
Dijkstra, Gabe (2017) Quotient inductive-inductive
definitions. PhD thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/42317/1/thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be
reused according to the conditions of the licence. For more details see:
http://creativecommons.org/licenses/by/2.5/

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/141471082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

Quotient inductive-inductive
definitions

Gabe Dijkstra

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

April 2017

ii

Abstract

In this thesis we present a theory of quotient inductive-inductive definitions,
which are inductive-inductive definitions extended with constructors for
equations. The resulting theory is an improvement over previous treat-
ments of inductive-inductive and indexed inductive definitions in that it
unifies and generalises these into a single framework. The framework can
also be seen as a first approximation towards a theory of higher inductive
types, but done in a set truncated setting.

We give the type of specifications of quotient inductive-inductive def-
initions mutually with its interpretation as categories of algebras. A cate-
gorical characterisation of the induction principle is given and is shown to
coincide with the property of being an initial object in the categories of alge-
bras. From the categorical characterisation of induction, we derive a more
type theoretic induction principle for our quotient inductive-inductive def-
initions that looks like the usual induction principles.

The existence of initial objects in the categories of algebras associated to
quotient inductive-inductive definitions is established for a class of defini-
tions. This is done by a colimit construction that can be carried out in type
theory itself in the presence of natural numbers, sum types and quotients
or equivalently, coequalisers.

iii

iv

Acknowledgements

Front and foremost I would like to thank my supervisor, Thorsten Altenkirch,
for taking me on as a student and guiding me through my PhD. I am grate-
ful for his support and for teaching me about type theory and doing re-
search. He has provided me with the freedom to follow my own ideas as
well as providing necessary guidance.

Second of all, I would like to thank Natasha Alechina and Venanzio
Capretta for looking at my work and making valuable suggestions during
my first and second annual reviews respectively.

I also owe my colleagues Paolo Capriotti and Fredrik Nordvall Forsberg
a lot, as this thesis would have not existed if not for the collaboration with
them. I have learned a great deal from discussions at the whiteboard with
them.

Furthermore, I would like to thank Nicolai Kraus for his thorough read-
ing of this thesis, leading to fixes in proofs and readability improvements.

The reading groups with Paolo, Nicolai Kraus, Ambrus Kaposi and
Manuel Bärenz have taught me everything I know about higher category
theory. Without these meetings I would never have reached the level of
understanding of the subject matter I have now.

I am much indebted to my examiners Bernhard Reus (external) and Ve-
nanzio Capretta (internal) for having spent a lot of time with this thesis.
They have provided with valuable feedback that has improved the thesis
considerably.

The other members of the Functional Programming Lab have also greatly
contributed to making my PhD experience an enjoyable one: Graham, Hen-
rik, Christian, Florent, Laurence, Bas, Nuo, Jenny, Iván, Jan, Jon and Jakob.

v

vi

Everybody who visited me in Nottingham or received me with open
arms when I visited them, deserves a very big thanks: Paul, Justin, Joshua,
Robert, Wout, Edo, Ingo, Felix, Wout, Jonas, Koen, Marnix and countless
of people I forgot to mention.

Last but not least, I would like to thank my parents and Rehma for their
unconditional support.

Contents

1 Introduction 1
1.1 Induction in mathematics . 1
1.2 Induction in computer science 2
1.3 Formal treatment of induction 5

1.3.1 In type theory . 6
1.3.2 In category theory . 6

1.4 Higher inductive types and homotopy type theory 7
1.5 A theory of quotient inductive-inductive definitions 11
1.6 Related work . 12
1.7 Overview of the thesis and contributions 13

1.7.1 List of main contributions 14
1.7.2 Declaration of authorship and previous work 15

2 Preliminaries 17
2.1 Basic type formers . 17

2.1.1 Universes . 19
2.1.2 Implicit arguments . 20
2.1.3 Inductive data types 20

2.2 Equality . 23
2.2.1 Dependent equality 25
2.2.2 Functoriality of functions 25
2.2.3 Truncation levels . 27
2.2.4 Equivalence . 29
2.2.5 Univalence . 31

vii

viii CONTENTS

2.2.6 Function extensionality 32
2.2.7 Equivalences of Σ-types 33
2.2.8 Alternative formulation of identity types 34

2.3 Category theory in type theory 37
2.3.1 Higher categories . 40

2.4 Core type theory . 40

3 Quotient inductive-inductive definitions 43
3.1 Examples . 43

3.1.1 Interval type . 43
3.1.2 Quotients and colimits 47
3.1.3 Propositional truncation 49
3.1.4 Infinitely branching trees 50
3.1.5 Cauchy reals . 54
3.1.6 Syntax of type theory 55

3.2 Implementation . 57
3.2.1 Cubical type theory 60

3.3 Related work . 60

4 Describing inductive definitions 63
4.1 Algebraic semantics . 66

4.1.1 Monad algebras . 68
4.2 Set-sorted inductive-inductive definitions 71

4.2.1 Avoiding induction-recursion 74
4.3 Dependent sorts . 76

4.3.1 Sort membership . 78
4.3.2 Makkai’s dependent sorts 79
4.3.3 Sort categories via comma categories 81

4.4 Categories of algebras . 81
4.4.1 A Rel-sorted quotient inductive-inductive type . . . 82
4.4.2 Specification of a quotient inductive-inductive defi-

nition . 86
4.4.3 Point constructors . 88

CONTENTS ix

4.4.4 Path constructors . 92
4.4.5 Worked example . 94

4.5 Other forms of constructors 96
4.5.1 Dependent dialgebras 98
4.5.2 Currying . 99

4.6 Positivity . 100
4.7 Related work . 101

4.7.1 Inductive-inductive definitions 101
4.7.2 Inductive definitions in Agda 101
4.7.3 Higher inductive types 103

5 Induction versus initiality 105
5.1 Categorical characterisation of induction 106
5.2 The section principle is logically equivalent to initiality . . . 108
5.3 Limits in categories of algebras 111

5.3.1 Sort categories . 112
5.3.2 Categories of algebras 114

5.4 Deriving the induction principle 122
5.4.1 Induction for F -algebras 123
5.4.2 General framework . 125
5.4.3 Induction for quotient inductive-inductive definitions 129
5.4.4 Putting it all together 142

5.5 Related work . 143

6 Constructing quotient inductive-inductive definitions 145
6.1 Strict positivity . 146
6.2 Initial objects in sort categories 146
6.3 Initial objects via sequential colimits 148

6.3.1 Internal sequential colimits 151
6.3.2 ConstructingSet-sorted quotient inductive-inductive

definitions . 153
6.3.3 Putting it all together 164

6.4 Related work . 165

x CONTENTS

7 Concluding remarks 167
7.1 Future work . 171

7.1.1 Metaprogramming and generic programming 171
7.1.2 Invariance of descriptions under equivalence of con-

structors . 171
7.1.3 Generalised containers 171
7.1.4 Constructing initial algebras 172
7.1.5 Generalising to higher inductive types 172

A Containers for quotient inductive-inductive definitions 173
A.1 Containers for Set-sorted definitions 174
A.2 Containers for arbitrarily sorted definitions 175
A.3 Limitations of containers . 176

B Moving to an untruncated setting 177
B.1 Coherence laws for functors 179

B.1.1 Generalised containers 180
B.2 Sort categories . 181
B.3 Categories of dialgebras . 181

B.3.1 Identity morphisms 181
B.3.2 Composition . 182
B.3.3 Category laws . 183

B.4 Untruncated Type-sorted inductive-inductive definitions . . 185
B.5 Path constructors and their computation rules 187

Chapter 1

Introduction

In this thesis we set out to develop a theory of quotient inductive-inductive def-
initions, which are inductive-inductive definitions [Nor13] extended with
path constructors. In this first chapter we will give some context of the
problem and discuss prior art and related concepts. The chapter is con-
cluded by an overview of the thesis and a list of contributions.

1.1 Induction in mathematics

In mathematics, induction is an important proof technique. The most com-
mon and perhaps oldest form of induction is induction on the natural num-
bers, dating back to at least Plato [Ace00]. Induction on the natural num-
bers gives us a way to prove that a formula ϕ(n) holds for any n ∈ N: we
have to prove ϕ(0) and prove that for any n ∈ N, ϕ(n) implies ϕ(n+1). That
the natural numbers satisfy this property can be seen as one of the defining
properties of the natural numbers. This was first written down formally by
Guiseppe Peano [Pea89]. He defined the natural numbers to be a set N with
properties such as:

• 0 ∈ N

• for any n ∈ N, succ(n) ∈ N.

• N satisfies the induction principle

1

2 CHAPTER 1. INTRODUCTION

The remaining axioms describe the equality relation on the natural num-
bers and postulate the injectivity of the succ function symbol and that zero ̸=
succ n for all n ∈ N.

A consequence of the induction principle for natural numbers is that
we can define functions N → X , for some set X , recursively: it suffices to
define f 0 and f (succ(n)), where we may refer to f n. We can use this to
define addition n +m on the natural numbers by recursion on the second
argument m, i.e. we define n+ 0 :≡ n and n+ succ(m) :≡ succ(n+m).

In mathematics, the construction of new sets is often done by taking the
natural numbers as a given and building upon this and quotienting where
needed, as opposed to giving an inductive definition directly. For example,
the rational numbers can be constructed as N×N quotiented by the relation
(a, b) ∼ (c, d) if and only ad = bc. Quotienting infinite sets is not always
unproblematic. The usual construction of the real numbers as a quotient
of Cauchy sequences of rational numbers requires the axiom of choice to
show that it forms a complete metric space. Direct inductive definitions
(with equations) can avoid such problems, as we will see in section 3.1.5.

1.2 Induction in computer science

Recursion is a central concept to computer science. Data structures are
often defined in terms of themselves: for example, a binary tree is either a
leaf or a pair of binary trees. Functional programming languages therefore
often come with a mechanism to express definitions such as these, usually
under the name of algebraic data types.

In Haskell [Jon03], one can define (linked) lists as the algebraic data
type:

data List a = nil | cons a (List a)

As opposed to having a recursion principle associated with the algebraic
data type, we have pattern matching and general recursion. For example,

1.2. INDUCTION IN COMPUTER SCIENCE 3

we can define a function as follows:

map : (a→ b)→ List a→ List b

map f nil = nil

map f (cons x xs) = cons (f x) (map f xs)

Pattern matching and general recursion are powerful enough to let us im-
plement the recursion operator associated with the inductive type. In the
case of lists, this is usually called foldr:

foldr : b→ (a→ b→ b)→ List a→ b

foldr e op nil = e

foldr e op (cons x xs) = op x (foldr e op xs)

If we care about the totality of our definitions, pattern matching and
general recursion are too powerful. First of all we have to restrict ourselves
to structurally recursive definitions: recursive calls may only be done on
subterms of the patterns on the left hand side of the pattern matching
clause. This is however not enough to ensure termination of definitions.
The inductive types themselves also have to be of the right shape: they
have to be strictly positive. If we were to have an inductive type:

data T : Type where

a : (T → T)→ T

then we could define:

oh : T

oh :≡ a (λx.x)

uh : T → 0

uh (a f) :≡ uh (f oh)

where 0 denotes the empty type.

4 CHAPTER 1. INTRODUCTION

Since f oh is structurally smaller than a f , the definition of uh is struc-
turally recursive. However, it does give us a term that does not have a
normal form, namely uh oh.

Algebraic data types allow us to specify types or a family of types parametrised
by type variables. As these are parameters, we are not allowed to vary them
in the result type of the constructors. Lifting this restriction, i.e. turning
the parameters into indices, gives us generalised algebraic data types (GADTs)
or inductive families. We can use the indices to store extra information in
the type, allowing us to encode invariants. They have been used to imple-
ment a type of well-typed abstract syntax trees [PL04] and red-black trees
[Kah01], among many other uses.

Inductive families are especially powerful in a dependently typed set-
ting in conjunction with dependent pattern matching [Coq92], such as it is
implemented in Agda1 [Nor07]. The information encoded in the indices
may tell us that certain cases are impossible and need not be treated, or
they may tell us that certain variables in the patterns are equal. We can de-
fine the type of length-indexed lists, also referred to as vectors as follows:

data Vec (A : Type) : N→ Type where

nil : Vec A zero

cons : A→ (n : N) (xs : Vec A n)→ Vec A (succ n)

We can define a function that returns the first element of a non-empty list
as follows:

head : (A : Type) (n : N)→ Vec A (succ n)→ A

head A n (cons x .n xs) = x

By pattern matching on the argument of type Vec A (succ n), we get two
cases: the value is either constructed with constructor nil or cons. If we
unify the type of the argument with that of the constructors, we see that the
argument can never be nil, as that produces something of type Vec A zero.

1http://wiki.portal.chalmers.se/agda/pmwiki.php

http://wiki.portal.chalmers.se/agda/pmwiki.php

1.3. FORMAL TREATMENT OF INDUCTION 5

Furthermore, if we consider the cons case, we notice that the natural num-
ber argument of the constructor has to coincide with the one we already
had in our context, hence we get the non-linear pattern headAn (consx .n xs),
where the dot indicates that it is a repeated variable.

It has been shown that under certain assumptions, i.e. if the data types
are strictly positive and the recursion is structural, along with certain as-
sumptions about the equality in the type theory, then these dependent pat-
tern matching definitions can be translated to ones using only elimination
principles [GMM06]. The restrictions on the type of equality used can be
relaxed in certain cases [CDP14], giving us a form of dependent pattern
matching which is compatible with homotopy type theory [Uni13].

