
VARIABLE-DEPTH ADAPTIVE LARGE NEIGHBOURHOOD SEARCH ALGORITHM

FOR OPEN PERIODIC VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

Binhui Chen(a) , Rong Qu(b), Hisao Ishibuchi(c)

(a),(b)School of Computer Science, The University of Nottingham, United Kingdom

(c)1) Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen,

China. 2) Department of Computer Science and Intelligent Systems, Osaka Prefecture University, Japan

(a)Binhui.Chen@nottingham.ac.uk, (b)Rong.Qu@nottingham.ac.uk ,(c)hisaoi@cs.osakafu-u.ac.jp

ABSTRACT

The Open Periodic Vehicle Routing Problem with Time

Windows (OPVRPTW) is a practical transportation

routing and scheduling problem arising from real-world

scenarios. It shares some common features with some

classic VRP variants. The problem has a tightly

constrained large-scale solution space and requires well-

balanced diversification and intensification in search. In

Variable Depth Neighbourhood Search, large

neighbourhood depth prevents the search from trapping

into local optima prematurely, while small depth

provides thorough exploitation in local areas.

Considering the multi-dimensional solution structure and

tight constraints in OPVRPTW, a Variable-Depth

Adaptive Large Neighbourhood Search (VD-ALNS)

algorithm is proposed in this paper. Contributions of four

tailored destroy operators and three repair operators at

variable depths are investigated. Comparing to existing

methods, VD-ALNS makes a good trade-off between

exploration and exploitation, and produces promising

results on both small and large size benchmark instances.

Keywords: adaptive large neighbourhood search,

variable depth neighbourhood search, open periodic

vehicle routing problem with time windows,

metaheuristic

1. INTRODUCTION

Vehicle Routing Problem (VRP) is a well-studied topic

in Operational Research, and has a large number of

variants. In the classic model of Vehicle Routing

Problem with Time Windows (VRPTW) (Solomon

1987) starting from a depot, a fleet of vehicles visits a

number of customers satisfying the time constraints. The

depot and customers visited compose a route of a vehicle.

The total demands on the route cannot exceed the

vehicle’s capacity. All vehicles have to return to the

depot within the planning horizon (so called a close route

(Hamilton Cycle) (Tarantilis et al. 2005)). The objective

of VRPTW is to minimize the total cost of all routes (e.g.,

travel distance, and the number of vehicles used).

Derived from various real-world problems, a large

number of extended VRP models are proposed with

various Side Constraints to VRPTW (e.g. driver working

hour regulations, demand type, vehicle type and

customer preference), or combined with other problems

(e.g. inventory routing problem (Coelho, Cordeau and

Laporte 2014)), while both exact approaches and

heuristic algorithms are heavily studied (Toth and Vigo

2001).

1.1. Variants of Vehicle Routing Problem

The problem model in our study is related to three

classical VRP variants. In Vehicle Routing Problem with

Pickups and Deliveries (Golden et al. 2008), customers

have pickup and delivery demands. Each vehicle picks

up goods from a number of pickup points, then delivers

them to the appointed destinations within the associated

time windows. In Less-than Truckload Transportation

problem, goods delivered can be consolidated;

otherwise, it is a Full Truckload Transportation problem

(Wieberneit 2008).

In Multi-Period Vehicle Routing Problem, the

service to a customer could be performed over a multi-

period horizon (Mourgaya and Vanderbeck 2007).

Especially in grocery distribution, soft drink industry and

waste collection, goods are delivered at a specified

service frequency for customers over a multi-period

horizon. In this so-called Periodic Vehicle Routing

Problem (Eksioglu et al. 2009), the objective is to

minimize the total cost of vehicles routing on all

workdays servicing all customers.

To reduce cost, in practice many companies hire

external carriers via third party logistic providers, instead

of having their own fleet. Those hired vehicles do not

return to the starting depot after completing the tasks, so

all routes end at the last customers serviced. The routes

are called open routes (Hamilton Paths instead of

Hamilton Cycles) in Open VPRs, first proposed by

Eppen and Schrage (1981).

1.2. Existing Methods

As a well-known NP-hard problem (Toth and Vigo

2001), VRPs have been investigated by a huge number

of exact methods and heuristic algorithms. Exact

methods guarantee optimality (Baldacci et al. 2012),

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/141471268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Binhui.Chen@nottingham.ac.uk
mailto:Rong.Qu@nottingham.ac.uk

however, become unrealistic when solving larger scale

real-world problems with complex constraints (El-

Sherbeny 2010). Heuristic and Metaheuristic algorithms

generate good approximations of optimal solutions in an

acceptable computational time and have made great

achievements in solving large-scale VRPs in the last

three decades (Bräysy and Gendreau 2001).

Population-Based Metaheuristics evolve improved

solutions in populations and have shown high-

performance on problems such as multi-objective

problems (Lourens 2005, Ghoseiri and Ghannadpour

2010). However, when facing high-dimensional complex

solution structures and large problem size in real-world

problems, they could be intractable. For the large scale

and highly constrained problem in this study, we focus

on single solution-based metaheuristics.

Single solution-based metaheuristics, by calling

neighbourhood operators, explore only one new solution

in each iteration. In Tabu Search (TS), specific solutions

in a tabu list are forbidden to avoid cyclic search, and

worse solutions within a certain extend are accepted to

escape from a local optima trap. A TS is proposed for

PVRPTW in (Cordeau et al. 2001), considering travel

time, capacity, duration and time windows. TS has been

widely applied to many applications in VRPs (Laporte et

al. 2000).

Variable Neighbourhood Search (VNS) explores a

solution space by changing neighbourhood structures

systematically (Mladenoviċ and Hansen 1997). It has

obtained good results on various optimization problems

(Hansen et al. 2010) including OVRPTW (Redi et al.

2013). In Variable-Depth Neighbourhood Search

(VDNS), one operator is used, but at variable

neighbourhood depths. It is widely applied in Very Large

Scale Neighbourhood search (Pisinger and Ropke 2010).

Chen et al. (2016) develop a combined VNS and VDNS

with compounded neighbourhood operators for VRPTW

and obtained a number of new best solutions for

benchmark instances.

Large Neighbourhood Search (LNS) (Shaw 1997,

1998) applies destroy operators (removal heuristics) and

repair operators (insertion heuristics) to remove and

reinsert a number of customers/demands from the current

solution, producing a new solution with a larger

difference. Schrimpf et al. (2000) also propose a similar

Ruin & Recreate scheme. Pisinger and Ropke (2007)

introduce the Adaptive Large Neighbourhood Search

(ALNS), which employs an LNS strategy with adaptive

operator selection, to solve five VRP variants.

When traditional operators of small change (e.g. λ-

opt, CROSS-exchange (Bräysy and Gendreau 2005)) are

used to explore tightly constrained large neighbourhood,

the search can easily stuck into local optima. LNS

operators (destroy & repair) and ALNS efficiently

conquer this weakness by introducing larger changes to

the current solution, and produce promising results in a

large number of problems compared to existing methods

(Pisinger and Popke 2010; Laporte et al. 2010).

In (Azi et al. 2014), the operation depth of

neighbourhood operators in the ALNS for VRPs with

Multiple Routes changes. E.g., the Random Removal

operator can randomly remove workdays, routes or

customers from the operated solution. Note that each of

the three different depths is used for only once by turn.

More ALNS algorithms for practical VRPs can be found

in (Ribeiro and Laporte 2012; Schopka and Kopfer

2016).

In this paper, we propose a Variable-Depth

Adaptive Large Neighbourhood Search algorithm (VD-

ALNS) for the Open Periodic Vehicle Routing Problem

with Time Windows (OPVRPTW) (Chen et al. 2017).

