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ABSTRACT 

The Open Periodic Vehicle Routing Problem with Time 

Windows (OPVRPTW) is a practical transportation 

routing and scheduling problem arising from real-world 

scenarios. It shares some common features with some 

classic VRP variants. The problem has a tightly 

constrained large-scale solution space and requires well-

balanced diversification and intensification in search. In 

Variable Depth Neighbourhood Search, large 

neighbourhood depth prevents the search from trapping 

into local optima prematurely, while small depth 

provides thorough exploitation in local areas. 

Considering the multi-dimensional solution structure and 

tight constraints in OPVRPTW, a Variable-Depth 

Adaptive Large Neighbourhood Search (VD-ALNS) 

algorithm is proposed in this paper. Contributions of four 

tailored destroy operators and three repair operators at 

variable depths are investigated. Comparing to existing 

methods, VD-ALNS makes a good trade-off between 

exploration and exploitation, and produces promising 

results on both small and large size benchmark instances. 
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1. INTRODUCTION 

Vehicle Routing Problem (VRP) is a well-studied topic 

in Operational Research, and has a large number of 

variants. In the classic model of Vehicle Routing 

Problem with Time Windows (VRPTW) (Solomon 

1987) starting from a depot, a fleet of vehicles visits a 

number of customers satisfying the time constraints. The 

depot and customers visited compose a route of a vehicle. 

The total demands on the route cannot exceed the 

vehicle’s capacity. All vehicles have to return to the 

depot within the planning horizon (so called a close route 

(Hamilton Cycle) (Tarantilis et al. 2005)). The objective 

of VRPTW is to minimize the total cost of all routes (e.g., 

travel distance, and the number of vehicles used). 

Derived from various real-world problems, a large 

number of extended VRP models are proposed with 

various Side Constraints to VRPTW (e.g. driver working 

hour regulations, demand type, vehicle type and 

customer preference), or combined with other problems 

(e.g. inventory routing problem (Coelho, Cordeau and 

Laporte 2014)), while both exact approaches and 

heuristic algorithms are heavily studied (Toth and Vigo 

2001). 

 

1.1. Variants of Vehicle Routing Problem 

The problem model in our study is related to three 

classical VRP variants. In Vehicle Routing Problem with 

Pickups and Deliveries (Golden et al. 2008), customers 

have pickup and delivery demands. Each vehicle picks 

up goods from a number of pickup points, then delivers 

them to the appointed destinations within the associated 

time windows. In Less-than Truckload Transportation 

problem, goods delivered can be consolidated; 

otherwise, it is a Full Truckload Transportation problem 

(Wieberneit 2008). 

In Multi-Period Vehicle Routing Problem, the 

service to a customer could be performed over a multi-

period horizon (Mourgaya and Vanderbeck 2007).  

Especially in grocery distribution, soft drink industry and 

waste collection, goods are delivered at a specified 

service frequency for customers over a multi-period 

horizon. In this so-called Periodic Vehicle Routing 

Problem (Eksioglu et al. 2009), the objective is to 

minimize the total cost of vehicles routing on all 

workdays servicing all customers. 

To reduce cost, in practice many companies hire 

external carriers via third party logistic providers, instead 

of having their own fleet. Those hired vehicles do not 

return to the starting depot after completing the tasks, so 

all routes end at the last customers serviced. The routes 

are called open routes (Hamilton Paths instead of 

Hamilton Cycles) in Open VPRs, first proposed by 

Eppen and Schrage (1981). 

 

1.2. Existing Methods 

As a well-known NP-hard problem (Toth and Vigo 

2001), VRPs have been investigated by a huge number 

of exact methods and heuristic algorithms. Exact 

methods guarantee optimality (Baldacci et al. 2012), 
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however, become unrealistic when solving larger scale 

real-world problems with complex constraints (El-

Sherbeny 2010). Heuristic and Metaheuristic algorithms 

generate good approximations of optimal solutions in an 

acceptable computational time and have made great 

achievements in solving large-scale VRPs in the last 

three decades (Bräysy and Gendreau 2001).   

Population-Based Metaheuristics evolve improved 

solutions in populations and have shown high-

performance on problems such as multi-objective 

problems (Lourens 2005, Ghoseiri and Ghannadpour 

2010). However, when facing high-dimensional complex 

solution structures and large problem size in real-world 

problems, they could be intractable. For the large scale 

and highly constrained problem in this study, we focus 

on single solution-based metaheuristics. 

Single solution-based metaheuristics, by calling 

neighbourhood operators, explore only one new solution 

in each iteration. In Tabu Search (TS), specific solutions 

in a tabu list are forbidden to avoid cyclic search, and 

worse solutions within a certain extend are accepted to 

escape from a local optima trap. A TS is proposed for 

PVRPTW in (Cordeau et al. 2001), considering travel 

time, capacity, duration and time windows. TS has been 

widely applied to many applications in VRPs (Laporte et 

al. 2000). 

Variable Neighbourhood Search (VNS) explores a 

solution space by changing neighbourhood structures 

systematically (Mladenoviċ and Hansen 1997). It has 

obtained good results on various optimization problems 

(Hansen et al. 2010) including OVRPTW (Redi et al. 

2013). In Variable-Depth Neighbourhood Search 

(VDNS), one operator is used, but at variable 

neighbourhood depths. It is widely applied in Very Large 

Scale Neighbourhood search (Pisinger and Ropke 2010). 

Chen et al. (2016) develop a combined VNS and VDNS 

with compounded neighbourhood operators for VRPTW 

and obtained a number of new best solutions for 

benchmark instances.   

Large Neighbourhood Search (LNS) (Shaw 1997, 

1998) applies destroy operators (removal heuristics) and 

repair operators (insertion heuristics) to remove and 

reinsert a number of customers/demands from the current 

solution, producing a new solution with a larger 

difference. Schrimpf et al. (2000) also propose a similar 

Ruin & Recreate scheme. Pisinger and Ropke (2007) 

introduce the Adaptive Large Neighbourhood Search 

(ALNS), which employs an LNS strategy with adaptive 

operator selection, to solve five VRP variants.  

When traditional operators of small change (e.g. λ-

opt, CROSS-exchange (Bräysy and Gendreau 2005)) are 

used to explore tightly constrained large neighbourhood, 

the search can easily stuck into local optima. LNS 

operators (destroy & repair) and ALNS efficiently 

conquer this weakness by introducing larger changes to 

the current solution, and produce promising results in a 

large number of problems compared to existing methods 

(Pisinger and Popke 2010; Laporte et al. 2010).  

In (Azi et al. 2014), the operation depth of 

neighbourhood operators in the ALNS for VRPs with 

Multiple Routes changes. E.g., the Random Removal 

operator can randomly remove workdays, routes or 

customers from the operated solution. Note that each of 

the three different depths is used for only once by turn. 

More ALNS algorithms for practical VRPs can be found 

in (Ribeiro and Laporte 2012; Schopka and Kopfer 

2016). 