In Agda, apart from inductive families, we can also define inductive
types mutually with other inductive types/families or functions, giving
us inductive-inductive [Nor13] and inductive-recursive definitions [DS99]
respectively.

1.3 Formal treatment of induction

So far we have given several examples of inductive sets and types and recur-
sive definitions, but have not given a formal definition of what an inductive
definition is. In [Acz77], the author writes:

“Inductive definitions of sets are often informally presented by
giving some rules for generating elements of the set and then
adding that an object is to be in the set only if it has been gener-
ated according to the rules.”

In [Mar71], the author gives a scheme of the kind of rules that comprise
inductive definitions in first-order logic. In this thesis we are concerned
with inductive definitions in Martin-Löf Type Theory [Mar72], but we will
also look at category theoretic characterisations in section 1.3.2, to guide
us to appropriate generalisations.

6 CHAPTER 1. INTRODUCTION

1.3.1 In type theory

Extending a type theory with a particular inductive definition means that
we have to extend the theory with four sets of inference rules:

• type formation rules (N is a type)

• introduction rules (zero : N, succ : N→ N)

• elimination rules (given P : N→ Type, mzero : P zero, msucc : (n : N)→
P n→ P (succ n), we get N-ind P mzero msucc : (x : N)→ P x)

• computation rules (N-indP mzero msucc zero = mzero, N-indP mzeromsucc (succn) =

msucc n (N-ind P mzero msuccn))

In the case of the natural numbers, the type formation, introduction and
elimination rules are not essentially different from Peano’s rules. Missing
however are rules defining an equality relation on N. As we will see, we
can define the equality relation as a single parametric inductive definition
uniformly for all types. Given this notion of equality and given that we
have a universe of types available, one can derive that the constructors are
disjoint and injective.

The declaration of an inductive definition involves giving rules in all
these classes. However, as observed by Backhouse et al. [Bac+89], it is
enough to give the type formation rules and introduction rules: the elimi-
nation principle along with its computation rules can be derived from them.
This fact is also reflected in how one declares inductive definitions in type
theory-based proof assistants such as Coq [BC04] and Agda by simply giv-
ing a sequence of constructors, i.e. introduction rules.

1.3.2 In category theory

Inductive definitions can be characterised in category theory as initial F -
algebras, for some endofunctor F on an appropriately chosen category. For
example, the set of natural numbers with its operations zero and succ form
an initial algebra for the functor FX :≡ 1 + X . The property of being an

1.4. HIGHER INDUCTIVE TYPES AND HOMOTOPY TYPE THEORY 7

initial algebra contains the same information as given by the four classes
of rules, for the appropriately chosen endofunctor.

The perspective on inductive definitions as initial algebras allows us to
generalise easily. If we associate ordinary inductive types with initial alge-
bras of endofunctors on a category C, which is a model of type theory, e.g.
Set, then inductive families correspond to initial algebras of endofunctors
on slice categories of C.

Another way to generalise is based on the observation that F -algebras
for an endofunctor F coincide with F ∗-monad algebras, where F ∗ is the
free monad of F . (Note that F ∗ may not exist: F needs to be a strictly posi-
tive functor.) As is described in [Shu11b], we can interpret this as ordinary
inductive types being associated with free monads. Generalising these in-
ductive types would be the same as considering a larger class of monads.

As monads and monad algebras are also used to talk about algebraic
theories, such as the theory of groups, the aforementioned observation
makes clear the relationship between inductive definitions and algebraic
theories. An essential ingredient of algebraic theories is the ability to talk
about equations. This is something which is lacking in the inductive defi-
nitions we have seen so far.

1.4 Higher inductive types and homotopy type
theory

Higher inductive types are a generalisation of inductive types, stemming
from homotopy type theory, where apart from the usual constructors, called
point constructors, we may also have equations as constructors, called path
constructors.

Before we go on and give some examples, we will give a brief recap
of homotopy type theory. For a more in depth introduction, we refer the
reader to the usual book [Uni13].

In type theory, we can define an equality relation on any type induc-

8 CHAPTER 1. INTRODUCTION

tively, as follows: suppose A is a type, we define:

data =A : A→ A→ Type where

refl : (x : A)→ x =A x

If we have a term refl x : x =A y for some x, y : A then this only type checks
if x is definitionally equal to y, i.e. they are the same up to β- and η-equality
(and possibly more equalities).

The equality defined above is usually referred to as propositional equal-
ity. This name comes from the idea that equality is propositional, i.e. any
two terms of that type are equal. If we normalise a closed term of an iden-
tity type x = y, it normalises to refl, hence it gives us a definitional equality
x ≡ y. As such, one would expect that if we have two terms p, q : x = y,
then also p = q, i.e. we have uniqueness of identity proofs. Using dependent
pattern matching this is easy to prove:

uip : (A : Type) (x y : A) (p q : x = y)→ p = q

uip A x .x (refl x) (refl x) :≡ refl (refl x)

However, if we consider the induction principle for this type, called the J

rule, this is not so clear at all. What we can show with J is that given a type
A, the relation =A is an equivalence relation. Furthermore we can show
that it forms a groupoid with transitivity as its binary operation, reflexivity
as its unit and symmetry as its inverse operation. Using J , we can show that
these operations all satisfy the groupoid laws up to propositional equality
again, but not definitionally. Using this idea of types as groupoids, a model
of type theory has been given in the category of groupoids [HS98]. Since
there are non-trivial groupoids, the groupoid model contains types which
refute the uniqueness of identity types principle.

The story does not end with groupoids, however. Since the groupoid
laws are satisfied up to propositional equality, a type itself again, we get a
tower of groupoids: we get∞-groupoids. ∞-groupoids are also the object
of study in homotopy theory: they can be thought of as topological spaces

1.4. HIGHER INDUCTIVE TYPES AND HOMOTOPY TYPE THEORY 9

up to homotopy. Types can therefore be thought of as∞-groupoids [VG11;
Lum09] and therefore also as topological spaces up to homotopy. This cor-
respondence leads to a geometric intuition for type theory: types can be
seen as spaces with their identity types as their path spaces.

One important axiom that is considered in homotopy type theory, is
the univalence axiom, which roughly tells us that isomorphic types are also
propositionally equal. This axiom is inspired by and holds in the simplicial
set model of type theory [KLV12]. A univalent universe is then one exam-
ple of a type that does not satisfy uniqueness of identity proofs: we may
have different isomorphisms, giving rise to different propositional equali-
ties between types. An example of this are the identity map and the nega-
tion map on the booleans: these are two distinct isomorphisms, yielding
by univalence two distinct propositional equalities Bool = Bool. In fact, if
we have a hierarchy of univalent universes Type0 : Type1 : Type2 : . . ., then
Typen+1 has a strictly more complicated higher equality structure [KS15].

Apart from univalent universes of types invalidating uniqueness of iden-
tity proofs, there are also plenty of geometric examples to take from homo-
topy theory, such as the circle and the torus. As we have seen, we define
new data types in type theory usually as an inductive type. However, ordi-
nary inductive definitions do not give us a way to create new paths between
points that were not already there. The solution is to generalise the idea of
constructor to also allow for paths to be constructed. We can then define
the circle, which is just a point with a non-trivial loop, as the following
higher inductive type:

data S1 : Type where

base : S1

loop : base = base

In higher inductive types, we have the ordinary constructors, such as base
in this example. These are called point constructors, as they can be thought
of as constructing points in the space we are defining inductively. The con-
structor loop is a path constructor: it constructs a new path from base to base.

10 CHAPTER 1. INTRODUCTION

The induction principle for the circle is as follows:

S1-elim : (P : S1 → Type) (mbase : P base) (mloop : mbase =
P
loop mbase)→ (x : S1)→ P x

To show that P holds for any x : S1, we need to show that it holds for the
base point and that transporting this value along the loop is equal to the
value itself.

The induction principle for the circle can also be used to show that the
loop is in fact a non-trivial loop, i.e. loop ̸= reflbase. To prove this, we need
to have a universe at hand which is univalent. This is similar to how we
cannot show that true ̸= false, if there is no universe to eliminate into, with
the additional requirement of that universe being univalent.

Apart from allowing constructors to construct paths between points,
higher inductive types also allow for higher path constructors which con-
struct paths between paths. For example, we can describe the torus as the
following higher inductive type:

data T 2 : Type where

base : T 2

p : base = base

q : base = base

r : p � q = q � p

The approach of using higher inductive types to define these topological
spaces (up to homotopy) has been used successfully to formalise various
results of homotopy theory in type theory, leading to the field of synthetic
homotopy theory. Formalisations include the fundamental group of circle
[LS13a] and more general results on the homotopy groups of spheres [LB13;
Bru16], the Blakers-Massey theorem [Hou+16] and the Mayer-Vietoris se-
quence [Cav15].

Applications aside, as of yet a general definition and theory of higher
inductive types is still lacking. There is a note on the semantics of higher
inductive types [LS13b], i.e. a metatheoretic and semantic treatment. The

1.5. A THEORY OF QUOTIENT INDUCTIVE-INDUCTIVE DEFINITIONS11

ideas in this thesis are very much inspired by this note. In [Soj14], the
author gives an internal specification of a class of higher inductive types
called W-suspensions, i.e. the author defines an induction principle and the
category of algebras and shows that initiality in the category of algebras
coincides with satisfying the induction principle. This is all carried out
inside type theory itself, which is also a goal of this thesis.

1.5 A theory of quotient inductive-inductive def-
initions

Our goal in this thesis is to give a theory of quotient inductive-inductive
definitions, which can be seen as a stepping stone towards a theory of
higher inductive types. Quotient inductive-inductive types can either be
seen as a generalisation of inductive-inductive types or as a subclass of
higher inductive-inductive types. We extend inductive-inductive defini-
tions with path constructors, but we truncate the result to be a set: our
definitions satisfy uniqueness of identity proofs. As such, they can be seen
as a subclass of higher inductive-inductive types. Since we work with sets,
we only consider path constructors that construct paths between points, as
any higher path constructors would not add anything new.

Another goal of this thesis is to give a theory that can be expressed in-
side type theory itself. While formalising the theory is already a good idea
on its own, having an internal definition of the inductive definitions means
that anything we prove about them internally automatically holds for all
models of type theory. Furthermore, if the theory happens to be express-
ible in a small core theory and we manage to construct the inductive types
also in this core, we have an implementation of our inductive definitions
in this small type theory.

From a programming point of view, having the specification of induc-
tive definitions as a first-class citizen in your language allows for meta-
programming: we can write generic programs by recursion on the struc-
ture of the inductive definitions [BDJ03].

12 CHAPTER 1. INTRODUCTION

Working on the theory of inductive definitions internal to type theory
is not without problems, however. When we talk about the computation
rules of type theoretic inductive definitions, we talk about definitional equal-
ities. These definitional equalities have none of the non-trivial structure
that its internal counterpart, propositional equality, may have. They are
equalities on the nose. In type theory itself, we can only talk about the
weaker notion of propositional equality. This complicates the situation al-
ready when we talk about ordinary inductive types: in [AGS12] the authors
internally prove for W-types that initiality and the induction principle coin-
cide. Doing so requires some involved reasoning about equalities between
propositional equalities: there are so called coherence problems one needs
to solve. In this thesis we observe in appendix B that these coherence prob-
lems grow in number with the number of constructors, even if they are all
just point constructors.

Dealing with these coherences in a uniform way means that we have
to talk about (∞, 1)-categories [Cam13]. Formalising the usual notions of
(∞, 1)-category in type theory requires us to work with simplicial sets in
type theory. However, we want to work with types, not simplicial sets. A
more promising approach is extending type theory with a strict equality
[AK16; ACK16a]. In this thesis, we will deal with the coherences by simply
working with the truncated types: we work with sets instead, i.e. types that
satisfy uniqueness of identity proofs.

1.6 Related work

The work in this thesis builds on the work on inductive-inductive types
[Nor13; Alt+11]. The framework we present extends the work in that paper
in several dimensions: as opposed to having one constructor of sort Set
and one constructor of sort Fam, our framework supports a larger class
of sorts and any number of constructors. Apart from that, our framework
also introduces support for path constructors.

The notion of path constructors comes from the concept of higher induc-
tive types, as used in [Uni13]. A first attempt at describing the semantics

1.7. OVERVIEW OF THE THESIS AND CONTRIBUTIONS 13

of higher inductive types has been done in [LS13b], working at the level of
model categories. This approach has inspired [Cap14] and [Alt+15], which
both have led to the work presented in this thesis.

Furthermore, as the title of the thesis suggests, the work on quotients in
type theory, most notably [Li15] and [Hof95], is related to what we present
here. Quotient inductive-inductive definitions combine a quotienting mech-
anism with inductive types in the sense that the quotienting happens “at
the same time” as the induction. The benefit over ordinary quotients will
be discussed in chapter 3.

1.7 Overview of the thesis and contributions

The thesis is organised as follows:

• In chapter 2, we give the basic concepts and notation we will use in
this thesis, along with proofs of basic propositions and lemmata used
throughout the thesis.

• Chapter 3 presents examples of quotient inductive-inductive defini-
tions and their applications and compares them to other notions such
as quotients and coequalisers.

• Chapter 4 contains the formal specification of quotient inductive-inductive
definitions. They are specified as being a certain kind of iterated dial-
gebras, which generalises the presentation of ordinary inductive def-
initions as algebras of functors.

