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Gravitational models of self-tuning are those in which vacuum energy has no observable effect
on spacetime curvature, even though it is a priori unsuppressed below the cut-off. We complement
Weinberg’s no go theorem by studying field theoretic completions of self-adjustment allowing for
broken translations as well as other generalisations, and identify new obstructions. Our analysis
uses a very general Källén-Lehmann spectral representation of the exchange amplitude for con-
served sources of energy-momentum and exploits unitarity and Lorentz invariance to show that a
transition from self-tuning of long wavelength sources to near General Relativity on shorter scales
is generically not possible. We search for novel ways around our obstructions and highlight two
interesting possibilities. The first is an example of a unitary field configuration on anti-de Sitter
space with the desired transition from self-tuning to GR. A second example is motivated by vacuum
energy sequestering.

INTRODUCTION

The cosmological constant problem [1–5] follows auto-
matically from our “best” model of Nature at low ener-
gies, in which matter is described by a local quantum field
theory (QFT) minimally coupled to a gravitational sec-
tor described by classical General Relativity (GR). In the
absence of a suitable symmetry mechanism, virtual par-
ticles endow the vacuum with an energy density scaling
like the fourth power of the effective field theory cut-off.
In GR, this vacuum energy gravitates like a cosmological
constant, curving the spacetime geometry even in vac-
uum. Cosmological observations constrain the net cos-
mological constant to be no greater than the dark energy
scale, (meV)4, at least sixty orders of magnitude below
the theoretical estimate based on a TeV scale cut-off, be-
yond which new symmetries may emerge. The precise
details of this tuning are extremely sensitive to the small
print of high energy physics, in complete violation of the
naturalness criteria [6]. Because naturalness plays such
an important role in many aspects of particle physics [7],
its most notable failure, the cosmological constant prob-
lem, is generally regarded as one of the most important
problems in Theoretical Physics.

The scarcity of viable proposals for solving the cos-
mological constant problem has led some to abandon
naturalness, and seek anthropic explanations within a
scannable landscape of vacua [3, 8]. Nevertheless, there
do exist natural alternatives to this, most notably vac-
uum energy sequestering [9–15](more on that later). In
this letter we are interested in so-called self-tuning, or
self-adjusting proposals, in which the vacuum energy is a
priori unsuppressed below the cut-off, but has no signifi-
cant observable effect on the spacetime curvature thanks
to the adjustment of new fields. Such scenarios are fa-
mously forbidden by Weinberg’s no go theorem [2], at
least if we assume a local kinetic sector and translational
invariance of the vacuum solution. If the latter assump-

tion is relaxed, self-tuning can be possible, as in the so-
called Fab Four scenario [16–18], although the presence
of a light scalar field in the gravitational interaction poses
potential problems for short distance phenomenology.

Self-tuning is also realised in the 5D braneworld set-up
of [19], at the price of introducing a singular bulk. This
singularity is tamed in a recent proposal [20], although it
remains to be seen whether it yields a healthy perturba-
tive description with viable phenomenology. Moreover,
much of the past effort had its focus on 6D braneworld
models where the vacuum energy curves the bulk into a
cone. However, whilst the finite volume proposal [21, 22]
relies on a radiatively unprotected parameter tuning
[23, 24], the infinite volume realisation [25, 26] either
suffers from a ghost instability or lacks a 4D gravity
regime [27–30]. In fact, the pathology encountered in
the latter case will fall in the class of new obstructions
discussed here.

The purpose of this work is to identify new obstruc-
tions to self-tuning that complement Weinberg’s ap-
proach and look for some novel ways in which we might
overcome them. By self-tuning, here we really mean the
absence of a geometrical response in spacetime to sources
of infinite wavelength, even when localised sources gravi-
tate normally, as required by short distance gravity tests.
By this definition, we do not consider the possibility of
self-tuning by scale invariance, in which the ratio of the
field theory masses and the scale of gravity runs to zero,
already captured by Weinberg’s analysis [2], and incom-
patible with our low energy Universe, owing to the ob-
served particle masses relative to the Planck scale.