In this paper, we propose a Variable-Depth 

Adaptive Large Neighbourhood Search algorithm (VD-

ALNS) for the Open Periodic Vehicle Routing Problem 

with Time Windows (OPVRPTW) (Chen et al. 2017). 

Inspired by the idea of systematically adjusting 

neighbourhood operators during the search in VNS and 

VDNS, the operation depth of LNS operators in our 

algorithm is variable.  

 

2. PROBLEM MODEL 

Based on a practical Full Truckload Transportation 

problem at the Ningbo Port, the second biggest port in 

China, Chen et al. (2017) propose an OPVRPTW model. 

A fleet of 100 identical trucks is available in the depot to 

complete container transportation tasks among nine 

terminals. The objective of this problem is to minimize 

the total unloaded travel distance of the fleet. 

The problem is a Periodic VRP with a planning 

horizon of two to four days, each day has two shifts. One 

shipment request may contain a number of containers. At 

the beginning of a working day, the trucks leave the 

depot to complete a number of tasks of container pickup 

and delivery between terminals and return to the depot at 

the end of the day. In the middle of a workday, due to 

regulations of working hours on Labour Law, drivers 

working on the first (Odd-Indexed) shift of a day 

handover a truck to a driver working on the second 

(Even-Indexed) shift at a terminal. The terminal can be 

the first pickup point (source terminal) to the even-

indexed shift driver or the last delivery point (destination 

terminal) to the odd-indexed shift driver. The routes in 

this problem are open, i.e. routes in odd-indexed shifts do 

not have to end at the depot, and routes in even-indexed 

shifts do not need to start from the depot. 

We use the same problem model as (Chen et al. 

2017). All tasks of transporting a container are 

represented as one task node including: loading the 

container into a truck at the source terminal, travelling 

from the source to the destination terminal, and 

unloading at the destination terminal. Therefore, the 

travel between two nodes is always unloaded travel, 

because the loaded travel has been packaged into the task 

nodes. In this Open Periodic VRP with Time Windows, 

one truck can carry only one container at a time for its 

capacity.    

To connect the route of a truck from an odd-indexed 

shift to the following even-indexed shift, Artificial 

Depots are used in between on each workday. In one 

shift, every route starts from a starting depot and ends at 

a termination depot. The main notations used in this 

model are summarized in Table 1. 

In Figure 1, a small example of one workday 

schedule (of two consecutive shifts) is presented. A fleet 



of five trucks completes 14 transportation tasks. The 

physical move of the truck in the top route is 

demonstrated on the right side, with a handover at the 

artificial depot from Shift 1 (odd-indexed) to the driver 

in Shift 2 (even-indexed). It is worth to note that, the 

second and third routes in Shift 1 and the third and fourth 

routes in Shift 2 are empty routes, which directly connect 

artificial depots and the physical depot. This means no 

task is completed on these routes. Notice that the cost of 

an empty route is not always zero, e.g. the cost of the 

fourth route in Shift 2 could be non-zero, due to the 

unloaded travel distance from the last destination of the 

fourth route in Shift 1 to the physical depot is not zero. 

The cost of empty route will be zero only if the connected 

artificial node actually represents the physical depot.  

 

 

Table 1: The List of Notations 

Input Parameters: 

𝐾 Fleet size. 

𝑆 
The set of time-continuous working shifts, which can be divided into odd-indexed shifts (𝑆𝑜𝑑𝑑) and even-indexed shifts 

(𝑆𝑒𝑣𝑒𝑛). 

[𝑌𝑆, 𝑍𝑆] Time window of shift 𝑠. 

𝑁 = {0,1,2,⋯ , 𝑛}  Set of 𝑛 + 1 nodes. Each node represents a task except node 0 is the physical depot. 

[𝑎𝑖 , 𝑏𝑖] 
The time window for node 𝑖. The time window for a depot is zero at the boundary of a shift. If a truck arrives at the source 

of 𝑖 early, it has to wait until 𝑎𝑖. 

𝑊 

Set of Artificial Depots. This set of nodes are introduced to represent the destination terminals in 𝑆𝑜𝑑𝑑 or source terminals 

in 𝑆𝑒𝑣𝑒𝑛 on each day, which is decided by if the associated trucks in 𝑆𝑜𝑑𝑑 can arrive at their terminals before the end of 

the shift. This set varies in different solutions, i.e. a physical terminal may not appear or may appear more than once in 

𝑊. 

𝐴 Set of arcs. Each arc (𝑖, 𝑗) represents that node 𝑗 is immediately serviced/visited after servicing/visiting node 𝑖. 

𝑐𝑖𝑗 
The cost (distance) of unloaded travel from node 𝑖 to node 𝑗. If the destination terminal of task i and the source terminal 

of task j is the same, 𝑐𝑖𝑗 = 0. 

𝑡𝑖𝑗 
The travel time from node 𝑖 to node 𝑗. When both 𝑖 and 𝑗 are task nodes, 𝑡𝑖𝑗 is the travel time from the destination of 𝑖 to 

the source of 𝑗. Otherwise, it is the travel time from or to a depot. 

𝑇𝑖 The arrival time at node 𝑖. 

𝐵𝑖 The time to begin the service of node 𝑖. 

𝑙𝑖 
The time for servicing node 𝑖, which includes the loading time, transportation time (from pick-up source to delivery 

destination) and unloading time. The service time of a depot is zero. 

Decision Variable: 

𝑥𝑖𝑗
𝑠  

A binary decision variable for nodes 𝑖, 𝑗 ∈ 𝑁 ∪𝑊. Its value is 1 if arc (𝑖, 𝑗) is included in the solution in shift 𝑠, otherwise 

is 0. 𝑖 and 𝑗 ∈ 𝑊 at the same time is not allowed 

 

 

 

 

 
Figure 1：A scheduling example of two consequent shifts with five trucks. 

 



This OPVRPTW problem can be formally defined 

as follows. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒        ∑ ∑ ∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗
𝑠

𝑗∈𝑁∪𝑊𝑖∈𝑁∪𝑊𝑠∈𝑆         (1) 

 

Subject to 

 

∑ ∑ 𝑥𝑖𝑗
𝑠

𝑖∈𝑁\{0}𝑠∈𝑆 = 1,              ∀ 𝑗 ∈ 𝑁\{0}          (2) 

∑ ∑ 𝑥𝑖𝑗
𝑠

𝑗∈𝑁\{0}𝑠∈𝑆 = 1,              ∀ 𝑖 ∈ 𝑁\{0}          (3) 

∑ 𝑥𝑖𝑗
𝑠

𝑖∈𝑁∪𝑊 = ∑ 𝑥𝑗𝑓
𝑠  ,   ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆𝑓∈𝑁∪𝑊   (4) 

𝑇𝑗 = ∑ (𝐵𝑖 + 𝑙𝑖 + 𝑡𝑖𝑗) ∙

𝑖∈𝑁\{0}

𝑥𝑖𝑗
𝑠 + ∑ (𝑌𝑠 + 𝑡𝑖𝑗) ∙ 𝑥𝑖𝑗

𝑠

𝑖={0}∪𝑊

, 

                                     ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆    (5) 

