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Abstract Recharge from surface to groundwater is an important component of the hydrological cycle,
yet its rate is difficult to quantify. Percolation through two-dimensional circular inhomogeneities in the
vadose zone is studied where one soil type is embedded within a uniform background, and nonlinear
interface conditions in the quasilinear formulation are solved using Newton’s method with the Analytic
Element Method. This numerical laboratory identifies detectable variations in pathline and pressure head
distributions that manifest due to a shift in recharge rate through in a heterogeneous media. Pathlines
either diverge about or converge through coarser and finer grained materials with inverse patterns forming
across lower and upper elevations; however, pathline geometry is not significantly altered by recharge.
Analysis of pressure head in lower regions near groundwater identifies a new phenomenon: its distribution
is not significantly impacted by an inhomogeneity soil type, nor by its placement nor by recharge rate.
Another revelation is that pressure head for coarser grained inhomogeneities in upper regions is completely
controlled by geometry and conductivity contrasts; a shift in recharge generates a difference Dp that
becomes an additive constant with the same value throughout this region. In contrast, shifts in recharge for
finer grained inhomogeneities reveal patterns with abrupt variations across their interfaces. Consequently,
measurements aimed at detecting shifts in recharge in a heterogeneous vadose zone by deciphering the
corresponding patterns of change in pressure head should focus on finer grained inclusions well above a
groundwater table.

1. Introduction

Recharge is that portion of precipitation that percolates downward in the vadose zone, past the root zone,
and becomes the infiltrated source of groundwater. Recharge provides a hydrologic link between surficial
and groundwater processes [Steward et al., 2011] and its rate is clearly important; e.g., recharge focused
through streambeds of ephemeral rivers provide a potential avenue to refill depleting aquifers [Ahring and
Steward, 2012]. And yet quantification of recharge rates is difficult. This study examines recharge through a
heterogeneous vadose zone toward identifying the types of measurements that are capable of detecting
changes in the rate of recharge.

Water moves more readily through moist soils than through dry soils. This property is captured by express-
ing the hydraulic conductivity KðpÞ as a function of the pressure head p, from the Bernoulli [1738] equation:

h5p1z ; p5
P
qg

(1)

where h is vadose zone head, the z-coordinate axis is directed upward against gravity, and the soil water
pressure P decreases as a soil dries. While many functional forms exist, it is convenient to use the Gardner
[1958] equation:

KðpÞ5Kseap (2)

where a is the sorptive number, and the hydraulic conductivity takes on its saturated value Ks when the
vadose zone reaches the limit of full saturation (p 5 0). This equation has been widely adopted, and the rep-
resentative soil properties in Table 1 were aggregated as ensemble averages for each soil type from the
specified references.
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A quasilinear approach using the Gardner equation
was pioneered by Philip [1968] to study recharge
around objects in the vadose zone. The exclusion
problem of seepage near a cavity has been formu-
lated for a circular cylinder [Philip et al., 1989a], a
sphere [Knight et al., 1989], a parabola or parabo-
loid [Philip et al., 1989b], and an ellipse [Kuhlman
and Warrick, 2008]. The Analytic Element Method,
which is used later, was developed by Strack [1989,
2003] for groundwater flow and provides nearly
exact solutions to saturated inhomogeneities filled

with a different type of soil than the background. The first application of the AEM to the unsaturated vadose
zone was performed by Warrick and Knight [2002, 2004] to study an inhomogeneity of circular or spherical
geometry. These developments require all soil types to have the same sorptive number due to the existence
of a nonlinear condition, (24), that becomes linear when a is uniform.

Such existing quasilinear solutions are shown in Figure 1 for two-dimensional recharge seeping through silt
or coarse sand embedded within a background of fine sand, with the properties of Table 1 except all soils
use the sorptive number for fine sand in K(p), (2). The illustrated lines of constant pressure head and the
pathlines follow those in Warrick and Knight [2002, Figures 3 and 4]. All existing solutions, such as these and
those in the references, place the inhomogeneity into a background of uniform pressure head associated
with constant downward seepage a long distance from the object [Philip, 1990, equation 1.3] (e.g., the pres-
sure head p0521:64 m, (16), for fine sand in Figure 1).

This study analyzes patterns in the geometry of pathlines and preferential flow paths, and the distribution
of pressure head in the vadose zone that exist as recharge seeps through representative soils. The goal is to
identify those patterns that manifest change across a shift in recharge and provide indicators capable of
quantifying its rate. Important, unresolved questions exist in vadose zone seepage. How does the sorptive
number for typical soils impact recharge through inhomogeneities? How does the vertical placement of an
inhomogeneity in the vadose zone impact its solution? And, what detectable changes in pressure head and
pathlines distributions might be expected to manifest across variation in recharge rates for heterogeneous
soils in the vadose zone? These questions are resolved in this study using Newton’s method to obtain non-
linear solutions in the vadose zone with the Analytic Element Method, which is presented next.

