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ABSTRACT

Railway track geometry deterioration due to traffic loading
is a complex problem with important implications in cost
and safety. Without appropriate maintenance, track deterio-
ration can lead to severe speed restrictions or disruptions, and
in extreme cases, to train derailment. This paper proposes
a physics-based reliability-based prognostics framework as
a paradigm shift to approach the problem of railway track
management. As key contribution, a geo-mechanical elasto-
plastic model for cyclic ballast settlement is adopted and em-
bedded into a particle filtering algorithm for sequential state
estimation and RUL prediction. The suitability of the pro-
posed methodology is investigated and discussed through a
case study using published data taken from a laboratory sim-
ulation of train loading and tamping on ballast carried out at
the University of Nottingham (UK).

1. INTRODUCTION

Given the rampant demand of use of the railways in many de-
veloped countries, there is an increasing need to better under-
stand the long-term degradation of railway track systems. For
ballasted tracks, which represent the vast majority of the rail-
way network world-wide, geometry degradation represents
the main ageing factor requiring periodic interventions to re-
store the initial geometry of the track, like tamping or bal-
last blowing (Selig & Waters, 1994). These interventions not
only represent a significant part of the railway operation ex-
penses, but also imply temporal line closures and a reduction
of the effective network capacity. As a result, track geome-
try maintenance typically needs to be planned with months
in advance. It is in this context of anticipated maintenance
where the benefits of prognostics can be fully exploited for
improved and more cost-efficient maintenance decisions and
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optimum asset availability.

However, to confer the required predictability of the prognos-
tics solution, a suitable model for long-term track asset degra-
dation is needed, taking into consideration the current and fu-
ture mechanical, loading and operational conditions. Track
geometry degradation is a complex process driven by sev-
eral mechanisms, like ballast settlement, fatigue of sleepers,
and rail wear, among others. The settlement of the granular
layers, which is a consequence of the frictional sliding and
compaction between aggregate particles and the breakage of
them caused by fatigue, is known to be the main controlling
factor for track degradation (Selig & Waters, 1994; Suiker &
Borst, 2003). Several models for track settlement have been
proposed in the literature over the last decades. Section 2.1
provides a selective overview of the main models in the lit-
erature, which are categorized into stochastic, phenomeno-
logical, and physics-based formulations. A more systematic
review can be found in (Dahlberg, 2001), and more recently
in (Soleimanmeigouni, Ahmadi, & Kumar, 2016).

As evident from the literature, track degradation modelling
and maintenance to date has a strong empirical retrospec-
tive character, mainly based on data-based (stochastic or phe-
nomenological) models. The prediction accuracy of these
models depends on the quality and quantity of the available
historic data, and thus they are prone to misjudgments spe-
cially under uncertain (future) loading and operating scenar-
ios. In contrast, physics-based models are grounded on the
first principles about track degradation, they are transparent to
geo-mechanical input variables, and require much less train-
ing data to provide accurate predictions.

In this paper, a physics-based filtering-based prognostics
framework for track geometry degradation is proposed. In-
stead of making maintenance decisions based on a retrospec-
tive historical analysis of the track, a prospective approach
that fuses historical data and a geo-mechanical model for
track deterioration within a state-of-art prognostics algorithm
is proposed in this research. In particular, the elasto-plastic
model by Indraratna, Thakur, Vinod, and Salim (2012) for
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cyclic ballast densification is adopted and embedded into a
particle filtering algorithm for sequential state estimation and
future state prediction. Then, probability-based estimations
about the remaining time to reach a predefined functional
limit for track settlement are subsequently obtained using
the reliability-based prognostics methodology by (Chiachı́o,
Chiachı́o, Sankararaman, Saxena, & Goebel, 2015). This
physics-based reliability-based prognostics methodology in
application to the railway track asset is precisely the key
contribution of this paper, in relation to a similar contribu-
tion from the literature (Mishra, Odelius, Thaduri, Nissen, &
Rantatalo, 2017). As a case study, the proposed methodology
is tested against experimental data taken from Aursudkij, Mc-
Dowell, and Collop (2009) about permanent axial strain in a
ballasted railway track carried out at the Nottingham Rail-
way Test Facility (Brown, Brodrick, Thom, & McDowell,
2007). Results are presented in Section 4, and discussed in
Section 5.