𝐵𝑗 = 𝑇𝑗 +𝑚𝑎𝑥{𝑎𝑗 − 𝑇𝑗 , 0} ,          ∀𝑗 ∈ 𝑁\{0}          (6) 

𝑥𝑖𝑗
𝑠 ∙ 𝑌𝑠 ≤ 𝑥𝑖𝑗

𝑠 ∙ 𝑇𝑗  ,    ∀𝑖 ∈ {0} ∪𝑊, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆  (7) 

𝑥𝑖𝑗
𝑠 ∙ (𝐵𝑖 + 𝑙𝑖) ≤ 𝑥𝑖𝑗

𝑠 ∙ 𝑍𝑠 ,                                             

∀𝑖 ∈ 𝑁 ∪𝑊, 𝑗 ∈ {0} ∪𝑊, 𝑠 ∈ 𝑆    (8) 

𝑎𝑖 ≤ 𝐵𝑖 ≤ 𝑏𝑖 − 𝑙𝑖  ,                    ∀𝑖 ∈ 𝑁\{0}          (9) 

𝑥𝑖𝑗
𝑠 ∈ {0,1} ,                   ∀𝑖, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆     (10) 

𝑥𝑣𝑤
𝑠 = 0 ,                   ∀𝑣 ∈ 𝑊,𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆     (11) 

 

In odd-indexed shifts (∀s ∈ 𝑆𝑜𝑑𝑑): 

 

∑ 𝑥0𝑗
𝑠 = 𝐾 ,                 ∀ 𝑠 ∈ 𝑆𝑜𝑑𝑑𝑗∈𝑁\{0}∪𝑊          (12) 

𝑥𝑖0
𝑠 = 0 ,           ∀𝑖 ∈ 𝑁\{0} ∪𝑊, 𝑠 ∈ 𝑆𝑜𝑑𝑑          (13) 

∑ ∑ 𝑥𝑖𝑤
𝑠 = 𝐾 ,                  ∀𝑠 ∈ 𝑆𝑜𝑑𝑑𝑤∈𝑊𝑖∈𝑁          (14) 

 

In even-indexed shifts (∀s ∈ 𝑆𝑒𝑣𝑒𝑛): 

 

∑ 𝑥𝑗𝑤
𝑠−1 = ∑ 𝑥𝑤𝑒

𝑠  ,     ∀𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑒∈𝑁𝑗∈𝑁      (15) 

𝑥0𝑗
𝑠 = 0 ,                  ∀𝑗 ∈ 𝑁\{0} ∪W, s ∈ 𝑆𝑒𝑣𝑒𝑛      (16) 

∑ ∑ 𝑥𝑤𝑗
𝑠

𝑗∈𝑁 = 𝐾 ,                        ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑤∈𝑊      (17) 

∑ 𝑥𝑖0
𝑠 = 𝐾 ,                        ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑖∈𝑁\{0}∪𝑊      (18) 

 

The objective of this problem (1) is to minimize the 

total unloaded travel distance. Constraints (2) and (3) 

denote that every task node can be visited exactly once, 

and all tasks are visited. Constraint (4) specifies that a 

task may only be serviced after the previous task is 

completed. Constraints (2) - (4) together make sure arcs 

of over more than one shift are unacceptable. Constraint 

(5) is the arrival time at a task node. Constraint (6) 

defines the beginning time of servicing a task node, 

calculated by the arrival time plus the waiting time at the 

source of the task. Constraints (5) and (6) enforce the 

correct successive relationship between consecutive 

nodes. 

Constraints (7) and (8) are the time window 

constraints of each shift, while constraint (9) represents 

the time constraint on each task. The domain of the 

respective decision variable is defined by constraints (10) 

and (11). Constraint (11) prohibits the travel between two 

artificial depots.  

In odd-indexed shifts and even-indexed shifts, the 

constraints for the start and termination depots are 

different. Constraints (12) and (14) represent that K 

trucks leave the physical depot 0 at the beginning of an 

odd-indexed shift, and they would stop at artificial depots 

at the end of the shift. Constraint (13) represents that no 

truck returns to the physical depot in odd-indexed shifts. 

Constraints (16) - (18) place the reverse restraints in 

even-indexed shifts. Constraint (15) defines the shift 

change from an odd-indexed shift to the following even-

indexed shift on artificial depots, where the incoming of 

each artificial terminal in Sodd equals its outgoing in the 

following Seven. 

It is easy to see that, this problem is highly 

constrained with an exponential growing search space 

(|S|·K·n!). It has been proofed that exact methods are not 

suitable to solve this problem due to the exorbitant 

computing requirement (Chen et al. 2017). To address 

the tightly constrained problems with large 

neighbourhood, a Variable-Depth ALNS algorithm (VD-

ALNS) is proposed. 

 

3. VARIABLE-DEPTH ADAPTIVE LARGE 

NEIGHBOURHOOD SEARCH 

 

3.1. Framework of VD-ALNS 

The framework of VD-ALNS is shown in ALGORITHM 

1. An emergency-based construction heuristic (Chen et 

al. 2017) is firstly used to generate an initial solution by 

considering shifts chronologically, and assigning the 

tasks with higher emergency first. According to their 

time windows, those tasks that must be completed before 

the next shift will be assigned first. Starting from the 

initial solution, four destroy operators and three repair 

operators are then used to produce new solutions by 

modifying the current solution ( S𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ), pursuing 

solutions with higher quality.  

𝑊𝑒𝑖𝑔ℎ𝑡 and 𝑆𝑐𝑜𝑟𝑒 in Step 1 are two scalars used to 

guide the subsequent search. Specifically, Scorei records 

the contributions of operator i in solution improvement 

within a fixed number of iterations (so called a Segment). 

Scorei is used to update the value of Weighti, which 

determines the probability of operator i being adopted 

during search, in the next Segment. Their values are set 

as the same for all operators at the beginning, and then 

updated during the search. The algorithm iteratively 

explores the solution space until the Stopping Criterion 

is met, i.e. the quality of the best found solution (𝑆) has 

not been improved in the last 𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋  iterations, or 

the improvement is less than 1% in the last 

𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋  iterations. 

In Step 2.1, 𝐷𝑒𝑝𝑡ℎ is the range the operators work 

upon. It is systematically switched between the whole 

planning horizon (𝐻𝑂𝑅𝐼𝑍𝑂𝑁 ) and a specified shift 



(𝑆𝐻𝐼𝐹𝑇) to balance the exploration and exploitation. In 

Step 2.2, a pair of a destroy operator (𝐷𝑖) and a repair 

operator (𝑅𝑗) are used to generate a new solution (𝑆′).  

