ≤ z < 0.7) with the eBOSS
number densities and volume. We explicitly show the recovered
power for each tracer individually as the confirmation of our scal-

ing procedure (see Section 3.1). We also note that we recovered
the expected power-spectrum extremely well for the other eBOSS
redshift bins and for the DESI volumes as well.

3.3 Parameter estimation

We model the measured power-spectrum multipoles as

Pl(k) = 2l + 1

2α2
⊥α‖

∫ 1

−1
dμP (k, μ)Pl(μ), (30)

where

P (k, μ) = (
b

w1w2
eff + μ2f

)2
Pm(k), (31)

and k, and μ depend on α⊥ and α‖ as in equations (16) and (17).
The shape of the power-spectrum is fixed, while the four parameters
b

w1w2
eff , f, α‖, α⊥ are free.8

In order to find the best-fitting parameters, we used a Markov
Chain Monte Carlo (MCMC) method with the Metropolis–Hastings
algorithm (Hastings 1970) to find the posterior likelihood of the
free parameters. In all our MCMC chains, the mean values of the
parameters were very close to the input values and the likelihood
surfaces were close to Gaussian. We computed the variance of
each parameter from the MCMC mocks and compared the resulting
values for all the parameters for a specific set of weights to other
weighting schemes to see if the PSG weights actually yield the
tightest constraints.

4 C O M PA R I S O N W I T H OT H E R W E I G H T I N G
SCHEMES

In order to test the weights purely from the stand point of relative
weighting of tracers, our mock catalogues have uniform number
densities throughout, and only two types of tracers with constant
biases. In what follows, for brevity, we will quote weights as pairs
in the form (wLRG, wELG).

Because of the simplified nature of our mocks, the FKP weights
are then simply (0.5, 0.5), regardless of the target survey or redshift
bin. Similarly, the PVP weights will be the same, regardless of
the target survey or redshift bin and will result in upweighting
the LRGs as they have a higher bias – see equation (15). Since
bLRG  1.7bELG at all redshifts (Dawson et al. 2016; Zhao et al.
2016), the PVP weights are (0.63, 0.37). The PSG weights vary
from redshift bin to redshift bin somewhat, and from survey to
survey, due to the varying relative number densities of the tracers.
They are also different for different model parameters. We compute
them following the numerical procedure outlined in Section 2.

Table 2 summarizes the PSG weights for the different redshift
bins of the two surveys. In some cases, the PSG weights are close
to the FKP or PVP weights, but in many cases, differ substantially.
It is also interesting to note that for the DESI mocks, the PSG
weights actually imply that above a redshift of 0.7, it would be better
to consider only the ELGs when measuring the RSD parameters.
However, this does not mean that the LRG and cross-power spectra
do not contain additional information. The LRG, ELG and cross-
power spectra (with appropriate covariance matrices) in principle
contain all of the information. Our weighting in some sense gives
the most optimal mixture (best principle component) of the three
if they were to be reduced to a single power-spectrum, but other
orthogonal mixtures (next principle components) will, of course,

8 Hereafter, we simply refer to b
w1w2
eff as b for simplicity.
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Table 3. Comparison of FKP and PVP weights with those derived here (PSG). Column 1 indicates the target survey. Column 2 lists the
redshift range. Column 3 indicates the weighting scheme. The remaining columns list the variance in each of the parameters.

Survey Redshift range Weights σ 2
b σ 2

f σ 2
α⊥ σ 2

α‖

DESI 0.6 ≤ z < 0.7 FKP 0.001 56 0.001 27 0.000 10 0.001 38
PVP 0.001 70 0.001 38 0.000 10 0.001 36
PSG 0.001 33 0.001 11 0.000 10 0.001 36

0.7 ≤ z < 0.8 FKP 0.000 78 0.000 64 0.000 07 0.000 94
PVP 0.000 93 0.000 77 0.000 08 0.000 98
PSG 0.000 56 0.000 49 0.000 07 0.000 97

0.8 ≤ z < 0.9 FKP 0.000 76 0.000 61 0.000 07 0.000 94
PVP 0.000 85 0.000 67 0.000 07 0.000 90
PSG 0.000 60 0.000 52 0.000 07 0.000 92

0.9 ≤ z < 1.0 FKP 0.000 60 0.000 55 0.000 07 0.000 84
PVP 0.000 64 0.000 58 0.000 06 0.000 82
PSG 0.000 57 0.000 53 0.000 07 0.000 85

eBOSS 0.6 ≤ z < 0.7 FKP 0.035 99 0.027 75 0.003 43 0.055 80
PVP 0.041 86 0.031 20 0.003 20 0.055 88
PSG 0.035 46 0.027 09 0.003 05 0.052 59

0.7 ≤ z < 0.8 FKP 0.018 67 0.015 26 0.001 74 0.029 83
PVP 0.021 00 0.016 86 0.001 68 0.028 89
PSG 0.017 94 0.015 49 0.001 68 0.028 62