2. RAILWAY TRACK DEGRADATION MODELLING

Several families of models for track settlement have been pro-
posed in the literature. This section provides an overview of
the main models in the literature, classified into stochastic,
phenomenological, and physics-based formulations. Among
them, a physics-based model is selected for the pro-
posed filtering-based prognostics approach presented in Sec-
tion 3. The key formulation of this model is given in Sec-
tion 2.2.

2.1. Overview of track settlement models

2.1.1. Stochastic models

Hamid and Gross (1981) proposed an empirical approach
to investigate the statistical dependencies between several
track geometric defects. In addition, they developed empir-
ical degradation formulations based on autoregressive math-
ematical models to relate an artificially defined track quality
index (TQI) with physical measurements, as follows:

Y = a0 + bY
′
+

Nm∑
i=1

aiXi (1)

where Y
′

is the previous TQI index, Xi, i = 0, . . . , Nm
are the measurements, and ai, i = 0, . . . , n and b are fit-
ting parameters. Bing and Gross (1983) predicted how the
track quality index defined in Eq. (1) changes as a function
of causal parameters such as traffic, track type, maintenance,
etc. Shafahi and Hakhamaneshi (2009) represented the vari-
ation of TQI as a Markov model, establishing a mapping
between TQI and a finite number of states for the Markov
chain. A similar approach has been recently proposed by Bai,
Liu, Sun, Wang, and Xu (2015).

Hamid and Gross (1981) used time-series analysis techniques

to statistically represent track-geometry variations including
random waviness, periodic behaviour at joints, and isolated
variations. In fact, they represented some track geometry de-
fects as a stationary random process, and other as periodic
processes. Iyengar and Jaiswal (1995) proposed a Gaussian
random field to represent the vertical irregularity of the track
based on data from Indian railways. Vale and Lurdes (2013)
used time-series degradation data from the Portuguese high-
speed line Lisboa-Porto and fitted them to a probabilistic
model (Dagum distribution), taking the standard deviation of
the longitudinal level as degradation parameter.

In addition to track degradation, several authors have at-
tempted to represent the interaction between track degra-
dation and maintenance strategy using stochastic degrada-
tion models. Meier-Hirmer, Riboulet, Sourget, and Rous-
signol (2009) proposed a Gamma process to represent the
track deterioration within an optimization framework in-
cluding an intervention efficiency model and a cost model
for various maintenance actions. The model was applied
to track maintenance data from the French National Rail-
ways. Quiroga and Schnieder (2012) proposed a stochastic
degradation-restoration model, representing the degradation
as a track quality measure that evolves following an expo-
nential function. They used the Monte Carlo method to in-
vestigate cost-effective maintenance strategies. Prescott and
Andrews (2015) proposed a Markov model to investigate
the evolution of track degradation for a given asset man-
agement strategy. The model represents not only the dete-
rioration of the asset, but also its dependence on the main-
tenance history. Authors, however, acknowledged practical
limitations of the Markov modelling approach in real life sce-
narios which prevents its further development for track asset
management modelling (Andrews, 2012; Andrews, Prescott,
& De Rozières, 2014). Notwithstanding, track degradation
models embedded within the Petri net paradigm (Andrews,
2012; Prescott & Andrews, 2013; Andrews et al., 2014)
have emerged as a suitable and promising modeling approach,
since it allows to efficiently incorporate complex deteriora-
tion processes and their dependence on the maintenance his-
tory together with several intervention options for inspection,
repair, and renewal.

2.1.2. Phenomenological models

Sato (1995) suggested that the settlement y of the track can
be calculated as a function of the number of loading cycles n
as

y(n) = γ (1− exp(−αn)) + βn (2)

where γ, α, and β are fitting parameters. The first term in
Eq. (2) is intended to describe the settlement of the track im-
mediately after tamping, while the second captures the long-
term behaviour, which is hypothesized to evolve linearly with
the number of cycles. Alva-Hurtado and Selig (1981) pro-
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posed a logarithmic model for track settlement based on the
permanent strain εp after n loading cycles, as follows:

εp(n) = (1 + C log n) εp(1) (3)

where εp(1) is the permanent vertical strain after the first load
cycle, and C is a fitting constant. This model originally as-
sumes that the loading cycles are identical. Hettler (1984)
suggested also a logarithmic model for track settlement given
by:

y(n) = y1(1 + c lnn) (4)

where c is a fitting parameter taking values within the inter-
val [0.25, 0.55], and y1 is the initial settlement after the first
cycle, which is calculated as y1 = sA1.6

P , with AP the am-
plitude of the load and s a scaling factor. A similar logarith-
mic function was presented by Indraratna, Salim, Christie, et
al. (2002) to model the plastic settlement of ballast stabilised
with geosynthetics, as:

y(n) = a+ b log n (5)

where a and b are empirical parameters.