Every single operator in ALNS has its own weight 

(𝑊𝑒𝑖𝑔ℎ𝑡𝑖). However, a research issue here is whether an 

operator should be assigned two different weights for 

two different depths to separately record its contribution 

to improvement at depths 𝐻𝑂𝑅𝐼𝑍𝑂𝑁  and 𝑆𝐻𝐼𝐹𝑇 , or 

only one weight is sufficient to record all previous 

contribution. In the literature, this question has been 

addressed in VNS and VDNS (Pisinger and Ropke 

2010). Using two independent weights separately records 

knowledge collected during the search employing two 

independent operators at different depths, thus would 

prevent the knowledge collected at the other depth from 

being used. However, in our preliminary experiments, it 

is found that search experience at different operation 

depths can contribute and promote each other. In VD-

ALNS, thus, we adopt one operator in both scenarios and 

record an operator's information with only one scalar.  

 
ALGORITHM 1: Framework of VD-ALNS 

Input: An initial feasible solution (𝑆) generated by the construction 

heuristic in (Chen et al. 2017), Stopping Criterion, 𝐼𝑇𝐸𝑀𝐴𝑋 

and LEN_SEGMENT.  

Step 1. Set up the initial parameters. 

         𝑊𝑒𝑖𝑔ℎ𝑡 ← {1,⋯ ,1}.  
 𝑆𝑐𝑜𝑟𝑒 ← {0,⋯ ,0}. 
 S𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆, 𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.  

Step 2.     
   while Stopping Criterion is not met do 

 Step 2.1 Variable-Depth Setting. 

       if 𝑆 is not improved in the last 𝐼𝑇𝐸𝑀𝐴𝑋 iterations 

            if 𝐷𝑒𝑝𝑡ℎ = 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 then 

              𝐷𝑒𝑝𝑡ℎ ← 𝑆𝐻𝐼𝐹𝑇. 

            else 

                          𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.  

                    end 

              end 
 Step 2.2 Operators Selection and Execution.  

Select a Destroy Operator (𝐷𝑖) and a Repair Operator (𝑅𝑗) 

based on 𝑊𝑒𝑖𝑔ℎ𝑡.  
Execute 𝐷𝑖  and 𝑅𝑗  at Depth, and obtain a new solution: 

𝑆′ ← 𝑅𝑗(𝐷𝑖(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)).      
        Step 2.3 Accept or Reject.   

A Record-to-Record Travel algorithm is employed to 

determine if the newly generated solution is accepted 

(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆′) or rejected. If the quality of 𝑆′  is better 

than 𝑆, update the best-found solution 𝑆 ← 𝑆′. 
 Step 2.4 Weight Adjustment.  

The Scores of 𝐷𝑖 and 𝑅𝑗 (𝑆𝑐𝑜𝑟𝑒𝑖 and 𝑆𝑐𝑜𝑟𝑒𝑗) are updated 

at every iteration according to the quality of 𝑆′.  
At every LEN_SEGMENT  iteration, 𝑊𝑒𝑖𝑔ℎ𝑡  is updated 
based on the accumulated Score, Score is then reset.   

    end    

Output: An improved solution 𝑆. 

 

A pair of operators is selected by Roulette Wheel 

based on the weights of operators in Step 2.2. The 

probability of an operator 𝑖 being selected is calculated 

with Eq. (19), where ℎ  is the number of candidate 

operators. 

 

𝑃𝑟𝑖 =
𝑊𝑒𝑖𝑔ℎ𝑡𝑖

∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑘
ℎ
𝑘=1

                           (19) 

 

Step 2.3 decides if 𝑆′  is accepted as new 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  
and 𝑆 is updated, while Step 2.4 adjusts the scores and 

weights of operators according to the quality of 𝑆′. These 

adaptive weights guide the search to promising solution 

regions. More details are introduced in Sections 3.2 – 3.5. 

 

3.2. Variable-Depth Setting 

Variable search depth endows a balanced search 

performance. When 𝐷𝑒𝑝𝑡ℎ  is 𝑆𝐻𝐼𝐹𝑇 , the destroy 

operators remove a number of nodes from one specified 

shift, while the repair operators reinsert them back into 

that shift. All the shifts are specified and checked 

sequentially. When 𝐷𝑒𝑝𝑡ℎ  is 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 , the removal 

and reinsertion happen within the whole planning 

horizon. Obviously, 𝐻𝑂𝑅𝐼𝑍𝑂𝑁  is a greater depth than 

𝑆𝐻𝐼𝐹𝑇, and lead to a greater change in a solution, thus 

improves the diversification of search. Contrarily, using 

a 𝐷𝑒𝑝𝑡ℎ of 𝑆𝐻𝐼𝐹𝑇 modifies routes in a single shift by 

locally optimizing the solution, thus increases the 

intensification of search.  

𝐷𝑒𝑝𝑡ℎ is systematically switched to seek a trade-off 

between exploration and exploitation. Searching with 

smaller depth exploits a relatively smaller solution area 

intensively, while larger search depth avoids search 

trapping into local optima. In the proposed algorithm, 

𝐷𝑒𝑝𝑡ℎ would be switched to the other value when 𝑆 is 

not improved in 𝐼𝑇𝐸𝑀𝐴𝑋  iterations, to keep both the 

diversification and intensification in searching the large 

scale tightly constrained solution space. 

 

3.3. Operators of Destroy and Repair 

Four destroy operators and three repair operators are 

developed in our proposed VD-ALNS. 

 

3.3.1. Destroy Operators  

In each iteration, 𝑞  nodes are removed by a destroy 

operator (Removal Heuristic). The value of 𝑞 increases 

by 5 when the solution is not improved in the last 

iteration. As a too small 𝑞 will hardly bring change to a 

solution, while a too large 𝑞 will significantly increase 

repair operation time and the algorithm becomes a 

random search, a lower bound of max{0.1𝑛, 10} and an 

upper bound of min{0.5𝑛, 60} are set for 𝑞, where 𝑛 is 

the total number of nodes. 

1. Random Removal: The 𝑞 nodes to be removed 

are randomly selected. 

2. Worst Removal: This is a greedy heuristic, 

where the top 𝑞 nodes causing the greatest cost 

will be removed. In other words, removing the 

q task nodes brings the greatest cost reduction 

to the solution. 

3. Worst Edge Removal: This is also a greedy 

heuristic, which deletes 𝑞 nodes adjacent to arcs 

of the highest cost. 

4. Related Removal: Shaw (1997) proposes this 

operator based on the observation that, if nodes 

relate to one another are removed together, there 

would be an opportunity to interchange them in 

the later repaired solution. In VD-ALNS, we 

define the Relatedness of two task nodes (𝑖 and 



𝑗) from five aspects: Service Time (𝑅𝑖𝑗
𝑆𝑇), Time 

window (𝑅𝑖𝑗
𝑇𝑊), Service Starting Time (𝑅𝑖𝑗

𝑆𝑆𝑇), 

Vehicle used (𝑅𝑖𝑗
𝑉 ) and Source and Destination 

(𝑅𝑖𝑗
𝑆𝐷) as follows. 

