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Abstract
Third-order Gaussian quadratures (GQ) approximate the mean and variance of model results allowing for

computationally inexpensive sensitivity analysis to uncertainty in exogenous parameters. Unfortunately, commonly

used GQ approaches restrict the marginal distributions of both parameters and results sacrificing valuable distributional

information. Using higher order quadratures, or incorporating more uncertain exogenous parameters, rapidly increases

the sample size, undermining the rationale for using GQ. In contrast, Monte Carlo methods directly approximate the

distribution of model outcomes without restrictive distributional assumptions on exogenous parameters. We argue that

current computing capabilities allow for wider use of Monte Carlo methods for conducting stochastic simulations.
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1. Introduction 

Quantifying the uncertainty introduced in economic models by uncertain exogenous parameters 

requires stochastic simulations, which may be computationally onerous. One especially 

economical approach to reduce the time necessary to perform stochastic simulations relies on 

numerical integration through Gaussian quadratures, or GQs (DeVuyst and Preckel 1997). GQ 

procedures assess the robustness of model results to assumed parameter values based on explicit 

definitions of the joint distributions of the model parameters in a procedure known as Systematic 

Sensitivity Analysis (SSA). The SSA-GQ approach proceeds by making a discrete 

approximation to the joint parameter distribution, evaluating the model results for each of the 

discrete mass points in the approximate distribution, and then calculating statistics (e.g. mean 

and variance) as summary measures of the joint distribution of results.  

SSA evaluation of computable general equilibrium (CGE) modeling results is relatively 

uncommon. However, in those studies that perform SSA, GQ is by far the most common 

approach. The GQ approach is parsimonious in the number of model evaluations required to 

perform the SSA, which makes it attractive for CGE models because of their complexity and 

potential size (e.g., Artavia, Grethe, and Zimmermann 2015).  At a time when using Monte Carlo 

methods was impractical due to computing limitations (Arndt 1996), the development of 

specialized software to conduct GQ-SSA of CGE models (e.g., Pearson and Arndt 2000) 

represented a significant step forward in the study of the robustness of CGE models.  

Yet, as we argue in this note,  the distributional assumptions required to use GQ 

approaches needed to achieve meaningful computational savings are overly restrictive, leading to 

potentially inaccurate approximations of the first and second moments of the results of interest 

and to GQ samples without information about higher distribution moments. In contrast, Monte 

Carlo experiments produce detailed empirical distributions of model results, and are limited only 

by our ability to draw random numbers from the distributions of exogenous parameters. With 

increasingly available hardware and software suitable for parallel execution of large-scale 

economic modeling exercises, we suggest that Monte Carlo experiments should be the method of 

choice for conducting SSA of CGE model results. This suggestion apply to other types of models 

as well. SSA is a useful technique to explore the robustness of any economic model whenever 

the uncertainty about model parameters or shocks can be formalized. As discussed below, Monte 

Carlo-SSA provides a much richer perspective on robustness of model results. 

 

2. Background on Gaussian Quadrature for Systematic Sensitivity Analysis 

Consider a CGE model of an economy specified as 
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where x denotes the results (e.g., prices), β denotes the exogenous parameters, and G() denotes 

the structural relationships between the variables and parameters that define equilibrium.  

Recognizing that solving the system (1) will result in values (ideally unique) for x, we write the 

results directly as a function of the parameters, x(β).   

If we denote the joint distribution of the parameters β by the density F(β), then we will 

typically be interested in the mean of one or more components of x, or )]([  ii xEx   and 

perhaps the variance as well, ]))([()( 2
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confidence bounds on xi (e.g., DeVuyst and Preckel 1997).  In this sense the robustness of 

qualitative model results can be assessed.  

 

To simplify the exposition we treat β as a continuous univariate random variable with 

density F(β).  However, the theory and procedures are well developed elsewhere for the 

multivariate case (e.g., Haber 1970; DeVuyst and Preckel 2007).  The idea is to make a discrete 

approximation to the distribution of β that is expressed as a set of J points and associated 

probabilities {[βj,pj], j=1,…,J}.  The Gaussian quadrature chooses these points and probabilities 

so that the moments about zero of the approximating distribution equal the moments of the true 

distribution from zero through some specified order.  That is, 
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Because the first M moments of the approximating distribution are equal to the moments of the 

true distribution, this is called a degree M Gaussian quadrature.  In practice, moments calculated 

as the probability weighted sum of the model results evaluated at the points in the approximate 

distribution.  For example, the mean of the model results is approximated as 
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Bounds on the number of points required to produce a degree M Gaussian quadrature 

have been developed for the case where β is multivariate.  In the case where there are N random 

variables and an order M quadrature is desired, an upper bound on the number of points required 

for a quadrature to exist is given by Tchakaloff (1957) as: 
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This bound rises quickly as a function of N and very quickly as a function of M (see Table 1).  