Inspired by the idea of systematically adjusting

neighbourhood operators during the search in VNS and

VDNS, the operation depth of LNS operators in our

algorithm is variable.

2. PROBLEM MODEL

Based on a practical Full Truckload Transportation

problem at the Ningbo Port, the second biggest port in

China, Chen et al. (2017) propose an OPVRPTW model.

A fleet of 100 identical trucks is available in the depot to

complete container transportation tasks among nine

terminals. The objective of this problem is to minimize

the total unloaded travel distance of the fleet.

The problem is a Periodic VRP with a planning

horizon of two to four days, each day has two shifts. One

shipment request may contain a number of containers. At

the beginning of a working day, the trucks leave the

depot to complete a number of tasks of container pickup

and delivery between terminals and return to the depot at

the end of the day. In the middle of a workday, due to

regulations of working hours on Labour Law, drivers

working on the first (Odd-Indexed) shift of a day

handover a truck to a driver working on the second

(Even-Indexed) shift at a terminal. The terminal can be

the first pickup point (source terminal) to the even-

indexed shift driver or the last delivery point (destination

terminal) to the odd-indexed shift driver. The routes in

this problem are open, i.e. routes in odd-indexed shifts do

not have to end at the depot, and routes in even-indexed

shifts do not need to start from the depot.

We use the same problem model as (Chen et al.

2017). All tasks of transporting a container are

represented as one task node including: loading the

container into a truck at the source terminal, travelling

from the source to the destination terminal, and

unloading at the destination terminal. Therefore, the

travel between two nodes is always unloaded travel,

because the loaded travel has been packaged into the task

nodes. In this Open Periodic VRP with Time Windows,

one truck can carry only one container at a time for its

capacity.

To connect the route of a truck from an odd-indexed

shift to the following even-indexed shift, Artificial

Depots are used in between on each workday. In one

shift, every route starts from a starting depot and ends at

a termination depot. The main notations used in this

model are summarized in Table 1.

In Figure 1, a small example of one workday

schedule (of two consecutive shifts) is presented. A fleet

of five trucks completes 14 transportation tasks. The

physical move of the truck in the top route is

demonstrated on the right side, with a handover at the

artificial depot from Shift 1 (odd-indexed) to the driver

in Shift 2 (even-indexed). It is worth to note that, the

second and third routes in Shift 1 and the third and fourth

routes in Shift 2 are empty routes, which directly connect

artificial depots and the physical depot. This means no

task is completed on these routes. Notice that the cost of

an empty route is not always zero, e.g. the cost of the

fourth route in Shift 2 could be non-zero, due to the

unloaded travel distance from the last destination of the

fourth route in Shift 1 to the physical depot is not zero.

The cost of empty route will be zero only if the connected

artificial node actually represents the physical depot.

Table 1: The List of Notations

Input Parameters:

𝐾 Fleet size.

𝑆
The set of time-continuous working shifts, which can be divided into odd-indexed shifts (𝑆𝑜𝑑𝑑) and even-indexed shifts

(𝑆𝑒𝑣𝑒𝑛).

[𝑌𝑆, 𝑍𝑆] Time window of shift 𝑠.

𝑁 = {0,1,2,⋯ , 𝑛} Set of 𝑛 + 1 nodes. Each node represents a task except node 0 is the physical depot.

[𝑎𝑖 , 𝑏𝑖]
The time window for node 𝑖. The time window for a depot is zero at the boundary of a shift. If a truck arrives at the source

of 𝑖 early, it has to wait until 𝑎𝑖.

𝑊

Set of Artificial Depots. This set of nodes are introduced to represent the destination terminals in 𝑆𝑜𝑑𝑑 or source terminals

in 𝑆𝑒𝑣𝑒𝑛 on each day, which is decided by if the associated trucks in 𝑆𝑜𝑑𝑑 can arrive at their terminals before the end of

the shift. This set varies in different solutions, i.e. a physical terminal may not appear or may appear more than once in

𝑊.

𝐴 Set of arcs. Each arc (𝑖, 𝑗) represents that node 𝑗 is immediately serviced/visited after servicing/visiting node 𝑖.

𝑐𝑖𝑗
The cost (distance) of unloaded travel from node 𝑖 to node 𝑗. If the destination terminal of task i and the source terminal

of task j is the same, 𝑐𝑖𝑗 = 0.

𝑡𝑖𝑗
The travel time from node 𝑖 to node 𝑗. When both 𝑖 and 𝑗 are task nodes, 𝑡𝑖𝑗 is the travel time from the destination of 𝑖 to

the source of 𝑗. Otherwise, it is the travel time from or to a depot.

𝑇𝑖 The arrival time at node 𝑖.

𝐵𝑖 The time to begin the service of node 𝑖.

𝑙𝑖
The time for servicing node 𝑖, which includes the loading time, transportation time (from pick-up source to delivery

destination) and unloading time. The service time of a depot is zero.

Decision Variable:

𝑥𝑖𝑗
𝑠

A binary decision variable for nodes 𝑖, 𝑗 ∈ 𝑁 ∪𝑊. Its value is 1 if arc (𝑖, 𝑗) is included in the solution in shift 𝑠, otherwise

is 0. 𝑖 and 𝑗 ∈ 𝑊 at the same time is not allowed

Figure 1：A scheduling example of two consequent shifts with five trucks.

This OPVRPTW problem can be formally defined

as follows.

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ ∑ ∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗
𝑠

𝑗∈𝑁∪𝑊𝑖∈𝑁∪𝑊𝑠∈𝑆 (1)

Subject to

∑ ∑ 𝑥𝑖𝑗
𝑠

𝑖∈𝑁\{0}𝑠∈𝑆 = 1, ∀ 𝑗 ∈ 𝑁\{0} (2)

∑ ∑ 𝑥𝑖𝑗
𝑠

𝑗∈𝑁\{0}𝑠∈𝑆 = 1, ∀ 𝑖 ∈ 𝑁\{0} (3)

∑ 𝑥𝑖𝑗
𝑠

𝑖∈𝑁∪𝑊 = ∑ 𝑥𝑗𝑓
𝑠 , ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆𝑓∈𝑁∪𝑊 (4)

𝑇𝑗 = ∑ (𝐵𝑖 + 𝑙𝑖 + 𝑡𝑖𝑗) ∙

𝑖∈𝑁\{0}

𝑥𝑖𝑗
𝑠 + ∑ (𝑌𝑠 + 𝑡𝑖𝑗) ∙ 𝑥𝑖𝑗

𝑠

𝑖={0}∪𝑊

,

 ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆 (5)

𝐵𝑗 = 𝑇𝑗 +𝑚𝑎𝑥{𝑎𝑗 − 𝑇𝑗 , 0} , ∀𝑗 ∈ 𝑁\{0} (6)

𝑥𝑖𝑗
𝑠 ∙ 𝑌𝑠 ≤ 𝑥𝑖𝑗

𝑠 ∙ 𝑇𝑗 , ∀𝑖 ∈ {0} ∪𝑊, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆 (7)

𝑥𝑖𝑗
𝑠 ∙ (𝐵𝑖 + 𝑙𝑖) ≤ 𝑥𝑖𝑗

𝑠 ∙ 𝑍𝑠 ,

∀𝑖 ∈ 𝑁 ∪𝑊, 𝑗 ∈ {0} ∪𝑊, 𝑠 ∈ 𝑆 (8)

𝑎𝑖 ≤ 𝐵𝑖 ≤ 𝑏𝑖 − 𝑙𝑖 , ∀𝑖 ∈ 𝑁\{0} (9)