 

𝑅𝑖𝑗
𝑆𝑇 =

|𝑙𝑖−𝑙𝑗|

(𝑙𝑖+𝑙𝑗)∙0.5
                                                 (20) 

𝑅𝑖𝑗
𝑇𝑊 =

0.5∙(|𝑎𝑖−𝑎𝑗|+|𝑏𝑖−𝑏𝑗|)

𝑚𝑎𝑥{𝑏𝑖,𝑏𝑗}−𝑚𝑖𝑛{𝑎𝑖,𝑎𝑗}
                               (21) 

𝑅𝑖𝑗
𝑆𝑆𝑇 =

|𝐵𝑖−𝐵𝑗|

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝐻𝑜𝑟𝑖𝑧𝑜𝑛
                      (22) 

𝑅𝑖𝑗
𝑉 = {

0 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑 𝑏𝑦 𝑎 𝑠𝑎𝑚𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒
0.5 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑒𝑐𝑒𝑑 𝑏𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 

𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠ℎ𝑖𝑓𝑡
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

   (23) 

𝑅𝑖𝑗
𝑆𝐷 =

{
 
 

 
 
0 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝐴𝑁𝐷

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
0.5 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑂𝑅

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

         (24) 

 

Correspondingly, the relatedness of two task nodes 

(𝑅𝑖𝑗 ) is a linear combination of the five components 

above-mentioned (25). The values of the five linear 

coefficients are discussed in Section 4.2. In Related 

Removal, the first node to be removed is randomly 

selected, then the other nodes are sorted in ascending 

order of their relatedness Rij to the first node. 

 

𝑅𝑖𝑗 = 𝛼 ∙ 𝑅𝑖𝑗
𝑆𝑇 + 𝛽 ∙ 𝑅𝑖𝑗

𝑇𝑊 + 𝛾 ∙ 𝑅𝑖𝑗
𝑆𝑆𝑇 + 𝛿 ∙ 𝑅𝑖𝑗

𝑉 + 휀 ∙ 𝑅𝑖𝑗
𝑆𝐷  

(𝑠. 𝑡.  𝛼 + 𝛽 + 𝛾 + 𝛿 + 휀 = 1)    (25) 

 

The rest 𝑞 − 1  nodes to be removed are selected 

with a preference of smaller 𝑅𝑖𝑗, where the nodes with 

the index of ⌈𝑁𝜌𝐷⌉  will be removed. Here, 𝑁  is the 

number of the current candidate nodes, 𝜌 is a random 

number between 0 and 1, and 𝐷 is a constant greater or 

equal to 1. The greater 𝐷 is, the stronger the preference 

would be, while 𝐷  is set to 3 in VD-ALNS. This 

selection scheme with a preference has been widely used 

in ALNS methods (Ropke and Pisinger 2006; Prescott-

Gagnon 2009; Azi et al. 2014). 

 

3.3.2. Repair Operators 

The nodes removed in the Destroy phase will be 

reinserted back into the solution following the below 

specific rules of each repair operator (Insertion 

Heuristic). 

1. Random Insertion: The removed nodes are 

randomly inserted into feasible positions. 

2. Greedy Insertion: The removed nodes are 

inserted into their best feasible positions 

causing the least cost increase. 

3. Regret2 Insertion: This greedy insertion 

heuristic is proposed by Pisinger and Ropke 

(2007), which always inserts firstly the node of 

the largest REGRET value into its best feasible 

position. The REGRET of a node is the cost 

difference between inserting the node to its best 

and second best feasible positions. 

 

3.4. Acceptance Criterion 

Record-to-Record Travel acceptance criterion (Dueck 

1993) is used to determine if the newly generated 

solution (𝑆′) is acceptable in the search. If 𝑆′ is better 

than the best-found solution 𝑆  (i.e. 𝐶𝑂𝑆𝑇(𝑆′) <
𝐶𝑂𝑆𝑇(𝑆)), 𝑆′  will be accepted as the current solution 

(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ). A new solution worse than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is still 

acceptable as long as the gap between their COST is less 

than a DEVIATION threshold (i.e. 0.01 ∙ 𝐶𝑂𝑆𝑇(𝑆)). 
 

3.5. Weight Adjustment 

In each iteration, the employed operator i is rewarded a 

value 𝜎 ≥ 0 based on the quality of the generated 

solution 𝑆′ (see Eq. 26). The effect of 𝜎 is further studied 

in Section 4.2. 

 

𝜎 =

{
  
 

  
 
𝜎1 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑎𝑛𝑑 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆)

𝜎2 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷

𝐶𝑂𝑆𝑇(𝑆) < 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝜎3 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷

𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < 𝐶𝑂𝑆𝑇(𝑆
′)

𝜎4 𝑆′𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

 

s.t.   𝜎1 > 𝜎2 > 𝜎3 > 𝜎4 ≥ 0          (26) 

 

After a fixed number ( 𝐿𝐸𝑁_𝑆𝐸𝐺𝑀𝐸𝑁𝑇 ) of 

iterations (a Segment), the total accumulated reward 

saved in 𝑆𝑐𝑜𝑟𝑒𝑖  in the current Segment t-1 is used to 

update the weight of operator i for the next Segment t (see 

Eq. (27)). In Eq. (27), the reaction factor 𝑟 controls how 

quickly the adjustment scheme reacts. 𝑢𝑖 is the number 

times operator 𝑖 is used in Segment 𝑡 − 1. After updating 

𝑊𝑒𝑖𝑔ℎ𝑡𝑖
𝑡 , 𝑆𝑐𝑜𝑟𝑒𝑖  will be reset to zero to start the 

accumulation of reward in Segment 𝑡. 
 

𝑊𝑒𝑖𝑔ℎ𝑡𝑖
𝑡 = 𝑟 ∙ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖

𝑡−1 + (1 − 𝑟) ∙
𝑆𝑐𝑜𝑟𝑒𝑖

𝑢𝑖
       (27) 

 

4. EXPERIMENTS AND ANALYSIS 

 

4.1. Benchmark 

Bai et al. (2015) generate a dataset including 15 real-life 

instances extracted from the container transportation 

historical data at Ningbo Port, and 16 artificial instances 

with diverse features. The planning horizons are four, six 

and eight shifts in the real-life instances, and four or eight 

shifts in artificial instances, respectively. The artificial 

instances are classified and named by the tightness of the 

time windows (Tight/Loose) and workload balance at 

terminals (Balanced/Unbalanced). For example, the 

instance named NP4-1 is the first real-life instance with 

four shifts, and instance TU8-7 is the seventh artificial 

instance with eight shifts, tight time window and 

unbalanced workload at terminals.  

The sizes of these 31 instances are large comparing 

to the classical VRP datasets (Solomon1987; Gehring 

and Homberger 1999). To test the effectiveness and 

efficiency of the proposed algorithms on small size 

instances, the Ningbo Port dataset is scaled down by 



25%, while keeping the same features in Chen et al. 

(2017). We test our proposed VD-ALNS on both the 

original and scaled down datasets. 