2. Methods

Formulation of the problem for two-dimensional flow in a vertical plane and methods to solve the nonlinear
interface problem follow, with implementation details deferred to Appendix A. Use of the quasilinear

Table 1. Representative Soil Propertiesa for Hydraulic
Conductivity in the Gardner Equation, (2)

Soil Type
Saturated

Conductivity Ks (m/d)
Sorptive

Number a (1/m)

Silt 0.02 2
Fine sand 1 5
Coarse sand 35 25

aAdapted from Bresler [1978, Table 1], Rockhold et al. [1997,
Table 1], Khaleel and Relyea [2001, Table 3], Varado et al. [2006,
Table 1], and Zhu and Warrick [2012, Table 1].

Figure 1. Circular inhomogeneity of silt or coarse sand embedded in fine sand, with a sorptive number uniform across all porous media following Warrick and Knight [2002]. Dark blue
lines are streamlines, and black lines are isobars with contour interval of pressure head Dp50:05 m. The thicker dark line at p 5 p0 corresponding to the fine sand’s gravity drainage
where conductivity K equals recharge rate R.
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formulation in the Analytic Element Method follow Warrick and Knight [2002, 2004] for variable saturated
conductivity, and the linearization methods used by Bakker and Nieber [2004a, 2004b] for variable sorptive
number are extended to the nonlinear Newton method. Readers interested in proceeding directly to results
and discussion are directed to section 3.

2.1. The Quasilinear Formulation
Vadose zone processes are studied within a quasilinear formulation, and the significant developments are
briefly summarized next. Flow is governed by two conditions: (1) the Darcy [1856] law, which relates specific
discharge to head, (1):

qx52KðpÞ @p
@x

; qz52KðpÞ @p
@z

2KðpÞ (3)

and (2) conservation of mass, which is @qx
@x 1 @qz

@z 50 for steady flow in a vertical plane. Together, these give
the Richards [1931] equation

@

@x
KðpÞ @p

@x

� �
1
@
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KðpÞ @p

@z

� �
52

@KðpÞ
@z

(4)

The Kirchhoff [1894] transformation facilitates organization of these partial derivatives in terms of a matric
flux potential, F:

F5

ðp
21

Kð~pÞd~p !

@F
@x

5K
@p
@x

@F
@z

5K
@p
@z

8>><
>>: (5)

to give

@2F
@x2 1

@2F
@z2 52

@KðpÞ
@z

(6)

The right-hand side of this equation is rearranged

@K
@z

5
dK
dp
@p
@z

5
dK
dp

1
K
@F
@z

5a
@F
@z

(7)

using the z derivative in (5) with the Gardner equation (2). Together, the last two equations give the quasi-
linear equation

@2F
@x2

1
@2F
@z2

52a
@F
@z

(8)

which has been broadly adopted for vadose zone studies [Pullan, 1990]. A change of variables transforma-
tion [Wooding, 1968]

F5Ue2kz ; U5Fekz ; k5
a
2

(9)

rearranges the quasilinear equation to give the modified Helmholtz equation:

@2U
@x2

1
@2U
@z2

5k2U (10)

Solutions are obtained using functions U that satisfy this equation. Boundary conditions for pressure head
may be expressed in terms of U using the transformation

U5Fsekðz12pÞ $ p5
1

2k
ln

Ue2kz

Fs
(11)

where Fs is the matric flux potential at p 5 0. This expression arises from the change of variables (9) together
with the Kirchhoff transformation (5) integrated with the Gardner equation (2):
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F5Fse2kp ; Fs5
Ks

a
(12)

Similarly, boundary conditions for specific discharge are related to U using

qx52e2kz @U
@x

; qz52e2kz @U
@z

1kU

� �
(13)

This expression follows from Darcy’s law (3) using the derivatives of the Kirchhoff transformation in (5) with
the change of variables (9) along with F5K=a from (12) and (2).

Use of the quasilinear formulation to solve vadose zone problems is illustrated for the uniform recharge
occurring as a background flow into which inhomogeneities are located. A general solution to (10) for one-
dimensional seepage and its specific discharge (13) are

U5c1e2kz1c2ekz ; qz52c22k (14)

The coefficients c1 and c2 are found by setting pressure head to p 5 0 at the elevation z 5 0 of the ground-
water table in (11) and setting the specific discharge equal to minus the recharge rate R, similar to Rockhold
et al. [1997], to give

Uðz50Þ5Fs

qz52R
!

c1 5Fs2
R

2k

c2 5
R

2k

8>>><
>>>:

(15)

An asymptotic limit exists above the groundwater table [Raats and Gardner, 1974] where U! R
2k ekz and

pressure head (11) approaches

p05 lim
z�0

p5
1

2k
ln

R
2kFs

5
1
a

ln
R
Ks

(16)

This gives the background suction pressure head for fine sand of p0521:64 m in Figure 1 into which the
inhomogeneity is placed, a value consistent with Rucker et al. [2005].