𝑥𝑖𝑗
𝑠 ∈ {0,1} , ∀𝑖, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆 (10)

𝑥𝑣𝑤
𝑠 = 0 , ∀𝑣 ∈ 𝑊,𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆 (11)

In odd-indexed shifts (∀s ∈ 𝑆𝑜𝑑𝑑):

∑ 𝑥0𝑗
𝑠 = 𝐾 , ∀ 𝑠 ∈ 𝑆𝑜𝑑𝑑𝑗∈𝑁\{0}∪𝑊 (12)

𝑥𝑖0
𝑠 = 0 , ∀𝑖 ∈ 𝑁\{0} ∪𝑊, 𝑠 ∈ 𝑆𝑜𝑑𝑑 (13)

∑ ∑ 𝑥𝑖𝑤
𝑠 = 𝐾 , ∀𝑠 ∈ 𝑆𝑜𝑑𝑑𝑤∈𝑊𝑖∈𝑁 (14)

In even-indexed shifts (∀s ∈ 𝑆𝑒𝑣𝑒𝑛):

∑ 𝑥𝑗𝑤
𝑠−1 = ∑ 𝑥𝑤𝑒

𝑠 , ∀𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑒∈𝑁𝑗∈𝑁 (15)

𝑥0𝑗
𝑠 = 0 , ∀𝑗 ∈ 𝑁\{0} ∪W, s ∈ 𝑆𝑒𝑣𝑒𝑛 (16)

∑ ∑ 𝑥𝑤𝑗
𝑠

𝑗∈𝑁 = 𝐾 , ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑤∈𝑊 (17)

∑ 𝑥𝑖0
𝑠 = 𝐾 , ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑖∈𝑁\{0}∪𝑊 (18)

The objective of this problem (1) is to minimize the

total unloaded travel distance. Constraints (2) and (3)

denote that every task node can be visited exactly once,

and all tasks are visited. Constraint (4) specifies that a

task may only be serviced after the previous task is

completed. Constraints (2) - (4) together make sure arcs

of over more than one shift are unacceptable. Constraint

(5) is the arrival time at a task node. Constraint (6)

defines the beginning time of servicing a task node,

calculated by the arrival time plus the waiting time at the

source of the task. Constraints (5) and (6) enforce the

correct successive relationship between consecutive

nodes.

Constraints (7) and (8) are the time window

constraints of each shift, while constraint (9) represents

the time constraint on each task. The domain of the

respective decision variable is defined by constraints (10)

and (11). Constraint (11) prohibits the travel between two

artificial depots.

In odd-indexed shifts and even-indexed shifts, the

constraints for the start and termination depots are

different. Constraints (12) and (14) represent that K

trucks leave the physical depot 0 at the beginning of an

odd-indexed shift, and they would stop at artificial depots

at the end of the shift. Constraint (13) represents that no

truck returns to the physical depot in odd-indexed shifts.

Constraints (16) - (18) place the reverse restraints in

even-indexed shifts. Constraint (15) defines the shift

change from an odd-indexed shift to the following even-

indexed shift on artificial depots, where the incoming of

each artificial terminal in Sodd equals its outgoing in the

following Seven.

It is easy to see that, this problem is highly

constrained with an exponential growing search space

(|S|·K·n!). It has been proofed that exact methods are not

suitable to solve this problem due to the exorbitant

computing requirement (Chen et al. 2017). To address

the tightly constrained problems with large

neighbourhood, a Variable-Depth ALNS algorithm (VD-

ALNS) is proposed.

3. VARIABLE-DEPTH ADAPTIVE LARGE

NEIGHBOURHOOD SEARCH

3.1. Framework of VD-ALNS

The framework of VD-ALNS is shown in ALGORITHM

1. An emergency-based construction heuristic (Chen et

al. 2017) is firstly used to generate an initial solution by

considering shifts chronologically, and assigning the

tasks with higher emergency first. According to their

time windows, those tasks that must be completed before

the next shift will be assigned first. Starting from the

initial solution, four destroy operators and three repair

operators are then used to produce new solutions by

modifying the current solution (S𝑐𝑢𝑟𝑟𝑒𝑛𝑡), pursuing

solutions with higher quality.

𝑊𝑒𝑖𝑔ℎ𝑡 and 𝑆𝑐𝑜𝑟𝑒 in Step 1 are two scalars used to

guide the subsequent search. Specifically, Scorei records

the contributions of operator i in solution improvement

within a fixed number of iterations (so called a Segment).

Scorei is used to update the value of Weighti, which

determines the probability of operator i being adopted

during search, in the next Segment. Their values are set

as the same for all operators at the beginning, and then

updated during the search. The algorithm iteratively

explores the solution space until the Stopping Criterion

is met, i.e. the quality of the best found solution (𝑆) has

not been improved in the last 𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋 iterations, or

the improvement is less than 1% in the last

𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋 iterations.

In Step 2.1, 𝐷𝑒𝑝𝑡ℎ is the range the operators work

upon. It is systematically switched between the whole

planning horizon (𝐻𝑂𝑅𝐼𝑍𝑂𝑁) and a specified shift

(𝑆𝐻𝐼𝐹𝑇) to balance the exploration and exploitation. In

Step 2.2, a pair of a destroy operator (𝐷𝑖) and a repair

operator (𝑅𝑗) are used to generate a new solution (𝑆′).

Every single operator in ALNS has its own weight

(𝑊𝑒𝑖𝑔ℎ𝑡𝑖). However, a research issue here is whether an

operator should be assigned two different weights for

two different depths to separately record its contribution

to improvement at depths 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 and 𝑆𝐻𝐼𝐹𝑇 , or

only one weight is sufficient to record all previous

contribution. In the literature, this question has been

addressed in VNS and VDNS (Pisinger and Ropke

2010). Using two independent weights separately records

knowledge collected during the search employing two

independent operators at different depths, thus would

prevent the knowledge collected at the other depth from

being used. However, in our preliminary experiments, it

is found that search experience at different operation

depths can contribute and promote each other. In VD-

ALNS, thus, we adopt one operator in both scenarios and

record an operator's information with only one scalar.

ALGORITHM 1: Framework of VD-ALNS

Input: An initial feasible solution (𝑆) generated by the construction

heuristic in (Chen et al. 2017), Stopping Criterion, 𝐼𝑇𝐸𝑀𝐴𝑋

and LEN_SEGMENT.

Step 1. Set up the initial parameters.

 𝑊𝑒𝑖𝑔ℎ𝑡 ← {1,⋯ ,1}.
 𝑆𝑐𝑜𝑟𝑒 ← {0,⋯ ,0}.
 S𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆, 𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.

Step 2.
 while Stopping Criterion is not met do

 Step 2.1 Variable-Depth Setting.

 if 𝑆 is not improved in the last 𝐼𝑇𝐸𝑀𝐴𝑋 iterations

 if 𝐷𝑒𝑝𝑡ℎ = 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 then

 𝐷𝑒𝑝𝑡ℎ ← 𝑆𝐻𝐼𝐹𝑇.

 else

 𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.

 end

 end
 Step 2.2 Operators Selection and Execution.

Select a Destroy Operator (𝐷𝑖) and a Repair Operator (𝑅𝑗)

based on 𝑊𝑒𝑖𝑔ℎ𝑡.
Execute 𝐷𝑖 and 𝑅𝑗 at Depth, and obtain a new solution:

𝑆′ ← 𝑅𝑗(𝐷𝑖(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)).
 Step 2.3 Accept or Reject.