 

4.2. Parameter Sensitivity Analysis 

Parameters in VD-ALNS are studied one at a time, fixing 

the other parameters. It is easy to understand that, higher 

𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋 and 𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋 lead to more iterations in 

search, so might bring better solutions but at the cost of 

longer time. 𝐼𝑇𝐸𝑀𝐴𝑋  represents the times of one 𝐷𝑒𝑝𝑡ℎ 

value would be continuously used. The trade-off between 

the solution quality and running time needs to be 

considered to strike a balance between effectiveness and 

efficiency of the search. The values of parameters used 

in VD-ALNS are presented in Table 2. 

 

Table 2: Parameters in VD-ALNS. 
Parameter 𝜎1 𝜎2 𝜎3 𝜎4 UNIMPRMAX INCREMAX ITEMAX 

Value 30 15 5 0 150 200 4*No. of shifts 

Parameter α β γ δ ε r LEN_SEGMENT 

Value 0.3 0.2 0.1 0.2 0.2 70 0.4 

 

In adaptive weight adjustment, the values of 

rewards represent the contributions in solution 

improvement. To obtain the best setting of reward values, 

𝜎4 is set to zero, which indicates 𝑆𝑐𝑜𝑟𝑒𝑖 stays the same 

when 𝑆’ is rejected. Besides, 𝜎3 is set to 5 as a base unit. 

Different 𝜎1  and 𝜎2  are tested in parameter tuning 

experiments to find the setting generating the best 

solutions. It is observed that a too large 𝜎1 would cause 

premature search. The best solutions are obtained when 

the reward to producing a new best solution (𝜎1) is two 

times of that of generating an acceptable solution better 

than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  (𝜎2), and six times of that of obtaining an 

acceptable solution worse than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  (𝜎3).  

When tuning the definition of Relatedness (Eq. 

(25)), all the five components are firstly assigned equal 

weights ( α = β = γ = δ = ε = 0.2 ). Then, each 

coefficient is gradually increased to reflect the 

contribution of the associated component to the total 

relatedness. It is found that when the weight of Service 

Time Relatedness (𝑅𝑖𝑗
𝑆𝑇) is high, the quality of solutions 

is higher. This indicates that reassigning two tasks with a 

higher similarity of Service Time leads to a higher 

possibility to produce a better solution. Since the Service 

Staring Time of a task may change for various reasons 

(e.g., a task is assigned to a new truck, and a precedent 

task is reassigned, etc.), 𝑅𝑖𝑗
𝑆𝑆𝑇  can hardly represent the 

relatedness of two tasks and shows low contribution in 

tuning tests. A lower coefficient is given to 𝑅𝑖𝑗
𝑆𝑆𝑇 .  

A too small LEN_SEGMENT will change the 

weights of operators frequently and thus the search may 

converge prematurely. On the other hand, a large 

LEN_SEGMENT cannot update the guidance 

information in time. Our preliminary experiments show 

that the best performance is found when 

LEN_SEGMENT is between 50 and 80. In Eq. (27), the 

higher 𝑟 is, the slower the algorithm reacts to the latest 

guidance information. VD-ALNS performs the best 

when 𝑟 is between 0.4 and 0.6. 

 

4.3. Comparison of Solution Algorithms 

To demonstrate the contribution of variable depth, a 

standard ALNS for OPVRPTW is also implemented, 

where the Destroy and Repair operators are only used at 

the depth of HORIZON in global searching. Comparing 

to other metaheuristics using small change operators, 

both VD-ALNS and ALNS have a stronger ability to 

escape from local optima in a tightly constrained solution 

space. They are compared to VNS-RLS (Chen et al. 

2017), which uses neighbourhood operators with small 

changes.  

The comparison results on the 25% scaled down 

instances are presented in Tables 3 and 4. The three 

algorithms are compared from four aspects: best-found 

solution (Best), average solution (Ave), evaluation times 

(Times) and standard deviation (S.D.). All the results are 

obtained from 30 runs. In these results, we convert the 

objective value into Heavy-Loaded Distance Rate 

(HLDR) (Eq. (28)), which is widely used by logistic 

companies in practice. This objective is equivalent to the 

lowest unloaded travel distance in Eq. (1), but it converts 

the problem into a maximization problem. The lower and 

upper bounds of optimal solutions, which are obtained by 

CPLEX (Chen et al. 2017), are also given. NF in the 

tables means no feasible solution can be found. 

 

𝐻𝐿𝐷𝑅 =
𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒+𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
        (28) 

 

Table 3: HLDR on the 25% scaled down real-life 

instances. (Best-found HLDR in bold.) 
Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5 

VNS-

RLS 

Best 82.89% 62.32% 75.64% 59.76% 79.24% 

Ave 81.51% 61.42% 74.92% 59.18% 78.48% 

Times 469,233 311,885 319,202 347,134 326,956 

S.D. 1.16% 0.60% 0.62% 0.35% 0.42% 

ALNS 

Best 81.15% 65.51% 75.17% 61.86% 77.14% 

Ave 79.80% 65.08% 73.60% 61.47% 76.15% 

Times 385 500 458 499 395 

S.D. 0.72% 0.33% 0.80% 0.27% 0.57% 

VD-

ALNS 

Best 81.74% 65.45% 75.54% 62.53% 77.67% 

Ave 79.61% 65.16% 74.15% 61.75% 77.03% 

Times 483 529 503 549 573 

S.D. 1.20% 0.25% 0.82% 0.27% 0.53% 

Lower Bound 78.36% 65.14% 64.83% 54.39% NF 

Upper Bound 92.36% 97.04% 100% 97.72% 100% 
      

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5 

VNS-

RLS 

Best 76.24% 73.39% 62.32% 80.50% 82.44% 

Aver 74.99% 72.83% 62.06% 79.84% 80.53% 

Times 698.514 624,078 253,037 541,548 365,435 

S.D. 0.96% 0.41% 0.20% 0.41% 1.72% 

ALNS 

Best 79.07% 70.28% 65.00% 78.43% 82.15% 

Ave 78.03% 69.42% 64.26% 77.07% 80.58% 

Times 420 449 412 426 450 

S.D. 0.69% 0.49% 0.42% 0.80% 0.69% 

VD-

ALNS 

Best 79.95% 70.75% 65.31% 78.26% 82.75% 

Ave 78.33% 69.85% 64.40% 77.07% 80.34% 

Times 549 537 553 515 496 

S.D. 0.92% 0.49% 0.47% 0.76% 1.19% 

Lower Bound NF NF 54.30% NF 66.11% 

Upper Bound NF NF 95.20% NF 98.39% 
      

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5 

VNS-

RLS 

Best 76.91% 77.76% 75.35% 60.90% 72.27% 

Ave 74.72% 77.16% 74.93% 60.47% 71.68% 

Times 607,961 525,479 442,103 430,962 516,872 

S.D. 1.20% 0.37% 0.31% 0.32% 0.36% 

ALNS 

Best 74.74% 74.32% 75.08% 61.85% 71.60% 

Ave 73.90% 73.07% 74.29% 61.66% 71.05% 

Times 445 444 442 421 439 

S.D. 0.54% 0.49% 0.59% 0.14% 0.29% 



VD-

ALNS 

Best 75.50% 74.76% 75.09% 61.92% 71.58% 

Ave 74.22% 73.53% 74.53% 61.70% 71.10% 

Times 579 524 528 456 527 

S.D. 0.57% 0.58% 0.36% 0.14% 0.31% 

Lower Bound NF NF NF NF NF 

Upper Bound 98.98% 100% 100% NF 100% 

 

 

Table 4: HLDR on 25% scaled down artificial instances. 