• Having a formal specification of quotient inductive-inductive defini-
tions and the corresponding categories of algebras, we show in chap-
ter 5 that the initial algebra semantics coincides with a categorical for-
mulation of the type theoretic induction principle. From the categor-
ical formulation we derive the type theoretic formulation, showing
that induction and initiality coincide for our inductive definitions.

14 CHAPTER 1. INTRODUCTION

• In chapter 6 we give some preliminary results on constructing quo-
tient inductive-inductive definitions given some reasonable assump-
tions on the type theory.

• The last chapter, chapter 7, presents the conclusions of the thesis along
with a discussion of the presented results. We also point out several
avenues for future work.

• Appendix A discusses some ways to generalise containers to accom-
modate the kind of functors we need in our framework.

• Appendix B is about what the difficulties are when moving from a set-
based setting to the untruncated case. Here we go into detail about
the coherence issues we face and how some of these can be solved in
an ad-hoc manner.

1.7.1 List of main contributions

The main contributions of this thesis are:

• a formal specification of quotient inductive-inductive definitions, along-
side with their categorical interpretation, given in type theory: defini-
tion 4.4.1 gives the general scheme of the specification with the details
of point constructors in definition 4.4.2 and definition 4.4.3 and the
details of path constructors in definition 4.4.5 and definition 4.4.6.

• a proof of the logical equivalence of initiality and the category theo-
retic induction principle: theorem 5.3.9.

• a derivation of the type theoretic induction principle from the cate-
gory theoretic one: section 5.4.3.

• construction of initial algebras for a class of quotient inductive types:
theorem 6.3.13.

1.7. OVERVIEW OF THE THESIS AND CONTRIBUTIONS 15

1.7.2 Declaration of authorship and previous work

This thesis would not have existed in this form if not for the fruitful dis-
cussions with Thorsten Altenkirch, Paolo Capriotti and Fredrik Nordvall
Forsberg. Our first approach to a theory of higher inductive types was pre-
sented at the TYPES workshop in 2015 [Alt+15]. My efforts to make the
details work for this dependent dialgebra approach, led me away from de-
pendent dialgebras and eventually to the approach presented in this thesis.
A preprint [Alt+16] presenting this new work was written in July 2016 by
me with editorial efforts from the coauthors. This preprint contains most
of the material presented in this thesis, except for chapter 6, appendix A
and appendix B, albeit in highly condensed form, lacking in details and
proofs.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter we will introduce the type theoretic background material
for the thesis. We will not give a detailed overview of Martin-Löf Type
Theory in this chapter. For such an overview, we refer the reader to the first
chapter of [Uni13]. Instead, we introduce notation and basic propositions
and lemmata that we will use throughout the thesis. As we will be using
category theoretic approaches, the chapter is concluded with our approach
to category theory in type theory.

2.1 Basic type formers

In type theory we can form Π-types, or dependent functions, given a type
A and for every a : A a type B a, we have the type:

(x : A)→ B a

Traditionally this is denoted as Π(x : A).B a or ΠA.B. We will use Agda’s
notation for Π-types instead, along with its convention of leaving out ar-
rows in the case of nested Π-types, where convenient, e.g. we may write
(a : A) → (b : B a) → C a b as (a : A) (b : B a) → C a b. The introduction
rule for Π-types is that if we have x : A in our context and a term b : B x,

17

18 CHAPTER 2. PRELIMINARIES

then we can form the term:

λx.b : (x : A)→ B x

Π-types have an elimination rule, called application: if f : (x : A) → B x

and x : A, then f x : B x. Terms of Π-types are subject to two classes of
definitional equalities, β-equality:

(λx.e) y ≡ e[x/y]

where e[x/y] denotes the substitution of every occurrence in e of x with y.
We use the symbol ≡ to denote definitional equality on terms.

Furthermore we have η-equality, for every f : (x : A)→ B x:

f ≡ λx.f x

Note that if the codomain of a Π-type does not refer to elements of its do-
main, i.e. when we have a non-dependent function, we denote it as A→ B.

Apart fromΠ-types, we also haveΣ-types, or dependent pairs/products.
The type formation rule is similar to that of Π-types: if we have a type A

such that if we have a : A in our context, the term B a is a type, then we
have that the following is a type:

(a : A)×B a

This is traditionally written as Σ(a : A).B a or ΣA.B, but we are using a
notation here which mirrors Agda’s notation for Π-types.

If we have a : A and B a, then we can form the term:

(a, b) : (a : A)×B a

The type (a : A)×B a comes with two projection functions:

• π0 : (a : A)×B a→ A

• π1 : (x : (a : A)×B a)→ B (π0 x)

2.1. BASIC TYPE FORMERS 19

Since we are explicitly giving a name to the first element of the pair, we can
also use the following notation, where we let the scope of a range over the
whole expression after its introduction:

π1 : (a : A)×B a→ B a

The projection functions have as β-laws: for every a : A and b : B a,
π0 (a, b) ≡ a and π1 (a, b) ≡ b.

The η-law for Σ-types gives us the following definitional equality for
every pair z : ΣAB:

z ≡ (π0 z, π1 z)

2.1.1 Universes

Another basic type is the type whose inhabitants themselves are again types,
the universe Type. Using such a universe, we can now rephrase the type
formation for Π-types as having a term:

Π : (A : Type)→ (B : A→ Type)→ Type

Such a universe may not have the property thatType : Type as that gives rise
to a paradox [Gir72; Coq86], similar to Burali-Forti paradox in set theory.
Instead, we have a hierarchy of universes:

Type0 : Type1 : Type2 : . . .

While avoiding the paradox, this hierarchy brings a lot of complexity to our
language in terms of usability. Every time we use a universe, we have to
explicitly indicate its level, cluttering our terms.

One solution to this problem is to leave the level indices as implicit vari-
ables with constraints. One can then let the type checker attempt to solve
this system, which is the approach Coq takes.

Another problem is that we may want to give definitions that can be
instantiated to more than one level. If we want to define a function com-

20 CHAPTER 2. PRELIMINARIES

position operator, we would like that it works for functions between types
of any level. In Agda, we have the notion of universe polymorphism. We can
define terms such as:

id : (n : Level) (A : Typen)→ A→ A

id n A x :≡ x

The function id is polymorphic over all levels n. While this saves us from
having to define id for any level, universe polymorphism does introduce
some complexity of its own. Level is not a type, which means that while
(n : Level) (A : Typen) → A → A is a valid Agda expression, it is not a type,
i.e. it is not an inhabitant of Typei for any i : Level.

In this thesis we will leave the universe levels implicit.

2.1.2 Implicit arguments

An important feature of Agda is that we can denote arguments of a function
as being an implicit argument. One use case is the aforementioned universe
levels. If we consider again the type and definition of id, with implicit ar-
guments, we can write:

id : { n : Level } { A : Typen } → A→ A

id x :≡ x

The idea here is that the context in which a function is called gives informa-
tion we can use to fill in the blanks: if we call idwith a certain argument, we
know the type of the argument and in turn also know the universe level of
that type. To improve readability we will oftentimes implicitly pass around
parameters, while sometimes making them explicit by adding subscripts.

2.1.3 Inductive data types

As mentioned in the introduction, an important feature to have in a type
theory is to have a way to define custom inductive data types. In Agda, one

2.1. BASIC TYPE FORMERS 21

can define an inductive type by giving a list of constructors. For example,
the natural numbers can be defined as follows:

data N : Type where

zero : N

succ : N→ N

We will often use Agda-like notation to give definitions/specifications of
inductive types.

Two trivial, yet important types we will use are the empty and the unit
types, which can be defined as inductive types:

data 0 : Type where

data 1 : Type where

tt : 1

The “smallest non-trivial” data type, Bool can also be defined inductively:

data Bool : Type where

true : Bool

false : Bool

Inductive definitions may also be parametrised. We may define the co-
product of two types as follows:

data + (A B : Set) : Set where

inl : A→ A+B

inr : B → A+B

Inductive data type declarations in Agda do not give us elimination

22 CHAPTER 2. PRELIMINARIES

principles directly. Instead Agda has a notion of dependent pattern matching
[Coq92]: we write our functions out of inductive types by matching against
the possible constructors of said types. These function definitions may be
recursive, as long as the recursive occurrences are on a subterm of the pat-
tern. Dependent pattern matching has been shown to be equivalent to hav-
ing eliminators, assuming all types satisfy uniqueness of identity proofs
[GMM06]. However, with some further restrictions on pattern matching,
translations to eliminators without requiring uniqueness of identity proofs
do exist [CDP14]. Moreover, the translation of pattern matching definitions
into definitions with eliminators does not always preserve definitional equal-
ities [McB06].

As opposed to adding inductive types to the theory in an ad hoc manner,
one can add W-types as a primitive and define all inductive types in terms
of this primitive. Suppose we have a type of shapes S : Type and a type
family of positions P : S → Type, then the W-type defined by S and P is:

dataW S P : Type where

sup : (s : S)× (P s→ W S P)→ W S P

We can think of the shapes as the type giving the contexts for construc-
tors. For example, for the type of lists containing natural numbers, we
choose S :≡ 1+N: the nil constructor has no context and the cons con-
structor takes something of type N. The positions family gives us the re-
cursive positions. For the nil constructor we have zero recursive positions
and for cons we have exactly one, so we define P with P (inl tt) :≡ 0 and
P (inr n) :≡ 1 for any n : N.

W-types are enough to give us ordinary inductive types as well as in-
dexed inductive types [Mor07]. In this thesis, the inductive definitions we
need to formalise the theory of quotient inductive-inductive types, can all
be written using W-types. However, for sake of convenience and presen-
tational clarity, we will use Agda notation to present these. We will also
sometimes give function definitions by pattern matching, but these can be

2.2. EQUALITY 23

trivially rewritten using just the eliminators.

2.2 Equality

So far we have mentioned definitional equality between terms. This equal-
ity is a metatheoretic notion, it is external to the type theory, i.e. x ≡ y is
not a type nor a term. We can define a notion of equality between terms in
the type theory itself, referred to as propositional equality:

Definition 2.2.1 (Identity types). Given a type A : Type and x, y : A, we
define the type x = y : Type, inductively with constructor:

refl : (x : A)→ x = x

A type x = y is called an identity type.
The elimination principle for identity types is:

J : (A : Type) (P : (x y : A)→ x = y → Type)

(m : (x : A)→ P x x (refl x))

→ (x y : A) (p : x = y)→ P x y p

which satisfies the computation rule:

J A P m x x (refl x) ≡ m x

Remark 2.2.2. The elimination principle for identity types is also referred
to as the path induction principle.

Remark 2.2.3. While it is called propositional equality, the type x = y need
not be propositional in general.

Lemma 2.2.4. Given a type A : Type, the identity types form an equivalence
relation on A.

Proof. We need to show that the relation = : A → A → Type is reflex-
ive, symmetric and transitive. Reflexivity we immediately get from the refl

24 CHAPTER 2. PRELIMINARIES

constructor. For symmetry we need to appeal to the elimination principle.
Let p : x = y, we define p−1 : y = x:

p−1 :≡ J A (λx y p.y = x) (λx.refl x) x y p

For transitivity, we need an operation:

� : x = y → y = z → x = z

This can be defined by path induction on any of combination of its argu-
ments.

Lemma 2.2.5. The identity types on a type A : Type form a groupoid with respect
to propositional equality.

Proof. The identity types on A form a groupoid with transitivity as its com-
position, its inverses given by symmetry and the unit being reflexivity. These
operations need to adhere to the following laws:

• associativity: (p : x = y) (q : y = z) (r : z = w)→ (p � q) � r = p � (q � r)

• left identity: (p : x = y)→ reflx � p = p

• right identity: (p : x = y)→ p � refly = p

• left inverse: (p : x = y)→ p−1 � p = refly

• right inverse: (p : x = y)→ p � p−1 = reflx

These can all be shown to hold by performing path induction on the paths.

Remark 2.2.6. The computational properties of transitivity obviously de-
pend on how it is defined: we either get the left identity or the right identity
law to hold definitionally if we perform path induction on one argument.
If it is defined by path induction on both arguments, we get neither law
“for free”. We can make a new definition of propositional equality on top
of the original one, which satisfies the category laws definitionally, as we
will see in section 2.2.8.

2.2. EQUALITY 25

Since identity types are types again, they themselves are also equipped
with a groupoid structure. We can always consider identity types of iden-
tity types of identity types, et cetera. Such an infinite tower of groupoids
on top of each other is called an∞-groupoid. An external proof of the fact
that every type gives rise to an∞-groupoid has been given [VG11; Lum09].

2.2.1 Dependent equality

When considering type families B : A→ Type over some type A, we some-
times find ourselves in the situation that we want to talk about equality of
a : B x and b : B y where x = y but not necessarily x ≡ y. In this case the
term a = b is well-typed. However, given a path x = y, inhabitants of B x

can be transported to inhabitants of B y:

Definition 2.2.7. Given A : Type and B : A→ Type, we define:

transport B : (p : x = y)→ B x→ B y

transport B p a :≡ J A (λx y q.B x→ B y) (λx a.a) x y p a

Using transport we can define the notion of dependent path:

Definition 2.2.8. Given A : Type, B : A → Type and a path p : x = y for
x, y : A, the type of dependent equalities between a : B x and b : B y is
defined as:

a =B
p b : Type

a =B
p b :≡ transport B p a = b

2.2.2 Functoriality of functions

The equality relation is a congruence: it is preserved by any function.

Proposition 2.2.9. Given a function f : A→ B and an equality x = y, we have
f x = f y.