Our approach to the self-tuning question is one which
incorporates a complete field theoretic description, al-
lowing for configurations that break translation invari-
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ance and have non-local kinetic operator,1 in constrast
to Weinberg, and factoring in constraints from observa-
tional tests of GR up to solar system scales [33]. To
this end, we consider the exchange amplitude for two
conserved sources of energy momentum in a background
Minkowski spacetime, mediated by both single and multi-
particle states up to spin-2. We use a Källén-Lehmann
(KL) spectral representation [34, 35] to capture the fully
quantum corrected exchange amplitude that is linear in
each source. We assume that the intermediate states cou-
ple linearly to sources and that the free field propagators
are of their canonical form, compatible with unitarity
and Lorentz invariance. By further imposing unitarity
through the positivity of the spectral density we are able
to show that generically one cannot pass from a self-
tuning regime for sources of infinite wavelength to one in
which we recover GR to sufficient precision for localised
sources. We then look for novels ways in which we can
get around our obstructions.

Our analysis can be extended to a background de Sit-
ter spacetime with the same generic results but not to
a background anti-de Sitter. Indeed, one can find ex-
plicit examples of linearised field configurations in anti-
de Sitter that self-tune at large distances but recover GR
on shorter scales with the correct tensor structure. We
identify a second way around our obstructions motivated
by vacuum energy sequestering [9–15], being of greater
phenomenological interest. There we find that the struc-
ture of the free field propagator is not always canonical,
but exhibits features reminiscent of the decapitiation sce-
nario [36]. A third possible way around involves so-called
screening mechanisms [37–43] which rely on non-linear
couplings to the source.

OBSTRUCTIONS TO SELF-TUNING IN
MINKOWSKI SPACETIME

Consider the exchange amplitude for two conserved
sources, Tµν and T ′µν on a Minkowski background, medi-
ated by both single and multi-particle states up to spin-
2. Since we assume linear couplings to conserved sources,
spin-1 states cannot couple to the source, so we only need
to consider intermediate states of spin-0 and 2. Assum-
ing Lorentz invariance and unitarity, we can express the

1 The only requirement is that the kinetic operator admits a
Källén-Lehmann spectral decomposition. The braneworld in-
spired propagator discussed in [31] provides a prototypical ex-
ample (see also [32]).

amplitude, using a spectral representation, as

A = ρ̄2 Ā2 + ρ̄0 Ā0+∫ ∞
0+

ds ρ2(s)A2(s) +

∫ ∞
0+

ds ρ0(s)A0(s) , (1)

where we have included the exchange of a single mass-
less spin-2 state with coupling ρ̄2, massive spin-2 states of
mass s and spectral density ρ2(s), a massless spin-0 state
with coupling ρ̄0, as well as a spin-0 states of mass s and
spectral density ρ0(s). The form of the free field propa-
gators are those of canonical fields with the appropriate
mass and spin, fixed by Lorentz invariance and unitar-
ity. The corresponding one-particle exchange amplitudes
are specified in Eqs. (7) and (9) for spin-2 (after setting
κ = 0), whereas for spin-0 we have

Ā0 =

∫
d4x
√
−ḡ T ′ 1

−�̄
T ,

A0(s) =

∫
d4x
√
−ḡ T ′ 1

−�̄+ s
T , (2)

where
√
−ḡ = 1 in the Minkowski case. The Green’s

function acting on a tensor of arbitrary rank is given by(
1

−�̄+µ2 J
...
...

)
(x) =

∫
d4y Gµ(x, y) J ...... (y), where (−�̄x +

µ2)Gµ(x, y) = δ(x − y). In general, the precise form
of these Green’s functions will not be important for
our discussion, although we will state certain impor-
tant properties where appropriate. Unitarity requires
us to assume positivity of the spectral densities, i.e.
ρ̄2, ρ̄0, ρ2(s), ρ0(s) ≥ 0.

If this theory is to “self-tune” along the lines described
in the introduction, the amplitude should vanish in the
presence of an infinite wavelength vacuum energy source,
Tµν = −Vvacηµν , and a localised probe, T ′µν , or in other
words

2

3
ρ̄2

1

−�̄
1− 4 ρ̄0

1

−�̄
1 − 4

∫ ∞
0+

ds ρ0(s)
1

s
1 = 0 , (3)

where the convolution of the Green’s function with unity
is understood, and we have used the fact that for s 6= 0,

1
−�̄+s

1 = 1
s . Moreover, the massless Green’s func-

tion was assumed to be Lorentz invariant ensuring the
vanishing of the transverse-tracefree part of the energy-

momentum tensor T
(TT)
µν for a constant vacuum energy

source. If we operate on Eq. (3) with �̄, we obtain the
“self-tuning” relation: ρ̄2 = 6 ρ̄0.