(Best-found HLDR in bold.) 
Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8 

VNS-

RLS 

Best 76.92% 83.42% 69.08% 66.41% 60.71% 61.08% 48.75% 54.97% 

Ave 74.80% 81.61% 67.78% 64.95% 59.29% 60.62% 48.54% 54.68% 

Times 313,707 280,849 286,059 298,651 321,835 290,082 166,248 193,536 

S.D. 0.95% 1.09% 0.65% 0.75% 0.64% 0.29% 0.30% 0.33% 

ALNS 

Best 78.85% 81.85% 68.41% 66.94% 58.87% 59.35% 49.42% 54.12% 

Ave 77.84% 80.08% 67.36% 66.06% 57.84% 58.60% 48.87% 53.35% 

Times 438 421 426 410 396 287 371 287 

S.D. 0.67% 1.01% 0.51% 0.39% 0.52% 0.37% 0.39% 0.43% 

VD-

ALNS 

Best 79.16% 83.42% 68.92% 67.01% 59.84% 60.16% 49.42% 55.31% 

Ave 77.98% 80.92% 67.45% 66.22% 58.74% 59.37% 49.05% 54.19% 

Times 445 448 457 443 472 477 411 448 

S.D. 0.75% 0.95% 0.65% 0.36% 0.47% 0.46% 0.38% 0.48% 

Lower 

Bound 
66.62% 76.41% 69.91% 69.30% NF 58.65% 50.37% 55.36% 

Upper 

Bound 
100% 94.87% 86.31% 83.51% 79.94% 73.90% 52.17% 66.38% 

         

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8 

VNS-

RLS 

Best 91.25% 93.56% 63.05% 66.31% 65.76% 66.58% 56.46% 52.29% 

Ave 89.76% 92.09% 61.78% 63.25% 64.86% 65.58% 55.79% 51.93% 

Times 492,628 547,853 296,837 517,855 438,295 439,782 269,164 281,479 

S.D. 0.95% 0.87% 0.54% 1.16% 0.44% 0.49% 0.29% 0.18% 

ALNS 

Best 87.37% 87.87% 63.61% 66.12% 64.84% 60.34% 55.37% 51.89% 

Ave 83.02% 84.41% 62.75% 64.89% 63.61% 58.13% 54.69% 51.28% 

Times 398 396 403 461 437 318 334 385 

S.D. 2.40% 1.40% 0.59% 0.74% 0.54% 0.73% 0.23% 0.42% 

VD-

ALNS 

Best 88.71% 89.62% 64.37% 67.01% 65.30% 63.08% 55.52% 52.41% 

Ave 84.32% 84.35% 62.99% 65.26% 63.93% 59.95% 54.78% 51.81% 

Times 515 499 549 535 598 590 482 577 

S.D. 1.87% 1.95% 0.59% 0.54% 0.57% 1.29% 0.14% 0.39% 

Lower 

Bound 
NF NF 56.85% 52.40% 57.42% NF 47.65% 50.74% 

Upper 

Bound 
100% 100% 82.33% 88.75% 78.33% 86.84% 71.59% 70.43% 

 

From the experiment results, we can find that VD-

ALNS beats ALNS in almost all instances, indicating 

that the variable depth scheme does improve the 

performance of ALNS. This scheme enhances the 

exploitation in local areas, leading to increased total 

evaluation times in ALNS. Comparing to VNS-RLS, on 

6 of 15 real-life instances and half of artificial instances, 

VD-ALNS finds better or equally good solutions, 

showing no significant difference. However, VD-ALNS 

takes remarkably fewer evaluation times and 90% 

running time of VNS-RLS to obtain those results. All the 

three methods have the similar stability of a difference 

on S.D. lower than 1%.  
 
Table 5: HLDR on the original full real-life dataset. 

(Best-found HLDR in bold.) 
Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5 

VNS-RLS 

Best 83.29% 69.85% 72.90% 66.61% 80.65% 

Ave 81.88% 69.56% 72.20% 65.91% 80.48% 

Times 779,504 575,894 661,384 923,891 718,219 

S.D. 0.55% 0.16% 0.38% 0.47% 0.17% 

ALNS 

Best 81.68% 69.08% 74.72% 66.63% 78.16% 

Ave 80.21% 68.62% 74.06% 66.11% 77.78% 

Times 212 281 288 271 267 

S.D. 0.99% 0.36% 0.49% 0.29% 0.22% 

VD-

ALNS 

Best 82.30% 69.13% 73.94% 67.05% 78.96% 

Ave 81.42% 68.83% 73.01% 66.28% 78.11% 

Times 313 501 243 345 297 

S.D. 0.58% 0.21% 0.86% 0.56% 0.49% 

Upper Bound 90.43% 70.23% 79.58% 73.72% 81.20% 
      

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5 

VNS-

RLS 

Best 79.64% 74.14% 58.94% 79.52% 79.99% 

Aver 79.07% 73.72% 58.62% 79.10% 78.36% 

Times 1.03×106 1.16×106 513,974 1.05×106 984,987 

S.D. 0.47% 0.21% 0.23% 0.53% 0.99% 

ALNS 

Best 76.73% 69.16% 65.27% 77.99% 77.43% 

Ave 76.27% 64.76% 64.79% 77.11% 76.64% 

Times 265 44 251 236 274 

S.D. 0.29% 3.04% 0.35% 0.49% 0.56% 

VD-

ALNS 

Best 81.74% 71.73% 65.16% 78.67% 77.39% 

Ave 77.04% 70.95% 64.84% 77.86% 76.52% 

Times 483 300 303 381 387 

S.D. 1.20% 0.69% 0.24% 0.50% 0.54% 

Upper Bound 83.93% 76.67% 66.90% 80.97% 84.30% 
      

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5 

VNS-

RLS 

Best 73.80% 75.27% 74.20% 61.97% 73.62% 

Ave 73.48% 74.86% 73.96% 61.91% 73.26% 

Times 1.49×106 978,695 867,663 693,779 1.18×106 

S.D. 0.15% 0.28% 0.22% 0.06% 0.35% 

ALNS 

Best 69.53% 71.88% 74.02% 61.13% 72.63% 

Ave 68.58% 71.56% 73.22% 61.00% 72.05% 

Times 113 253 227 322 290 

S.D. 0.45% 0.23% 0.40% 0.09% 0.45% 

VD-

ALNS 

Best 70.13% 72.48% 74.02% 61.17% 73.07% 

Ave 69.72% 71.39% 73.67% 60.98% 72.59% 

Times 303 284 338 306 365 

S.D. 0.31% 0.28% 0.23% 0.09% 0.34% 

Upper Bound 77.04% 77.55% 78.82% 62.53% 76.09% 

 

Table 6: HLDR on the original full artificial dataset. 