For the general degree 4 quadrature, the number of points (simulations in the current context) 

needed is over 10,000 for just 20 variables. For degree 5, the number of variables for which the 

simulation count exceeds 10,000 drops to 14. The corresponding number of variables for degree 

6 and 7 are 11 and 9, respectively. Thus, if higher degree quadratures are needed, as is typically 

the case when the underlying model is a highly nonlinear function of the model parameters, then 

the number of required simulations quickly exceeds the 10,000 that is typically used for the 

Monte Carlo approach (see e.g., Haber 1970), as the number of uncertain parameters increases.  

 

3. Comparison of Gaussian Quadrature and Monte Carlo Stochastic Modeling 

For this comparison we revisit the study by Villoria and Mghenyi (2016, henceforth VM). They 

investigated the extent to which wheat and rice price stabilization policies in India affect price 

stability in neighboring countries using a GTAP-based equilibrium model (Hertel 1997) to 

compare the variances of regional prices with and without active stabilization policies. The price 

variances were obtained by performing a GQ based stochastic simulation of price responses to 

wheat and rice yield shocks using the SSA tools implemented by Pearson and Arndt (2000). This 

application is fairly representative of stochastic simulations using general equilibrium models 

(e.g., Valenzuela et al. 2007).  

 



 

We focus our discussion on two main model outcomes resulting from stochastic changes 

in annual rice yields: changes in regional market prices of wheat and rice (processed and paddy) 

and changes in regional equivalent variation (EV). These changes are expressed as percentage 

changes from year 2004, the reference year used to calibrate the model. We limit our discussion 

to the case without stabilization policies in VM. As VM, we assume that the distribution of yield 

shocks are symmetric about their mean, and that yields vary independently across crops and 

regions. With nine regions, the GQ proposed by Liu (1997) requires the models to be solved 

thirty-two times for consistency with an order three Gaussian quadrature approximation to the 

distribution of yield shocks. In contrast, the Monte Carlo procedure uses 10,000 vectors of 

regional shocks randomly drawn from a normal distribution based on the historical distribution 

of the normalized yields. 

 

Table 1.  Number of points to guarantee a quadrature exists by number of random variables and 

degree 

 

Figure 1 describes the quartiles of the ratios of the GQ based summary statistics to their 

MC counterparts, pooled across countries in the case of the EV, and across countries and 

commodities in the case of the market price. If the two techniques yielded similar results, one 

would expect most ratios to be close to unity. However as is evident in the boxplots in figure 1, 

the GQ means and standard deviations differ without any apparent systematic pattern from the 

MC summary statistics. 

 

Vars.\Degree 3* 3 4 5 6 7 8 9

1                     2   4         5           6           7             8             9                 10                       

2                     4   10       15         21         28           36           45              55                       

3                     6   20       35         56         84           120         165            220                    

4                     8   35       70         126       210         330         495            715                    

5                     10 56       126       252       462         792         1,287         2,002                 

6                     12 84       210       462       924         1,716      3,003         5,005                 

7                     14 120    330       792       1,716      3,432      6,435         11,440               

8                     16 165    495       1,287   3,003      6,435      12,870       24,310               

9                     18 220    715       2,002   5,005      11,440   24,310       48,620               

10                  20 286    1,001   3,003   8,008      19,448   43,758       92,378               

11                  22 364    1,365   4,368   12,376   31,824   75,582       167,960             

12                  24 455    1,820   6,188   18,564   50,388   125,970    293,930             

13                  26 560    2,380   8,568   27,132   77,520   203,490    497,420             

14                  28 680    3,060   11,628 38,760   116,280 319,770    817,190             

15                  30 816    3,876   15,504 54,264   170,544 490,314    1,307,504         

16                  32 969    4,845   20,349 74,613   245,157 735,471    2,042,975         

17                  34 1,140 5,985   26,334 100,947 346,104 1,081,575 3,124,550         

18                  36 1,330 7,315   33,649 134,596 480,700 1,562,275 4,686,825         

19                  38 1,540 8,855   42,504 177,100 657,800 2,220,075 6,906,900         

20                  40 1,771 10,626 53,130 230,230 888,030 3,108,105 10,015,005       

* Order three symmetric case with Stroud or Liu quadrature.