In contrast, for localised sources at shorter wavelength,
we demand close agreement with GR in order to recover
its experimental success [33], specifically

A → 1

M2
Pl

∫
d4x

[
T ′µν

1

−�̄
Tµν −

1

2
(1− ε)T ′ 1

−�̄
T

]
,

(4)
as −�̄ → ∞, with |ε| . 10−5. We use Eqs. (2), (8) and
(10) to express A in terms of the spectral densities and
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sources. The above condition then imposes two ultra-
violet constraints, which can be obtained by comparing
the tensor (∝ Tµν) and scalar (∝ T ) contributions to A
independently. We express them in momentum space as

ρ̄2

x
+

∫ ∞
0+

ds
ρ2(s)

x+ s
→ 1

M2
Pl

1

x
, (5a)

1

3

∫ ∞
0+

ds
ρ2(s)

x+ s
+ 2

ρ̄0

x
+ 2

∫ ∞
0+

ds
ρ0(s)

x+ s
→ ε

M2
Pl

1

x
,

(5b)

as x ≡ pµp
µ → ∞. Now, thanks to positivity of

the spectral densities, we have that ρ̄2
x , ρ̄0

x ,
∫∞

0+ ds ρ2(s)
x+s ,∫∞

0+ ds ρ0(s)
x+s ≥ 0, ∀x ≥ 0, and so from Eq. (5b) we in-

fer that ρ̄0, x
∫∞

0+ ds ρ2(s)
x+s , x

∫∞
0+ ds ρ0(s)

x+s . |ε|/M
2
Pl at

large x. By the condition in Eq. (5a), we now find that
ρ̄2 ∼ 1/M2

Pl. The ultra-violet conditions ρ̄2 ∼ 1/M2
Pl and

ρ̄0 . |ε|/M2
Pl are then in contradiction with the ”self-

tuning” condition, ρ̄2 = 6 ρ̄0, obtained in the infra-red
- we do not seem able to self-tune at large wavelength
and recover GR at short wavelength. Modulo our initial
assumptions, this represents a significant obstruction to
self-tuning on a Minkowski background.

EXCHANGE OF A SINGLE GRAVITON IN
MAXIMALLY SYMMETRIC SPACE

Before extending our analysis to (anti-)de Sitter
spaces, we consider the amplitude for the exchange of a
single graviton between two conserved sources, Tµν and
T ′µν , on a maximally symmetric spacetime, with curva-
ture κ. In general, it is given by

A =
1

2

∫
d4x
√
−ḡ hµνT ′µν , (6)

where ḡµν is the background metric, and hµν the graviton
fluctuation due to a source Tµν .

Solving the linearized Einstein equations, we find
A
∣∣
m2=0

= Ā2/M
2
Pl, where

Ā2 = −
∫

d4x
√
−ḡ
{
T ′µν(TT)

1

�̄− 2κ

∣∣∣
t
T (TT)
µν

−1

6
T ′

1

�̄+ 4κ

∣∣∣
s
T

}
. (7)

Here,

T (TT)
µν = Tµν +

1

3

[
∇̄µ∇̄ν − ḡµν (�̄+ 3κ)

]( 1

�̄+ 4κ

∣∣∣
s
T

)
,

and 1
�̄−µ2

∣∣
s,t

is the inverse of the operator �̄ − µ2 act-

ing on scalars (s) and tensors (t), respectively. The cor-
responding Green’s functions respect Lorentz invariance

and satisfy 1
�̄−µ2

∣∣
s
1 = − 1

µ2 , for µ2 6= 0. For µ2 = 0

and on a Minkowski background, we will also need the
relation ∂µ∂ν

1
�̄

∣∣
s
1 = 1

4ηµν , as motivated by Lorentz in-
variance.

For localised conserved sources, we can manipulate this
expression into a more familiar form

Ā2 = −
∫

d4x
√
−ḡ
{
T ′µν

1

�̄− 2κ

∣∣∣
t
Tµν

−1

2
T ′
[ 1

2

�̄− 2κ

∣∣∣
s

+
1
2

�̄+ 6κ

∣∣∣
s

]
T

}
. (8)

For m2 6= 0, 2κ,2 we obtain Am2 6=0,2κ = A2(m2)/M2
Pl,

where

A2(m2) = −
∫

d4x
√
−ḡ

{
T ′µν(TT)

1

�̄− 2κ−m2

∣∣∣
t
T (TT)
µν

− κ

3(2κ−m2)
T ′

1

�̄+ 4κ

∣∣∣
s
T

}
. (9)

This formula holds in all cases, although for two non-
localised, but constant, vacuum energy sources care must
be taken to take the κ = 0 limit only after identifying

1
�̄+4κ

with 1
4κ .