Based on laboratory and fields experiments, Shenton (1984)
discussed the validity of the logarithmic models explained
above for large values of load cycles N and proposed a set-
tlement equation of the form:

y(n) = k1n
0.2 + k2n (6)

where k1 and k2 are fitting parameters which implicitly de-
pend on geometrical and mechanical inputs such as the axle
loads, track and subgrade stiffness, rail section, among oth-
ers. Similarly, Chrismer and Selig (1993) proposed a power
function for ballast strain of the form:

εp(n) = εp(1)nb (7)

where εp(1) is the plastic strain after the first cycle and b is
a fitting parameter. They concluded that the power equation
represents track settlement better than logarithmic models.

A common limitation of the formulations given by Eqs. (2) to
(7) is that they do not explicitly account for the effect of the
magnitude of loads in the track degradation, only accounting
for the number n of loading cycles. In this sense, Ford (1995)
investigated the effects of varying loads in the track settle-
ment and suggested how the model in Eq. (3) can be extended
to account for different amplitude loading cycles. In the same
context, the ORE (Office for Research and Experiments of
the International Union of Railways) proposed a phenomeno-
logical model to predict the track settlement given by (Hecke,
1998):

y = y0 + hTαP βvγ (8)

where h is a constant, T is the traffic volume, P is the dy-
namic axle load, v is the speed, and α, β, γ are fitting param-

eters. As evident from Eq. (8), ORE’s model explicitly ac-
counts for loading conditions, however there are no track pa-
rameters (e.g., geo-mechanical parameters) involved in this
model, which bounds its applicability to sections with the
same geo-mechanical configuration than those covered by the
historic data.

2.1.3. Physics-based models

Going more in depth about the causes of track degradation,
ballast densification caused by particle rearrangement pro-
duced by cyclic loading immediately after tamping, and in-
elastic behaviour of the ballast (due to micro-slip between
particles) at long-term loading, are key elements in track set-
tlement. Over the last years several authors are attempting to
capture these mechanisms using physics-based models in or-
der to achieve more rational and accurate long-term predic-
tions. For example, Shi (2009) presented a Finite Element
Model (FEM) to predict the vertical settlement of the bal-
last beneath a sleeper under monotonic loading. This model
was calibrated and validated using experimental measure-
ments using the Nottingham Railway Test Facility (Brown et
al., 2007). A limitation of this model is that it does not ac-
count for cyclic loadings, only for monotonic loads. Lim and
McDowell (2005) explored the suitability of the Discrete El-
ement Model (DEM) to investigate the mechanisms of degra-
dation underlying the settlement of the ballast for both mono-
tonic and cycling loads. The method was shown to improve
the limitations of the physical tests to accurately monitor the
ballast response at the particle level and the mechanisms un-
derlying the degradation of the ballast. However, for a real
engineering application, the number of equations to be solved
becomes considerably large for each model evaluation. This
problem is extremely exacerbated in the context of a particle-
filter prognostics framework like the one proposed herein,
where thousands of model evaluations are usually required
at every load cycle.

In this context, analytical or semi-analytical methods for track
settlement like the those proposed by Suiker and Borst (2003)
and Indraratna et al. (2012) represents an advanced step for
the suitability of the physics-based approaches in the context
of prognostics. Suiker and Borst (2003) developed an elasto-
plastic model to simulate the cyclic accumulation of the per-
manent strains in the granular substructure (ballast and sub-
ballast) using the classical plasticity theory as point of de-
parture. The plastic flow rule was explicitly decomposed into
a frictional sliding component and a volumetric compaction
component, leading to a governing equation of the form:

dεpij
dn

=
dεps
dn

mf
ij +

dεpv
dn

mc
ij (9)

where εpij is the plastic strain tensor, εpv and εps are the vol-
umetric and deviatoric plastic strains, and mf

ij and mc
ij are
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the plastic flow directions for frictional sliding and volumet-
ric compaction, respectively. In addition, the authors propose
a method to numerically integrate the differential equation in
Eq. (9).