(Best-found HLDR in bold.) 
Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8 

VNS-

RLS 

Best 73.52% 78.08% 69.32% 72.24% 64.67% 68.12% 53.21% 53.80% 

Ave 72.93% 77.70% 68.54% 71.42% 64.38% 67.52% 53.03% 53.61% 

Times 642,796 617,656 616,237 635,130 724,154 782,608 399,970 290,599 

S.D. 0.32% 0.32% 0.42% 0.49% 0.20% 0.40% 0.16% 0.08% 

ALNS 

Best 75.98% 77.28% 68.68% 73.03% 61.11% 64.45% 52.75% 53.39% 

Ave 75.41% 76.68% 68.05% 71.52% 60.59% 63.85% 52.01% 53.39% 

Times 328 193 222 257 316 202 242 106 

S.D. 0.48% 0.35% 0.43% 1.26% 0.35% 0.30% 0.43% 0.00% 

VD-

ALNS 

Best 76.05% 77.15% 69.03% 73.66% 61.04% 65.33% 52.88% 53.66% 

Ave 75.14% 76.83% 68.51% 72.78% 60.40% 64.80% 52.49% 53.47% 

Times 379 253 309 315 400 255 294 151 

S.D. 0.60% 0.18% 0.38% 0.64% 0.43% 0.49% 0.39% 0.10% 

Upper 

Bound 
79.47% 86.33% 84.05% 88.74% 74.11% 74.47% 64.05% 63.50% 

         

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8 

VNS-

RLS 

Best 85.49% 94.03% 69.59% 66.85% 67.81% 68.41% 59.60% 54.50% 

Ave 84.11% 92.83% 69.04% 65.70% 67.20% 68.07% 59.21% 54.23% 

Times 1.44×106 1.13×106 669,136 1.47×106 1,11×106 1.03×106 572,065 859,770 

S.D. 0.95% 1.05% 0.38% 0.76% 0.34% 0.21% 0.21% 0.16% 

ALNS 

Best 91.22% 92.98% 68.60% 63.76% 66.95% 61.68% 59.26% 53.78% 

Ave 83.01% 84.98% 67.80% 63.33% 65.28% 60.12% 58.86% 53.18% 

Times 231 212 236 232 275 225 242 210 

S.D. 3.44% 3.35% 0.49% 0.28% 0.34% 0.57% 0.15% 0.32% 

VD-

ALNS 

Best 88.71% 89.74% 69.53% 64.95% 67.01% 62.30% 58.99% 54.31% 

Ave 85.96% 86.67% 68.52% 63.78% 65.38% 61.29% 58.77% 53.10% 

Times 339 347 427 336 280 343 251 175 

S.D. 2.43% 1.77% 0.55% 0.75% 0.53% 0.76% 0.15% 0.50% 

Upper 

Bound 
98.26% 97.97% 87.06% 92.44% 74.27% 71.36% 70.29% 56.54% 

 

Tables 5 and 6 present results on the original 

Ningbo Port instances. The upper bounds are obtained 

with relaxing the travels of leaving and returning to the 

depot (Bai et al. 2015). It can be found that, with the 

variable depth scheme, VD-ALNS outperforms ALNS 

again from the aspects of both the average and best found 

solution. New best solutions are generated by VD-ALNS 

on 7 out of 31 benchmark instances. 

 

4.4. Contributions of Operators 

Table 7 provides statistics on the Destroy and Repair 

operators. On the scaled down dataset, one single 

operator is excluded at a time in VD-ALNS to record the 



resulting solution quality deterioration. The second and 

third columns show the average deterioration on the best 

found solution and average solution, while the last two 

columns give the maximum deterioration on the dataset. 

 

Table 7: Contributions of each operator 

Operator 
Best sol. 

deg. 

Avg. 

deg. 

Max best 

sol. deg. 

Max avg. 

deg. 

Random Removal 0.15% 0.23% 1.08% 0.13% 
Worst Removal 0.33% 0.60% 2.18% 2.14% 
Related Removal 0.09% 0.08% 1.32% 0.68% 
Worst Edge Removal 0.55% 0.56% 2.87% 2.14% 
Random Insertion 0.21% 0.12% 1.80% 1.09% 
Greedy Insertion 4.84% 5.34% 9.64% 7.69% 
Regret2 Insertion 0.54% 0.25% 4.07% 1.31% 

 

The results indicate the contributions of each 

operator in VD-ALNS. It can be found that Worst Edge 

Removal is the most efficient destroy operator, followed 

by Worst Removal. Related Removal contributes the 

least. Among all repair operators, Greedy Insertion is the 

most useful, followed by Regret2 Insertion. Overall, 

greedy heuristics provide effective complement on 

search intensification and outperform the others in VD-

ALNS. 

 

4.5. Analysis of Runtime 

The Destroy and Repair operators in ALNS bring greater 

changes than the traditional neighbourhood operators by 

operating on more nodes and making greater 

perturbation. Therefore, the computation time spent on 

choosing removal nodes and insertion positions is 

considerable. The evaluation times of ALNS and VD-

ALNS to obtain these results are significantly less than 

that of VNS-RLS, but the running time of VD-ALNS 

compared to VNS-RLS is around 17% more on the 

original instances, and slightly less on small instances. 

This observation indicates that scalability of the runtime 

of VD-ALNS is worse (increases faster) than VNS-RLS 

along with the instance size. 

Choosing the insertion position is time-consuming. 

Actually, the computational time of the repair operators 

accounts for a larger proportion of the overall time, 

around 3.5 times of the destroy operators’ on scaled 

down instances. What’s more, on the original dataset, the 

repair operation may spend more than 95% of the total 

computing time.  

 

5. CONCLUSIONS 

This paper investigates an open Periodic Vehicle Routing 

Problem with Time Windows (OPVRPTW) from a real-

world container transportation problem. To address this 

OPVRPTW of large scale search space with tight side 

constraints, a Variable-Depth Adaptive Large 

Neighbourhood Search algorithm (VD-ALNS) is 

proposed, using four destroy operators and three repair 

operators at variable neighbourhood depth. In this 

OPVRPTW with high-dimensional solution structure, 

the variable depth scheme shows to significantly improve 

the performance of the proposed algorithm on 

benchmark instances.  

On both small and big size benchmarks, it was 

demonstrated that the proposed variable depth scheme 

can handle the trade-off between exploration and 

exploitation and find good solutions efficiently, 

significantly promoting the performance of the classic 

Adaptive Large Neighbourhood Search algorithm.  

Comparing to an existing solution metaheuristic with 

small change operators, a number of new best-found 

solutions are obtained by VD-ALNS.  

In our future research, the multi-objective feature 

will be considered, and other effective trade-off 

strategies between solution quality and search speed will 

be adapted within ALNS. It will be interesting to also 

integrate advanced customized exact methods into both 

the destroy and repair operators. 
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