For two localised conserved sources, we can once again
manipulate this formula into the following form,

A2(m2) = −
∫

d4x
√
−ḡ
{
T ′µν

1

�̄− 2κ−m2

∣∣∣
t
Tµν

−1

2
T ′
[

1/2

�̄− 2κ−m2
+
κ−m2/6

κ−m2/2

1/2

�̄+ 6κ−m2

]
s

T

}
.

(10)

Notice the absence of the vDVZ discontinuity [49, 50] as
m2 → 0 for κ 6= 0 [44, 51].

OBSTRUCTIONS TO SELF-TUNING IN DE
SITTER AND ANTI-DE SITTER SPACETIME

We shall now attempt to extend our analysis to a back-
ground de Sitter or anti-de Sitter spacetime, with curva-
ture κ. Of course, we normally associate the notion of
self-tuning with Minkowski vacua, although we can easily
extend its notion to other maximally symmetric vacua by
requiring that vacuum energy sources do not gravitate.
The so-called Fab 5 models are an example of this in a
de Sitter background [52]. In any event, the exchange

2 The partially massless case [45] with m2 = 2κ is not considered
here since it has been argued to contain an infinitely strongly
coupled helcility-0 mode in violation of perturbative unitarity
[46–48].
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amplitude for conserved sources, analogous to Eq. (1), is
given by

A = ρ̄2 Ā2 + ρ̄0 Ā0+∫ ∞
2κ+

ds ρ2(s)A2(s) +

∫ ∞
s0

ds ρ0(s)A0(s) , (11)

with the respective (κ-dependent) amplitudes defined in
the previous section and Eq. (2). Although this ampli-
tude is the natural extension of the Minkowski one dis-
cussed before, we hesitate to interpret it as a KL rep-
resentation of the full quantum corrected amplitude on
account of the non-trivial asymptotic structure (see [53–
55] for a discussion of KL representations in de Sitter
and anti-de Sitter). The lower limits on the integrals are
fixed by the stability of the theory. In particular, per-
turbative unitarity imposes the constraint on the spin-2
limit s > 2κ [45–48, 56]. In anti-de Sitter (κ < 0), we
impose the Breitenlohner-Freedman bound on the scalar
masses, s0 = 4κ [57]3. We are not aware of an analogous
bound in de Sitter (κ > 0), so for now we conservatively
impose s0>0 .

Again, for “self-tuning” we demand that the ampli-
tude should vanish for a vacuum energy source, Tµν =
−Vvac ḡµν , that is

ρ̄2

6κ
+4 ρ̄0

1

−�̄
1−1

3

∫ ∞
2κ+

ds
ρ2(s)

s− 2κ
+4

∫ ∞
s0

ds
ρ0(s)

s
= 0 .

(12)

Acting with �̄ on this equation sets ρ̄0 = 0. In the ultra-
violet, we again demand that Eq. (4) holds, implying a
modified version of Eqs. (5) (after performing the same
steps as before),

ρ̄2

x
+

∫ ∞
2κ+

ds
ρ2(s)

x+ s
→ 1

M2
Pl

1

x
, (13a)

1

3

∫ ∞
2κ+

ds
ρ2(s)

x+ s
+

2κ

3

∫ ∞
2κ+

ds
ρ2(s)

x+ s

1

s− 2κ

+ 2
ρ̄0

x
+ 2

∫ ∞
s0

ds
ρ0(s)

x+ s
→ ε

M2
Pl

1

x
, (13b)

as x → ∞. For a de Sitter background (κ > 0), at
large x, positivity of the spectral densities guarantees
the positivity of each individual term in Eq. (13b). It

then follows that x
∫∞

2κ
ds ρ2(s)

x+s . |ε|/M
2
Pl, enabling us to

3 Since the range of integration for the massive states in AdS passes
through zero, with massless states included explicitly elsewhere
via ρ̄0 and ρ̄2, we shall set ρAdS

0 (0) = ρAdS
2 (0) = 0. This techni-

cal point is included only in the interests of rigour – it will play
no role in our analysis.

infer, using Eq. (13a), that ρ̄2 ∼ 1/M2
Pl. Furthermore, as

x→∞, we may also infer that

|ε|
M2

Pl

& κ

∫ ∞
2κ+

ds
ρ2(s)

s− 2κ

1

1 + s/x

&
positivity

κ

∫ s∗

2κ+

ds
ρ2(s)

s− 2κ

1

1 + s/x

∼
x�s∗

κ

∫ s∗

2κ+

ds
ρ2(s)

s− 2κ
> 0 (14)

where s∗ is some arbitrarily large, but finite, constant.
We emphasize that this only applies in de Sitter space
- no such inferences can be made on an anti-de Sitter
background (κ < 0).

