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Computer-automated assessment of students’ text responses to short-answer questions represents an
important enabling technology for online learning environments. We have investigated the use of machine
learning to train computer models capable of automatically classifying short-answer responses and
assessed the results. Our investigations are part of a project to develop and test an interactive learning
environment designed to help students learn introductory physics concepts. The system is designed around
an interactive video tutoring interface. We have analyzed 9 with about 150 responses or less. We observe
for 4 of the 9 automated assessment with interrater agreement of 70% or better with the human rater. This
level of agreement may represent a baseline for practical utility in instruction and indicates that the method
warrants further investigation for use in this type of application. Our results also suggest strategies that may
be useful for writing activities and questions that are more appropriate for automated assessment. These
strategies include building activities that have relatively few conceptually distinct ways of perceiving the
physical behavior of relatively few physical objects. Further success in this direction may allow us to
promote interactivity and better provide feedback in online learning systems. These capabilities could
enable our system to function more like a real tutor.
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I. INTRODUCTION

The Internet is continuing to emerge and evolve as an
important enabling technology for education. It is clear that
the Internet provides a fast, efficient means of distributing a
range of multimedia content, allows people to discuss and
propagate that content, and allows people to interact both
with each other and with interactive environments
embedded within websites. The Internet is already being
used for online courses and distance learning, and these
have been domains of considerable growth [1]. Accurately
predicting continued growth is difficult, but there is
considerable evidence that online instruction will continue
to play an important role in education [1]. Machine learning
and data mining have recently emerged as useful
approaches for investigating learning processes [2,3].

Researchers have increasingly been applying these tech-
niques to the development of computerized tutoring sys-
tems [4–6]. The development of computerized tutors, both
intelligent and unintelligent, has been an active area of
research for some time [7–10]. Research aimed at improv-
ing and broadening online learning experiences is clearly of
current interest, and the work we present here has
implications for providing interactive feedback in online
learning environments of all types.
An area of particular interest recently has been Massive

Open Online Courses (MOOCs), which allow very large
numbers of people to enroll in the same course without
being geographically near the institution offering the course
[11,12]. There is evidence of significant attrition problems
[11]. Interactive technologies like those explored in this
paper may be useful for improving MOOCs.
Another important type of online educational technology

that is already commonly used is the online homework
system. These systems have emerged in many fields,
including physics, as a means of allowing students maxi-
mum opportunity to develop and apply their knowledge
and skills, while maintaining reasonable levels of grading
responsibilities for instructors [13,14]. Automatic assess-
ment of students’ answers to numeric or multiple-choice
questions is a critical component of these homework
systems. Our work shows progress towards automated
assessment of student responses to a wider range of
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question types, which may ultimately be useful for online
homework systems.
Tutoring via computer has also been a goal in physics

education research [8,9]. Our work, which centers on the
design, development, and testing of an online video-based
synthetic tutoring system, has the potential to further extend
the range of instructional possibilities offered online and do
so in a way that aims to emulate one-on-one tutoring.
Tutoring was selected as the mode of instruction for this
project because of its well-known efficacy [15,16]. The
system provides instruction via multiple multimedia-based
components, but the centerpiece of the system is a video tutor
built on synthetic interview technology [17]. This technology
allows students to type natural language questions and
receive prerecorded video responses to those questions
[17]. It is clear, however, that a tutor does more than answer
questions, and, as discussed below, our system provides
more than just answers to questions. A key provision is
feedback based on student performance. The results that we
present here focus on understanding how to build a system
that provides a more interactive and instructive experience by
providing this feedback via automated assessment of stu-
dents’ text responses to short-answer questions.
To replicate the beneficial results of tutoring, it is

instructive to understand the mechanics of tutoring and
how they give rise to a positive instructional interaction.
Considerable research has been conducted to understand
the tutoring process and what makes it so effective [18–21].
While attributing the increase in efficacy to an increase in
the teacher’s ability to provide customized instruction is
tempting, prior research suggests that the superior efficacy
of tutoring as a teaching and learning method is due more to
an enhanced opportunity for students to interact cognitively
with the material to be learned [21]. A useful 5-step model
of tutoring has been established [19]. We make use of that
model in this work to identify roles that our synthetic tutor
can or should play, and to help understand how it succeeds
and fails in performing those roles. The five steps in that
model are as follows:
(1) Tutor provides a problem or question.
(2) Student answers the question or solves the problem.
(3) Tutor provides targeted feedback on the answer or

solution.
(4) Tutor and student collaborate tomake further progress.
(5) Tutor assesses the student’s knowledge.
While this model may not encompass every approach to

tutoring, or the occurrences in every tutoring session, it
does provide a useful framework for understanding many
tutoring sessions, and provides a set of conditions a
synthetic tutoring system should satisfy. Natural language
processing technology and web-deployed video have
enabled us to build a system that can present students
with a problem or question and answer students’ typed
natural language questions regarding relevant physics
content. That type of system can be effective for building

a tutoring session that provides items 1, 2, and 4. Our
system provides a video discussion of the activities after the
student has completed them, which acts as a form of
feedback, however, it is not focused and responsive to
individual needs. It does not provide assessment of indi-
vidual students’ work. In that sense, we see that our system
is less capable in providing items 3 and 5. This is a
foreseeable limitation of our system, but it is not a
limitation that is easily overcome without data. Once we
understand how students respond to lesson questions we
can begin to ask how the synthetic tutor should respond to
the student in a way that provides useful feedback and
allows for assessment of student learning. An important
requirement for our system to function as a tutor is that the
approach must be one that a computer can execute in real
time. Providing students with feedback two days later after
a person has read their work is not viable. In this paper we
present the results of an analysis that used machine learning
to classify students’ responses to short answer questions
based on the contents of their responses. The approach
shows initial promise for allowing us to develop a more
interactive synthetic tutor that could automatically identify
the types of ideas being expressed by the student and
respond in appropriate ways.
The benefits of automated assessing of student work are