26 CHAPTER 2. PRELIMINARIES

Proof. We can define the operation ap (action (of the function) on paths) by
path induction:

ap : (f : X → Y)→ x = y → f x = f y

ap f p :≡ J X (λx y p.f x = f y) (λx.reflf x) x y p

We can regard the identity type on a type as a category: we have identity
morphisms given by refl and composition given by � , which is associative
and satisfies the left and right unit laws. In this light, any function A→ B

can be thought of as a functor from the identity types on A to the identity
types on B:

Proposition 2.2.10. For any function f : X → Y , ap f is functorial:

• ap f reflx = reflf x

• ap f (p � q) = ap f p � ap f q

Proof. By path induction.

ap is also functorial in its first argument:

Proposition 2.2.11. For any p : x = y, the following holds:

• ap idA p = p

• ap (g ◦ f) p = ap g (ap f p)

Proof. By path induction.

Apart from having an action on paths for functions, we can define a
similar operation for dependent functions:

Definition 2.2.12.

apd : (f : (x : A)→ B x)→ (p : x = y)→ f x =B
p f y

is defined by path induction similar to ap.

2.2. EQUALITY 27

A useful property of dependent paths over families of which the fibres
are equalities is the following:

Proposition 2.2.13. Let f, g : X → Y be two functions, x, y : X and suppose
we have the following data:

• p : f x = g x

• q : f y = g y

• r : x = y

then a dependent equality:
p =λx.f x=g x

r q

is equivalent to:
p � ap g r = ap f r � q

This proposition allows us to rewrite dependent equalities to non-dependent
ones, which are easier to manipulate and reason about.

Remark 2.2.14. When we are dealing with equalities between compositions
of paths such as in the above proposition, then it makes sense to represent
this as a commutative diagram. The above example translates to the fol-
lowing diagram:

f x
p

ap f r

g x

ap g r

f y q g y

Paths are denoted with lines with no arrow heads, as they are invertible.
Since direction is not always relevant, we usually denote p−1 as p in such a
diagram.

2.2.3 Truncation levels

If we consider the tower of identity types for a specific type A, it is some-
times the case that after several levels the identity types vanish, i.e. they are
equivalent to the unit type. Another way of stating that a type is equivalent
to the unit type is that it is contractible:

28 CHAPTER 2. PRELIMINARIES

Definition 2.2.15. A type A is contractible if there exists a “central” point
c : A such that every point is connected to the centre via an equality:

is-contr : (A : Type)→ Type

is-contrA :≡ (c : A)× ((x : A)→ c = x)

We can show that the identity types for a contractible type are again
contractible: is-contr A → (x y : A) → is-contr (x = y). The level at which
the identity types vanish is the so called truncation level or h-level of the type.
The level is indicated using natural numbers, but starting at −2 instead of
0, denoted as N−2:

Definition 2.2.16. A type has truncation level n : N−2, if we have a proof of
is-n-trunc A where is-n-trunc is defined recursively over n:

is-n-trunc : (A : Type)→ Type

is–2-trunc A :≡ is-contr A

is-n+ 1-trunc A :≡ (x y : A)→ is-n-trunc (x = y)

For our purposes, there are two important truncation levels, apart from
contractibility:

Definition 2.2.17. A type is a proposition or propositional if it has truncation
level −1:

is-prop X :≡ is–1-trunc X

A useful characterisation of propositions is given by the following propo-
sition:

Proposition 2.2.18. If the type A satisfies (x y : A) → x = y then A is proposi-
tional.

From this characterisation, we immediately see that ifA is propositional,
then it is either empty or contractible, i.e. uniquely inhabited up to proposi-
tional equality. Of course, we do not have an internal proof of (A : Type)→

2.2. EQUALITY 29

is-prop A→ (A→ 0)+ (is-contr A), which is essentially the law of excluded
middle.

The next truncation level, level 0, are the so called sets:

Definition 2.2.19. A type is a set if it has truncation level 0, i.e. for all x, y : A,
x = y is propositional.

is-set X :≡ is-0-trunc X

The property of being a set is also called “uniqueness of identity proofs”.

Definition 2.2.20. We define the universe of sets as follows:

Set : Type

Set :≡ (X : Type)× is-set X

For the sake of brevity, we will not be explicit about projecting the type
out of inhabitants of Set and will write things such as (A : Set) → A → A,
as though it were Type.

2.2.4 Equivalence

We have a notion of equality on types, so far have not talked in great detail
about equality on a universe of types, i.e. equality between types.

A very weak notion of types being equal is “logical equivalence”:

Definition 2.2.21. TypesA andB are logically equivalent if we have functions
A→ B and B → A:

A↔ B : Type

A↔ B :≡ (A→ B)× (B → A)

With logical equivalence we do not have any requirements on the two
functions between the two types, just that there exist any. There being a
logical equivalence is also not a proposition: the type Bool ↔ Bool has at
least two distinct inhabitants: (idBool, idBool) and (not, not).

30 CHAPTER 2. PRELIMINARIES

The notion of isomorphism also requires the two functions to be each
other’s inverses:

Definition 2.2.22 (Isomorphism). Types A and B are isomorphic if they are
each other’s inverse:

A ≃ B : Type

A ≃ B :≡ (f : A→ B)× (g : B → A)

× ((x : A)→ g (f a) = a)× ((y : B)→ f (g y) = y)

The type of isomorphisms is not necessarily propositional: the exam-
ples given for logical equivalence can be shown to be distinct isomorphisms
as well.

One downside of the notion of isomorphism is that given a function
f : A → B, the “proposition” whether f is an isomorphism or not is not
propositional, i.e. the following type is not in general a proposition:

(g : B → A)× (f ◦ g = idB)× (g ◦ f = idA)

A more well-behaved notion is the notion of equivalence:

Definition 2.2.23 (Equivalence). A function f : A → B is an equivalence if
the following type is inhabited:

is-equiv f : Type

is-equiv f :≡ (g : B → A)× f ◦ g = idB × (h : B → A)× h ◦ f = idA

If there exists an equivalence between types A and B, we denote this as
A ∼= B:

A ∼= B : Type

A ∼= B :≡ (f : A→ B)× is-equiv f

Equivalences satisfy the following useful properties (for proofs we refer
the reader to [Uni13]):

2.2. EQUALITY 31

Proposition 2.2.24. Every isomorphism gives rise to an equivalence.

Proposition 2.2.25. Given a function f : A→ B, is-equiv f is a proposition.

For a function to be an equivalence is a proposition, but for two types to
be equivalent is not propositional. The same example as for logical equiv-
alence and isomorphism can be used to show this.

Note that all these relations are equivalence relations. We can also show
that composing them is associative. Isomorphisms and equivalences fur-
thermore satisfy the groupoid laws.

2.2.5 Univalence

We have seen that we can formulate an appropriate notion of equality be-
tween types, but now we have two different ways of stating equality on the
universe of types: equivalence and identity types. All the things we have
proven about identity types, have to proven again for equivalences.

While identity types come with the path induction principle, equiva-
lences do not enjoy such an induction principle. Even though we lack such
a principle, we still can show that equivalences form an equivalence rela-
tion and also satisfy the groupoid laws. Once we try to show that equiva-
lence gives us a congruence relation, we get stuck. In other words: we do
not have a proof of the statement that every construction in type theory is
invariant under equivalence.

Definition 2.2.26. Every equality between types gives rise to an isomor-
phism:

id-to-equiv : (A = B)→ A ∼= B

id-to-equiv :≡ J (λA B p.A ∼= B)) (λA→ id-equiv A)

where id-equiv is the identity equivalence A ∼= A.

Definition 2.2.27 (Univalence). A universe of types is univalent if the func-
tion id-to-equiv is an equivalence.

32 CHAPTER 2. PRELIMINARIES

Hence univalence gives us an equality:

(A ∼= B) = (A = B)

As equivalence and equality between types are equal things, we will speak
about equivalences between types whilst using the symbol for equality.

Often we will give an equality between types by providing an isomor-
phism, which gives us an equivalence, which gives us an equality by virtue
of univalence.

We will assume univalence holds for our universes of types unless oth-
erwise indicated.

2.2.6 Function extensionality

In mathematics, one usually proves that two functions are equal by show-
ing that they are pointwise equal: we appeal to function extensionality. In
type theory this can be formulated as follows:

Definition 2.2.28 (Function extensionality). Suppose we have functions f, g :

(x : X)→ P x, function extensionality gives us a term of type:

((x : X)→ f x = g x)→ f = g

In type theory we can define a function that goes in the other direc-
tion. We have shown that the identity types form a congruence relation.
In particular, we can define the following function, given two dependent
functions f, g : (x : X)→ P x:

happly f g : f = g → ((x : X)→ f x = g x)

happly f g p = λx.ap (λh.h x) p

Function extensionality is not provable in ordinary Martin-Löf Type The-
ory. However, it does follow from univalence and as we will see, it also
follows from having quotients. In fact, these imply we have strong function
extensionality:

2.2. EQUALITY 33

Proposition 2.2.29 (Strong function extensionality). For any two functions
f, g : (x : X)→ P x, we have a witness of:

is-equiv (happly f g)

A proof of this statement can be found in [Uni13].

2.2.7 Equivalences of Σ-types

We often work with nested Σ-types and have to provide equivalences be-
tween them. There are basic equivalences that we often use to build up our
bigger equivalences.

For the non-dependent product, we can show that it satisfies laws of a
commutative monoid using univalence (these do not hold definitionally):

• A× 1 = 1× A = A

• A× (B × C) = (A×B)× C

• A×B = B × A

We have similar properties for Σ-types:

• (a : A)× 1 = (x : 1)× A = A

• (a : A)× ((b : B)× C (a, b)) = (x : (a : A)×B a)× C x

Commutativity only makes sense when the types do not depend on each
other, so we do not have such a statement for Σ-types. In equational rea-
soning we will not be explicit about applying associativity or other laws
and often will neglect parentheses.

Proposition 2.2.30 (Singleton contraction). For any type A : Type and a : A,
we have the following equivalence:

((x : A)× (x = a)) = 1

Proof. This follows directly from path induction.

34 CHAPTER 2. PRELIMINARIES

The type (x : A) × (x = a) is called a singleton. This fact is very use-
ful in equational reasoning. It is comparable to high school algebra where
multiplying by a

a
for a cleverly chosen expression a, or recognising that two

factors cancel each other out, are a useful techniques.

Proposition 2.2.31 (Equality of inhabitants of Σ-types). Equality between
inhabitants of a Σ-type is equivalent to a Σ-type of equalities. Given a family
A : Type, B : A→ Type, and x, y : A, z : B a, w : B y, we have:

((x, z) = (y, w)) = (p : x = y)× (q : z =B
p w)

Proof. Using univalence, it is enough to show that there exists an equiv-
alence between the two types. The function ((x, z) = (y, w)) → (p : x =

y)×(q : z =B
p w) can be given by path induction on the argument. Similarly

for the function in the other direction, we can define this by applying path
induction to both elements of the pair. Showing that these two functions
are each other’s inverses is again a simple case of path induction.

2.2.8 Alternative formulation of identity types

We have seen that the identity types form a groupoid on its underlying type.
The unit and associativity laws do not hold definitionally for this groupoid.
When reasoning about equalities between paths, it can be annoying if we
have to take associativity into account. For example, suppose we want to
prove a � p � (p−1 � b) = a � b, for some expressions a and b. The easiest way
to prove this is by applying path induction to p, which will reduce the goal
to a � b = a � b. However, sometimes we are in comparable situations where
we cannot perform path induction on all of the paths involved. In such a
situation, we have to take a lot of intermediate steps invoking associativity
and the unit laws explicitly, e.g.:

a � p � (p−1 � b) = a � ((p � p−1) � b)
= a � (refl � b)
= a � b

2.2. EQUALITY 35

Because associativity does not hold definitionally, we cannot give as
proof term (sym-inv is the witness of p � p−1 = refl):

ap (λh.a � h � b) (sym-inv p) : a � (p � p−1) � b = a � b

as it has the wrong type, hence we are stuck with filling in associativity and
unit laws here and there. This is particularly frustrating when one then has
to prove things about the resulting path being equal to something else.

We can define an alternative formulation of identity types which have
different computational properties. This formulation is based on the in-
sight that functions on Type do satisfy the associativity and unit laws defi-
nitionally with respect to function composition. We define:

x =′
A y :≡ (z : A)→ z = x→ z = y

Reflexivity and transitivity are then defined as follows

refl′ : x =′
A x

refl′ :≡ λw p . p

trans′ : x =′
A y → y =′

A z → x =′
A z

trans′ p q :≡ λw r . q w (p w r)

Since reflexivity and transitivity are essentially given by the identity func-
tion and function composition respectively, the unit laws and associativity
are now satisfied definitionally.

36 CHAPTER 2. PRELIMINARIES

There are functions to and fro between the two formulations:

to : x = y → x =′ y

to p = λz q.q � p

from : x =′ y → x = y

from p = p x reflx

Proposition 2.2.32. Given a type A : Type with elements x, y : A, we have an
equivalence:

(x =′
A y) = (x =A y)

Proof. The functions to and from give us an isomorphism. Let p : x = y,
then we have that:

from (to p) = from (λz q.q � p) = refl � p = p

In the other direction we get for p : x =′ y:

to (from p) = to (p x refl) = λz q.q � p x refl

Showing that this is equal to p can be done by employing function exten-
sionality and applying path induction on the second argument. This is
essentially showing that p is a natural transformation.