A Record-to-Record Travel algorithm is employed to

determine if the newly generated solution is accepted

(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆′) or rejected. If the quality of 𝑆′ is better

than 𝑆, update the best-found solution 𝑆 ← 𝑆′.
 Step 2.4 Weight Adjustment.

The Scores of 𝐷𝑖 and 𝑅𝑗 (𝑆𝑐𝑜𝑟𝑒𝑖 and 𝑆𝑐𝑜𝑟𝑒𝑗) are updated

at every iteration according to the quality of 𝑆′.
At every LEN_SEGMENT iteration, 𝑊𝑒𝑖𝑔ℎ𝑡 is updated
based on the accumulated Score, Score is then reset.

 end

Output: An improved solution 𝑆.

A pair of operators is selected by Roulette Wheel

based on the weights of operators in Step 2.2. The

probability of an operator 𝑖 being selected is calculated

with Eq. (19), where ℎ is the number of candidate

operators.

𝑃𝑟𝑖 =
𝑊𝑒𝑖𝑔ℎ𝑡𝑖

∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑘
ℎ
𝑘=1

 (19)

Step 2.3 decides if 𝑆′ is accepted as new 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡
and 𝑆 is updated, while Step 2.4 adjusts the scores and

weights of operators according to the quality of 𝑆′. These

adaptive weights guide the search to promising solution

regions. More details are introduced in Sections 3.2 – 3.5.

3.2. Variable-Depth Setting

Variable search depth endows a balanced search

performance. When 𝐷𝑒𝑝𝑡ℎ is 𝑆𝐻𝐼𝐹𝑇 , the destroy

operators remove a number of nodes from one specified

shift, while the repair operators reinsert them back into

that shift. All the shifts are specified and checked

sequentially. When 𝐷𝑒𝑝𝑡ℎ is 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 , the removal

and reinsertion happen within the whole planning

horizon. Obviously, 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 is a greater depth than

𝑆𝐻𝐼𝐹𝑇, and lead to a greater change in a solution, thus

improves the diversification of search. Contrarily, using

a 𝐷𝑒𝑝𝑡ℎ of 𝑆𝐻𝐼𝐹𝑇 modifies routes in a single shift by

locally optimizing the solution, thus increases the

intensification of search.

𝐷𝑒𝑝𝑡ℎ is systematically switched to seek a trade-off

between exploration and exploitation. Searching with

smaller depth exploits a relatively smaller solution area

intensively, while larger search depth avoids search

trapping into local optima. In the proposed algorithm,

𝐷𝑒𝑝𝑡ℎ would be switched to the other value when 𝑆 is

not improved in 𝐼𝑇𝐸𝑀𝐴𝑋 iterations, to keep both the

diversification and intensification in searching the large

scale tightly constrained solution space.

3.3. Operators of Destroy and Repair

Four destroy operators and three repair operators are

developed in our proposed VD-ALNS.

3.3.1. Destroy Operators

In each iteration, 𝑞 nodes are removed by a destroy

operator (Removal Heuristic). The value of 𝑞 increases

by 5 when the solution is not improved in the last

iteration. As a too small 𝑞 will hardly bring change to a

solution, while a too large 𝑞 will significantly increase

repair operation time and the algorithm becomes a

random search, a lower bound of max{0.1𝑛, 10} and an

upper bound of min{0.5𝑛, 60} are set for 𝑞, where 𝑛 is

the total number of nodes.

1. Random Removal: The 𝑞 nodes to be removed

are randomly selected.

2. Worst Removal: This is a greedy heuristic,

where the top 𝑞 nodes causing the greatest cost

will be removed. In other words, removing the

q task nodes brings the greatest cost reduction

to the solution.

3. Worst Edge Removal: This is also a greedy

heuristic, which deletes 𝑞 nodes adjacent to arcs

of the highest cost.

4. Related Removal: Shaw (1997) proposes this

operator based on the observation that, if nodes

relate to one another are removed together, there

would be an opportunity to interchange them in

the later repaired solution. In VD-ALNS, we

define the Relatedness of two task nodes (𝑖 and

𝑗) from five aspects: Service Time (𝑅𝑖𝑗
𝑆𝑇), Time

window (𝑅𝑖𝑗
𝑇𝑊), Service Starting Time (𝑅𝑖𝑗

𝑆𝑆𝑇),

Vehicle used (𝑅𝑖𝑗
𝑉) and Source and Destination

(𝑅𝑖𝑗
𝑆𝐷) as follows.

𝑅𝑖𝑗
𝑆𝑇 =

|𝑙𝑖−𝑙𝑗|

(𝑙𝑖+𝑙𝑗)∙0.5
 (20)

𝑅𝑖𝑗
𝑇𝑊 =

0.5∙(|𝑎𝑖−𝑎𝑗|+|𝑏𝑖−𝑏𝑗|)

𝑚𝑎𝑥{𝑏𝑖,𝑏𝑗}−𝑚𝑖𝑛{𝑎𝑖,𝑎𝑗}
 (21)

𝑅𝑖𝑗
𝑆𝑆𝑇 =

|𝐵𝑖−𝐵𝑗|

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝐻𝑜𝑟𝑖𝑧𝑜𝑛
 (22)

𝑅𝑖𝑗
𝑉 = {

0 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑 𝑏𝑦 𝑎 𝑠𝑎𝑚𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒
0.5 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑒𝑐𝑒𝑑 𝑏𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡

𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠ℎ𝑖𝑓𝑡
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (23)

𝑅𝑖𝑗
𝑆𝐷 =

{

0 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝐴𝑁𝐷

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
0.5 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑂𝑅

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (24)

Correspondingly, the relatedness of two task nodes

(𝑅𝑖𝑗) is a linear combination of the five components

above-mentioned (25). The values of the five linear

coefficients are discussed in Section 4.2. In Related

Removal, the first node to be removed is randomly

selected, then the other nodes are sorted in ascending

order of their relatedness Rij to the first node.

𝑅𝑖𝑗 = 𝛼 ∙ 𝑅𝑖𝑗
𝑆𝑇 + 𝛽 ∙ 𝑅𝑖𝑗

𝑇𝑊 + 𝛾 ∙ 𝑅𝑖𝑗
𝑆𝑆𝑇 + 𝛿 ∙ 𝑅𝑖𝑗

𝑉 + 휀 ∙ 𝑅𝑖𝑗
𝑆𝐷

(𝑠. 𝑡. 𝛼 + 𝛽 + 𝛾 + 𝛿 + 휀 = 1) (25)

The rest 𝑞 − 1 nodes to be removed are selected

with a preference of smaller 𝑅𝑖𝑗, where the nodes with

the index of ⌈𝑁𝜌𝐷⌉ will be removed. Here, 𝑁 is the

number of the current candidate nodes, 𝜌 is a random

number between 0 and 1, and 𝐷 is a constant greater or

equal to 1. The greater 𝐷 is, the stronger the preference

would be, while 𝐷 is set to 3 in VD-ALNS. This

selection scheme with a preference has been widely used

in ALNS methods (Ropke and Pisinger 2006; Prescott-

Gagnon 2009; Azi et al. 2014).

3.3.2. Repair Operators

The nodes removed in the Destroy phase will be

reinserted back into the solution following the below

specific rules of each repair operator (Insertion

Heuristic).

1. Random Insertion: The removed nodes are

randomly inserted into feasible positions.

2. Greedy Insertion: The removed nodes are

inserted into their best feasible positions

causing the least cost increase.

3. Regret2 Insertion: This greedy insertion

heuristic is proposed by Pisinger and Ropke

(2007), which always inserts firstly the node of

the largest REGRET value into its best feasible

position. The REGRET of a node is the cost

difference between inserting the node to its best

and second best feasible positions.