In Indraratna et al. (2012), authors proposed an elasto-plastic
model based on Pender’s postulates about plastic deformation
of overconsolidated soils (Pender, 1978), and on critical state
soil mechanics (Roscoe, Schofield, & Wroth, 1958). This
model is rigorously grounded in the geo-mechanical nature
of the railway track, and it is the one selected in this re-
search. Further details are provided in the next section.

2.2. Adopted track settlement model

As stated in the last section, an elasto-plastic geo-mechanical
model is adopted herein to represent the evolution of the per-
manent deformation of ballast with cyclic loading (Indraratna
et al., 2012). To avoid literature repetition, the reader is re-
ferred to Indraratna et al. (2012) for the particular details of
the model, however, the key formulation is reproduced here
for the sake of clarity and better readability. In essence, the
adopted model predicts the cyclic accumulation of permanent
deformations in the granular substructure as a function of the
applied stress invariants p and q, along with some input pa-
rameters (refer to Appendix), as:

dεpv
dεps

=
9(M − ηp/pcs)

9 + 3M − 2ηMp/pcs
(10a)

dεps
dη

=
2φκ (1− p0,i/pcs,i) (p/pcs)

M2(1 + e0) (2p0/p− 1)

dεps
dεpv

η (10b)

where εpv and εps are the plastic volumetric and deviatoric
deformation, respectively, and η = q/p is the applied stress
ratio1. The rest of input parameters are defined in the Nomen-
clature Section and in the Appendix. It should be noted that
the terms representing the contribution of ballast breakage in
the plastic deformation of ballast proposed in Indraratna et
al. (2012) have been neglected here. The reason is twofold:
(1) there is empirical evidence supporting that, for the ex-
pected range of confining pressures and applied stresses in
a real track, the influence of ballast breakage on track set-
tlement becomes negligible (Suiker, Selig, & Frenkel, 2005),
and (2), if any, this contribution would be subsumed within
the modelling and measurement errors in the proposed state-
space model in Section 3.1.

For each loading cycle, the differential constitutive equations
in Eq. (10) can be numerically integrated by finite differences,

1For the ease of notation, p is adopted instead of the most commonly used p′

to denote the mean stress invariant in drained conditions.

as following:

εps(n) = εps(n− 1) +

Ns∑
j=1

dεps
dη

∣∣∣∣
j

∆ηj (11a)

εpv(n) = εpv(n+ 1) +

Ns∑
j=1

dεpv
dεps

∣∣∣∣
j

dεps
dη

∣∣∣∣
j

∆ηj (11b)

where εps(n) and εpv(n) are the remanent deviatoric and volu-
metric strains after cycle n, respectively, and Ns the number
of discretizing steps for the loading ramp within the cycle
(the unloading ramp is regarded as elastic). The vertical plas-
tic deformation, which is the management variable of interest,
is straightforwardly obtained as a function of the component
plastic strains in Eq. (11), as:

εp1(n) = εps(n) +
1

3
εpv(n) (12)

3. TRACK DEGRADATION PROGNOSTICS

Prognostics deals with the estimation of the remaining time
of a system to reach a functional limit based on (uncertain)
knowledge about the current damage state and an estimation
of the future degradation process of the system. This time
is typically referred to as the remaining useful life (RUL)
by the Prognostics and Health Management (PHM) commu-
nity. A complete prognostics solution requires a model for
system degradation (Section 2.2), a quantifiable criterion for
what constitutes an unacceptable degradation or failure, and
an algorithm to propagate the model forward in time until
the degradation reaches a predefined degradation threshold,
while quantifying the underlying uncertainty. In the follow-
ing sections, details are provided to define the constitutive
elements for prognostics in the context of the railway track
geometry degradation problem investigated herein.