This equivalence also maps reflexivitiy and transitivity of the original
identity types onto composition of the alternative version and vice versa.
The alternative identity types also satisfy the path induction principle.

The equivalence of x = y and x =′ y can also be seen as a direct conse-
quence of the type theoretic Yoneda lemma [Rij12].

2.3. CATEGORY THEORY IN TYPE THEORY 37

2.3 Category theory in type theory

When defining the concept of category in type theory, we have to make sev-
eral choices. A naive way of defining a category would be as the following
Σ-type:

Cat :≡ (obj : Type)× (hom : obj → obj → Type)× (. . .)

where on the place of the ellipsis one would have to fill in the category struc-
ture and laws. This definition of category gives rise to certain problems,
which we briefly mention in section 2.3.1 and in more detail in appendix B.

We will use the definition of category as in [AKS15]. (However, what
we call “category” here is called “precategory” in that article.)

Definition 2.3.1 (Category). We define the type Cat : Type as the following
Σ-type:

Cat :≡ (obj : Type)

× (hom : obj → obj → Type)

× (hom-is-set : (X Y : obj)→ is-set(hom X Y))

× (id : (X : obj)→ hom X X)

× (comp : { X Y Z : obj } → hom Y Z → hom X Y → hom X Z)

× (left-id : { X Y : obj } (f : hom X Y)→ comp (id Y) f = f)

× (right-id : { X Y : obj } (f : hom X Y)→ comp f (id X) = f)

× (assoc : { X Y Z W : obj } (h : hom Z W) (g : hom Y Z) (f : hom X Y)

→ comp (comp h g) f = comp h (comp g f))

The type of objects of a category C is denoted with |C|. The type of
morphisms given objects X, Y : |C| is denoted as C(X, Y).

Example 2.3.2. The universe Set of types that are sets forms a category,
denoted Set, with its morphisms defined as functions between sets.

Remark 2.3.3. The universe Type is not a category in this sense, as for arbi-
trary types X, Y , the function space X → Y will in general not be a set.

38 CHAPTER 2. PRELIMINARIES

Definition 2.3.4 (Functor). Suppose C,D : Cat, then we define the type of
functors C to D as the following Σ-type:

C ⇒ D :≡ (obj : |C| → |D|)

× (hom : { X Y : |C| } → C(X, Y)→ C(obj X, obj Y))

× (id : { X : |C| } → hom (idC X) = idD (obj X))

× (comp : { X Y Z : |C| } (g : C(Y, Z)) (h : C(X, Y))

→ hom (g ◦C f) = hom g ◦D hom f)

As is usual, we will use the notation FX , where F : C ⇒ D and X :

|C| for the action of F on object X and Ff for the action on morphisms
f : C(X,Y). When defining functors, we will often only define the action
on objects and leave the rest implicit.

Definition 2.3.5. The empty category 0 is defined as the category with no
objects. The unit category 1 is defined as the category with one object and
no non-trivial automorphisms.

The categories 0 and 1 are respectively initial and terminal in the cate-
gory of categories.

Definition 2.3.6 (Natural transformation). Given two functors F,G : C ⇒
D, we can define the type of natural transformations between them as fol-
lows:

F .→ G :≡ (α : (X : |C|)→ D(FX,GX))

× ({ X Y : |C| } (f : C(X, Y)) → Gf ◦D αX = αY ◦D Ff)

As the objects are given by a type, propositional equality gives us a
way to talk about equality between objects. When doing category theory,
we should always work with isomorphism if we want to talk about objects
being equal:

Definition 2.3.7 (Isomorphism). Let X, Y : |C| for some C : Cat, a mor-

2.3. CATEGORY THEORY IN TYPE THEORY 39

phism f : C(X,Y) is an isomorphism if the following is inhabited:

is-iso f : Type

is-iso f :≡ (g : C(Y,X))× (g ◦ f = idC X)× (f ◦ g = idC Y)

Note that since we are working with hom-sets, the property of a mor-
phism being an isomorphism is propositional, unlike for isomorphisms on
Type.

Definition 2.3.8. The type of isomorphisms between X and Y is defined
as:

X ≃ Y : Type

X ≃ Y :≡ (f : C(X, Y))× is-iso f

For any object X : |C|, the identity morphism idC X is an isomorphism,
denoted as id-equivC X .

The univalence axiom gives us that for sets the notions of isomorphism
and propositional equality coincide. We can state a similar axiom for cate-
gories. Just as we have the function id-to-equiv that lifts any propositional
equality on types to an equivalence, we have a function, for any two objects
X, Y , id-to-isoC X Y : X = Y → X ≃ Y , defined by path induction.

Definition 2.3.9 (Univalent category). A category C is called univalent if for
any two objects X,Y : |C| the function id-to-isoC X Y is an equivalence.

Proposition 2.3.10. The category Set is univalent.

Proof. This follows directly from univalence for the universe Type.

Example 2.3.11 (Category of type families). Type families form a category,
denoted Fam. Just as with Set we restricted ourselves to those types that
satisfy uniqueness of identity proofs, we will only consider those families
X : Type, P : X → Type of which the carrier X is a set and its fibres P x are

40 CHAPTER 2. PRELIMINARIES

sets, for any x : X . We can define a type of families:

Fam : Set

Fam :≡ (X : Set)× (P : X → Set)

A morphism between two families is a function between the underlying
types and a witness of the fact that this function “preserves the predicate”:

Fam((X,P), (Y,Q)) :≡ (f : X → Y)× (g : (x : X)→ P x→ Q (f x))

2.3.1 Higher categories

As mentioned before, the universe of types Type does not form a category
if we take functions as morphisms. Function spaces will in general not be
sets. However, we can define composition and identity morphisms in the
usual way. These will satisfy the category laws definitionally as well.

We can relax the definition of category to not have hom-sets but hom-
types. Composition and identity morphisms still make sense with this gen-
eralisation. We may run into issues with the category laws: in some situa-
tions it is not enough to simply have the laws, they also need to be coherent
in some sense: the interaction of the laws with each other needs to satisfy
certain laws as well. Naturally, how these coherence laws interact also has
to adhere to additional higher coherence laws, ad infinitum. In appendix B
we will describe the problems and possible solutions in greater detail.

2.4 Core type theory

The type theory we are working with in this thesis can be reduced to a type
theory containing the following primitives:

• Π- and Σ-types

• The finite types 0 (empty type), 1 (unit type), and the booleans Bool

• a hierarchy of universes Type0, Type1, Type2, . . .

2.4. CORE TYPE THEORY 41

• W-types

• Identity types

• Univalence for the universes Type0, Type1, Type2, . . .

42 CHAPTER 2. PRELIMINARIES

Chapter 3

Quotient inductive-inductive
definitions

In this chapter we will give several examples of quotient inductive-inductive
definitions, motivating their usefulness, before we set out giving a precise
definition. We will also compare it to other notions such as higher induc-
tive types and quotient types. We will discuss the status of current (partial)
implementations of quotient and higher inductive types in various proof
assistants.

3.1 Examples

3.1.1 Interval type

The simplest (non-empty) example of an inductive type with a path con-
structor which is still a set, is the interval type: two point constructors with
a path constructor connecting them:

data I : Type where

zero : I

one : I

seg : zero = one

43

44 CHAPTER 3. QUOTIENT INDUCTIVE-INDUCTIVE DEFINITIONS

It should come as no surprise that this type can be shown to be equiva-
lent to the unit type. However, this does not mean it is entirely uninterest-
ing: unlike the unit type, the interval type implies function extensionality
(proposition 3.1.1).

As the interval type can be shown to be contractible, it does not matter
whether we take the set truncation of it or not. As such, we will work with
untruncated types for the remainder of this example.

To define a function out of an inductive type, we need to say what each
constructor is mapped to. For the interval type, we first of all need to give
two points. Since every function in type theory is a congruence, i.e. we
have ap, these two points need to be equal to each other. The recursion
principle is therefore as follows:

I-rec : (A : Type) (azero : A) (aone : A) (aseg : azero = aone)→ I→ A

which comes with the computation rules:

I-rec-βzero : I-rec A azero aone aseg zero = azero

I-rec-βone : I-rec A azero aone aseg one = aone

Definitional versus propositional computation rules

For ordinary inductive types, the computation rules customarily hold def-
initionally, as they are called computation rules after all. However, inside
Martin-Löf Type Theorywe can only talk about propositional equality. As
such, our formalisation of quotient inductive-inductive types talks about
computation rules holding propositionally.

There is an avenue of research in type theory that considers adding
syntax to talk about definitional (also called strict) equalities to the theory
[Coh+15]. In such a system, we would be able to model the computation
rules of inductive definitions as definitional equalities.

3.1. EXAMPLES 45

Path computation rules

The recursion principle of an inductive type comes with a computation
rule for every constructor. So far we have only given the computation rules
for the point constructors. The computation rule for the path constructor is
similar to those of the point constructors: it tells us that the action of I-rec
on the path seg gives us back the aseg we put in, that is:

ap (I-rec A azero aone aseg) seg = aseg

However, the above does not type check if I-rec-βzero and I-rec-βone are not
strict equalities. We would need to transport the left-hand side over these
point computation rules. We end up with the following square:

I-rec A azero aone aseg zero
ap (I-rec A azero aone aseg) seg

I-rec-βzero

I-rec A azero aone aseg one

I-rec-βone

azero aseg
aone

A path computation rule gives us an equation between paths in the type we
are eliminating into. If that type happens to be a set, then these equations
would be trivial. Hence path computation rules for quotient inductive types
do not add anything new and will be omitted.

Induction principle

The induction principle gives us a way to show that for some predicate
P on I, we have a dependent function (x : I) → P x. We have to give a
method for each point constructor and each path constructor. The method
we need to give for the constructor seg is not a simple path as it was with the
recursion principle: mzero and mone may have different types. We do know
that they can be related by transporting along seg, so we end up having to

46 CHAPTER 3. QUOTIENT INDUCTIVE-INDUCTIVE DEFINITIONS

give a dependent path as the method for seg:

I-ind : (P : I→ Type)

(mzero : P zero)

(mone : P one)

(mseg : mzero =
P
seg mone)

→ (x : I)→ P x

As with the recursion principle, we of course have computation rules:

I-ind P mzero mone mseg zero = mzero

I-ind P mzero mone mseg one = mone

Function extensionality

Even though the interval is equivalent to the unit type, it has the surpris-
ing property that it implies function extensionality. Having an inductive
type with two inhabitants that are propositionally equal but not definition-
ally allows us to represent equalities using functions. From the recursion
principle we get the following logical equivalence for any type A:

I → A↔ (x y : A)× (x = y)

This is like the universal property for the interval with equivalence weak-
ened to logical equivalence.

Proposition 3.1.1 ([Hof95; Shu11a]). The interval type implies function exten-
sionality.

Proof. Suppose we have types A,B with two functions f, g : A → B and a
family of equations p : (x : A) → f x = g x. We can define p̃ : A → I → B

as follows:
p̃ a :≡ I-rec B (f a) (g a) (p a)

3.1. EXAMPLES 47

We can then construct the following term of type f = g:

ap (λ i a.p̃ a i) seg

This assumes that the computation rules of I-rec hold definitionally and
that the type theory satisfies the η-law for functions definitionally. How-
ever, the proof can be easily modified to also work when the η-law holds
only up to propositional equality. It is however essential to this proof that
the computation laws for I-rec hold definitionally.

3.1.2 Quotients and colimits

Quotient types can be realised as a higher inductive type as follows: sup-
pose we have a typeA : Type equipped a binary relationR : A→ A→ Type,
we define:

data A/R : Type where

[] : A→ A/R

q : (x y : A)→ R x y → [x] = [y]

The elimination principle of the quotient A/R is as follows:

A/R-ind : (P : A/R→ Type)

(m[] : (a : A)→ P [a])

(mq : (x y : A) (p : R x y)→ m[] x =P
q x y p m[] y)

→ (x : A/R)→ P x

Unlike with the interval types, whether we truncate or not does make a
difference here. One would expect A to be a set and R to be Prop-valued.
These restrictions are not enough to ensure the quotient will also be a set. If
we takeA to be the unit type and quotient it by the relation that is constantly
the unit type as well, A/R will be equivalent to the circle.

It is not necessary to require R to be an equivalence relation. Since the

48 CHAPTER 3. QUOTIENT INDUCTIVE-INDUCTIVE DEFINITIONS

path constructor q constructs elements of an identity type, we can apply
symmetry and other operations to the paths constructed by q. We effec-
tively take the reflexive-symmetric-transitive closure of R.

In the category of sets, one can construct colimits by using quotients.
The same is true for types: we can construct coequalisers using quotient
types. In the untruncated setting, these coequalisers will be homotopy co-
equalisers. Since we already have arbitrary coproducts (Σ-types), we can
then go on and construct arbitrary colimits using these two building blocks.

Quotient types implement coequalisers

If we have quotient types, we use them to define colimits such as coequalis-
ers: suppose A,B : Type with f, g : A → B two functions, we can define a
relation R on B:

R x y :≡ (z : A)× (x = f z)× (y = g z)

Proposition 3.1.2 ([AAL11]). The quotient B/R is the coequaliser of f and g,
i.e. [] : B → B/R satisfies [] ◦ f = [] ◦ g and B/R satisfies the appropriate
universal property.

Proof. We can show that the type of q is equivalent to [] ◦ f = [] ◦ g by
the following equational reasoning:

(x y : B)→ (z : A)× (x = f z)× (y = g z)→ [x] = [y]

= { currying and singleton contraction }

(z : A)→ [f z] = [g z]

= { function extensionality }

[] ◦ f = [] ◦ g

The universal property can be shown to follow directly from the elimina-
tion principle.