fairly obvious, and considerable effort has been directed
towards that goal. Clearly the means of assessment differ
depending on the type of work students submit. Computer
systems can easily assess the numerical correctness of
students’answers to questions or problems. Online home-
work systems in math and the sciences have hinged on this
ease. Responses to multiple-choice questions are similarly
easy. These types of responses, however, fail to convey
significant components of student understanding, and
automated assessment of longer, richer text responses is
highly desirable. These text responses can be broken
down, relatively neatly, into essays and short answers.
Computerized essay scoring dates to the 1960s and con-
tinues to be an active area of research today [22–25].
Automated assessment of short text answers to questions is
also an area of interest both in and out of science education
[26–29]. Automatic assessment of short responses is in
some sense more difficult because of the smaller quantity of
text from which a program must make the assessment [25].
Some effort in this direction has focused on the classi-
fication of answers that can be objectively classified as right
or wrong [27]. However, classification schemes that are
more nuanced and reflect the similarities and differences in
ideas expressed by students are clearly more interesting
both to researchers who are interested in a more detailed
picture of what students think about a given idea and to
teachers who need that detailed picture to successfully
intervene when students do not understand. Our research
therefore focuses on classifying short-text responses to
questions not based on correctness but based on common
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ideas expressed in the responses. We believe this approach
is an interesting and potentially productive one, worthy of
investigation, for developing a system that works as a tutor.
Furthermore, we believe that the approach may be useful to
researchers and instructors in a broader sense. Automatic
assessment has the potential to allow instructors to provide
students with feedback in online learning environments,
including MOOCs, that might look quite different from
ours. There is already evidence that automated assessment
of written work in the context of biology correlates
reasonably well with assessment via oral clinical interviews
[30]. There has long been evidence that mathematical
assessment methods have distinct advantages worth pursu-
ing [31]. It is logical to consider applying these techniques
in our application, however, the approach must be inves-
tigated. If shown effective, it also has the potential to
expedite grading. Therefore, while we investigate the

techniques to advance our tutoring project, we stress their
potential applicability far beyond that scope.

II. PATHWAY ACTIVE LEARNING
ENVIRONMENT AND ITS FUNCTION

Our system, the Pathway Active Learning Environment
(PALE), is a multimedia-based synthetic tutoring system
designed to promote active learning of physics concepts
with support from a natural-language video interface. The
system is targeted at high school and college physics
students studying algebra- or concept-based physics. The
system’s user interface is shown in Fig. 1. Our system
provides prerecorded video responses to students’ typed
questions, without the use of artificial intelligence. This
technology, termed the Synthetic Interview (SI), was
developed as a means of simulating a conversation [17].
Students can enter natural language questions by typing

FIG. 1. The Pathway Active Learning Environment interface: The lesson activities and relevant video clip can be seen on the left. The
SI tutor can be seen in the center of the interface. At the right a sample video supplementing the tutor’s explanation is shown.
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them into an input field. However, just as in a tutoring
session, students may not always know what to ask. Thus,
they are also provided with a set of so-called quickstart
questions from which they can choose. The system inter-
face is shown in Fig. 1. It can be broken up spatially into
three panels: a left panel, a right panel, and a center panel.
The video tutor component of the system, along with one of
the SI tutors, is shown in the center panel. Questions are
submitted beneath the video player, which provides the
responses. The function of the components of the right and
left panels are described in the next two paragraphs.
The model of tutoring described previously requires a

question or problem for the student to work on. Our system
provides this, in the form of lesson activities built around
video clips. Video clips were chosen as the focus of the
lesson activities because they provide direct, observable
connections between the ideas of physics and the physical
behavior of real objects. A related capability of the system
is the possibility of extracting time information (by
advancing the video clip frame by frame) and displacement
information (via on-screen scales) directly from the video
clip. This kind of application of video in physics education
has a long, well-established record of use in physics
education [32–36]. In this sense, direct extraction of
quantitative information that precisely connects the ideas
of physics to physical objects in the video is possible. Using
information from the video, students who use the PALE
system must answer both quantitative and conceptual
questions about the video clip in each activity. The lesson
questions and video clip serve as the context for the tutoring
process and can be seen in the left panel of the interface in
Fig. 1. The students read and answer the questions at the
top of the screen. The video clip related to those questions
is at the bottom of the screen on the left side.
Human tutors can use paper and pencil to positive effect

in a tutoring session, drawing pictures, and sketching
processes that occur in time. While it is not possible for
our system to directly replicate this ability we can try to
build a somewhat similar feature into the PALE system. We
can do this by using additional multimedia to supplement
the tutor’s explanations of physics ideas. This facet of the
system can be seen on the right side of the screen in Fig. 1.
As the system currently exists, this multimedia can take the
form of narrated video clips or static pictures. The goal of
this media is to illustrate and clarify the SI tutor’s responses
to student questions.
To make use of established pedagogy we developed our

lessons to follow a three-stage learning cycle [37]. In each
lesson students begin with a series of three activities
designed to help the students explore the ideas to be
learned in the lesson. This was followed by a formal
concept introduction stage that was provided via a video
presentation from the tutor persona. Each lesson concluded
with three activities designed to help students apply the
ideas in new contexts. While it is not possible to a priori

gauge students’ knowledge and experiences prior to work-
ing with our system, we developed or selected video clips
that were likely to connect to students’ prior life experi-
ences and prior knowledge. We have developed three
lessons, one on each of Newton’s laws.
Ultimately successful tutoring exercises should elicit

student’s current beliefs about subject matter, or their current
approaches to solving problems in clear ways to allow the
tutor to accurately gauge student understanding (as reflected
in the 5-step model). To fulfill this role the majority of our
video-based lesson activities require students to make a
prediction (along with an explanation or justification of that
prediction) about the behavior of one or more physical
objects, then observe the behavior and explain it using the
relevant ideas. This predict-observe-explain process is well
established [38,39]. We believe that it represents a sound
pedagogical structure that mirrors the methods of scientific
inquiry, and also promotes the function of our multimedia
system in a more tutorlike manner. It is related to the elicit-
confront-resolve process [40].
To best study the utility and efficacy of the PALE system

in helping students learn it is necessary to gain a detailed
picture of how students use the system, which requires
logging student interactions with the system along with an
ID tag that allows us to tie each interaction to an individual.
Therefore students who used the PALE system were required
to create accounts and the system logged all queries to the
tutor (along with information about how the query was
submitted), along with their responses to the lesson ques-
tions. The PALE logs this information with a time stamp so it
is possible to reconstruct a detailed picture of each student’s
interactions with the system. The responses analyzed for this
work were extracted from this log.