Solutions to the modified Helmholtz equation, (10), for a circular inhomogeneity are given by separation of
variables in circular coordinates, Uðr; hÞ in terms of the modified Bessel functions In and Kn [Moon and Spen-
cer, 1961]. These functions are evaluated in the domains outside or inside the element of radius r0 where
they remain finite, and the separated solutions provides influence functions that are linearly combined:

U5

XN

n50

cn
Kcos

KnðkrÞcos nh1
XN

n51

cn
K sin

KnðkrÞsin nh ðr � r0Þ

XN

n50

cn
Icos

InðkrÞcos nh1
XN

n51

cn
I sin

InðkrÞsin nh ðr < r0Þ

8>>>>><
>>>>>:

(17)

where the coefficients cn
K cos

, cn
K sin

, cn
I cos

, and cn
I sin

must be adjusted to provide a solution. Linear superposition of
these influence functions is illustrated in Figure 2, where the vectors are directed toward decreasing U. This
gradient of these functions is needed to evaluate the specific discharge, and presented later in (A6). Exten-
sion to the study of three-dimensional elements requires separable solutions for spherical coordinates, such
as presented in Warrick and Knight [2004].

2.2. Formulating a Solution to the Nonlinear Interface Condition
The heterogeneity of soils is modeled using a conceptualization of porous media consistent with the
embedded matrix of Dagan [1979], where elements composed of one soil type with specific properties are
placed within a uniform background with a different set of soil properties. This is illustrated in Figure 2
where an inhomogeneity with saturated conductivity Ks

2 and sorptive number a2 is placed within a back-
ground with Ks

1 and a1. This circular element i is centered at ðxc
i
; zc

i
Þ with radius r0

i
. While one element is

shown in Figure 1, heterogeneity composed of the superposition of i 5 1 to I elements is studied later for
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an ensemble of inclusions using superposition of the individual inhomogeneities. The developments neces-
sary to solve this problem follow with details for implementing the solution deferred to Appendix A.

A comprehensive solution for a collection of inhomogeneities is obtained by combining the contributions
from all elements. At point (x, z) outside all inhomogeneities, the Helmholtz solution (17) is summed across
the I elements with background uniform seepage (14) to give

U5
XI

i51

XN

n50

c
i

K cos

nKn k1 r
i

� �
cos n h

i

1
XN

n51

c
i

K sin

nKn k1 r
i

� �
sin n h

i
1c1e2k1z1c2ek1z

(18)

where the distance to the center of the ith element is

r
i
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 x

i
c

� �2

1 z2 z
i

c

� �2
s

(19)

and h
i

is the angle measured about its center. It is convenient when obtaining the solution for element i to
separate its coefficients from those for other elements

U5
XN

n50

c
i

K cos

nKn k1 r
i

� �
cos n h

i

1
XN

n51

c
i

Ksin

nKn k1 r
i

� �
sin n h

i
1 U

i

add

(20a)

using the additional function [Steward, 2015]:

U
i

add

5
X

j 6¼i

XN

n50

c
j

Kcos

nKn k1 r
j

� �
cos n h

j

1
XN

n51

c
j

K sin

nKn k1 r
j

� �
sin n h

j
1c1e2k1z1c2ek1z

(20b)

The solution at a location inside element i is given by

Figure 2. The inhomogeneity’s linear superposition of influence functions, (17), and element geometry used in the Analytic Element Method to solve the nonlinear interface condition.
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(21)

This contains the separated solution (17) with (14) since this one-dimensional variation predominates some
problems, such as when the same soil properties are specified inside and outside an inhomogeneity (used
later in Figures 4–6). Note that each solution satisfies the modified Helmholtz equation, (10), with the term
k1 or k2 in the domain in which it is evaluated. A short-hand notation is adopted when formulating a solu-
tion for element i, where the underscript i is implied but not specified in the following equations.

The conditions that must be satisfied across the interface of an inhomogeneity are specified at control point
m located at angle

hm52p
m21

M
ðm51; 2; � � � ;MÞ (22)

in Figure 2, where M is the number of evenly spaced control points. A nonlinear condition exists across this
interface from continuity of pressure head

p15p2;

p15
1

2k1
ln

e2k1zU1

Fs
1

p25
1

2k2
ln

e2k2zU2

Fs
2

(23)

using (11). This gives the first interface condition:

f ð1Þm 5
e2k1zm

Fs
1

U1
m

 !c1

2
e2k2zm

Fs
2

U2
m

� �c2

(24)

where c1 and c2 are chosen to be less than or equal to one:

c15
k2

k1
; c251 ðk2 � k1Þ

c151 ; c25
k1

k2
ðk2 > k1Þ

(25)

A Robin condition also exists from the normal component of the specific discharge vector outside and
inside the element:

qr
15qr

2;

qr
152e2k1z k1sin hð ÞU11

@U1

@r

� �

qr
252e2k2z k2sin hð ÞU21

@U2

@r

� � (26)

using (13). This gives the second interface condition:

f ð2Þm 5 2e2k1zm k1sin hmð ÞU1
m1

@U1
m

@r

� �

1e2k2zm k2sin hmð ÞU2
m1

@U2
m

@r

� � (27)