0.8 ≤ z < 0.9 FKP 0.023 81 0.020 65 0.002 57 0.039 18
PVP 0.025 70 0.022 15 0.002 45 0.037 49
PSG 0.024 86 0.022 13 0.002 42 0.039 17

0.9 ≤ z < 1.0 FKP 0.054 72 0.050 63 0.008 96 0.092 35
PVP 0.059 80 0.054 15 0.008 62 0.089 79
PSG 0.053 44 0.049 94 0.009 56 0.088 34

contain additional information. Having wLRG = 0 simply means
that a pure ELG power-spectrum is better at constraining the f
parameter compared to any other mixture of ELGs and LRGs.

Fig. 3 shows the resulting variance of the four parameters for a
variety of weights starting at (0.0, 1.0) – only ELGs – and going
to (1.0, 0.0) – only LRGs – in steps of 0.1, as well the FKP, PVP,
and PSG weighting schemes, in the first redshift bin for the DESI
mocks. The points show the actual variance in measured parameter
values from the mocks, while the lines show theoretical predictions
based on our Fisher matrix formalism.

It is remarkable that the measured variances follow the theoret-
ical predictions very closely. The fact that the minimums of the
theoretical curves match well to the measured minimum variance
values shows that the methods presented in Section 2 are sufficiently
accurate and could, in principle, be applied to any parameter that
needs to be constrained, so long as non-linear effects can be safely
ignored.

For the remaining redshift bins of the DESI mocks and all red-
shift bins of the eBOSS mocks, we simply report the variance
of each parameter for the FKP, PVP, and PSG weights. These
results are summarized in Table 3. It can be seen that the PSG
weights derived here essentially always produce smaller variances
on their associated parameter. However, there are some cases in
which the PSG weights produce the same or larger variances than
the FKP or PVP weights. We find that in these cases, the theo-
retical variances have a broad minimum similar to what is seen
for α⊥ and α‖ in Fig. 3. This means that we expect the gains
in those cases to be minimal at best, and small fluctuations in
the measured variance about its true value could lead to the PSG
weights having a slightly higher variance than the other weighting
schemes.

The improvements made, on the other hand, can be quite large.
For example, in the second redshift bin for the DESI mocks, the
PSG weights reduce the variance in f by ∼36 per cent compared
to the PVP weights. On average, the improvements for b and f are
∼14 and ∼10 per cent, respectively. Yet, α‖ and α⊥ seem to be
insensitive to the weighting as long as the LRG weights are not
very low.

5 C O N C L U S I O N S

We have presented a method of determining the relative weights
that will result in the minimal variance of cosmological parameters
measured from a joint power spectrum of multiple tracers. Tests on
mock catalogues replicating eBOSS and DESI samples show that
these weights will result in a 10–35 per cent decrease in the variance
of the measured growth rate parameter compared to the commonly
used weighting schemes. Our weighting scheme is different from
the one presented in Hamaus, Seljak & Desjacques (2012) as it
aims to find a single power spectrum (a most optimal mixture of
the tracers) that is optimal for the cosmological constraints, while
the weights in Hamaus et al. (2012) aim to split the tracers in two
groups in a way that is most optimal for the RSD parameters. The
decision about which weights to use will depend on what kind of
analyses one has in mind. If the cosmological parameters will be
measured from the joint power spectrum, then the PSG weights
are optimal; if the tracers will be split in two groups with a full
multitracer analysis to follow, then the Hamaus et al. (2012) can be
used to determine the most optimal splitting.

Our derivation relies on several simplifying assumptions that are
commonly adopted when deriving optimal weights. We assume that
the galaxy field is perfectly Gaussian and calculate the variance of
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the power-spectrum and its sensitivity to cosmological parameters
using linear theory. Smith & Marian (2015, 2016) showed that by
abandoning some of these assumptions for the density dependent
weighting the performance of the weights can be improved by a
further 20 per cent. We do not expect such a large improvement in
our case since the theoretical predictions based on our simplified
treatment eventually turn out to be very close to the actual results
(see Fig. 3).

The optimal weights are, by definition, different for different
cosmological parameters. Fortunately, it seems as though for the
eBOSS and DESI samples, related parameters have similar optimal
weights. In this case, ‘average’ optimal weights, that are nearly
optimal for all parameters of interest, can be found. A more optimal
solution would be to compute each cosmological parameter from
its own ‘custom-weighted’ power-spectrum and find the covariance
between them from the mock catalogues. Another option is to go
one step beyond and find the optimal weights for the dark energy
parameters that are derived from f, α‖, and α⊥.

A logical continuation of this work is to extend the formalism
to samples with varying number density along the redshift shell.
One could also try to incorporate it with the weights designed to
optimize the measurements by accounting for the redshift evolution
of the sample. We leave these matters to a future investigation.
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