3.4. Acceptance Criterion

Record-to-Record Travel acceptance criterion (Dueck

1993) is used to determine if the newly generated

solution (𝑆′) is acceptable in the search. If 𝑆′ is better

than the best-found solution 𝑆 (i.e. 𝐶𝑂𝑆𝑇(𝑆′) <
𝐶𝑂𝑆𝑇(𝑆)), 𝑆′ will be accepted as the current solution

(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡). A new solution worse than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is still

acceptable as long as the gap between their COST is less

than a DEVIATION threshold (i.e. 0.01 ∙ 𝐶𝑂𝑆𝑇(𝑆)).

3.5. Weight Adjustment

In each iteration, the employed operator i is rewarded a

value 𝜎 ≥ 0 based on the quality of the generated

solution 𝑆′ (see Eq. 26). The effect of 𝜎 is further studied

in Section 4.2.

𝜎 =

{

𝜎1 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑎𝑛𝑑 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆)

𝜎2 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷

𝐶𝑂𝑆𝑇(𝑆) < 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝜎3 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷

𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < 𝐶𝑂𝑆𝑇(𝑆
′)

𝜎4 𝑆′𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

s.t. 𝜎1 > 𝜎2 > 𝜎3 > 𝜎4 ≥ 0 (26)

After a fixed number (𝐿𝐸𝑁_𝑆𝐸𝐺𝑀𝐸𝑁𝑇) of

iterations (a Segment), the total accumulated reward

saved in 𝑆𝑐𝑜𝑟𝑒𝑖 in the current Segment t-1 is used to

update the weight of operator i for the next Segment t (see

Eq. (27)). In Eq. (27), the reaction factor 𝑟 controls how

quickly the adjustment scheme reacts. 𝑢𝑖 is the number

times operator 𝑖 is used in Segment 𝑡 − 1. After updating

𝑊𝑒𝑖𝑔ℎ𝑡𝑖
𝑡 , 𝑆𝑐𝑜𝑟𝑒𝑖 will be reset to zero to start the

accumulation of reward in Segment 𝑡.

𝑊𝑒𝑖𝑔ℎ𝑡𝑖
𝑡 = 𝑟 ∙ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖

𝑡−1 + (1 − 𝑟) ∙
𝑆𝑐𝑜𝑟𝑒𝑖

𝑢𝑖
 (27)

4. EXPERIMENTS AND ANALYSIS

4.1. Benchmark

Bai et al. (2015) generate a dataset including 15 real-life

instances extracted from the container transportation

historical data at Ningbo Port, and 16 artificial instances

with diverse features. The planning horizons are four, six

and eight shifts in the real-life instances, and four or eight

shifts in artificial instances, respectively. The artificial

instances are classified and named by the tightness of the

time windows (Tight/Loose) and workload balance at

terminals (Balanced/Unbalanced). For example, the

instance named NP4-1 is the first real-life instance with

four shifts, and instance TU8-7 is the seventh artificial

instance with eight shifts, tight time window and

unbalanced workload at terminals.

The sizes of these 31 instances are large comparing

to the classical VRP datasets (Solomon1987; Gehring

and Homberger 1999). To test the effectiveness and

efficiency of the proposed algorithms on small size

instances, the Ningbo Port dataset is scaled down by

25%, while keeping the same features in Chen et al.

(2017). We test our proposed VD-ALNS on both the

original and scaled down datasets.

4.2. Parameter Sensitivity Analysis

Parameters in VD-ALNS are studied one at a time, fixing

the other parameters. It is easy to understand that, higher

𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋 and 𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋 lead to more iterations in

search, so might bring better solutions but at the cost of

longer time. 𝐼𝑇𝐸𝑀𝐴𝑋 represents the times of one 𝐷𝑒𝑝𝑡ℎ

value would be continuously used. The trade-off between

the solution quality and running time needs to be

considered to strike a balance between effectiveness and

efficiency of the search. The values of parameters used

in VD-ALNS are presented in Table 2.

Table 2: Parameters in VD-ALNS.
Parameter 𝜎1 𝜎2 𝜎3 𝜎4 UNIMPRMAX INCREMAX ITEMAX

Value 30 15 5 0 150 200 4*No. of shifts

Parameter α β γ δ ε r LEN_SEGMENT

Value 0.3 0.2 0.1 0.2 0.2 70 0.4

In adaptive weight adjustment, the values of

rewards represent the contributions in solution

improvement. To obtain the best setting of reward values,

𝜎4 is set to zero, which indicates 𝑆𝑐𝑜𝑟𝑒𝑖 stays the same

when 𝑆’ is rejected. Besides, 𝜎3 is set to 5 as a base unit.

Different 𝜎1 and 𝜎2 are tested in parameter tuning

experiments to find the setting generating the best

solutions. It is observed that a too large 𝜎1 would cause

premature search. The best solutions are obtained when

the reward to producing a new best solution (𝜎1) is two

times of that of generating an acceptable solution better

than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝜎2), and six times of that of obtaining an

acceptable solution worse than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝜎3).

When tuning the definition of Relatedness (Eq.

(25)), all the five components are firstly assigned equal

weights (α = β = γ = δ = ε = 0.2). Then, each

coefficient is gradually increased to reflect the

contribution of the associated component to the total

relatedness. It is found that when the weight of Service

Time Relatedness (𝑅𝑖𝑗
𝑆𝑇) is high, the quality of solutions

is higher. This indicates that reassigning two tasks with a

higher similarity of Service Time leads to a higher

possibility to produce a better solution. Since the Service

Staring Time of a task may change for various reasons

(e.g., a task is assigned to a new truck, and a precedent

task is reassigned, etc.), 𝑅𝑖𝑗
𝑆𝑆𝑇 can hardly represent the

relatedness of two tasks and shows low contribution in

tuning tests. A lower coefficient is given to 𝑅𝑖𝑗
𝑆𝑆𝑇 .

A too small LEN_SEGMENT will change the

weights of operators frequently and thus the search may

converge prematurely. On the other hand, a large

LEN_SEGMENT cannot update the guidance

information in time. Our preliminary experiments show

that the best performance is found when

LEN_SEGMENT is between 50 and 80. In Eq. (27), the

higher 𝑟 is, the slower the algorithm reacts to the latest

guidance information. VD-ALNS performs the best

when 𝑟 is between 0.4 and 0.6.

4.3. Comparison of Solution Algorithms

To demonstrate the contribution of variable depth, a

standard ALNS for OPVRPTW is also implemented,

where the Destroy and Repair operators are only used at

the depth of HORIZON in global searching. Comparing

to other metaheuristics using small change operators,

both VD-ALNS and ALNS have a stronger ability to

escape from local optima in a tightly constrained solution

space. They are compared to VNS-RLS (Chen et al.

2017), which uses neighbourhood operators with small

changes.

The comparison results on the 25% scaled down

instances are presented in Tables 3 and 4. The three

algorithms are compared from four aspects: best-found

solution (Best), average solution (Ave), evaluation times

(Times) and standard deviation (S.D.). All the results are

obtained from 30 runs. In these results, we convert the

objective value into Heavy-Loaded Distance Rate

(HLDR) (Eq. (28)), which is widely used by logistic

companies in practice. This objective is equivalent to the

lowest unloaded travel distance in Eq. (1), but it converts

the problem into a maximization problem. The lower and

upper bounds of optimal solutions, which are obtained by

CPLEX (Chen et al. 2017), are also given. NF in the

tables means no feasible solution can be found.