III. RESEARCH DESIGN

In this paper we discuss research aimed at investigating
the potential benefits of using machine learning for the
automated assessment of students’ short answers to con-
ceptual physics questions in the context of our online
learning environment. The central question that we seek
evidence to answer is whether it is reasonable to train a
computer to automatically classify a student’s response to a
short-answer question based on the contents of the
response. To do this we need a relatively large corpus of
responses to short-answer questions. It is well established
that virtually all automated text analysis schemes work
better with larger data sets [29,41–45]. However, the
successful demonstration of an automated analysis scheme
that can be performed on smaller data sets opens the
technique to a much wider array of educators and research-
ers, not just those who can build large data sets. Here we
investigate whether an automated analysis scheme can be
applied to data sets that consist of around 100–150
responses. This represents a corpus size that virtually
any instructor or researcher could obtain in a reasonable
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time frame, and that larger-scale operations could obtain
quite quickly and easily. We believe it also represents a
lower limit on the size of a data set for which this type of
analysis is feasible. We note prior research on using
computerized scoring with short-answer questions [28,29].
These efforts focus, quite reasonably, on very large data
corpuses because large corpuses generally produce more
robust, effective computer models [29,41–45]. Since col-
lecting large data sets requires effort, particularly for high
school teachers and instructors at small colleges and
universities, understanding how such techniques can be
applied to smaller data sets is of interest, and has not been
well explored.
To obtain the data for our analysis we collected responses

from a variety of students who worked with the PALE
system under various conditions. We collected responses
from 22 algebra-based physics students who used the
system in our interview facility, 30 algebra-based physics
students who used the system as part of a homework
assignment in a university computer-equipped classroom,
99 concept-based physics students who used the system (at a
time and location of their choosing) as part of an assignment

from their course instructor, and 41 high school physics
students who used the system in their classroom as part of an
in-class assignment from their high school teacher. While
these student populations are quite different in some ways,
our system is generally appropriate for students in intro-
ductory high school and college physics classes. Moreover
we see some evidence for similarities in the ideas expressed
by students across these different student groups.We believe
that it is therefore appropriate to combine response sets from
these different populations to better produce a system that
can respond to a wider range of students.
A limited amount of demographic information was

collected for the students via self-reporting prior to com-
pleting the exercises. We know, for example, that almost all
of the students indicated that they self-identify as white and
that the sample contains more females than males (the
conceptual physics class targets elementary education
majors, thus this makes sense). For our purposes this type
of information was not of highest importance. However, in
retrospect, there is demographic information that might be
of some importance that was not collected, such as the
number of non-native English speakers or English language

FIG. 2. Flowchart indicating the general analysis scheme followed in this paper.
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learners were present in the sample. Unfortunately, we
cannot comment on this in precise, quantitative ways but
given the demographics of Kansas State University and the
high schools from which we sampled we have no reason to
believe that a significant portion of the students are English
language learners or non-native English speakers.
To conduct our analysis we used a utility designed for

this kind of analysis called LightSIDE [46]. LightSIDE
allows users to extract feature lists from text data, and,
using user-provided coding schemes, train computer mod-
els that can be used to code more text data [46]. LightSIDE
is, at the time of this writing, free for download, which
makes it a low-cost utility for this type of analysis [47].
LightSIDE (or its predecessor, SIDE) has been used in prior
research that exploits machine learning for computerized
assessment of student work [29,30,48,49]. Its choice is
justified as a robust, time-efficient tool, well suited to this
type of analysis, in some cases outperforming commercial
software [48,49].
In this research we use an established supervised learn-

ing approach to classification of data [41]. A schematic of
the analysis approach is shown in Fig. 2. In this approach
we take a set of responses to a given question and begin by
grouping them based on commonalities in the ideas that are
expressed in the responses. This requires reading over the
responses multiple times to gain insight into the range of
ideas expressed. Multiple groupings for a given response
set are possible, and some may be more insightful than
others. As will be discussed in greater detail below,
decisions about how coarsely or finely to disaggregate
the responses can ultimately make differences on the
success of the computer assessment. Once the responses
have been manually grouped they are randomized and
divided into two equal-sized groups. A feature list is
extracted for each group. While any searchable facet
contained within the group of responses can be considered
a feature, in this work we focused on the single words that
made up the sets of responses; and, therefore, the feature
list in this work is a list of all the words that show up in a
given response set. It is possible to extract pairs, triplets, or
larger groups of words as features in machine learning
(bigrams, trigrams, and n-grams, respectively). We have
observed in our data sets that extracting these additional
features adds significantly to the analysis time while failing
to improve the results. Once feature lists are extracted for
each half of the response set a machine-learning algorithm
is used to train a computer model capable of classifying
additional responses using the same classification scheme.
The algorithm uses the feature list, the human researchers’
groupings, and the distribution of the features within the
response set to identify the features that differentiate
responses in one group from responses in another group.
A number of machine learning algorithms are useful
for this kind of analysis; NaïveBayes and Support Vector
Machines (SVM) are two that are commonly used [42–45].

We experimented with the implementations of both algo-
rithms that are packaged with LightSIDE. The results
obtained here were obtained using SVM.
A commonly used metric for assessing interrater agree-

ment is Cohen’s kappa [50]. The primary benefit of using
Cohen’s kappa over the simpler percent agreement is that
the kappa statistic takes into account the possibility of
random agreement. The statistic is calculated via

κ ¼ Pobs − Prand

1 − Prand
; ð1Þ

where Pobs is the actual observed rate of agreement
between the two raters and Prand is the expected rate of
agreement, assuming purely random agreement. Clearly a
kappa value of 0 is consistent with an observed rate of
agreement equal to the expected rate of random chance
agreement. Standards for interpreting the kappa statistic are
context dependent, and a good result in one situation may
not be satisfactory in another. Landis and Koch introduced
a rubric for interpreting kappa in 1977, which is now
commonly used [51]. In order to provide some objective
standard for comparison we make use of this rubric; it is
summarized in Table I.
Ultimately benchmarks for our interrater agreement

standards must come from understanding about minimum
standards of functionality for our system, and how it can be
made to function increasingly like a human tutor. This
requires an understanding of how accurate a human tutor
can be in assessing student meaning, and tying our results
to that figure of merit. We address this explicitly in the
discussion section.
Not all questions resulted in response sets amenable to

this type of analysis, and we should not expect this would
be the case. Instead, it is expected that most questions will
not result in response sets where we can use this scheme. In
the context of a lesson activity, however, it may be
sufficient if even just one question can be automatically
assessed. This could provide a sufficient glimpse into what
the student might be thinking so that productive instruc-
tional feedback can be given. Over the course of our three
lessons, and 18 lesson activities students answered nearly
80 questions, yielding over 10 000 responses. Since our
scheme requires a human to read and code the questions,
we determined it was not reasonable to try to analyze all of

TABLE I. Interrater agreement rubric from [51].