3.1. Stochastic embedding of physics-based model

Let assume that our physical system can be represented by
a state-space I/O model, as follows (Arulampalam, Maskell,
Gordon, & Clapp, 2002):

xn = g(xn−1,θn) + vn (13a)
dn = h(xn) + wn (13b)

where g(xn−1,θn) : Rnx×Rnθ → Rnx is the state transition
equation given by Eq. (11), h(xn) : Rnx → R is the obser-
vation equation given by Eq. (12), and θ ∈ Rnθ is a model
parameter vector. It follows that the state (degradation) vari-
able at time or cycle n is given by xn = (εps(n), εpv(n)) ∈
R2, whereas the measurement variable is denoted by dn =
εp1(n) ∈ R. In Eq. (13), vn ∈ R2 and wn ∈ R rep-
resent the modelling error and measurement noise, respec-
tively, which, following the Principle of Maximum Informa-
tion Entropy (Jaynes, 1957a, 1957b) are conservatively mod-

4



Annual Conference of the Prognostics and Health Management Society, 2017

eled2 as zero mean Gaussians, i.e.:, v ∼ N (0, σv), w ∼
N (0, σw). Thus, the dynamical model defined in Eq. (13) in
state-space form can be probabilistically rewritten as:

p(xn|xn−1,θ) = N (g(xn−1,θn), σv) (14a)
p(dn|xn) = N (h(xn), σw) (14b)

The probabilities in Eq. (14) constitute the key elements in
the proposed filtering based prognostics approach for track
settlement, as shown below.

3.2. Filtering-based state estimation

Two main steps are required for prognostics, first, an esti-
mation of the current degradation state of the system given a
sequence of measurements (e.g., track settlement), and sec-
ond, a propagation forward in time of the updated state esti-
mate (in absence of new data) until a degradation threshold
is reached. A methodology for these two constitutive steps
for prognostics using particle filters is summarized in Sec-
tions 3.2.1 and 3.2.2.

3.2.1. Sequential state estimation

Sequential state estimation aims at recursively obtaining
an updated estimate of the actual state of the system as
long as new measurements (e.g., track settlement) are col-
lected. Thus, given a sequence of measurements up to time or
cycle n, d1:n = {d1, . . . , dn}, where di denotes a track settle-
ment measurement at load cycle i, the goal is to estimate the
updated probability density function (PDF) of the state of the
system at current time n. This is given by Bayes’ Theorem as
follows:3

p(x0:n|d1:n) =
p(dn|xn)p(x0:n|d1:n−1)∫

X p(dn|xn)p(x0:n|d1:n−1)dx0:n

∝ p(dn|xn)︸ ︷︷ ︸
Eq. (14b)

p(xn|xn−1)︸ ︷︷ ︸
Eq. (14a)

p(x0:n−1|d1:n−1)

(15)
where p(x0:n−1|d1:n−1) is the last system update at cycle
n − 1. In Eq. (15), it is assumed that the system model
is Markovian of order one, and that the observations are
conditionally independents of the state (Chiachı́o, Chiachı́o,
Sankararaman, et al., 2015). Note that Eq. (15) is analyti-
cally intractable except some especial cases using linear mod-
els and Gaussian uncertainties. A followed solution for the
general case of both nonlinear and non-Gaussian state-space
models is by the adoption of particle methods like particle
filters (PF) (Gordon, Salmond, & Smith, 1993; Arulampalam
et al., 2002) to obtain an approximation for the required pos-
terior PDF by means of a set of K samples or particles with

2The maximum-entropy PDF for the error terms is the one that produces the
most prediction uncertainty (largest Shannon entropy).

3The conditioning on θ has been dropped for simpler notation.

associated weights {ω(i)
n }Ki=1, as follows:

p(x0:n|d1:n) ≈
K∑
i=1

ω(i)
n δ(x0:n − x(i)0:n) (16)

where δ is the Dirac delta. Given that the posterior den-
sity is seldom known exactly, it is not possible to ob-
tain samples from it directly. For this reason, a se-
quential importance sampling (SIS) approach is adopted
whereby samples are obtained from an importance density
q(x0:n|d1:n) (Arulampalam et al., 2002). To compensate for
the difference between the importance density and the true
posterior density, the unnormalized weights are computed as
follows:

ω̂(i)
n =

p(x0:n|d1:n)

q(x0:n|d1:n)
(17)

whereby ω(i)
n =

ω̂(i)
n∑K

i=1 ω̂
(i)
n

, i = 1, . . . ,K. Then, by substitut-

ing Eq. (15) into Eq. (17), and by assuming q(xn|xn−1) =
p(xn|xn−1) (Gordon et al., 1993; Tanizaki & Mariano,
1998), the unnormalized importance weight for the i-th parti-
cle at cycle n rewrites as:

ω̂(i)
n ∝ ω

(i)
n−1p(dn|x(i)n ) (18)

The sampling importance resampling (SIR) algorithm with
systematic resampling (Arulampalam et al., 2002) is adopted
to obtain samples from Eq. (18). A pseudocode implementa-
tion for the SIR algorithm is provided as Algorithm 1.