𝐻𝐿𝐷𝑅 =
𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒+𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 (28)

Table 3: HLDR on the 25% scaled down real-life

instances. (Best-found HLDR in bold.)
Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5

VNS-

RLS

Best 82.89% 62.32% 75.64% 59.76% 79.24%

Ave 81.51% 61.42% 74.92% 59.18% 78.48%

Times 469,233 311,885 319,202 347,134 326,956

S.D. 1.16% 0.60% 0.62% 0.35% 0.42%

ALNS

Best 81.15% 65.51% 75.17% 61.86% 77.14%

Ave 79.80% 65.08% 73.60% 61.47% 76.15%

Times 385 500 458 499 395

S.D. 0.72% 0.33% 0.80% 0.27% 0.57%

VD-

ALNS

Best 81.74% 65.45% 75.54% 62.53% 77.67%

Ave 79.61% 65.16% 74.15% 61.75% 77.03%

Times 483 529 503 549 573

S.D. 1.20% 0.25% 0.82% 0.27% 0.53%

Lower Bound 78.36% 65.14% 64.83% 54.39% NF

Upper Bound 92.36% 97.04% 100% 97.72% 100%

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5

VNS-

RLS

Best 76.24% 73.39% 62.32% 80.50% 82.44%

Aver 74.99% 72.83% 62.06% 79.84% 80.53%

Times 698.514 624,078 253,037 541,548 365,435

S.D. 0.96% 0.41% 0.20% 0.41% 1.72%

ALNS

Best 79.07% 70.28% 65.00% 78.43% 82.15%

Ave 78.03% 69.42% 64.26% 77.07% 80.58%

Times 420 449 412 426 450

S.D. 0.69% 0.49% 0.42% 0.80% 0.69%

VD-

ALNS

Best 79.95% 70.75% 65.31% 78.26% 82.75%

Ave 78.33% 69.85% 64.40% 77.07% 80.34%

Times 549 537 553 515 496

S.D. 0.92% 0.49% 0.47% 0.76% 1.19%

Lower Bound NF NF 54.30% NF 66.11%

Upper Bound NF NF 95.20% NF 98.39%

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5

VNS-

RLS

Best 76.91% 77.76% 75.35% 60.90% 72.27%

Ave 74.72% 77.16% 74.93% 60.47% 71.68%

Times 607,961 525,479 442,103 430,962 516,872

S.D. 1.20% 0.37% 0.31% 0.32% 0.36%

ALNS

Best 74.74% 74.32% 75.08% 61.85% 71.60%

Ave 73.90% 73.07% 74.29% 61.66% 71.05%

Times 445 444 442 421 439

S.D. 0.54% 0.49% 0.59% 0.14% 0.29%

VD-

ALNS

Best 75.50% 74.76% 75.09% 61.92% 71.58%

Ave 74.22% 73.53% 74.53% 61.70% 71.10%

Times 579 524 528 456 527

S.D. 0.57% 0.58% 0.36% 0.14% 0.31%

Lower Bound NF NF NF NF NF

Upper Bound 98.98% 100% 100% NF 100%

Table 4: HLDR on 25% scaled down artificial instances.

(Best-found HLDR in bold.)
Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8

VNS-

RLS

Best 76.92% 83.42% 69.08% 66.41% 60.71% 61.08% 48.75% 54.97%

Ave 74.80% 81.61% 67.78% 64.95% 59.29% 60.62% 48.54% 54.68%

Times 313,707 280,849 286,059 298,651 321,835 290,082 166,248 193,536

S.D. 0.95% 1.09% 0.65% 0.75% 0.64% 0.29% 0.30% 0.33%

ALNS

Best 78.85% 81.85% 68.41% 66.94% 58.87% 59.35% 49.42% 54.12%

Ave 77.84% 80.08% 67.36% 66.06% 57.84% 58.60% 48.87% 53.35%

Times 438 421 426 410 396 287 371 287

S.D. 0.67% 1.01% 0.51% 0.39% 0.52% 0.37% 0.39% 0.43%

VD-

ALNS

Best 79.16% 83.42% 68.92% 67.01% 59.84% 60.16% 49.42% 55.31%

Ave 77.98% 80.92% 67.45% 66.22% 58.74% 59.37% 49.05% 54.19%

Times 445 448 457 443 472 477 411 448

S.D. 0.75% 0.95% 0.65% 0.36% 0.47% 0.46% 0.38% 0.48%

Lower

Bound
66.62% 76.41% 69.91% 69.30% NF 58.65% 50.37% 55.36%

Upper

Bound
100% 94.87% 86.31% 83.51% 79.94% 73.90% 52.17% 66.38%

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8

VNS-

RLS

Best 91.25% 93.56% 63.05% 66.31% 65.76% 66.58% 56.46% 52.29%

Ave 89.76% 92.09% 61.78% 63.25% 64.86% 65.58% 55.79% 51.93%

Times 492,628 547,853 296,837 517,855 438,295 439,782 269,164 281,479

S.D. 0.95% 0.87% 0.54% 1.16% 0.44% 0.49% 0.29% 0.18%

ALNS

Best 87.37% 87.87% 63.61% 66.12% 64.84% 60.34% 55.37% 51.89%

Ave 83.02% 84.41% 62.75% 64.89% 63.61% 58.13% 54.69% 51.28%

Times 398 396 403 461 437 318 334 385

S.D. 2.40% 1.40% 0.59% 0.74% 0.54% 0.73% 0.23% 0.42%

VD-

ALNS

Best 88.71% 89.62% 64.37% 67.01% 65.30% 63.08% 55.52% 52.41%

Ave 84.32% 84.35% 62.99% 65.26% 63.93% 59.95% 54.78% 51.81%

Times 515 499 549 535 598 590 482 577

S.D. 1.87% 1.95% 0.59% 0.54% 0.57% 1.29% 0.14% 0.39%

Lower

Bound
NF NF 56.85% 52.40% 57.42% NF 47.65% 50.74%

Upper

Bound
100% 100% 82.33% 88.75% 78.33% 86.84% 71.59% 70.43%

From the experiment results, we can find that VD-

ALNS beats ALNS in almost all instances, indicating

that the variable depth scheme does improve the

performance of ALNS. This scheme enhances the

exploitation in local areas, leading to increased total

evaluation times in ALNS. Comparing to VNS-RLS, on

6 of 15 real-life instances and half of artificial instances,

VD-ALNS finds better or equally good solutions,

showing no significant difference. However, VD-ALNS

takes remarkably fewer evaluation times and 90%

running time of VNS-RLS to obtain those results. All the

three methods have the similar stability of a difference

on S.D. lower than 1%.

Table 5: HLDR on the original full real-life dataset.