κ value Agreement

<0.00 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.61 Moderate
0.61–0.80 Substantial
0.81–1.00 Near perfect
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the responses we had collected. We, instead, looked for
examples of questions where the analysis seemed likely to
be appropriate. The questions were chosen based on
whether clear, conceptually distinct groupings of responses
could be identified within the total response set. While we
do not expect every question to produce this type of
conceptual coherence it is a desirable quality which we
seek out. To analyze the data the total data set was reviewed
and evaluated in a coarse manner to identify questions that
were likely to produce conceptually distinct groupings.
Once questions of this type were identified, the responses to
each question were carefully and repeatedly reviewed via a
qualitative analysis approach to determine the range of
ideas expressed in each response set and how the responses
best grouped together. We do not and cannot argue that the
groupings are unique, nor that there is one best grouping of
the responses. Once a response set was completely coded,
the analysis depicted in Fig. 2 was performed using
LightSIDE. Prior to this analysis the data were run through
the Microsoft Office spell-checking program to minimize
the possibility of mismatch due to spelling errors. The
process was conducted by a combination of the spell
checker and visual inspection to ensure that typographical
errors were adjusted to proper spelling without changing
the meaning (as well as could reasonably be determined). In
two instances the intended word was unclear and the
misspelled word was not changed. The rate of spelling
errors within sets of responses to a given question ranged
from 0.06 errors per response to 0.25 errors per response,
with 0.2 errors per response typifying the overall corpus of
responses. By far the most common issue was the spelling
of because as “becuase” with alternate spellings of accel-
eration and cylinder also recurring in the response sets.
Overall spelling and typographical errors were a minor
nuisance, not a significant problem. A small subset of the
data consisting of confusing, irrelevant, or profane
responses were removed as well. In future work in this
direction automatic spell checking and noise rejection
would be both feasible and desirable. The results we
present come from analysis conducted on sets of responses
to nine questions taken from nine of the activities. To allow
the reader to understand more of the context in which the
responses were collected we will describe briefly each of
the nine activities and questions.
(1) Ball and track: In this activity students explored

Newton’s first law in the context of a ball rolling
along a flat, low-friction track. We present the
analysis of responses that resulted from asking
students how the speed of the ball (the motion of
which they had already observed) would change if
the track’s length was doubled.

(2) Car and coffee cup: In this Newton’s first law
activity, students observed the motion of a coffee
cup “accidentally” left on the back of a car as the car
drives off. We present the analysis of responses that

resulted from asking students how the coffee cup’s
velocity in the horizontal direction changes as the car
begins to drive.

(3) Crash test dummy: In this Newton’s first law
activity, students observe, and quantitatively char-
acterize the motion of an unrestrained crash test
dummy during a crash. We present the analysis of
responses that resulted from asking students why the
dummy’s motion ultimately stops.

(4) Coin and cylinder: In this Newton’s first law activity,
students were posed the problem of obtaining a
coin stuck lightly inside a graduated cylinder. We
present the analysis of students’proposed methods of
obtaining the coin.

(5) Beaker and coin: In this Newton’s first law activity,
students were presented with a coin sitting on a card,
which in turn was sitting on a beaker. Students were
asked to predict, observe, and explain the motion of
the coin as the card was quickly pulled. We present
the analysis of the predictions.

(6) Hammer and feather: In this Newton’s second law
activity, students were asked to predict the motion of
a hammer and feather released from rest by an
astronaut on the moon. We present the analysis of
responses that resulted from asking students to
predict what would happen when the two objects
were simultaneously released, and, in particular,
how the two objects’ motions would compare.

(7) Train crash: In this Newton’s third law activity,
students observed and quantitatively investigated the
motion of two trains of equal mass colliding at equal
and opposite velocities. We present the analysis of
responses that resulted from asking students to
explain how they could tell whether the trains felt
forces during the collision.

(8) Bowling ball and ice skater: In this Newton’s third
law activity, students observed and quantitatively
investigated the motion of a bowling ball and ice
skater when the ice skater throws the bowling ball.
The low-friction environment provided by the ice
enables the students to see clearly how forces are
exerted on the skater and the ball. We present the
results of analyzing a response set that resulted from
asking students which object experiences more
acceleration and why.

(9) Live and dead ball: In this Newton’s third law
activity, students were asked to compare the respec-
tive forces felt by a bouncing and nonbouncing ball
upon impact with a table. We present the analysis of
responses that resulted from asking students which
material they would prefer having dropped on their
own chest.

There is variance in the length of the responses students
provide, and this is clearly an important characteristic of the
response sets. If students provide one word responses then
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this is not a productive line of research, but also the responses
should not be long essays. This can be well characterized.
For example, in the ball and track activity the response set
had a mean length of 100 characters with a standard error of
5 characters. This corresponds to a typical response that is
1 or 2 complete sentences in length. The maximum length of
a response in this activity was 383 characters long and the
minimum was 5, which indicates that some people do
provide single word responses (which are still analyzable),
but that this is the exception, not the norm. The shortest
responses were provided in the crash test dummy question
with a mean response length of 51 characters with a standard
error of 3 characters. Typical responses were just one
sentence longwith two sentence responses being uncommon
(there were 3). The shortest response was three words long.
The coin and cylinder activity had a mean response length of
68 characters and the rest of the activities had mean response
lengths that fell between 80 and 115 characters. In general,
this paints a clear picture in which students provide
responses that are generally long enough to provide appro-
priate physical details, but are not excessively verbose.

IV. RESULTS

The results of our analysis are summarized in Table II.
Each row contains information relevant to the analyzed
question response set from a particular lesson activity. The
second column indicates the number of groups identified in
the qualitative analysis of the response set. The third
column indicates the number of responses in each response
set. The fourth and fifth columns indicate the level of
agreement between the human rater and the computer
model when self-validation was performed, that is when
the entire response set was coded using a model that was
trained on the entire data set. The sixth and seventh
columns indicate the level of agreement that was obtained
when the response sets where randomly divided in half, two
models were trained on the two half sets of data and each
half of the data set was coded using the model trained on
the other half.
As an additional check on our method of identifying

groups an external rater with a background in physics and

education was asked to code a random subset of the data
chosen from four randomly selected activities: ball and
track, car and coffee cup, hammer and feather, and ice
skater and bowling ball. This amounted to coding a 12%
sample of the data. The interrater agreement on these
activities were 97%, 86%, 94%, and 98%, respectively. The
lower agreement on the car and coffee cup activity is almost
certainly due to the larger number of groups that emerged,
which is indicative of less conceptual coherence within the
data set. Responses in this set were more conceptually
scattered, which makes analysis harder, for both human and
computer. This issue is a key difficulty and is discussed in
greater detail in subsection F, below. Still the agreement is
reasonably good across all four activities, which suggests
that while the groupings are not unique, they are distinctly
recognizable.
In Table II we see five activities for which the automated