The sewing theorem [Courant, 1950, Theorem 2.5] is adapted to this problem to stitch together the function
U and its derivatives outside and inside an inhomogeneity. This stitching at the control points seeks a solu-
tion for f ð1Þm , (24), and f ð2Þm , (27), that approaches a minimum across all M control points. Due to the nonlinear
interface condition, a nonlinear solver is applied using the iterative Newton’s method. This is accomplished
for element i by fixing the coefficients for all other elements in the additional function (20b), and organizing
the coefficient vector and known vector in
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c5
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777777777775
; f5

f ð1Þm

f ð2Þm

" #
(28a)

where initial coefficient values are set using (A9). Newton’s method provides an iterative method to com-
pute changes in the coefficients c from the value of the functions f at iterate l:

Jjl Dcð Þjl52fjl (28b)

where the derivatives are specified by the Jacobian matrix:
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and the expressions necessary to evaluate these derivatives are found in (A11). This system of 2M equations
with 4(N 1 1) coefficients is solved using least squares following the overspecification principle of Janković
and Barnes [1999] with more conditions than unknowns. The nonlinear condition f ð1Þm , (24), may alternately
be solved by linearization [Bakker and Nieber, 2004a, 2004b].

Iteration for element i continues by updating J and f using the next estimate for coefficients until only small
changes occur between successive iterates. This is repeated for all I elements using Gauss-Seidel with
details presented in Appendix A. The solution was implemented in Scilab 5.4.0 on Beocat, a grid computing
cluster at Kansas State University, and the numerical accuracy is reported in Table 2, which demonstrates
that nearly exact solutions are achieved. In particular, the root-mean-square error of pressure head in f ð1Þm

across all control points for all inhomogeneities is less than Dp=4500, a small fraction of the contour interval
0.05 m used to visual isobars in Figures 1–5, and the rmse of the normal component of specific discharge in
f ð2Þm is less than R/30,000, a small fraction of the recharge rate.

3. Results and Discussion

3.1. An Inhomogeneity With Representative Soil Properties in a Background of Uniform Pressure
Head
The new nonlinear solution methods facilitate study of seepage around and through inhomogeneities as
illustrated in Figure 3 for silt and coarse sand embedded within a background of fine sand. This example uti-
lizes the same soil types and settings as Figure 1, however, the representative soil properties in Table 1 are
now applied with sorptive number varying by soil type. Both figures use elements of radius r0 5 0.2 m cen-
tered at zc 5 4 m above a groundwater table where a uniform background pressure p0 exists. Pathlines track
particles beginning at evenly spaced locations along the top of each figure with step sizes 1/10,000 the size

Table 2. Nearly Exact Solutions for f ð1Þm , (24), and f ð2Þm , (27), Reported as the Root-Mean-Square Error of the Differences in Pressure Head
and Normal Component of the Specific Discharge Across the Interface of Inhomogeneities, Summed for All Control Points of All
Inhomogeneities

Figures (Recharge Rate)
N M

p12p2 (m) qr
12qr

2 (m/d)

Soil Type Silt Fine Sand Coarse Sand Silt Fine Sand Coarse Sand

1 (R 5 0.1 m/yr) 8 51 4.53 3 10213 7.27 3 10211 7.66 3 10214 8.94 3 10214

3 (R 5 0.1 m/yr) 8 51 3.01 3 10213 1.11 3 1025 8.77 3 10215 2.00 3 1029

4 (R 5 0.1 m/yr) 8 51 5.98 3 10213 4.69 3 10218 5.14 3 1029 6.41 3 10213 1.60 3 10218 8.96 3 1029

5,6 (R 5 0.05 m/yr) 16 99 4.78 3 1027 4.17 3 10219 1.49 3 1026 2.97 3 1029 4.92 3 10220 3.84 3 1029

5,6 (R 5 0.1 m/yr) 16 99 2.46 3 1027 4.12 3 10219 1.52 3 1026 2.47 3 1029 5.08 3 10220 7.69 3 1029

5,6 (R 5 0.2 m/yr) 16 99 9.92 3 1028 3.16 3 10219 1.56 3 1026 2.89 3 1029 4.85 3 10220 1.54 3 1028
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of the figure. Isobars at Dp 5 0.05 m were contoured from a 400 3 400 grid where U, (18) or (21), was com-
puted at each grid point and then converted to p, (11). Clearly, differences are observed in both the pres-
sure head and pathline distributions as the sorptive number changes.