(Best-found HLDR in bold.)
Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5

VNS-RLS

Best 83.29% 69.85% 72.90% 66.61% 80.65%

Ave 81.88% 69.56% 72.20% 65.91% 80.48%

Times 779,504 575,894 661,384 923,891 718,219

S.D. 0.55% 0.16% 0.38% 0.47% 0.17%

ALNS

Best 81.68% 69.08% 74.72% 66.63% 78.16%

Ave 80.21% 68.62% 74.06% 66.11% 77.78%

Times 212 281 288 271 267

S.D. 0.99% 0.36% 0.49% 0.29% 0.22%

VD-

ALNS

Best 82.30% 69.13% 73.94% 67.05% 78.96%

Ave 81.42% 68.83% 73.01% 66.28% 78.11%

Times 313 501 243 345 297

S.D. 0.58% 0.21% 0.86% 0.56% 0.49%

Upper Bound 90.43% 70.23% 79.58% 73.72% 81.20%

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5

VNS-

RLS

Best 79.64% 74.14% 58.94% 79.52% 79.99%

Aver 79.07% 73.72% 58.62% 79.10% 78.36%

Times 1.03×106 1.16×106 513,974 1.05×106 984,987

S.D. 0.47% 0.21% 0.23% 0.53% 0.99%

ALNS

Best 76.73% 69.16% 65.27% 77.99% 77.43%

Ave 76.27% 64.76% 64.79% 77.11% 76.64%

Times 265 44 251 236 274

S.D. 0.29% 3.04% 0.35% 0.49% 0.56%

VD-

ALNS

Best 81.74% 71.73% 65.16% 78.67% 77.39%

Ave 77.04% 70.95% 64.84% 77.86% 76.52%

Times 483 300 303 381 387

S.D. 1.20% 0.69% 0.24% 0.50% 0.54%

Upper Bound 83.93% 76.67% 66.90% 80.97% 84.30%

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5

VNS-

RLS

Best 73.80% 75.27% 74.20% 61.97% 73.62%

Ave 73.48% 74.86% 73.96% 61.91% 73.26%

Times 1.49×106 978,695 867,663 693,779 1.18×106

S.D. 0.15% 0.28% 0.22% 0.06% 0.35%

ALNS

Best 69.53% 71.88% 74.02% 61.13% 72.63%

Ave 68.58% 71.56% 73.22% 61.00% 72.05%

Times 113 253 227 322 290

S.D. 0.45% 0.23% 0.40% 0.09% 0.45%

VD-

ALNS

Best 70.13% 72.48% 74.02% 61.17% 73.07%

Ave 69.72% 71.39% 73.67% 60.98% 72.59%

Times 303 284 338 306 365

S.D. 0.31% 0.28% 0.23% 0.09% 0.34%

Upper Bound 77.04% 77.55% 78.82% 62.53% 76.09%

Table 6: HLDR on the original full artificial dataset.

(Best-found HLDR in bold.)
Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8

VNS-

RLS

Best 73.52% 78.08% 69.32% 72.24% 64.67% 68.12% 53.21% 53.80%

Ave 72.93% 77.70% 68.54% 71.42% 64.38% 67.52% 53.03% 53.61%

Times 642,796 617,656 616,237 635,130 724,154 782,608 399,970 290,599

S.D. 0.32% 0.32% 0.42% 0.49% 0.20% 0.40% 0.16% 0.08%

ALNS

Best 75.98% 77.28% 68.68% 73.03% 61.11% 64.45% 52.75% 53.39%

Ave 75.41% 76.68% 68.05% 71.52% 60.59% 63.85% 52.01% 53.39%

Times 328 193 222 257 316 202 242 106

S.D. 0.48% 0.35% 0.43% 1.26% 0.35% 0.30% 0.43% 0.00%

VD-

ALNS

Best 76.05% 77.15% 69.03% 73.66% 61.04% 65.33% 52.88% 53.66%

Ave 75.14% 76.83% 68.51% 72.78% 60.40% 64.80% 52.49% 53.47%

Times 379 253 309 315 400 255 294 151

S.D. 0.60% 0.18% 0.38% 0.64% 0.43% 0.49% 0.39% 0.10%

Upper

Bound
79.47% 86.33% 84.05% 88.74% 74.11% 74.47% 64.05% 63.50%

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8

VNS-

RLS

Best 85.49% 94.03% 69.59% 66.85% 67.81% 68.41% 59.60% 54.50%

Ave 84.11% 92.83% 69.04% 65.70% 67.20% 68.07% 59.21% 54.23%

Times 1.44×106 1.13×106 669,136 1.47×106 1,11×106 1.03×106 572,065 859,770

S.D. 0.95% 1.05% 0.38% 0.76% 0.34% 0.21% 0.21% 0.16%

ALNS

Best 91.22% 92.98% 68.60% 63.76% 66.95% 61.68% 59.26% 53.78%

Ave 83.01% 84.98% 67.80% 63.33% 65.28% 60.12% 58.86% 53.18%

Times 231 212 236 232 275 225 242 210

S.D. 3.44% 3.35% 0.49% 0.28% 0.34% 0.57% 0.15% 0.32%

VD-

ALNS

Best 88.71% 89.74% 69.53% 64.95% 67.01% 62.30% 58.99% 54.31%

Ave 85.96% 86.67% 68.52% 63.78% 65.38% 61.29% 58.77% 53.10%

Times 339 347 427 336 280 343 251 175

S.D. 2.43% 1.77% 0.55% 0.75% 0.53% 0.76% 0.15% 0.50%

Upper

Bound
98.26% 97.97% 87.06% 92.44% 74.27% 71.36% 70.29% 56.54%

Tables 5 and 6 present results on the original

Ningbo Port instances. The upper bounds are obtained

with relaxing the travels of leaving and returning to the

depot (Bai et al. 2015). It can be found that, with the

variable depth scheme, VD-ALNS outperforms ALNS

again from the aspects of both the average and best found

solution. New best solutions are generated by VD-ALNS

on 7 out of 31 benchmark instances.

4.4. Contributions of Operators

Table 7 provides statistics on the Destroy and Repair

operators. On the scaled down dataset, one single

operator is excluded at a time in VD-ALNS to record the

resulting solution quality deterioration. The second and

third columns show the average deterioration on the best

found solution and average solution, while the last two

columns give the maximum deterioration on the dataset.

Table 7: Contributions of each operator

Operator
Best sol.

deg.

Avg.

deg.

Max best

sol. deg.

Max avg.

deg.

Random Removal 0.15% 0.23% 1.08% 0.13%
Worst Removal 0.33% 0.60% 2.18% 2.14%
Related Removal 0.09% 0.08% 1.32% 0.68%
Worst Edge Removal 0.55% 0.56% 2.87% 2.14%
Random Insertion 0.21% 0.12% 1.80% 1.09%
Greedy Insertion 4.84% 5.34% 9.64% 7.69%
Regret2 Insertion 0.54% 0.25% 4.07% 1.31%

The results indicate the contributions of each

operator in VD-ALNS. It can be found that Worst Edge

Removal is the most efficient destroy operator, followed

by Worst Removal. Related Removal contributes the

least. Among all repair operators, Greedy Insertion is the

most useful, followed by Regret2 Insertion. Overall,

greedy heuristics provide effective complement on

search intensification and outperform the others in VD-

ALNS.

4.5. Analysis of Runtime

The Destroy and Repair operators in ALNS bring greater

changes than the traditional neighbourhood operators by

operating on more nodes and making greater

perturbation. Therefore, the computation time spent on

choosing removal nodes and insertion positions is

considerable. The evaluation times of ALNS and VD-

ALNS to obtain these results are significantly less than

that of VNS-RLS, but the running time of VD-ALNS

compared to VNS-RLS is around 17% more on the

original instances, and slightly less on small instances.

This observation indicates that scalability of the runtime

of VD-ALNS is worse (increases faster) than VNS-RLS

along with the instance size.

Choosing the insertion position is time-consuming.

Actually, the computational time of the repair operators

accounts for a larger proportion of the overall time,

around 3.5 times of the destroy operators’ on scaled

down instances. What’s more, on the original dataset, the

repair operation may spend more than 95% of the total

computing time.

5. CONCLUSIONS

This paper investigates an open Periodic Vehicle Routing

Problem with Time Windows (OPVRPTW) from a real-

world container transportation problem. To address this

OPVRPTW of large scale search space with tight side

constraints, a Variable-Depth Adaptive Large

Neighbourhood Search algorithm (VD-ALNS) is

proposed, using four destroy operators and three repair

operators at variable neighbourhood depth. In this

OPVRPTW with high-dimensional solution structure,

the variable depth scheme shows to significantly improve

the performance of the proposed algorithm on

benchmark instances.