assessment protocol was more successful and four for
which it was less successful. The former are ball and track,
crash test dummy, coin and cylinder, hammer and feather,
and ice skater and bowling ball activities. All of which had
self-validation match rates at or above 70% and cross-
validation match rates at or above 60%. Four of them had
cross-validation match rates at or above 70%. This corre-
sponds to κ statistics that would be considered moderate to
substantial by the scheme in Table I. The remaining
activities had cross-validation match rates at or below
50%, and κ statistics that would be considered only fair
by Landis and Koch rubric. Looking at the details of how
the computer model grouped the responses to some of the
questions in Table II provides insight into how best to write
activities that might better yield response sets that lend
themselves to this type of analysis. In the following
sections we will look at these details for the five most
successful cases and discuss the elements which likely led
to lower quality results in the other four.
We should note that the agreement rate via self-

validation is a good predictor of agreement rate obtained
via cross validation. This is intuitive, but also useful to
observe, because performing the self-validation without a
cross validation may be a faster, easier way to assess the
utility of a particular computer model in the developmental

TABLE II. Self-validation and cross-validation success rates for the 9 questions analyzed.

Question Groups Responses Self-validated matches κ Cross-validated matches κ

Ball and track 6 161 116 (72%) 0.6235 112 (70%) 0.5791
Car and coffee cup 14 154 75 (49%) 0.4206 55 (36%) 0.3614
Crash test dummy 6 161 136 (84%) 0.6535 135 (84%) 0.6743
Coin and cylinder 9 150 109 (73%) 0.6714 92 (61%) 0.5328
Beaker and coin 9 142 76 (54%) 0.4654 54 (38%) 0.3024
Hammer and feather 5 158 140 (89%) 0.7947 134 (85%) 0.7128
Train crash 13 105 52 (49%) 0.3888 38 (36%) 0.2282
Ice skater 8 110 77 (70%) 0.6298 77 (70%) 0.5653
Live and dead ball 9 89 49 (55%) 0.4396 44 (49%) 0.3321
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stages of a system. Clearly, only cross validation with data
that was not used in generating the model can provide
certainty about the model’s continued ability to classify
new data, and there is no guarantee that future data will be
well described by previously generated models. However,
in this work we are interested in how the approach succeeds
and fails, so in the succeeding sections we analyze the self-
validation results because they provide a clearer lens on
what is working without masking what is not.
The metrics for understanding the efficacy of the method

category-by-category are precision and recall [52].
Precision and recall are based on the binary judgement
of “relevant” and “irrelevant” and maximizing the return of
relevant items and minimizing the return of irrelevant items
[52]. In the context of our research the computer model
would have coded a relevant response if it coded it as the
human rater did, and it would have coded an irrelevant
response if it coded it in another manner. Precision then
characterizes the extent to which the computer model
correctly rejects the irrelevant responses for each of the
possible codes. Recall characterizes the extent to which the
computer model correctly classifies all the possible relevant
responses. We can think of precision as rejecting false
positives and recall as obtaining true positives. It is clear
that both are important for the success of the system since
for any given code, a false positive corresponds to a missed
true positive for another code.

A. Ball and track

In the question analyzed students were asked how the
speed of a ball moving on a flat, low-friction track would
change if it were measured at the end of a track that was
twice as long. Fifty-eight of the 161 student responses
indicated that the ball would move more slowly if the track
were extended. A small, but interestingly large minority of
18 indicated that the ball’s speed would increase. Fifteen
responses were numeric in nature and 7 refused to choose
between slowing down and maintaining the same velocity.
Table III summarizes the number of responses identified by
human coding as belonging to each group, the number
matched that way by the computer, the total number the
computer coded as belonging to each group, and the
number mismatched. Naturally, the number matched

plus the number mismatched must add to the num-
ber coded.
The most important thing to recognize is that it is clear in

this question that students can only respond in a few
reasonable ways. While the question may seem simplistic,
the students’ answers reveals something about how they are
likely thinking about the physical system. This activity,
which parallels Galileo’s inertia experiments is, in part,
designed to encourage students to consider the effect of
friction, whether it is small, and how the relevant object
would behave if it were zero.
This question and activity illustrates what we believe to

be the key to writing questions and activities amenable to
this type of automated analysis: questions should have a
limited and small number of reasonable responses, and
those responses should connect as directly as possible to
distinct ways of thinking about the physical system. In this
case we can see that a significant fraction of the students are
saying that the ball will slow down. We can quite
reasonably assume that they think this because of friction.
This is not wrong, and it could be the starting point for a
discussion about friction, and how it can mask Newton’s
first law, if we can successfully identify the students who
provide that response. In this case, we can do that with
better than 80% accuracy. We note that a small, but non-
negligible fraction of the students indicated that the ball
would speed up. There are multiple hypotheses about why
they think this will happen, but ultimately it is necessary to
ask a student why such a response was provided. This
highlights an interesting facet of consideration for deter-
mining the minimum size of a response set for performing
this type of analysis. We believe that it is not always more
desirable to have more data to more accurately classify the
dominant groups, but instead to have more examples of less
frequent, but interesting responses to improve the matching
rates for those types of responses.

B. Crash test dummy

In this question students were asked to explain why an
unrestrained dummy, which is in motion during a car crash,
ultimately stops. The best grouping scheme obtained is
shown in Table IV. The majority of responses, 104, were
not really an explanation, but simply a physical description

TABLE III. Group-by-group matching for the ball and track activity.