The graph of hydraulic conductivity K(p) in Figure 3 illustrates the constitutive soil properties. In the limiting
case a large distance above the groundwater table, pressure head becomes p05 1

a ln R
Ks

, (16), as
K 5 R 5 0.1 m/yr and the isobars with this p0 5 21.64 m for fine sand are shown for each inhomogeneity.
Likewise, if the entire domain was filled with silt this equation would give a gravity drainage pressure head
of 22.14 m, and 20.47 m for coarse sand using the soil properties in Table 1. (These gravity drainage values
are indicated with markers on the K(p) curves in Figure 3.) Within inhomogeneities, pressure head decreases
for silt and increases for coarse sand as it transitions toward their gravity drainage values with increasing
elevation. Yet it is observed that along the boundaries of each inhomogeneity either the top is higher than
the p0 of background fine sand and the bottom is lower, or vice versa (for both Figures 1 and 3). And so the
background provides control over the range across which pressure head may fluctuate within a finer or
coarser grained material embedded in the background soil.

These variations in pressure head distribution influence pathlines as seepage moves downward through
and around an inhomogeneity. The K(p) curve for silt in Figure 3 intersects the line of pressure head p0 at a
larger value of K> R than that of fine sand. Thus, seepage moves more readily within the silt and the path-
lines converge through this object. For the coarse sand, its K(p) curve intersects p0 at a very small value for K
below the displayed values, and the object becomes nearly impermeable with pathlines diverging as seep-
age is transported around it. Thus, the variations in K(p) of a finer grained soil may draw water toward and
through it, while a coarser grained soil may repel water for an inhomogeneity located in a region of gravity
drainage. The question addressed next is, what happens when an object is placed near a groundwater table
where this background uniform pressure does not exist?

3.2. The Preponderant Progression of Pressure Head Toward Gravity Drainage Above a Groundwater
Table, With Inverse Patterns of Diverging and Converging Pathlines
The impact of the vertical placement of an inhomogeneity is examined next by moving it to be in close
proximity to the groundwater table, which is located at z 5 0. The objects in Figure 4 share the geometry of
those in Figure 3 with radius r0 5 0.2 m, however, they are centered at elevation zc 5 0.3 m. The soil proper-
ties from Table 1 are also used with the same seepage rate R as previous examples. Note that the summa-
tion of the background flow plus the inhomogeneity, (20), matches the bottom boundary condition of
atmospheric pressure head p 5 0 very well. (This pressure head at z 5 0 is within 6231025 m, a very small
fraction Dp/2500 of the contour interval).

This figure identifies an intriguing phenomenon: the pressure head near a groundwater table decreases in
the upward direction toward its gravity drainage p0 value; with a one-dimensional variation that is not influ-
enced by the presence or absence of an inhomogeneity. Figure 4, middle shows the one-dimensional pres-
sure head distribution occurring when the entire domain is filled with fine sand. This figure clearly
illustrates that the same distribution in pressure head occurs irregardless of the inclusion’s soil type. Note

Figure 3. Inhomogeneity with a sorptive number varying by soil following Table 1, shown for recharge R 5 0.1 m/yr.
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that sewing together the interior (21) and exterior (20) solutions across the interface enables a nearly exact
solution for continuity of both pressure and the normal component of flow, as shown in Table 2.

The pathlines are influenced by the increasing hydraulic conductivity occurring with increasing pressure
head as particles progress toward the groundwater table (along the top p � 20.6 m to 0 at the bottom).
And these influences manifest themselves differently through the K(p) distributions for each soil type.
Clearly, pathlines form straight vertical lines when the domain is filled entirely with fine sand. Within the
range of pressure head in the displayed region, the conductivity of silt is less than that of fine sand
(shown in the graph of Figure 3). Thus, seepage occurs less readily in the silt and pathlines diverge around
the object, and the transverse spreading increasing as particles travel downward toward the groundwater
table. For coarse sand, its conductivity is less than fine sand until the two K(p) curves meet at
p 5 20.18 m (shown by a red marker in Figure 3) and then its conductivity becomes higher than the back-
ground. This is observed in diverging pathlines around the top of the coarse sand and converging path-
lines within its lower portion.

In summary, an inhomogeneity placed near a groundwater table may produce no discernible evidence of
itself within the distribution of pressure head, yet it may significantly alter pathlines and the trajectories of
water particles. And, the divergence or convergence of pathlines through and around an inhomogeneity
form inverse patterns as an object in the region of uniform background pressure in Figure 3 is placed close
to a groundwater table in Figure 4.

3.3. Pressure Head and Pathlines in a Heterogeneous Vadose Zone
The distributions of pressure head and pathlines have been clearly shown to be influenced by an inhomo-
geneity’s soil properties, and also by its vertical placement. The next questions addressed are: how do these
patterns manifest in a heterogeneous porous media? And, how do they change across shifts in recharge
rates? A numerical laboratory is developed to study heterogeneity, which places the individual objects in
Figures 3 and 4 in close proximity to other inhomogeneities. The simulated media in Figure 5 contains I5
150 elements in two zones of width 5 m and between elevations 0.05–2 m and 3–5 m. Their radii vary with-
in r0 2 ½0:0520:5� m and they are randomly located to avoid intersections with a minimum spacing of
0.05 m between objects. This particular realization illustrates the impact of heterogeneity near a groundwa-
ter table and within a region of uniform background pressure, and serves as an example for future studies
of other randomly generated configurations.