Staying with de Sitter space, let us consider the infra-
red condition in Eq. (12). By plugging in ρ̄2 ∼ 1/M2

Pl,
ρ̄0 = 0 and using the inequality (14), we obtain4

24κM2
Pl

∫ ∞
s0

ds
ρ0(s)

s
∼− 1 +O(ε) , (15)

which for κ > 0 is in contradiction with the positivity of
ρ0(s). This extends the results of the previous section to
de Sitter space.

THE ANTI-DE SITTER LOOPHOLE

In the previous section, we saw how our conclusions
could not trivially be extended to anti-de Sitter space.
This raises the question: is there an anti-de Sitter loop-
hole we can exploit? It turns out that there is. For an
explicit example, consider the following two-parameter
family of spectral densities on a background anti-de Sit-
ter space: ρ̄2 = 1

M2
Pl

(1− α2), ρ2(s) = α2

M2
Pl
δ(s − µ2),

ρ̄0 = 0, ρ0(s) = α0

6M2
Pl
δ(s− µ0), with couplings

α2 =
µ0

µ2

µ2 − 2κ

µ0 + 4κ
, α0 =

−µ0

µ0 + 4κ
. (16)

This describes a massless graviton as well as a single mas-
sive graviton and scalar of mass squared µ2 ∈ (2κ,−µ0/2]
and µ0 ∈ (0,−4κ), respectively, consistent with unitar-
ity [45] and stability [57]. It is easy to check that this
fulfils both the ultra-violet (13) and the infrared con-
straint (12).

THE SEQUESTERING LOOPHOLE

In vacuum energy sequestering [9–15], vacuum energy
does not gravitate yet the theory recovers GR for lo-
calised sources. It is instructive to see how it gets past

4 This is true as long as the spectral density ρ2(s) does not exhibit
any isolated singular behaviour at infinity.



5

the obstructions described in this letter. To this end,
consider the effective gravitational equation of motion in
the original global version of the theory [9, 10]

M2
PlGµν = Tµν −

1

4
〈T 〉 gµν , (17)

where the spacetime average of the trace of the
energy momentum source is given by 〈T 〉 =∫

d4x
√
−g T/

∫
d4x
√
−g. Although this particular ver-

sion5 of sequestering can only be consistent with our uni-
verse if the spacetime volume is finite, we can study the
dynamics of fluctuations in a locally Minkowski frame,
approximating the volume integrals as integrals over a
very large but finite section of Minkowski space. As
shown explictly in [14], this represents an excellent ap-
proximation especially when we are close to the maxi-
mum scale factor in the cosmological evolution. In any
event, if we proceed in this way the exchange amplitude
is given by A = 1

2

∫
d4xhµν

(
T ′µν − 1

4 〈T
′〉ηµν

)
, and so

we find that

A = AGR +
1

6M2
Pl

∫
d4xT ′

1

−�̄
T

− 1

6M2
Pl

∫
d4x d4y T (x) δG(x, y)T (y) , (18)

where AGR = 1
M2

Pl
Ā2 is the standard GR amplitude,

and we recall that 1
−�̄ T denotes a convolution with

the corresponding Green’s function
∫

d4y G0(x, y)T (y).
From this we also introduce the “decapitated” Green’s
function [36], δG(x, y) = G0(x, y) − 1

V

∫
d4z G0(x, z) −

1
V

∫
d4z G0(z, y)+ 1

V 2

∫
d4z d4wG0(z, w) and V =

∫
d4z.

This has the property that it vanishes for exactly zero
momentum, i.e., it vanishes when it is convoluted with a
constant

∫
d4y δG(x, y) =

∫
d4x δG(x, y) = 0. Further-

more, at non-zero momentum it behaves like the usual
canonical Green’s function, G0(x, y). In other words,
when it acts on a localised excitation δT = T − 〈T 〉,
it gives

∫
d4y δG(x, y) δT (y) =

∫
d4y G0(x, y) δT (y).