Group Number Matched Recall Coded Mismatched Precision

Slower 58 48 83% 68 20 71%
The same 43 39 91% 44 5 88%
Slower; not much 20 11 55% 16 5 69%
Greater 18 8 44% 14 6 57%
Numeric answer 15 9 60% 17 8 53%
Same or slower 7 1 14% 2 1 50%
Total 161 116 � � � 161 45 � � �
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of what had occurred in the video clip. Thirty-four
responses focused on the idea that the dummy must feel
a force to stop. Sixteen responses focused on force in
different ways. Four responses cited Newton’s 3rd law as
the reason the dummy stops moving. Two explained the
video clip in terms of the dummy’s momentum being
removed. One response cast the happenings purely in terms
of acceleration. Table IV summarizes the group-by-group
details for this activity in the same manner as Table III.
A small, but significant number of students indicated that

the externally applied force is responsible for the change in
the dummy’s motion. The response set is dominated by
answers that simply describe what is going on physically,
that is, they do not provide any real explanation. While this
may seem uninteresting at first, we observe that there is
sufficient similarity across these responses that the com-
puter correctly identified 98% of them with only 8%
contamination from other responses. Thus, if a student
answered the question by just describing what happened
without explanation, the system could identify that, and
provide feedback that focused on asking for a more
detailed, explanatory answer. If the student correctly
identified an external force as the source of the change
in motion, the computer could identify that with high
success as well. The more concerning problem is that a
relatively high number of incorrect responses were inap-
propriately grouped into the force on dummy group. We
must note, however, the small number of responses for
training the model, which is likely responsible for this
issue. It would be instructive to repeat the analysis after

students had been given the feedback and asked to re-
answer. A logical hypothesis is that the second set of
answers would heavily populate the other groups, but it
may be that additional groups emerge from that data set.

C. Coin stuck in a graduated cylinder

In this question students were asked to provide a method
of obtaining a coin lightly stuck in the bottom of a
graduated cylinder (so that they could not reach in and
get it) and explain their method in the context of Newton’s
first law. The results from the best observed grouping
scheme are summarized in Table V. Thirty-one responses
suggested getting the coin simply by inverting the cylinder.
Another 30 suggested hitting the bottom, 26 suggested
hitting it on the table, 24 suggested that force was required.
Ten suggested using gravity. Another 10 suggested multi-
ple methods in a single response. Ten responses contained
miscellaneous other ideas that were hard to classify with
anything else expressed. Six responses focused on using the
coin’s inertia as a means of obtaining the coin. Three
simply indicated shaking the cylinder with no physical
explanation of why that would work. Table V summarizes
the group-by-group details for this activity.
In the previous question we saw a good matching

predominantly resulting from two dominant groups within
the response set. The first thing we note in this example is
that reasonably good matching is obtained despite a larger
number of smaller groups. The first five groups are all
matched reasonably well despite there being no one or two

TABLE IV. Group-by-group matching for the crash test dummy activity.

Group Number Matched Recall Coded Mismatched Precision

Phys. Desc. 104 102 98% 111 9 92%
Force on dummy 34 31 91% 45 14 69%
Other force ideas 16 3 19% 6 3 50%
Newton’s 3rd law 4 0 0% 2 2 0%
Momentum 2 0 0% 0 0 � � �
Acceleration 1 0 0% 1 1 0%
Total 161 136 � � � 161 25 � � �

TABLE V. Group-by-group matching for the coin stuck in a graduated cylinder activity.

Group Number Matched Recall Coded Mismatched Precision

Invert 31 31 100% 43 12 72%
Hit the bottom 30 21 70% 31 10 68%
Hit on table 26 18 69% 23 5 78%
Apply force 24 22 92% 29 7 76%
Use gravity 10 10 100% 10 0 100%
Mult. methods 10 1 10% 5 4 20%
Other ideas 10 3 30% 6 3 50%
Inertia ideas 6 2 33% 2 0 100%
Shake 3 1 33% 1 0 100%
Total 150 109 � � � 150 41 � � �
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dominant responses. In this case, still, the smallest groups
are not well matched but that will always be the case, and
this again illustrates that the principle motivation for
collecting more data is to improve the matching rates for
these smaller groups.
This example also serves to illustrate how the clustering

of responses is not unique, but the approach is useful
despite this lack of uniqueness, and perhaps in some sense
because of it. In this question students were asked to
propose and explain a method for obtaining a coin. While
grouping responses based on the proposed methods pro-
vides a distinct framework for classifying the responses that
also works reasonably well for training computer models,
another perspective for understanding the responses exists.
Students frequently viewed the activity from the perspec-
tive of “a force must be applied to the coin” or “once the
coin is in motion it will stay in motion.” Because the
activity focuses on Newton’s first law, the latter perspective
is more productive in explaining how to obtain the coin.
We could group the responses based on this framework
instead, but the variety of approaches that are consistent
with either one of these perspectives makes it more difficult
to train a computer model. Selecting the framework more
suitable to automated analysis, however, does not preclude
us, as intelligent actors, from realizing that other frame-
works exist and deciding whether or not they warrant
investigation.

D. Hammer and feather dropped on the moon

In this activity students were asked to predict (with
justification), observe, and explain the behavior of a
hammer and feather dropped on the moon. Watching the
video reveals that, in the absence of air resistance, the
hammer and feather fall at the same rate. The question we
analyze asked students to predict the motion with explan-
ation. In this question 98 responses indicated that the
motion for the hammer and feather would be the same.
Twenty-seven responses indicated that the hammer and
feather would float when released. Twenty-two indicated
that the hammer would fall faster. Five responses were
really physical descriptions that did not make a clear
prediction and six responses contained miscellaneous other
ideas that were hard to group with anything else. Table VI
summarizes the group-by-group details for this activity.

We can see that the majority of the students correctly
predicted the behavior of the two objects and for the three
major groupings, the computer model correctly matched the
human rater more than 85% of the time. The contamination
with other responses in those three groups was small,
consistent with the overall high match rate of 89%.
Interestingly, nearly 15% of the responses are consistent
with failing to understand that there is gravity on the moon.
While this finding is hardly earth shattering for the physics
education community, it is important to know from an
instructor’s perspective, and illustrates how an online learn-
ing environment, such as ours, coupled with fast, automated
feedback can be useful, in the context of a MOOC or a
traditional class. While only 15% of students thought this,
that is still a noteworthy fraction. In a lecture-class scenario
that would be sufficient to warrant explicit mentioning in
class. Many experienced teachers have anecdotal stories of
being surprised by something their students did not know.
This type of implementation could allow us to observe,
quantify, and address these types of issues.
This question illustrates a potential benefit of fast feed-

back, as well. If the computer learning environment can
correctly identify the students who hold a specific idea, or
are using a specific approach to a problem, it can provide
feedback to the student while they are still working on the
problem, instead of later, once the instructor has had time to
review the responses.

E. Ice skater throws a bowling ball

In this question students were asked which object, an ice
skater or a bowling ball, experienced greater acceleration
when the ice skater throws the ball, and moves backwards
as a result. In this question 32 of the responses indicated
that the bowling ball felt more acceleration because it had
less mass. Twenty-four responses indicated that the bowl-
ing ball experienced greater acceleration because it had
greater speed. Eighteen responses indicated the bowling
ball had greater acceleration and assigned force as the
reason. Ten responses indicated that the skater accelerated
faster. Nine responses indicated that the bowling ball
accelerated faster, and explained in terms of Newton’s
laws explicitly. Eight responses indicated that the skater
and bowling ball experience the same acceleration,
4 responses suggested that the bowling ball accelerated

TABLE VI. Group-by-group matching for the hammer and feather on the moon activity.