A domain filled entirely with the background fine sand is illustrated in the middle cutout sections shown
between x 5 20.5 to 0.5 m. Its pressure head varies as the one-dimensional field, (14), from p 5 0 toward p0

with increasing elevation; and provide the background into which the individual elements were inserted in
Figures 3 and 4. Results are shown for three different recharge rates: the middle corresponds to R5 0.1 m/
yr of the previous figures, and recharge is decreased and increased by a factor of 2 in the top and bottom
figures. The gravity drainage pressure p0 where K 5 R, (16), varies with shifts in recharge, as illustrated in the
graph of Figure 3. And pathlines remain vertical lines for this uniform soil.

Figure 4. Inhomogeneity placed close to the groundwater table (where p 5 0 at z 5 0), shown for recharge R 5 0.1 m/yr.
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Figure 5. Inhomogeneities located within two different zones in fine sand, shown for different recharge rates. Contour intervals for pressure head are 0.05 m with thicker lines at 0.25 m.

Water Resources Research 10.1002/2016WR019222

STEWARD VADOSE ZONE RECHARGE THROUGH NONLINEAR INTERFACES 8765



Inhomogeneities filled with silt in a background of fine sand are shown in Figure 5, left. The pressure head
distributions become structured with two different arrangements observed in the two zones of heterogene-
ity. Within the upper zone, pressure head decreases in the vertical direction to the gravity drainage pressure
head of silt, a value that varies with recharge rate where a larger drop in pressure head occurring across ele-
ments with lower recharge rates. It is also observed that, while there is interaction across elements, each
element consistently maintains the behavior of the individual element in Figure 3 with an almost one-
dimensional increase in pressure head within an element. Within the lower zone, pressure head largely fol-
lows that occurring without the presence of inhomogeneities, much like the single object in Figure 4. These
patterns of change in pressure head impact the trajectories of water particles in the heterogeneous media
similarly to the single inhomogeneities. Pathlines converge within objects at higher elevations as the silt
inclusions have higher hydraulic conductivity that the fine sand background, and they diverge around
objects at lower elevations near the groundwater table.

Inhomogeneities filled with coarse sand in a fine sand background are shown in Figure 5, right and also
exhibit different patterns in the two zones. The pressure head increases within inhomogeneities in the
upper zone as it transitions toward the higher values associated with gravity drainage of coarse sand. And
yet even within the larger inclusions, pressure head only fluctuates within a small range about the p0 of the
background fine sand as in Figure 3. Near the groundwater table in the lower zone, the pressure head fol-
lows the one-dimensional pattern observed near the single inclusion in Figure 4. Pathlines follow the obser-
vations from one inhomogeneity as they diverge around objects except for very near the groundwater
table, where they become drawn into elements by their higher conductivities there.

The role of hydraulic conductivity in the distribution of pathlines can be deduced from analysis of the K(p)
curves in Figure 3. Two red markers are shown where the curve for the background fine sand crosses that
for silt at p 5 21.30 m and for coarse sand at p 5 20.18 m. These conditions represent an altered state
across which the relative values of the soils across each interface take on different rank. This transition for
the silt filled inhomogeneities occurs toward the top of the lower zone, where their conductivity is larger
than the background above this elevation with pathlines converging within inhomogeneities, and conduc-
tivity is lower below with pathlines diverging around them. This transition for the coarse sand filled inhomo-
geneities occurs nearer the saturated groundwater table, with pathlines diverging around elements
throughout most of the domain. Thus, pathlines follow the changes in K(p) occurring as finer grained mate-
rial become more conductivity than the background at lower pressure head and as coarser grained material
become less conductive than the background.

Pathlines exhibit intricate patterns as they flow through and around inclusions in the heterogeneous medi-
um. They become particularly focused with preferential flow paths occurring between closely placed adja-
cent objects in regions with lower values of K(p). And yet pathlines follow very similar patterns in Figure 5
with only small variations observed in their relative positions between plots with the same soil structure but
with shifts in recharge rate. So if shifts in the rate of recharge are not easily discernible through changes in
the distribution of pathlines, what can be learned from the pressure head distributions to contribute toward
this endeavor?

3.4. Detecting Shifts in Recharge Through Its Corresponding Shift in Pressure Head
It is evident in Figure 5 that the pressure head variation within the vadose zone is impacted by the recharge
rate. This is observed in the change of gravity drainage for the fine sand, where p0 varies with R in (16). And
finer differences in the pressure head distributions exist that are difficult to discern in this figure. These
details, however, become evident by analyzing the differences in pressure head occurring across a shift in
recharge, which is plotted in Figure 6. Each plot is obtained by subtracting the pressure head in Figure 5 at
two different values of R for the same soil structure, and the contour interval is reduced to 0.01 m.