Algorithm 1 SIR algorithm

1: At n = 0

2: Sample
{
x
(i)
0

}K
i=1

from prior PDF p(x0|θ)

3: Assign the initial weights: {ω(i)
0 = 1/K}Ki=1

4: At n > 1
5: for i = 1→ K do
6: Sample from Eq. (14a): x(i)n ∼ p(·|x(i)n−1)

7: Update weights: ω̂(i)
n ∝ ω(i)

n−1p(dn|x
(i)
n ) (Eq. (18))

8: end for
9: Normalize:

{
ω
(i)
n

}K
i=1
← {

ω̂(i)
n

}K
i=1

/
∑K
k=1 ω̂

(k)
n

10: Resample:
{
x
(i)
n

}K
i=1
←
{
x
(i)
n , ω

(i)
n

}K
i=1

3.2.2. Future prediction

Having estimated the updated state of the system at the time
of prediction n, the next step for prognostics is to estimate
the probability distribution of the future states of the system `-
steps forward in time in absence of new measurements. Using
the up-to-date information of the system in Eq. (15) along the
physics-based system dynamics, encapsulated in Eq. (14a),
an estimation of the `-step ahead state of the system can be
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obtained by Total Probability Theorem, as:

p(xn+`|d1:n) =

∫
X

[
n+∏̀
t=n+1

p(xt|xt−1)

]
p(xn|d1:n)dxn:n+`−1

(19)
Replacing p(xn|d1:n) in Eq. (19) by its PF approximation,
a particle estimation of the predictive PDF p(xn+`|d1:n,θ)
can be obtained by conditional sampling (Chiachı́o, Chiachı́o,
Sankararaman, et al., 2015), as:

p(xn+`|d1:n) ≈
N∑
i=1

ω(i)
n δ(xn+` − x(i)n+`) (20)

where x
(i)
n+` ∈ x

(i)
n+1:n+`, i = 1, . . . ,K, being

x
(i)
n+1:n+`={x

(i)
n+1, x

(i)
n+2, . . . , x

(i)
n+`} a conditional sample se-

quence from each of the K multidimensional integrals in
Eq. (19).

3.3. Reliability based prognostics

The reliability-based prognostics methodology proposed
by Chiachı́o, Chiachı́o, Sankararaman, et al. (2015) is
adopted herein to predict the remaining useful life based on
sequentially updated predictions of the time-dependent reli-
ability of the system. Although the key formulation is sum-
marized here, the interested reader is referred to (Chiachı́o,
Chiachı́o, Sankararaman, et al., 2015) for the particular de-
tails and the foundation of such methodology.

As a first step, let us define the useful domain as the non
empty subset U ⊂ X of ”authorized” degradation states of
the system, and the failure domain Ū = X \ U , the subset of
states where the system turns to behave unacceptably, or sim-
ply, where system failure occurs. Then, the time-dependent
reliability can be defined as the probability of the system to
belong to the useful domain U at general time n+`. Using the
most up-to-date information about the system states at cycle
n, this reliability is shown to be given by:

Rn+`|n ≈
K∑
i=1

ω(i)
n I(U)(x

(i)
n+`) (21)

where ω(i)
n is the updated weights of the state particles at cur-

rent time or cycle n, x(i)n+` is a sample particle of the predicted
state at cycle n+` (following Eq. (20)), and I(U) is a function
defined such that:

I(U)(xn) =

{
1, if xn ∈ U
0, if xn ∈ Ū

(22)

Then, the interest is in predicting the minimum time ` when
the system enters within the failure domain, i.e.:

RULn = inf
{
` ∈ N : xn+` ∈ Ū

}
(23)