Group Number Matched Recall Coded Mismatched Precision

Same 98 93 95% 101 8 92%
Float 27 23 85% 25 2 92%
Hammer is faster 22 20 91% 22 2 91%
Phys. Desc. 5 3 60% 6 3 50%
Misc. Ideas 6 1 17% 4 3 25%
Total 158 140 � � � 158 18 � � �
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more rapidly and explained that in terms of the distance the
ball moved. Five responses indicated that the bowling ball
accelerated faster and justified that in terms of other
miscellaneous ideas that did not fit with other ideas
expressed. Table VII summarizes the group-by-group
details for this activity.
This example again illustrates how the design of the

activity may result in response sets that are more appro-
priate for this type of analysis. Because this video features
only an ice skater and a bowling ball, only one of those can
be chosen as having a greater acceleration. Nothing else
makes sense. Furthermore, only a few physical explan-
ations can be used to justify either choice. One can focus on
the mass difference between the skater and bowling ball,
one can focus on the apparent difference in speeds between
the two objects as they begin their respective motions, etc.

F. Other activities

Though the match or mismatch picture yields enlight-
ening results for some but not all of the activities, we can
learn some things from some of the other activities as well.
An activity that illustrates what can happen when there are
too many ideas for students to focus on, or if too many
groupings emerge is the car and coffee cup activity. This
activity centers on a video in which an actor leaves his
coffee cup on his car and then drives off. The coffee cup
predictably falls straight down and students are asked to
explain the motion in terms of Newton’s first law. Students
focused on a wide range of ideas: gravity, horizontal
motion, vertical motion, whether the car and cup were
attached, whether the cup felt a force, and others. This is
evident from the 14 different groups that emerged from that
response set. Another natural result of more groupings is
that each group contains fewer responses and the computer
has less data to train on. It would be interesting to see
whether the computer could more effectively classify the
responses with a significantly larger data set.
The activity that centers on the motion of the coin on the

beaker parallels the coffee cup activity discussed above,
and we observe the same problem: that students focused on
a variety of ideas, many different groups emerged, which
makes it difficult to achieve success with the automated

assessment procedure. If a question results in a response set
with a relatively small number of conceptually distinct
responses then this analysis approach is more effective. If a
question results in a response set that contains many, hard
to distinguish ideas the analysis approach will likely not be
effective.
In the train crash activity again we see a larger number of

groupings emerge, and generally poorer matching between
human and computer. That activity also suffers because the
video contains two identical trains, and requires students to
discuss the concept of force in that context. The logical
result is that most responses focus on trains and force, but
may convey very different ideas. This makes it difficult for
the computer to resolve, via the presence or absence of
other features, the subtle differences in the responses that
convey to the human rater the differences in meaning that
lead to different classification.
In the live and dead ball activity we also observed an

example of a single idea being used in multiple ways.
Virtually every response to this question contains the word
force and constructs an explanation of what is going on
using the concept of force. This makes for a response set
that is very confusing for automated assessment. A rela-
tively large number of groupings emerged for this question.
However, in this case, the computer’s inability to classify
conceptually different responses is more likely due to
students’ use of the same words to convey different ideas.
Potentially, three approaches could remedy this issue. The
first, and in some sense easiest, is to take more data hoping
that a better-trained model will better tag responses. The
second is to require longer, more detailed responses which
will allow the computer to have a larger body of text upon
which to train. The third approach is to attempt to rewrite
the activity to try to elicit students’ ideas in ways that are
less textually similar. At this point there is no way to know
a priori whether any of these three methods will yield
improvement; they must be tried to empirically judge.

V. DISCUSSION

In this work we present results from applying automated
analysis techniques to student responses to short-answer
questions. Further research in this direction is required

TABLE VII. Group-by-group matching for the ice skater and bowling ball (BB) activity.

Group Number Matched Recall Coded Mismatched Precision

BB/less mass 32 29 91% 35 6 83%
BB/greater speed 24 18 75% 23 5 72%
BB/feels force 18 11 61% 22 11 50%
Skater 10 4 40% 7 3 57%
BB/Newton’s laws 9 5 56% 7 2 71%
Same 8 6 75% 6 0 100%
BB/other ideas 5 2 40% 5 3 40%
BB/moves further 4 2 50% 5 3 40%
Total 110 77 � � � 110 33 � � �
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before it can be stated whether these results constitute what
can typically be attained for short-answer questions when
100 or 200 responses are collected. As we will discuss in
more detail below, we have seen examples of success that
clearly warrant further investigation.
The first, most important metric for judging the success of

this type of analysis is the rate of agreement between the
trained computer model and the human rater. We care both
about the κ statistic and the percent agreement because the κ
statistic allows us to assess the effectiveness of the auto-
mated assessment while controlling for random agreement,
which is a viable concern, but ultimately for implementation
a high percent agreement is the better figure of merit.
Exactly how high will be discussed in some detail at the end
of this section. From Table II we can see that the best results
exceed 70%, but the results are far from uniform.
Comparing the fourth and sixth columns (as well as the

fifth and seventh) of Table II shows relatively good
agreement between the performance of a self-validation
on an entire response set and the performance of cross
validation on each half of the data set. This may be of
interest to researchers, as an indicator that performing the
self-validation on a model is typically a good predictor of
how well the cross validation results will be.
Generally, our analysis has suggested to us that within a

given response set larger groups are more likely to be
correctly matched by the computer models. This is quite
reasonable, and generally expected. At the same time, it is
useful to explicitly see that expectation borne out. A rough
criterion of twenty responses within a group appears to be a
good guideline, though this is currently just an estimate. It
is likely that this is a desirable condition but insufficient to
guarantee good classification. Again, our current goals are
to explore the potential utility of this approach and identify
strategies that maximize the likelihood of success in
applying the approach; we are not yet in a position to
outline concrete rules for successful application. With the
rough guideline of about twenty responses per group in
mind, and the observation of five to ten groups emerging in
questions that do work well, we can also identify a good
general guideline for the minimum size of a data set for
which we might reasonably expect this approach to work.
That guideline is between 100 and 200 responses, depend-
ing on the number of groups that are identified in the
response set. From this estimate we can see that our data
sets are very much at the lower limit of what is feasible. It is
nonetheless interesting to observe some success with
response sets of this size, and our results suggest that there
is no reason to a priori reject this approach for data sets of
this size. At the same time, larger data sets being more
desirable suggests that collaborations that could combine
smaller response sets may present a significant advantage in
further exploring machine learning in physics education.
In order to interpret our results in a more meaningful way