3.1. EXAMPLES 49

Coequalisers implement quotient types

We can also define coequalisers directly as a higher inductive type. Given
types A,B with functions f, g : A→ B, we define:

data coeqf,g : Type where

c : B → coeqf,g

eq : (x : A)→ c (f x) = c (g x)

which comes with the following elimination principle:

coeqf,g-ind : (P : coeqf,g → Type)

(mc : (b : B)→ P (c b))

(meq : (a : A)→ mc (f a) =P
eq a mc (g a))

→ (x : coeqf,g)→ P x

Given a type A : Type and a relation R : A → A → Type, we can define a
type R̃ :≡ (x y : A) × R x y which has two projections π0, π1 : R̃ → A. We
can then take the coequaliser of these two functions:

R̃
π0

//
π1 // A c // coeqπ0,π1

Proposition 3.1.3 ([AAL11]). The coequaliser coeqπ0,π1 is the quotient of A by
R.

3.1.3 Propositional truncation

For any type A : Type, the propositional truncation of A is defined as the
following quotient inductive type:

data ||A|| : Type where

[] : A→ ||A||

trunc : (x y : ||A||)→ x = y

50 CHAPTER 3. QUOTIENT INDUCTIVE-INDUCTIVE DEFINITIONS

It can be shown that we indeed have is-prop ||A|| for all types A, using
proposition 2.2.18.

With propositional truncation we can define the notion of surjective-
ness. Suppose we have a function f : X → Y , then we define:

is-surjective f :≡ (y : Y)→ ||(x : X)× f x = y||

If we take the definition of is-surjectivewithout the propositional truncation,
then we can retrieve the inverse of f from any proof of is-surjective f . With
the truncated version this is not possible in general.

Using this definition of surjectivity, we can now also show that the pro-
jection function of quotients ([] : A → A/R) as defined in section 3.1.2
are surjections. We cannot in general show that we have inverses of the
projection functions.

Using propositional truncation, we can formulate the following form of
the axiom of choice:

Definition 3.1.4 (Axiom of choice). Every surjection has a right inverse:

axiom-of-choice :≡ (X Y : Type) (f : X → Y)

→ is-surjective f → ||(g : Y → X)× ((y : Y)→ f (g y) = y)||

The above form of choice with truncation is not provable in type theory,
as opposed to the untruncated version.

Note that if A is a set, we can quotient it by the trivial relation and we
get something equivalent to ||A||. However, if A is not a set, this no longer
holds. Instead, one has to repeatedly take quotients [Doo16; Kra15].

3.1.4 Infinitely branching trees

Except for the propositional truncation, the examples we have seen so far
seem to be expressible as quotients of ordinary inductive types. Another
example where we can observe a difference, even if we restrict ourself to
the realm of sets, is with the type of infinitely branching trees modulo per-

3.1. EXAMPLES 51

mutation. We define the following inductive type:

data Tree : Set where

leaf : Tree

node : (N→ Tree)→ Tree

perm : (f : N→ Tree) (ϕ : N→ N)→ is-equiv ϕ→ node f = node (f ◦ ϕ)

The perm constructor says that two nodes f, f ′ : N → Tree are consid-
ered to be equal if there exists a permutation ϕ such that f = f ′ ◦ ϕ.

We can try and define this type as a quotient of the type without path
constructor perm:

data Tree0 : Set where

leaf0 : Tree0

node0 : (N→ Tree0)→ Tree0

with the relation defined inductively as:

data ∼ : Tree0 → Tree0 → Set where

rel-node : (f : N→ Tree0) (ϕ : N→ N)→ is-equiv ϕ→ node0 f ∼ node0 (f ◦ ϕ)

Note that the relation as defined here is not an equivalence relation. It fails
to be reflexive as we do not have a proof of leaf0 ∼ leaf0. However, taking
the quotient by a relation means that we quotient by the reflexive-transitive-
symmetric closure of that relation. As such the relation as defined above
is sufficient for our purposes.

If we then look at the “constructors” of the quotient Tree0/ ∼, we have
the following:

[leaf0] : Tree0/ ∼

[] ◦ node0 : (N→ Tree0)→ Tree0/ ∼

The latter does not have the same type as node. With the quotient inductive

52 CHAPTER 3. QUOTIENT INDUCTIVE-INDUCTIVE DEFINITIONS

definition, the induction is performed “simultaneously” with the quotient-
ing. This is also where Tree differs from our previous examples in which
there were no recursive occurrences in the point constructors.

Lifting the node constructor to the quotient is problematic. It seems we
need an inverse to the projection function [] : Tree0 → Tree0/ ∼, which we
cannot expect to exist.

Note however that if we had finitely branching trees, we would not need
such an inverse. In the finite case, we can apply the recursion principle to
each argument and then apply the node0 and [] constructors.

In the infinitely branching case we can define the lifting of node if we
have the axiom of choice at our disposal:

Proposition 3.1.5. Assuming the axiom of choice, we can define a function (N→
Tree0/ ∼)→ Tree0/ ∼.

Proof. We can show that the function [] is a surjection, i.e. using induction
on Tree0/ ∼ we can define a dependent function:

(y : Tree0/ ∼)→ ||(x : Tree0)× [x] = y||

The axiom of choice gives us:

||(s : Tree0/ ∼ → Tree0)× ((x : Tree0/ ∼)→ [s x] = x)||

Since we only get this in truncated form, we have some more work to do.
We are working with sets, hence if we want to eliminate out of a proposi-
tionally truncated type, it is enough to give a function out of the untrun-
cated type and show that this is constant. In our case, we have to show that
the following construction:

ñode0 f :≡ [node0 (s ◦ f)]

is invariant under the choice of s. Now suppose we have two such functions
s, s′ : Tree0/ ∼ → Tree0, such that for all x : Tree0/ ∼, [s x] = [s′ x] = x,

3.1. EXAMPLES 53

then for any f : N→ Tree0/ ∼, we have:

(x : Tree0/ ∼)→ [s (f x)] = [s′ (f x)] = f x

So far we have defined ∼ with just one constructor that relates nodes if
there exists a permutation on N that makes them equal. This is not enough
to show∼ is an equivalence relation, nor that it is a congruence. When look-
ing at the quotiented type, this is not a problem: we effectively quotient by
the smallest equivalence and congruence relation generated by ∼. How-
ever, to complete this proof, we do in fact need that it is an equivalence
relation and congruence relation, so we will assume in the remainder of
this proof that we have added constructors to the definition of ∼ such that
it is.

If∼ is an equivalence relation, thenTree0/ ∼ is an effective quotient [Hof95],
i.e. we have:

(x y : Tree0)→ [x] = [y]→ x ∼ y

We have for any f : N → Tree0/ ∼ and x : N that [s (f x)] = [s′ (f x)]

and therefore also s (f x) ∼ s′ (f x). Since ∼ is a congruence relation,
we then have that node0 (s ◦ f) ∼ node0 (s′ ◦ f), hence [node0 (s ◦ f)] =
[node0 (s

′ ◦ f)]. This establishes that our definition of ñode0 is independent
of the particular choice of s, which means we can eliminate out of the trun-
cation ||(s : Tree0/ ∼ → Tree0)× ((x : Tree0/ ∼)→ [s x] = x)||we get from
the axiom of choice.

In the presence of choice, it seems that Tree0/ ∼ and Tree are equivalent.
The axiom of choice in type theory is a constructive taboo in and of itself, it
also has the law of excluded middle as a consequence [Dia75]. Going in the
other direction, having an inverse to the quotient projection function in gen-
eral implies the axiom of choice [Hof95]. However, it is still an open prob-
lem whether ñode0 is definable without using the axiom of choice. Having
quotient inductive types available allows us to work with definitions such
as Tree, avoiding the need for choice principles to use them.

54 CHAPTER 3. QUOTIENT INDUCTIVE-INDUCTIVE DEFINITIONS

3.1.5 Cauchy reals

Another situation where we benefit from the ability to define an inductive
type and “at the same time” quotient it is when defining the real numbers.
If we want to define them as equivalence classes of Cauchy sequences of
rational numbers, we traditionally run into problems. To show that this
definition yields a version of the reals that is Cauchy complete, we need to
have countable choice at our disposal.

Instead of taking that approach, one can define the reals as the fol-
lowing quotient inductive-inductive definition. We define the real numbers
along with a closeness relation on it inductively and mutually:

data R : Set

data ∼ : Q+ → R→ R→ Set

Note that Q+ denotes the type of positive rationals. The rationals can
be defined as a quotient themselves or directly [AAL11]. R is inductively
defined by the following constructors:

data R where

rat : Q→ R

lim : (f : Q+ → R)→ ((δ ϵ : Q+)→ f δ ∼δ+ϵ f ϵ)→ R

eq : (u v : R)→ ((ϵ : Q+)→ u ∼ϵ v)→ u = v

The first constructor rat is the inclusion of the rationals into the reals.
The second constructor “adds” all the limit points for Cauchy approxima-
tions and the third (path) constructor eq tells us that any two real numbers
are equal if they are arbitrarily close to each other via the relation we in-

3.1. EXAMPLES 55

ductively define simultaneously.

data ∼ϵ where

rat-rat-eq : (q r : Q) (ϵ : Q+)→ −ϵ < q − r < ϵ→ rat q ∼ϵ rat r

rat-lim-eq : (q : Q) (y : Q+ → R) (ϵ δ : Q+) (t : (δ ϵ : Q+)→ y δ ∼δ+ϵ y ϵ)

→ rat q ∼ϵ−δ y δ

→ rat q ∼ϵ lim y t

lim-rat-eq : (x : Q+ → R) (r : Q) (ϵ δ : Q+) (s : (δ ϵ : Q+)→ x δ ∼δ+ϵ x ϵ)

→ x δ ∼ϵ−δ rat r

→ lim x s ∼ϵ rat r

lim-lim-eq : (x y : Q+ → R) (ϵ δ η : Q+)

(s : (δ ϵ : Q+)→ x δ ∼δ+ϵ x ϵ)

(t : (δ ϵ : Q+)→ y δ ∼δ+ϵ y ϵ)

→ x δ ∼ϵ−δ−η y η

→ lim x s ∼ϵ lim y t

The constructors of the relation tell us when rational points are close, when
a rational point is close to a limit point and when two limit points are close.
For more details, we refer the reader to [Uni13].

3.1.6 Syntax of type theory

One of the classic examples of an inductive-inductive definition [Nor13]
is the definition of the syntax of type theory in type theory itself [Dan06]
[Cha09]. We see the need of a mutual/inductive-inductive definition al-
ready popping up when formalising the notion of contexts and types in a
context:

data Con : Set

data Ty : Con→ Set

56 CHAPTER 3. QUOTIENT INDUCTIVE-INDUCTIVE DEFINITIONS

Contexts are either empty or can be extended by a type in a given context:

data Con where

ϵ : Con

, : (Γ : Con)→ Ty Γ→ Con

Types in a context Γ can be defined inductively with constructors such as
the following, i.e. we have constructors for atomic types and constructors
for type formers such as Π-types, which gives us a type for any pair type
A in context Γ and type B in the extended context Γ,A:

data Ty where

‘0 : (Γ : Con)→ Ty Γ

‘1 : (Γ : Con)→ Ty Γ

...

‘Π : (Γ : Con) (A : Ty Γ)→ Ty (Γ,A)→ Ty Γ

...

The constructor for Π-types is where we see one of the defining character-
istics of inductive-inductive definitions: ‘Π refers to a previous constructor
, . This sets it aside from mutual inductive definitions which only refer to

the elements of the types being defined. While the latter can be reduced to
ordinary inductive definitions, inductive-inductive definitions do not ad-
mit such a translation.

Continuing formalising the syntax of type theory, we need to have a
type of terms:

data Tm : (Γ : Con)→ Ty Γ→ Set

For example, the constructors for lambda terms and the application of one

3.2. IMPLEMENTATION 57

term to another may be given as follows:

data Tm where

...

app : (Γ : Con) (A : Ty Γ) (B : Ty (Γ,A))→ Tm Γ (‘Π A B)→ Tm (Γ,A) B

lam : (Γ : Con) (A : Ty Γ) (B : Ty (Γ,A))→ Tm (Γ,A)B → Tm Γ (‘Π A B)

...

One important aspect of the syntax of type theory is that it comes with
an equivalence relation on it defined by β- and η-equalities, i.e. the defi-
nitional or judgmental equality of the syntax. One way to deal with this
is to separately define the equivalence relation on the terms and quotient
by this relation. In the presence of quotient inductive-inductive definitions,
we can simply add the equations as path constructors, as is done in [Kap16]
[AK16]. For example, we can add the following constructor to Tm as a wit-
ness of β-equality for λ-terms:

Πβ : (Γ : Con) (A : Ty Γ) (B : Ty (Γ,A))

→ (t : Tm (Γ,A) B)→ app Γ A B (lam Γ A B t) = t

3.2 Implementation

One way to “implement” a particular quotient inductive type, is by postu-
lating its constructors along with the eliminator with its computation rules.
The downside of such an approach is that as soon as we want to use it and
not just define it, we will have to manually “call” the computation rules.