 

Turning our attention to the third central moment, or skewness, our simulations reveal a 

much more troublesome pattern. Each panel in figure 2 displays the distribution of the (10,000) 

Monte Carlo outcomes for the percentage change in the price of a single commodity and region 

superimposed on a histogram plot of the distribution of (32) Gaussian quadrature outcomes for 

the same variable. We have also included the estimated skewness coefficients based on each 

sample. For most regions the results of the GQ outcomes are divided in two clusters to either side 

of the distribution peak and appear to be perfectly symmetric (skewness near zero). Meanwhile, 

the MC results reveal important degrees of positive skewness in all the countries (except for the 

EU25, where the MC results are symmetric while the GQ results display positive skewness). In 

sum, it appears that by taking the GQ approach, considerable information is lost regarding the 

shape of the distribution, its higher order moments, and its range. 

 

 
Figure 1. Gaussian Quadrature vs. Monte Carlo: If the GQ and MC techniques produced similar 

estimates, most result ratios would cluster around a median value of unity.  

 

The use of MC simulations has an additional advantage in communicating the uncertainty 

surrounding model results. In particular, the limited knowledge of the distribution of the GQ 

samples makes confidence intervals based on Chebyshev’s inequality much larger than 

confidence intervals based on known distributions (e.g., a 95% confidence interval based on 

Chebyshev’s inequality extends 4.4 times the standard deviation of the GQ samples in either 
direction; a Normal-based CI extends 1.96 times the standard deviation.) In the case of the MC 

simulations, it is straightforward to construct empirical confidence intervals without recourse to 

distributional assumptions by using data quantiles; e.g., a 95% CI is obtained by sorting the 

10,000 observations in increasing order and using the 250th and 9,750th values as the bounds of 

the interval (see figure 3). 

 

For perspective on wall clock time for serial versus parallel calculation, we again 

consider our example. With the GQ approach, 32 model solves would be required. Using T to 



 

denote the time required for a single model to solve, with serial computation the GQ would solve 

in 32×T. With the Monte Carlo approach and serial computation, 10,000 solves would be needed 

for a time cost of 10,000×T – a factor of over 300 more than for the GQ. As the number of 

stochastic variables increases or the quadrature degree rises, the number of solves required to 

execute the GQ analysis rises rapidly, and the time required for Monte Carlo with parallel 

execution rapidly becomes competitive with GQ (see Table 1). This is in part because the 

recommendation of roughly 10,000 simulations for Monte Carlo is independent on the number of 

stochastic variables (e.g., Haber 1970). If parallel computation is feasible, and n processors are 

available, then the time for the 10,000 solves drops to roughly 10,000×T/n. 

Hypothetically, the availability of massively parallel computing hardware and software 

may eventually level the playing field between the GQ and MC approaches in terms of time to 

complete the sensitivity analysis. In both cases, if the available number of processors is as large 

as the number of points in the GQ and the number of draws for MC, then the wall clock time to 

do the analysis falls to the time required for a single model to solve (plus some overhead to 

manage spawning the jobs and collecting the results). In practice, the availability of cores, RAM 

memory, and competing projects in shared clusters are likely to constraint the number of feasible 

parallel simulations within reasonable limits so more accurate GQ simulations become 

competitive with Monte Carlo experiments. With current parallel hardware and software 

resources, the differences between computation time for GQ and MC are not nearly as great as 

they once were, and given the richness of the MC results, the extra expense of time and resources 

may be justified. 

4. Conclusions 

Efforts to reduce the computational time to perform SSA of model results come at a cost 

of restrictions on the joint distributions of the model parameters and the information captured in 

the approximations to those distributions. Even when those restrictions are satisfied, the required 

computational effort rises rapidly with the degree of the quadrature, and the number of uncertain 

parameters. With recent advances in computing software and hardware, the computations 

required for performing stochastic modeling via Monte Carlo methods no longer requires a 

prohibitive amount of wall clock time. Given the significant increase in flexibility in specifying 

the joint distributions of model stochastic variables and the progress on hardware and software, 

the time may have come for Monte Carlo approaches to become the clear choice for 

implementing stochastic models.  



 

 

Figure 2. Monte Carlo (density of 10,000 observations, frequency in left axis) and GQ 

(histogram of 32 observations, counts in right axis) empirical distributions of prices for paddy 

rice. 



 

 
Figure 3.  Confidence intervals (95%) for model-generated percentage changes in market prices based on GQ (using Chebyshev’s 
inequality) and Monte Carlo (using data quantiles) results.  
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