On both small and big size benchmarks, it was

demonstrated that the proposed variable depth scheme

can handle the trade-off between exploration and

exploitation and find good solutions efficiently,

significantly promoting the performance of the classic

Adaptive Large Neighbourhood Search algorithm.

Comparing to an existing solution metaheuristic with

small change operators, a number of new best-found

solutions are obtained by VD-ALNS.

In our future research, the multi-objective feature

will be considered, and other effective trade-off

strategies between solution quality and search speed will

be adapted within ALNS. It will be interesting to also

integrate advanced customized exact methods into both

the destroy and repair operators.

ACKNOWLEDGMENTS

This research was supported by Ningbo Science &

Technology Bureau (2014A35006) and School of

Computer Science, the University of Nottingham.

REFERENCES

Azi N., Gendreau M., and Potvin J.Y., 2014. An adaptive

large neighborhood search for a vehicle routing

problem with multiple routes. Computers &

Operations Research 41 (2014), 167–173.

Bai R., Xue N., Chen J., and Roberts G.W., 2015. A set-

covering model for a bidirectional multi-shift full

truckload vehicle routing problem. Transportation

Research Part B: Methodological 79 (2015), 134–

148.

Baldacci R., Mingozzi A., and Roberti R., 2012. Recent

exact algorithms for solving the vehicle routing

problem under capacity and time window

constraints. European Journal of Operational

Research 218, 1 (2012), 1–6.

Bräysy O. and Gendreau M., 2001. Metaheuristics for the

vehicle routing problem with time windows. Report

STF42 A 1025 (2001).

Bräysy O. and Gendreau M., 2005. Vehicle routing

problem with time windows, Part I: Route

construction and local search algorithms.

Transportation science 39, 1 (2005), 104–118.

Chen B., Qu R., Bai R., and Ishibuchi H., 2016. A

variable neighbourhood search algorithm with

compound neighbourhoods for VRPTW. Springer,

25–35.

Chen B., Qu R., Bai R., and Laesanklang W., 2017. A

Reinforcement Learning Based Variable

Neighborhood Search Algorithm for Open Periodic

Vehicle Routing Problem with Time Windows.

Submitted to the Special Issue of the Journal

“Networks” on Vehicle Routing and Logistic, 2017.

Coelho, L.C., Cordeau, J.F. and Laporte, G., 2013. Thirty

years of inventory routing. Transportation

Science, 48(1), pp.1-19.

Cordeau J.F., Laporte G., and Mercier A., 2001. A

unified tabu search heuristic for vehicle routing

problems with time windows. Journal of the

Operational research society 52, 8 (2001), 928–936.

Dueck G., 1993. New Optimization Heuristics: The

Great Deluge Algorithm and the Record-to-Record

Travel. J. Comput. Phys. 104, 1 (1993), 86–92.

Eksioglu B., Vural A.V., and Reisman A., 2009. The

vehicle routing problem: A taxonomic review.

Computers & Industrial Engineering 57, 4 (2009),

1472–1483.

El-Sherbeny N.A., 2010. Vehicle routing with time

windows: An overview of exact, heuristic and

metaheuristic methods. Journal of King Saud

University-Science 22, 3 (2010), 123–131.

Eppen G. and Schrage L., 1981. Centralized ordering

policies in a multi-warehouse system with lead

times and random demand. Multi-level

production/inventory control systems: Theory and

practice 16 (1981), 51–67.

Gehring H. and Homberger J., 1999. A parallel hybrid

evolutionary metaheuristic for the vehicle routing

problem with time windows. In Proceedings of

EUROGEN99, Vol. 2. Citeseer, 57–64.

Ghoseiri K., and Ghannadpour S.F., 2010. Multi-

objective vehicle routing problem with time

windows using goal programming and genetic

algorithm. Applied Soft Computing 10, 4 (2010),

1096–1107.

Golden B.L., Raghavan S., and Wasil E.A., 2008. The

Vehicle Routing Problem: Latest Advances and

New Challenges: latest advances and new

challenges. Vol. 43. Springer Science & Business

Media.

Hansen P., Mladenoviċ N., and Pėrez J.A.M., 2010.

Variable neighbourhood search: methods and

applications. Annals of Operations Research 175, 1

(2010), 367–407.

Laporte G., Gendreau M., Potvin J.Y., and Semet F.,

2000. Classical and modern heuristics for the

vehicle routing problem. International transactions

in operational research 7, 45 (2000), 285–300.

Laporte G., Musmanno R., and Vocaturo F., 2010. An

adaptive large neighbourhood search heuristic for

the capacitated arc-routing problem with stochastic

demands. Transportation Science 44, 1 (2010),

125–135.

Lourens T., 2005. Using population-based incremental

learning to optimize feasible distribution logistic

solutions. Thesis.

Mladenoviċ N. and Hansen P., 1997. Variable

neighborhood search. Computers & Operations

Research 24, 11 (1997), 1097–1100.

Mourgaya M. and Vanderbeck F., 2007. Column

generation based heuristic for tactical planning in

multi-period vehicle routing. European Journal of

Operational Research 183, 3 (2007), 1028–1041.

Pisinger D. and Ropke S., 2007. A general heuristic for

vehicle routing problems. Computers & operations

research 34, 8 (2007), 2403–2435.

Pisinger D. and Ropke S., 2010. Large neighborhood

search. Springer, 399–419.

Prescott-Gagnon E., Desaulniers G, and Rousseau L.M.,

2009. A branch-and-price-based large

neighborhood search algorithm for the vehicle

routing problem with time windows. Networks 54,

4 (2009), 190–204.

Redi A.A.N.P., Maghfiroh M.F.N., and Yu V.F., 2013.

An improved variable neighborhood search for the

open vehicle routing problem with time windows.

In Industrial Engineering and Engineering

Management (IEEM), 2013 IEEE International

Conference on. IEEE, 1641–1645.

Ribeiro G.M. and Laporte G., 2012. An adaptive large

neighborhood search heuristic for the cumulative

capacitated vehicle routing problem. Computers &

Operations Research 39, 3 (2012), 728–735.

Ropke S. and Pisinger D., 2006. An adaptive large

neighborhood search heuristic for the pickup and

delivery problem with time windows.

Transportation science 40, 4 (2006), 455–472.

Schopka K. and Kopfer H., 2016. An Adaptive Large

Neighborhood Search for the Reverse Open

Vehicle Routing Problem with Time Windows.

Springer, 243–257.

Schrimpf G., Schneider J., Stamm-Wilbrandt H., and

Dueck G., 2000. Record breaking optimization

results using the ruin and recreate principle. J.

Comput. Phys. 159, 2 (2000), 139–171.

Shaw P., 1997. A new local search algorithm providing

high quality solutions to vehicle routing problems.

APES Group, Dept of Computer Science,

University of Strathclyde, Glasgow, Scotland, UK

(1997).

Shaw P., 1998. Using constraint programming and local

search methods to solve vehicle routing problems.

Springer, 417–431.

Solomon M.M., 1987. Algorithms for the vehicle routing

and scheduling problems with time window

constraints. Operations research 35, 2 (1987), 254–

265.

Tarantilis C.D., Ioannou G., Kiranoudis C.T., and

Prastacos G.P., 2005. Solving the open vehicle

routeing problem via a single parameter

metaheuristic algorithm. Journal of the Operational

Research Society 56, 5 (2005), 588–596.

Toth P. and Vigo D., 2001. The vehicle routing problem.

Siam.

Wieberneit N., 2008. Service network design for freight

transportation: a review. OR spectrum 30, 1 (2008),

77–112.