A first approximation to implement quotient inductive types (or any
higher inductive type) in a more practical manner was discovered by [Lic11].
The idea is to leverage the inductive type mechanism of Agda itself and add
path constructors and their computation rules as postulates. One can then
define the eliminator by pattern matching on the inductive type, adding
the computation rule for the path constructors as postulates. Care has to

58 CHAPTER 3. QUOTIENT INDUCTIVE-INDUCTIVE DEFINITIONS

be taken to not expose the constructors of the type in such a way that one
can circumvent the eliminator and use pattern matching directly, in a pos-
sible unsound way.

Having definitional computation rules for the point constructors is a
big improvement over everything being propositional. However, the path
computation rules still only hold propositionally.

In order to experiment with higher inductive types and cubical type
theory in Agda, rewrite rules have been introduced. We can denote any
relation as being a rewrite relation, for example if we want to rewrite ac-
cording to = , we write:

{−# BUILTIN REWRITE = #−}

Suppose we have a term p : x = y that we want to add as a definitional
equality, i.e. we want Agda to always rewrite x to y, then we write:

{−# REWRITE p #−}

3.2. IMPLEMENTATION 59

Using these, a type such as the interval can be “implemented” as follows:

postulate

I : Set

zero : I

one : I

seg : zero = one

I-rec : (A : Type) (azero : A) (aone : A) (aseg : azero = aone)

→ I→ A

I-rec-βzero : (A : Type) (azero : A) (aone : A) (aseg : azero = aone)

→ I-rec A azero aone aseg zero = azero

I-rec-βone : (A : Type) (azero : A) (aone : A) (aseg : azero = aone)

→ I-rec A azero aone aseg one = aone

We can turn the β-equalities for the recursion principle into definitional
ones using rewrite pragmas as follows:

{−# REWRITE I-rec-βzero #−}

{−# REWRITE I-rec-βone #−}

This approach has the advantage that Agda does not see I as an inductive
type and does not recognise zero and one as constructors. Therefore we
cannot accidentally pattern match on them and define functions that do
not respect seg: I-rec is our only way to write (non-trivial) functions out of
the interval.

As Agda does not perform checks on the rewrite rules, these rewrite
pragmas are not safe in any way: we can easily add rules that make the
type checker loop or that allow us to inhabit the empty type. Nonetheless
they provide a good platform for experimentation.

60 CHAPTER 3. QUOTIENT INDUCTIVE-INDUCTIVE DEFINITIONS

3.2.1 Cubical type theory

As a way to study the computational behaviour of univalence and also
higher inductive types, the cubical set model of type theory has been in-
vestigated [BCH14]. Turning this model back into type theory has led to
cubical type theory [Coh+15], which has an implementation cubicaltt1.
This implementation has some support for higher inductive types.

3.3 Related work

As mentioned in this chapter, quotient inductive-inductive definitions are
related to quotient types. Quotient types have been studied in several forms
in type theory [Hof95; AAL11; Li15].

Quotient inductive-inductive definitions are furthermore an extension
of inductive-inductive definitions [Alt+11]. The idea of path constructors
comes from the notion of higher inductive types, of which the semantics
are described in [LS13b]. As we only consider set truncated types, the def-
initions we describe are in some sense a restriction of the higher inductive
types described in that note. However, the authors do not consider the
combination of higher inductive and inductive-inductive definitions.

Inductive definitions with equalities have been studied in Miranda [Tur85]
under the name of “data types with laws” [Tho86] [Tho90]. In Miranda,
the “path constructors” were interpreted as rewrite rules that would en-
sure that the inhabitants of an inductive type would be of a certain nor-
mal form or satisfy a certain property. For example, the type of sorted
lists would be the usual list type along with a rewrite rule that rewrites
y :: x :: xs to x :: y :: xs whenever x < y. However, data types with laws in
Miranda were later abandoned as they made the usual equational reason-
ing about functions defined by pattern matching difficult. The idea was
later explored further in the context of OCaml [BHW07].

With quotient inductive-inductive types we do not read the path con-
structors as rewrite rules. If we were to define a type of unordered pairs

1See https://github.com/mortberg/cubicaltt

https://github.com/mortberg/cubicaltt

3.3. RELATED WORK 61

PX with values in some type X , having constructors pair : X → X → PX

and swap : (x y : X) → pair x y = pair y x, treating swap as a rewriting rule
would make the system loop.

62 CHAPTER 3. QUOTIENT INDUCTIVE-INDUCTIVE DEFINITIONS

Chapter 4

Describing inductive definitions

In this chapter we will give a formal specification of quotient inductive-
inductive definitions. The specification is given mutually with the inter-
pretation of the specification as a category of algebras.

In order to specify an inductive definition, we have to give four sets of
rules:

• type formation rules: we have to specify the sorts of the definition. For
example, for the contexts and types definition we have a rule stating
that Con is a type and that for every Γ : Con, Ty Γ is a type.

• introduction rules: we have to have means of creating instances of the
inductive data we are defining: we need constructors.

• elimination rules: we also need means to inspect the data: we need an
induction principle.

• computation rules: the elimination rules and introduction rules need
to interact in a certain way.

As soon as we have the first two sets of rules, the latter two follow from
these in a systematic way [Bac+89]. This is also reflected in how one de-
clares an inductive definition in proof assistants such as Agda and Coq: we
provide the type signature of the inductive definition (its type formation
rules) and a list of constructors (its introduction rules).

63

64 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

There are several equivalent ways to characterise inductive definitions
formally: we can formulate a syntax of constructors and describe the elim-
ination principle by induction on terms in this syntax. This syntax is a
subset of the syntax of type theory as a whole: we need to be able to write
down a list of constructors which is just a sequence of types of a certain
form. One can take an “analytic” approach to this: take the syntax of type
theory and define a predicate on it that tells us whether a term is in the
appropriate subset. This is effectively what systems like Agda do: you can
write down a list of constructors and Agda checks whether it makes sense,
e.g. whether the result types of the constructors are correct and whether
the arguments are strictly positive. Doing this in type theory itself will be
rather involved, as formalising the syntax of type theory in type theory is
generally not something lightweight.

A more semantic approach is to start from the characterisation of in-
ductive definitions as the initial algebra given some endofunctor on an ap-
propriately chosen category. Ordinary inductive types can be explained
as initial algebras of strictly positive endofunctors on Set. These functors
can be described as containers [AAG05], which can be easily formalised in
type theory. The initiality property only uses the objects and morphisms of
the category. Algebras of a container and algebra morphisms can be read-
ily stated in type theory. It has been shown in type theory that for these
inductive types, the property of being an initial algebra and that of satis-
fying the induction principle are logically equivalent [AGS12]. In this case
this concretely means that having W-types available is the same as having
initial algebras of containers.

From the initial algebra semantics we can directly read off the intro-
duction rules along with the recursion principle and its computation rules.
Algebras package the type along with its constructors. Algebra morphisms
package the functions between the types along with a proof that the func-
tions preserve the algebra structure. This categorical setting is on the one
hand close to the syntax, but it also abstracts enough that it allows us to
generalise without having to keep track of too many moving parts.

While the recursion principle can be straightforwardly recovered from

65

initiality, the induction principle is another story. Formulating the induc-
tion principle requires a bit more machinery, as does showing its logical
equivalence to initiality. This is covered in chapter 5. In this chapter we
will concern ourselves with uncovering what a description of a quotient
inductive-inductive definition ought to be in a formal way.

We have seen in the examples in chapter 3 that quotient inductive-inductive
definitions differ from ordinary inductive definitions in three ways:

• constructors may refer to any previous constructor

• we are not defining one type, but a collection of types and type fami-
lies

• apart from point constructors we also have path constructors

The goal of this chapter is to find a notion of algebra that supports all of
this. We start out by reviewing initial algebra semantics of ordinary induc-
tive types in section 4.1, as well as generalisations of this . In section 4.2 we
see how this approach can be generalised to support having constructors
that refer to previous constructors by considering iterated dialgebras. Sec-
tion 4.3 formalises the notion of dependent sorts, which deals with the type
formation rules for quotient inductive-inductive definitions. In section 4.4
the full formal definition of declarations of quotient inductive-inductive
definitions is given as a form of iterated dialgebras with equations. In this
formal definition, we only consider certain functors for the result type of
the constructors. In section 4.5 and section 4.6 we discuss the consequences
of working with dialgebras, both the limitations as well as the opportuni-
ties for generalising the current definitions. Finally in section 4.7 we discuss
related work.

66 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

4.1 Algebraic semantics

Let us look at a list of constructors of an ordinary data type, e.g.:

data A : Set where

c0 : F0 A→ A

c1 : F1 A→ A

...

ck : Fk A→ A

with every Fi : Set → Set being a function that gives us the arguments
of the constructors. Note that we have to rewrite constructors with no ar-
guments to c : 1 → A and have to uncurry constructors with multiple
arguments. One observation is that if we have coproducts, we can rewrite
the definition into one with just a single constructor:

data A : Set where

c : F0 A+ F1 A+ . . .+ Fk A→ A

For ordinary inductive types it is therefore sufficient to consider definitions
with a single constructor. The type formation rule for such a definition is
always the same: A is a type. The introduction rule is given by supplying
a function F : Set→ Set, yielding the constructor c : F A→ A.

Moving on the recursion principle, we notice that we need more struc-
ture on the function F . The recursion principle gives us a way to define a
function A → X for some type X , given some additional structure on X .
Intuitively we need to specify for every constructor what the correspond-
ing “constructor” in the target type of the recursion is. For example, for the
natural numbers we have:

N-rec : (X : Set) (θ0 : A) (θ1 : X → X)→ N→ X

with computation rules giving us equalities N-rec X θ0 θ1 zero = θ0 and

4.1. ALGEBRAIC SEMANTICS 67

N-rec X θ0 θ1 (succ n) = θ1 (N-rec A θ0 θ1 n). These rules tell us that ap-
plying N-rec to constructors of N is the same as first applying N-rec to the
recursive arguments and then applying the “constructors” of the target of
the recursion.

In order to generalise the recursion principle and its computation rules
to any inductive type A with constructor c : F A → A, we need F to be a
functor. We can then state the recursion principle for A as:

A-rec : (X : Set) (θ : F X → X)→ A→ X

with as its computation rule:

A-rec X θ (c x) = θ (F (A-rec X θ) x)

The type A along with its constructor c and the X and θ in the recursion
principle are both F -algebras, where F is an endofunctor on Set. The no-
tion of F -algebra can be defined for any category C:

Definition 4.1.1. Given an endofunctor F on C, an F -algebra is an object
X : |C| along with an F -algebra structure θ : C(FX,X). The object X is also
referred to as the carrier or underlying object of the algebra.

The function A-recX θ is a function between the carriers of the algebras
(A, c) and (X, θ). Its computation rule states that it respects the algebra
structure: it is an algebra morphism:

Definition 4.1.2. Given F -algebras (X, θ) and (Y, ρ) an F -algebra morphism
consists of a morphism f : C(X, Y) such that the following commutes:

FX
θ //

Ff
��

X

f
��

FY
ρ // Y

Algebra morphisms can be composed and we have identity algebra mor-
phisms: algebras form a category:

68 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

Definition 4.1.3. The category F -alg is the category with F -algebras as ob-
jects and F -algebra morphisms as morphisms.

4.1.1 Monad algebras

Given an endofunctor F on Set, we can consider its free monad F ∗, which is
defined pointwise as the carrier of the initial algebra of the functor F̄XY :≡
X + FY . Note that the free monad need not exist: F is required to be a
strictly positive functor for F̄X to be strictly positive as well.

We can write the functor F ∗ down as a parametrised inductive type,
with X : Set as its parameter:

data F ∗X : Set where

η : X → F ∗X

c : F (F ∗X)→ F ∗X

Note that if we want to write down the abovementioned definition in Agda,
we have to make sure that F is a strictly positive functor. We cannot have
the definition be parametric in the functor F .

Proposition 4.1.4. F ∗, if it exists, is a monad on Set

Proof. We show that it is a monad by showing that F ∗ gives us a left adjoint
to the forgetful functor U : F -alg ⇒ Set where U(X, θ) :≡ X . We define
the left adjoint L : Set ⇒ F -alg as follows:

LX :≡ (F ∗X, cX)

We then show that for any X : Set and (Y, ρ) : |F -alg| that

F -alg(LX, (Y, ρ)) = (X → Y)

using the equational reasoning in fig. 4.1.
This shows that L ⊣ U and since UL = F ∗, that therefore F ∗ is a monad.

4.1. ALGEBRAIC SEMANTICS 69

X → Y

= { initiality of F ∗X }
(p : X → Y)× F̄X-alg((F

∗X, cX , ηX), (Y, ρ, p))

= { definition F̄X-algebra morphism }
(p : X → Y)× (f : F ∗X → Y)× (f0 : f ◦ cX = ρ ◦ Ff)× (f1 : f ◦ ηX = p)

= { singleton contraction of p and f1 }
(f : F ∗X → Y)× (f0 : f ◦ cX = ρ ◦ Ff)

= { definition of F -algebra morphisms and L }
F -alg(LX, (Y, ρ))

Figure 4.1: F ∗ is a monad

Note that since L is a left adjoint it preserves colimits, in particular ini-
tial objects, hence L∅ is the initial object of F -alg. The carrier of L∅ is F ∗∅,
which is the inductive type as defined by the endofunctor F .