Table 1. Parameters adopted in calculations

Γ M λcs κ e0 α β

2.99 1.9 0.194 0.007 0.81 4.06 −0.412

Using the axioms of Probability Logic (Jaynes,
2003), Chiachı́o, Chiachı́o, Sankararaman, et al. (2015)
demonstrated that the events

[
zn+` ∈ Ū

]
and [RULn 6 `]

occur with the same probability. Thus, the probability of
RUL is shown to be given by:

P
(
RULn 6 `|d1:n

)
≈ 1−

K∑
i=1

ω(i)
n I(U)(x

(i)
n+`) (24)

Observe that it is possible to compute the entire probability
distribution ofRULn by evaluating Eq. (24) for different val-
ues of ` > 1, until the value Rn+`|n = 0 is reached. The
calculation of the time-dependent reliability can be updated
each time n new data are collected.

4. CASE STUDY

The reliability based prognostics methodology explained be-
fore is exemplified here using data about permanent axial
strain in a ballasted railway track taken from the the lit-
erature (Aursudkij et al., 2009). The test, as reported in
Aursudkij et al. (2009), was conducted on the Railway Test
Facility of the University of Nottingham (Brown et al., 2007),
and simulates an axle load of approximately 20 tonnes. Ac-
cording to (Aursudkij et al., 2009), the maximum applied ver-
tical stress in each cycle is σ1,max = 210 [KPa], and the con-
fining pressure σ3 = 30 [KPa], leading to a maximum stress
ratio (q/p)max = 2 according to Eq. (27). After some initial
fitting tests, the material parameters describing the governing
model in Eq. (11) were set to the values specified in Table 1.

The results for sequential state estimation and reliability pre-
diction are presented in Fig. 1. Every time new data is avail-
able, the state variable xn = (εps(n), εpv(n)) is updated using
a SIR algorithm (refer to Algorithm 1) with K = 104 parti-
cles. This information is further used to propagate the model
forward in time to compute the RUL using the methodology
described in Section 3.3. Observe in figure 1 that the pre-
diction gradually improves as more data are available. For
this example, the useful domain is conveniently defined as
U = {(ε(p)1 ∈ [0, 0.012]} ⊂ R2. The predictions of RUL are
plotted against time in Fig. 2.
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Figure 1. Sequential state estimation and prediction at different loading cycles
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Figure 2. Particle-filter estimation of RUL at different cycles

5. DISCUSSION AND CONCLUSSIONS

The degradation of the railway track geometry results into a
key asset management problem with important implications
in safety and cost. This degradation is driven by a complex
geo-mechanical phenomenon, and has been approached by

different modelling perspectives over the last decades. Three
families of models seem to come into view in the litera-
ture: stochastic models, (2) phenomenological models, and
(3) physics-based models, of which a representation is sum-
marized in Sections 2.1.1 to 2.1.3, respectively. A common
feature of both stochastic and phenomenological models is
that they are almost purely based on historic data. It implies
that the prediction accuracy of these models would ultimately
depend on the quality and quantity of the available data set. In
addition, these models are usually ”blind” to most key inputs
variables (load amplitude, track geo-mechanical properties,
etc.), thus they can hardly take into consideration medium-
to-long future scenarios (as those foreseen by the European
Commission in (EC, 2011)), simply because there is no avail-
able data about such conditions, or it is very limited. In con-
trast, physics-based models, like the one adopted in this pa-
per, are transparent to geo-mechanical input variables, and
require much less training data to provide accurate predic-
tions. Although a typical criticism of these models is that they
are normally based on deterministic input-output relation-
ships, however, they can be stochastically embedded (Beck,
2010; Chiachı́o, Chiachı́o, Saxena, et al., 2015) using the
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methodology provided in Section 3.1, and thus converted into
full-probabilistic models.

A physics-based filtering-based prognostics framework for
track settlement has resulted from this work. As apparent
from the results in Fig. 1, the proposed methodology is able
to anticipate the future evolution of the permanent axial strain
with quantified uncertainty after an initial training stage with
limited data. From these predictions, a sequential estima-
tion of the time-dependent reliability is derived, whereby
a probability-based estimation of the RUL is obtained fol-
lowing the methodology by (Chiachı́o, Chiachı́o, Sankarara-
man, et al., 2015). This information can be further embed-
ded within a broader maintenance context for risk reduction
in go/no-go decision, cost reduction through the scheduling
of maintenance as-needed, and improved asset availability,
among other asset management activities. A methodology for
the integration of prognostics within an asset management
framework using Petri Nets is presented by the authors as
a separated piece of work in the Proceedings of the Annual
Conference of the Prognostics and Health Management Soci-
ety, 2017.