What does all this amount to? The amplitude in Eq.
(18) describes the exchange of a massless particle of spin-
2, a massless particle of spin-0, and a massless decapi-
tated particle of spin-0 that happens to be ghostlike. For
localised sources, the latter two contributions cancel out,
yielding a well behaved GR like amplitude. The can-
cellation follows along similar lines to the cancellation
of the brane bending mode and the conformal ghost in
Randall Sundrum gravity [58–60]. In contrast, for a con-
stant, vacuum energy source6, the decapitated ghost gets
decoupled. This leaves the remaining spin-2 and spin-0

5 This condition can be relaxed in local formulations of the seques-
tering proposal [12, 14]

6 Strictly speaking, our derivation of the amplitude in Eq. (18) is

particles to combine in such a way as to force the van-
ishing of the amplitude, as required for self-tuning.

Clearly the amplitude Eq. (18) has an exotic field the-
ory content, in contrast to our generic case Eq. 1, which
assumed that the free field propagators took on their
canonical form, and did not include the possibility of de-
capitated propagators as one finds in this approach to
vacuum energy sequestering. A more thorough analy-
sis of linearised theory in the various versions of vacuum
energy sequestering is certainly warranted.

DISCUSSION

In this letter we have shown how difficult it is to elimi-
nate the effect of the radiatively unstable vacuum energy
contribution through “self-tuning” in a phenomenologi-
cally viable theory of gravity. By studying generic ex-
change amplitudes for conserved sources of energy mo-
mentum we have identified significant obstructions to
self-tuning in the far infra-red and recovery of GR (to
sufficient accuracy) in the ultra-violet:

Self-tuning models that admit a standard spectral rep-
resentation in terms of massless and massive spin-0 and
spin-2 states are generically incompatible with unitarity
on both Minkowski and de Sitter backgrounds, provided
the source coupling is linear.

For example, our analysis suggests that naive comple-
tions of, say, the old self-tuning brane model [19], or the
“filter” proposal [61] are likely to face significant chal-
lenges from either phenomenology or unitarity.

There are ways around our obstructions, however, and
we identify a couple, each of which should provide a
seed of future research. For each loophole linearised self-
tuning can take place at low momentum even when we
recover linearised GR at high momentum.

From a phenomenological perspective, the loophole sug-
gested by vacuum energy sequester holds greatest promise.
It is achieved by trading some canonical free-field propa-
gators for decapitated ones, along the lines introduced in
[36]. This connection of ideas merits further investiga-
tion and is, perhaps, the most important result to come
from our work.

A second loophole occurs if the background curvature
is anti-de Sitter space. Whether or not this is of inter-
est phenomenologically remains to be seen, although we
think it is unlikely. The presence of the anti-de Sitter
loophole presents something of a puzzle from the point
of view of any cosmological observer probing physics well

only valid down to an infra-red cut-off set by the background
curvature of our finite cosmology. Nevertheless it is interesting
to extend the regime of validity of our result to see, in principle
at least, how the obstructions of the previous sections might be
evaded.
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within the cosmological horizon, decoupled from the de-
tails of the far infra-red. This conclusion is too quick.
Although the probe is a short distance one, to explore
the possibility of self-tuning one must ask how it inter-
acts with a very long wavelength source. In this sense
one is not considering scattering processes that are gen-
uinely decoupled from the infra-red. The structure of
the asymptotic vacuum matters with some field configu-
rations catastrophically destabilising the vacuum in some
cases, but not others, through ghost-like excitations.

A third loophole concerns our assumption that the
sources couple linearly to the states mediating the force.
This cannot capture so-called screening mechanisms,
such as Vainshtein [39–41], chameleons [37, 38] or sym-
metrons [42, 43], where non-linear couplings to matter
play a vital role. It would be very interesting, although
non-trivial, to try to incorporate these effects into our
analysis. We are not aware of any self-tuning models
that claim to exploit either chameleons or symmetrons in
order to recover GR on the appropriate scale. The Vain-
shtein loophole, on the other hand, was also pointed out
in Ref. [62] in the special case of a spin-2 resonance the-
ory with non-constant mass m2 ∝ �α (α < 1) and later
used to realize self-tuning in the “degravitation” proposal
in Ref. [31], however without offering a fundamental the-
ory. The general problem with Vainshtein screening, of
course, regards its regime of validity of the effective the-
ory and whether or not it can be trusted in the regime
where screening is required [63–65].
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