it is clear that the standard for comparison emerges from the

question: How often can our tutoring system misconstrue
what a student says and still provide the student with
functional support? In that regard human tutors clearly
set the standard. Our goal should be to create a system that
approaches the same accuracy that a human tutor would in
assessing students’work. In some sense this is an ambitious
goal, since the human tutor has judgment and intelligence,
but it is intuitive that even human tutors sometimes make
mistakes in assessing students’ understanding. An elec-
tronic system that approaches that error rate would have
potential as an online instructional tool that could provide
more interactive feedback to students than online learning
systems currently provide while failing only as much as a
human tutor would anyway. It is tempting to think of human
tutors as nearly flawless, but research suggests otherwise.
Research suggests that tutors with good content knowledge
and limited tutoring experience (as is typical of real tutors at
the high school and college levels) may correctly assess
student understanding as little as 70% of the time [21]. With
a 30% failure rate, several of the questions we have analyzed
are already getting close to what a human tutor can do.
Moreover, our results point us in a clear direction

towards building activities that promote a more interactive
system. Just as our system currently provides video
responses to students’ typed questions, it is possible with
continued development effort to provide video feedback
based on student responses to appropriate lesson questions.
While the results suggest some success with data taken

so far, an important question for ultimate implementation is
one of reproducibility. We must keep in mind the possibility
that if we presented our activities to another group of
students we would obtain different data. If the data are
slightly different, then the groups that emerged from these
data and models trained on them would likely be very
useful in analyzing that data. If the data are very different
then this would not be the case. In the context of this
research the idea of saturation is important, and it is not easy
to say a prioriwhen saturation is likely to occur [53]. It also
cannot safely be assumed that student populations will not
changewith time, resulting in differences in data sets. These
possibilities suggest possible impediments to further devel-
opment and implementation of automated assessment of
short-answer responses, but they are impediments that can
only be understood through further research.
In considering the broader implications of this research it

is useful to note that automated assessment, such as we
have done, does not have to be done in the context of online
tutoring systems. This type of scheme could be used in any
application where moderately large quantities of short text
responses are collected. Clearly the easiest method of
collecting these responses would be through online means,
but it is not the only one. One of the implications of this
research is that an instructor who can collect a hundred or
more text responses to a question can, in principle, perform
this kind of analysis using the software, which is freely
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available for download. This of course requires a commit-
ment to learning how to best apply the software to these
types of data sets. While this alone does not promise that
the methods will work for all data sets, wider attempts to
apply these types of approaches should help the community
understand to what extent they do work, and when they can
be productively applied in instruction and assessment.
Another consideration of importance in this research is

sample diversity, and, in particular, the diverse linguistic
expression present in the United States, and, indeed, the
world.Our samplewas drawn from students inNorthCentral
Kansas, and the sample likely does not completely represent
the national population on multiple metrics. As noted
previously, English language learners are likely not repre-
sented in the sample. Regional differences in patterns of
linguistic expression may also manifest in written commu-
nication, and our study cannot resolve such differences or
provide information about their potential impact on applying
the natural language analysis. Additional research is needed
to investigate these topics. A logical extension of this
recognition is that the approach could be applied beyond
English, and understanding that potential is an important and
interesting direction of study.

VI. CONCLUSIONS

In this paper we have presented evidence for success in
the automated analysis of short text responses to conceptual
questions in the context of an online tutoring system. We
have demonstrated that this line of inquiry is interesting
because it has the potential to allow our synthetic tutor to
respond to students based on their answers to questions,
which in turn allows a greater level of interactivity and
could allow our system to better fulfill the roles played by
real tutors. Beyond our specific project, this analysis
approach has important implications for online homework
systems, and other forms of online instruction, such as
MOOCs, that could benefit from automatic assessment of
students’ typed text.
These results represent our initial attempts at applying

this analysis scheme to these type of data. The agreement
between human and computer is far better than random
chance, but worse than human-human agreement, which is
not surprising. There is evidence that our best results are
beginning to show human-computer agreement that may be
good enough to rival real human tutor’s abilities to
accurately assess student understanding. However, the
worst results are far from this good. Using larger data sets
will almost certainly improve the agreement rates, but at the
cost of additional analysis time, for an approach that is
already time consuming. Additional research is clearly
needed to assess the benefits and costs associated with data
sets of different sizes.
The fact that not all questions seem to readily generate

response sets that are readily clustered, even by humans, is
problematic. However, we have discussed methods of

writing questions and activities that are likely to produce
response sets that are more appropriate for this type of
analysis, which focus on providing students with small
discrete numbers of physical objects and physics concepts
that can be put together to construct explanations of
physical phenomena. While one could adopt a view that
this is nothing more than a path towards multiple choice,
we argue that this view overlooks the importance of giving
students the opportunity to express their ideas about the
behavior of physical systems in their own words. Results
like those we present here may ultimately allow us to assess
students’responses to conceptual questions in a manner that
is not unlike how online homework systems have allowed
us to efficiently assess students’answers to mathematical
problems. We believe that this type of approach has
tremendous promise as a similar tool in online assessment.
At the same time, there is much research work that still

must be done in this area. Further investigations extending
our work across more physics content would be beneficial
from a pedagogical perspective, but would also serve as a
test to determine how effective our strategies for developing
lesson materials actually are. Using these activities with
more groups of students will allow us to have greater
confidence that the groupings we have established with this
data are useful for analyzing future data. One of the most
time-consuming facets of this research is the manual
analysis of data that is used for training the computer
models. Fully automated data-mining techniques for text
analysis have been developed [3,54]. Prior to performing
this analysis, preliminary tests with fully automatic assess-
ment were performed. Our initial tests did not produce
conceptually meaningful clusters, but further, systematic,
investigation in this direction is necessary. If successful,
this kind of approach may relieve some of this burden and
allow for faster training of computer models. That in turn
could make the idea of automated analysis more practical
for a broader range of instructors and researchers.
Continuing this line of investigation will provide the best
chance of exploiting the tools of text analysis and data
mining to provide more interactive physics learning
environments that are suitable for today’s educational
requirements, and modern, web-savvy students.
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