It should be noted that an apparent limitation of the proposed
approach is that it is based on a modelling framework that
predicts the plastic strains of the track, instead of other man-
agement variables like the Track Geometry Index (Mundrey,
2009), more commonly used by the railway industry. How-
ever, these management variables can be represented as func-
tions of the plastic strains of the track over a predefined seg-
ment length. Then, these functions can be readily included
within the state-space model in Eq. (13), from which the pro-
posed filtering-based prognostics methodology is derived.

Notwithstanding, an important theoretical and computational
challenge must be highlighted, which is related to the slow-
asymptotic behaviour of the temporal evolution of the perma-
nent axial strain (as observed in Figs. 1a and 1b). In terms of
RUL estimation, this means that the predicted particles x(i)n+`
tend to approach the threshold asymptotically, making the
event

[
x
(i)
n+` ∈ Ū

]
a rare event, except when ` >> n. This

issue takes place precisely when the system is approaching
the boundary of the useful domain, which requires faster and
more accurate RUL predictions. A first solution is to consid-
erably increase the amount of particles (K in Algorithm 1),
but it is at the cost of heavy computation. A more suitable
solution is the adoption of a dedicated prognostics algorithm
for rare events, like the one recently developed by the au-
thors in (Chiachı́o, Chiachı́o, Shankararaman, & Andrews,
2017). This, together with the adoption of management vari-
ables and data aligned with the current practice of the railway
industry considering several maintenance cycles, constitute
desirable further steps of this research.
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NOMENCLATURE

dεpv plastic volumetric strain increment
dεps plastic distortional strain increment
e voids ratio
e0 Initial voids ratio
p mean stress invariant
p0 initial mean stress
q deviatoric stress invariant
qmax in-cycle maximum deviatoric stress
qmin in-cycle minimum deviatoric stress
η stress-ratio η = q/p
M critical stress-ratio
Γ critical state model parameter
λcs critical state model parameter
κ swelling/recompression constant
σ1 applied vertical stress
σ3 confining stress
α empirical factor Eq. (28)
β empirical factor Eq. (28)
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APPENDIX

For granular materials like ballast and suballast under three-
dimensional stresses, the following relationships are used to
obtain the stress invariants p and q:

p =
1

3
σkk (25a)

q =

√
3

2
sijsij (25b)

where σij is the stress tensor, and sij the stress deviator ten-
sor, defined as

sij = σij − pδij (26)

with δij the Kronecker delta function. Under the assumption
of axisymmetric stress state (σ2 = σ3), the stress invariants
simplify to

p =
1

3
(σ1 + 2σ3) (27a)

q = ‖σ1 − σ3‖ (27b)

In regards to the governing equations, the function φ in
Eq. (10) is a semi-empirical factor that accounts for com-
plex phenomena observed in the yielding behaviour of gran-
ular materials under cyclic loading conditions, such as the
Bauschinger effect, the effect of the stress ratio and load-
ing history, among others (Mroz, Norris, & Zienkiewicz,
1978; Salim, 2004). In this research, the expression proposed
by Indraratna et al. (2012) is adopted to account for such ef-
fects, which is given by:

φ = α

(
1− η

M

p

pcs

)(
〈p− pe〉2 + 〈q − qe〉2

(∆p)2 + (∆q)2

)1/2

Nβ

(28)
with ∆p,∆q being the in-cycle total stress increments, 〈·〉 the
Macauley brackets, and α an empirical fitting parameter. The
elastic mean stress pe is given by the expression

pe = pmin +

(
1− 1

ln(N + 10)

)
∆p (29)

In Eqs. (28) and (10), pcs is the value of p at the critical state,
which can be obtained as (Roscoe et al., 1958)

pcs = exp

(
Γ− e
λcs

)
(30)

where Γ, and λcs are material parameters, which, together
with M and κ (see Nomenclature section), conform the pa-
rameters of the model (Indraratna et al., 2012). The rest of
elements are defined in the Nomenclature section.

The reader is referred to the Nomenclature section for infor-
mation of laminate constants involved in the last equations.
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