Pressure head above the groundwater table in the lower zone follows a one-dimensional progression close
to that of fine sand in the middle plots. Here the difference Dp is zero at z 5 0, and it is equal to the corre-
sponding change in p0, (16), at higher elevations, and a transition zone exists between these values (from z
� 1 to 2 m). Within the lower zone, the progression of pressure head toward the fine sand’s gravity drain-
age occurs also for the other soils, with small differences observed in larger coarse sand objects where a
faster transition to this value occurs.
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The pressure head from shifts in recharge exhibit different patterns for each soil type within the upper
zone. Here the pressure head decreases in the finer grained inclusions in Figure 5 at different rates depend-
ing upon recharge. This is evidenced in Figure 6 by an almost linear variation in Dp with elevation within
each element, and abrupt changes occur across their interfaces with the surrounding soil. And the same
patterns emerge by either halving or doubling recharge. The realization of differences in pressure head for
the coarse sand inclusions is shown in Figure 6, right. In the upper zone, there is no detectable variation in
Dp. The pressure head is reduced in the coarse sand inhomogeneities by the same magnitude as in the sur-
rounding soil.

These results reveal a second intriguing phenomenon: the differences in pressure head distribution occur-
ring due to a shift in recharge is completely controlled by the geometry and conductivity contrasts for
coarser grained material embedded in a finer background soil, not by the actual fluxes moving through the
system. While inhomogeneities individually and collectively impact the pressure head distribution in Figures
3 and 5, the difference in pressure head occurring due to a shift of recharge is everywhere the same in the
upper zone. Consequently, instrumentation to measure pressure head in this region could detect the pres-
ence of a coarser grained inclusion by a difference from the background soil. However, observation of
change in pressure head is not capable of detecting shifts in recharge rate; the same net change occurs
everywhere here. This is contrary to what occurs when a finer grained material is embedded in the back-
ground soil. In this case, observations of pressure head could detect both the presence of an

Figure 6. Differences in pressure head across changes in recharge. Contour intervals are 0.01 m with thicker lines at 0.05 m.
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inhomogeneity (Figures 3 and 5) and shifts in recharge (Figure 6). In the zone near groundwater, the same
pressure head distribution exists, irregardless of the soil structure and the rate of recharge.

4. Conclusions: Using Heterogeneous Soil Structure to Detect Shifts in Recharge

Nonlinear solution methods are developed to answer the question of how the sorptive number for typical
soils impacts recharge through inhomogeneities. This extends linear methods for soils with uniform sorptive
number in Figure 1 to those with representative soil properties in Table 1. The nearly exact solutions
(Table 2) to the nonlinear interface problem provide a numerical laboratory capable of analyzing the abrupt
variations in pressure head and pathlines occurring near interfaces between different soil types. Analysis of
pathlines and pressure head identify detectable changes that become manifest across variations in the rate
of recharge, as well as patterns that are not impacted. Results from this two-dimensional analysis may be
extended to three-dimensional solutions using separation of variables to study the complicated streamlines
existing in three-dimensional porous media [Janković et al., 2009].

The impact of soil properties and the vertical placement of an inhomogeneity on pressure head and path-
line distributions were studied first. Inclusions with finer or coarser grained material than the background
soil type in Figure 3 are shown for representative soil properties within the region of gravity drainage. And,
the vertical placement of an inhomogeneity is examined by placing these objects near the groundwater
table in Figure 4. These results contribute the understanding that objects near a groundwater table do not
influence the pressure head, which take on the same values irregardless of the presence or absence of an
inhomogeneity. Although shifts in pathlines may still occur here due to differences in K(p) for different soil
types.

The question of how variations in recharge become manifested in a heterogeneous vadose zone was stud-
ied using closely juxtaposed inclusions embedded within a uniform background soil. Analysis of results in
Figure 5 illustrate that individually, a finer grained soil becomes more conductive in the upper zone of back-
ground gravity drainage and less conductive in lower regions; and the opposite effect occurs for a coarser
grained inclusion. While pathlines become focused around and through heterogeneity across variations in
K(p), only small changes in flow paths occur with shifts in the rate of recharge. Another contribution is the
conclusion that no detectable shift in pressure head occurs between a coarser grained material and its finer
grained background across a shift in recharge. Instead, changes in pressure head are dominated by the cor-
responding shift occurring in the background soil. Figure 6 also illustrate that finer grained materials
respond differently than the background and provide detectable variations in Dp fields across shifts in
recharge. These methods are extensible to other geometric configurations and broader ranges of hydraulic
conductivity properties than those of the representative soils in Table 1.

These findings contribute toward the design of instrumentation and interpretation of their data to elucidate
the paramount rate of recharge. First, measurements must be collected above the transition zone near
groundwater, since the pressure head distribution and corresponding conductivity contrasts are not signifi-
cantly influenced by changes in recharge. Second, analysis of variations in pressure head in a heteroge-
neous media is capable of identifying the existence of embedded finer or coarser grained material. Yet such
analysis is incapable of determining shifts in recharge from corresponding changes in pressure head for
coarse grained soils. Instead, measurement and analysis should focus toward detecting differences occur-
ring between fine grained inclusions and background soil. Quantification of recharge is important in the
study of hydrological coupling of surficial and groundwater processes, and the insight from this study pro-
vides guidance toward elucidating those parameters that are impacted by changes in recharge rates and
those that are not.

Appendix A: Computational Details for the Analytic Element Method

Solutions to seepage through soils in the vadose zone are developed within the framework of the Analytic
Element Method [Strack, 1989] and its four steps [Steward and Allen, 2013]. 1) The soil is subdivided into ele-
ments with specified geometry in Figure 2. 2) Influence functions, (14) and (17) are developed for each ele-
ment to satisfy the governing quasilinear equations. 3) A comprehensive solution, (20) and (21), gathers
elements and linear superposition of their influence functions. And 4) coefficients are adjusted to match
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boundary conditions using (28). Additional details necessary to implement the new nonlinear solution
follow.

A1. Computation at Control Points
The function U, which needs to be evaluated for the first interface condition, (24), at control point m, is
obtained using (20) outside the interface

U1
m5

XN

n50

cn
K cos

Knðk1r0Þcos nhm

1
XN

n51

cn
K sin
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(A1a)

and (21) inside the interface:
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where U
add

m contains the additional functions, (20b), evaluated at this point.

The partial derivative of U in the r-direction is also needed for the second interface condition, (27). This is
obtained using its gradient for an inhomogeneity (17):
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where the derivatives outside the element ðr � r0Þ are
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the derivatives inside ðr < r0Þ are
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and the derivatives with respect to r may be obtained from the recursive relations [Abramowitz and Stegun,
1972]

K 0nðkrÞ 5
n
r

KnðkrÞ2kKn11ðkrÞ ;

I0nðkrÞ 5
n
r

InðkrÞ1kIn11ðkrÞ
(A5)

The normal derivative at the control points may be obtained by evaluating
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where the gradient of the additional functions, (20b), is obtained from the summation of their components
(A2) in
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A2. Iteration Within Constraints of Soil Properties
During the Newton’s iterative solve process, the pressure head must remain negative and real, and this con-
dition in (23) places limitations on possible values of the potential:
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Iteration begins with an initial estimates l 5 1 for coefficients that satisfy this criteria by setting
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where the terms U
add

m in (20b) contain uniform seepage in the vadose zone plus the contributions from all
other elements, and this potential is converted into that inside the element using (23). These estimates are
used to evaluate the terms in Jj1 and the correction term Dcj1 in (28b). The next estimate for the coefficients
is obtained from

cjl115cjl1SOR Dcjl (A10)

where SOR is a successive over relaxation factor chosen between 0 and 1 to prevent the Newton’s method
from overshooting to a value where coefficients give unrealistic values of the potential. For this study, SOR
was set to 0.1.

For completeness, the derivative in the Jacobian matrix, (28), are gathered here
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Note U1
m and U2

m in the denominator of these functions are adjusted using (A8) if they stray beyond physi-
cally realistic values.

A3. Weighted Newton’s Method
The system of equations in (28) may be weighted using
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The weight w is used to provide balance between the importance of the f ð1Þm conditions on continuity of
the pressure head and the f ð1Þm specific discharge conditions. For the cases in this study, w 5 1, however
a more accurate solution is obtained by setting w> 1 for conditions where flow rates become very
small.

Many of the terms in the matrices become very large or very small, particularly for elements with
large radius r0 and high order N. This problem is resolved by rearranging terms between the
derivative terms in the Jacobian matrix J and the coefficients c to scale each column in the Jacobian by
the maximum absolute value of all coefficients within the column so the scaled columns each vary
within 61:
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This preconditioning [Van der Vorst, 1992] normalizes the basis functions in J so each column contains terms
between 61.

Iteration continues until only very small changes occur in U1
m and U2

m across all control points for succes-
sive iterates and statistics in Table 2 report accuracy of solution in terms of the average absolute error
and root-mean-square error for both f ð1Þm , (24), and f ð2Þm , (27). Iteration for each element continued until the
rmse of f in (28) was less than 10212 or the number of iterations becomes l 5 1000. Gauss-Seidel
sequenced through the I elements until changes in Um at all control points for all inhomogeneities was
less than 10212 between successive iterates or after 1000 sequences through all elements. It was found
that solutions converge more quickly when the I elements are ordered and solved sequentially from low-
er to higher zc elevations.

A4. Precomputing Influence Functions at Control Points
The value of functions at control points are evaluated at each iterate, and the speed of evaluation is
improved by organizing these computations in matrices with coefficients that may be precomputed before
iteration begins. The potential at control points may be computed using
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and the coefficients in column vectors
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and then expressing summations using matrix multiplication with
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and
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Evaluation of the second condition f ð2Þm contains the normal component of the vector field outside and
inside the element, which is facilitated using matrix multiplication with
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and
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