F ∗ is called the free monad as it is a free object with regards to the forget-
ful functor of the category of monads on Set to endofunctors on Set. The
free monad F ∗ allows us to make precise what the relationship between
monads and algebras of an endofunctor is. To this end, let us first recall
the definition of monad algebras:

Definition 4.1.5. Given a monad M : C ⇒ C with η : 1C
.→ M its unit and

µ : M2 .→ M is multiplication, a monad algebra on M is an object X : |C|
and a morphism θ : C(MX,X) such that it respects the monad operations,
i.e. the following commutes:

X
ηX //

idX ""

MX

θ
��
X

70 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

and
M2X

Mθ //

µX

��

MX

θ
��

MX
θ

// X

Monad algebra morphisms are defined in the same way as morphisms
of algebras of an endofunctor.

Monad algebras and monad algebra morphisms form a category, de-
noted M -Alg, also called the Eilenberg-Moore category of M .

Theorem 4.1.6 ([GK13]). Let F : C ⇒ C be an endofunctor on C with F ∗ :

C ⇒ C its free monad, then F ∗-Alg is equivalent to F -alg.

This theorem shows us that we can think of the class free monads be-
ing the same as the class of ordinary inductive types. This suggests that
generalising ordinary inductive types amounts to carving out a class of
monads that includes free monads. In [Shu11b] the author proposes that
a higher inductive type should correspond to a notion of presented monad,
i.e. a monad that is defined in terms of generators and relations, or in HIT
terminology: point and path constructors. In [LS13b], the authors give
semantics of HITs by constructing these presented monads. As these con-
structions are done in a wide class of model categories, it is a construction
external to type theory.

As opposed to constructing the monads directly, we will first define the
categories of algebras in this chapter. The reason for this is twofold. In the
case of algebras of an endofunctor we have fewer equations to work with:
they only pop up in the definition of algebra morphisms. The definition
of monads already requires us to talk about functors that satisfy certain
equalities. Monad algebras also come with equations. Generalising from
the endofunctor situation, we hope that we also do not have to introduce
equations, which might lead to more coherence issues.

The other reason why we chose to do it this way is that it allows us to talk
about algebras (the “syntax”) separately from their existence (“semantics”).
In this chapter we give a definition of the algebras and in chapter 6 we

4.2. SET-SORTED INDUCTIVE-INDUCTIVE DEFINITIONS 71

show how one can construct initial algebras and left adjoints to the forgetful
functors of categories of algebras.

4.2 Set-sorted inductive-inductive definitions

We have mentioned that one of the defining features of the inductive defini-
tions we want to be able to handle, is any constructor may refer to any of its
previous constructors. Some examples we have seen of this phenomenon
are:

• the constructor seg : zero = one of the interval type, I, which refers to
both its previous constructors,

• the constructor ‘Π : (Γ : Con) (A : Ty Γ) → Ty (Γ,A) → Ty Γ, which
refers to the previous constructor , : (Γ : Con)→ Ty Γ→ Con.

Describing inductive definitions with such constructors is not some-
thing we can do with a single endofunctor on an appropriately chosen cate-
gory. Instead of having one functor, we need a functor for every constructor.
The domain of the n-th functor will then be the “category of algebras of all
previous constructors”.

Example 4.2.1. To illustrate this idea, we consider the following example
(which we can easily show to be equivalent to the booleans):

data T : Set where

a : 1→ T

b : (t : T)× a tt = t→ T

The first constructor a can be described as being an F0-algebra structure
on T , with F0 : Set ⇒ Set being defined as F0X :≡ 1. The arguments of b
are described by the functor F1 : F0-alg⇒ Set with:

F1(X, a) :≡ (x : X)× a tt = x

72 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

Since F1 is not an endofunctor, b cannot be described as an F1-algebra struc-
ture. However, F0-alg comes with a forgetful functor U0 : F0-alg ⇒ Set

which gives us the carrier of the algebra. We therefore have that b : F1(T , a)→
U0(T , a), i.e. b is an (F1, U0)-dialgebra [Hag87] structure on (T , a) : F0-alg.

Definition 4.2.2. Let F,G : C → D be functors. The category (F,G)-dialg

has as objects pairs (X, θ) where X : |C| and θ : FX → GX . A morphism
from (X, θ) to (Y, ρ) is a morphism f : X → Y in C such that the following
commutes:

FX θ //

Ff
��

GX

Gf
��

FY
ρ // GY

Remark 4.2.3. Any dialgebra category (F,G)-dialg comes with a forgetful
functor V : (F,G)-dialg→ C which projects out the carrier of the algebra.

Recall the example T with constructors a and b, where we have given
functors F0 : Set ⇒ Set and F1 : F0-alg ⇒ Set. We have a forgetful func-
tor V1 : (F1, U0)-dialg → F0-alg which we can compose with the forgetful
functor U0 : F0-alg ⇒ Set, which we will denote as U1. If we were to
add a third and a fourth constructor, we would have to define functors
F2 : (F1, U0)-dialg ⇒ Set and F3 : (F2, U1)-dialg ⇒ Set to describe their
arguments. The objects we are interested in are iterated dialgebras. For the
situation described above we have:

Set

F0

��

F0-alg

F1

��

U0oo (F1, U0)-dialg

F2

��

V1oo (F2, U1)-dialg

F3

��

V2oo (F3, U2)-dialg
V3oo

Set Set Set Set

Note that we build the category of dialgebras over another category of
dialgebras, i.e. we are working with iterated dialgebras. A constructor has
arguments described by a functor out of the category of algebras contain-
ing all the previous constructors. We can formalise the concept Set-sorted
inductive-inductive definitions as a inductive-recursive type, defining the
specification and the interpretation of the specification as a category of al-
gebras simultaneously:

4.2. SET-SORTED INDUCTIVE-INDUCTIVE DEFINITIONS 73

Definition 4.2.4. The type Spec of specifications of a Set-sorted inductive-
inductive definition and its category of algebras (Alg) and underlying car-
rier functor (U) is given by the following inductive-recursive definition of

data Spec : Set

Alg : Spec→ Cat

U : (s : Spec)→ Algs ⇒ Set

where Spec is inductively generated by

data Spec where

nil : Spec

snoc : (s : Spec)→ (F : Algs ⇒ Set)→ Spec

and Alg and U are defined by

Algnil :≡ Set

Alg(snoc s F) :≡ (F,Us)-dialg

Unil :≡ id

U(snoc s F) :≡ Us ◦ V

where V is the forgetful functor that gives the underlying object of a dial-
gebra.

As Spec is essentially a list type, we will use list notation for its values,
e.g. we denote snoc (snoc nil F0) F1 as [F0, F1].

Example 4.2.5. The data type given in example 4.2.1 can be represented by
the specification [F0, F1] where F0 and F1 are the same functors as before,
as we have that Set ≡ Alg[], F0-alg ≡ Alg[F0] and (F1,U[F0])-dialg ≡ Alg[F0,F1].

Example 4.2.6. The natural numbers can be represented in the usual way
with one endofunctor FX :≡ 1 + X . In our framework, however, we can

74 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

treat the constructors separately, staying a bit closer to the syntax. We de-
fine:

F0 : Set ⇒ Set

F0 X :≡ 1

F1 : Alg[F0] ⇒ Set

F1 (X, θ0) :≡ X

Unfolding definitions, we have Alg[F0,F1] = (F1,U[F0])-dialg and Alg[F0] =

(F0, id)-dialg = F0-alg. The objects of Alg[F0,F1] are then:

Alg[F0,F1] = (X : |Alg[F0]|)× (θ : F1X → U[F0]X)

= (X : Set)× (θ0 : 1→ X)× (θ1 : X → X)

For the morphisms of Alg[F0,F1], we have for algebras (X, θ0, θ1), (Y, ρ0, ρ1):

Alg[F0,F1]((X, θ0, θ1), (Y, ρ0, ρ1))

= (f : Alg[F0]((X, θ0), (Y, ρ0)))× (f1 : U[F0]f ◦ θ1 = ρ1 ◦ F1f)

= (f : X → Y)× (f0 : f ◦ θ0 = ρ0)× (f1 : f ◦ θ1 = ρ1 ◦ f)

4.2.1 Avoiding induction-recursion

The type of specifications in definition 4.2.4 is given inductive-recursively.
However, we want our framework to be implementable in a small core type
theory. In such a setting, one would not expect to have induction-recursion
available. A class of inductive-recursive definitions can be translated into
definitions making use of indexed inductive definitions instead [Mal+12].
In this section we will use a different translation, which does not need in-
dexed inductive definitions.

Intuitively the type is just a snoc-list of functors. The induction-recursion
allows us to succinctly make sure that the domain of the functors is always
a category of algebras. We can avoid induction-recursion by separately
defining the snoc-list of functors and a predicate on that list that ensures

4.2. SET-SORTED INDUCTIVE-INDUCTIVE DEFINITIONS 75

the domain of the functors is correct:

Definition 4.2.7.

data Spec’ : Set where

nil : Spec’

snoc : Spec’→ (C : Cat) (C ⇒ Set)→ Spec’

On this type, we define a predicate mutually with its interpretation func-
tion Alg’ with forgetful functor U’:

is-correct : Spec’→ Set

Alg’ : (s : Spec’)× (is-correct s)→ Cat

U’ : (s : Spec’)× (p : is-correct s)→ Alg’(s,p) ⇒ Set

where

is-correct nil :≡ 1

is-correct (snoc s C F) :≡ (p : is-correct s)× (C = Alg’(s,p))

The definitions of Alg′ and U′ are similar to the previous definitions: we
can pattern match on the equality proofs we get from is-correct and then
use the previous definitions.

Remark 4.2.8. The mutual definition of is-correct, Alg′ and U′ can be avoided
by combining all three definitions into one function with all its arguments
and result types combined in a big Σ-type.

Proposition 4.2.9. The types Spec and (s : Spec’)× is-correct s are equivalent.

Proof. This is a straightforward proof by induction on the types involved
and applying singleton contraction where needed.

76 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

4.3 Dependent sorts

In the last section we saw how we can deal with referring to previous con-
structors. In this section we will tackle the issue of generalising the form of
the type formation rules, which were hitherto just of the form “A is a set”.
We want to generalise this to arbitrary lists of types and type families. Such
a list is referred to as the dependent sorts of the inductive definition. Exam-
ples can be something simple like A : Set, B : A→ Set, which we have seen
in the example of contexts and type in a context in section 3.1.6, or some-
thing more involved like: A : N→ N→ Set, B : (x : N)→ A n n→ Set.

Describing how a sort depends on the previous sorts can be done by
providing a functor of the previous category of sorts into Set. A com-
plete description is then a snoc-list of functors, which can be formalised
inductive-recursively together with the function that interprets the list as
a category.

Definition 4.3.1. The specification of sorts and their interpretation as a cat-
egory is given by the following inductive-recursive definition

data Sorts : SetJ K : Sorts→ Cat

where Sorts is inductively generated by

data Sorts where

nil : Sorts

snoc : (S : Sorts)→ (R : J S K⇒ Set)→ Sorts

with J nil K defined as the terminal category 1, and given S : Sorts and
R : J S K⇒ Set, the category J snoc S R K has:

• objects: (X : |J S K|)× (RX → Set),

• morphisms (X,Z)→ (Y,W) consist of

– a morphism f : J S K(X, Y)

4.3. DEPENDENT SORTS 77

– a dependent function g : (x : RX)→ Z x→ W (R f x).

Remark 4.3.2. The use of induction-recursion can be avoided here as well,
using the same techniques as in section 4.2.1

Example 4.3.3. The sort of an ordinary inductive definition can be repre-
sented by the list [R0] (i.e. snoc nil R0) where R0 : 1 ⇒ Set is defined as
the constant functor R0 x :≡ 1. The resulting category J R0 K has objects
(tt : 1) × (A : 1 → Set) and a morphism (x,A) → (y,B) is given by, since
trivially x = y = tt, a trivial morphism 1 → 1 together with a function
f x : A x→ B x for every x : 1. In other words, this category is equivalent
to the category Set.

In the above example it may seem superfluous to have the empty list
interpreted as the terminal category and not as Set. However, this choice
allows us to have the first sort be indexed by some other type, e.g. N. Hence
a definition of the vectors would have as sort specification the list [R0] with
R0 x :≡ N.

Example 4.3.4. The sort of the context and types example (Con,Ty) can be
represented by the list [R0, R1] with

• R0 : 1⇒ Set, R0 x :≡ 1

• R1 : J R0 K⇒ Set, R1(x,A) :≡ A x

The category J R0, R1 K has objects (x : 1)× (A : 1→ Set)× (B : A x→ Set).
We see that this category is equivalent to the category Fam of families of
sets.

Example 4.3.5. Similarly, the category Rel can be represented by the list
[R0, R1] with

• R0 : 1⇒ Set, R0 x :≡ 1

• R1 : J R0 K⇒ Set, R1(x,A) :≡ A x× A x

We see that J R0, R1 K is equivalent to the category with objects (X : Set, R :

X → X → Set) and morphisms (X,R) → (Y, S) given by f : X → Y

together with g : (x y : X)→ R x y → S (f x) (f y).

78 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

4.3.1 Sort membership

When we have multiple sorts, we need a way to select a particular sort from
this collection. When defining a constructor, we first have to say what its
sort is. To this end we define in this section a sort membership relation.

Given a specification S : Sorts and a functor R : J S K ⇒ Set, we can
define a forgetful functor t : J snoc s R K ⇒ J S K which maps an object
(X,P) : J snoc s R K to X . A specification S = [R0, . . . , Rn] : Sorts therefore
defines a chain of categories:

1 S0
t0oo S1

t1oo . . .
t2oo Sn

tnoo

where n is the number of functors in the list and Si = J R0, . . . , Ri K is the
category of sorts truncated to the first i elements. Every ti is the forgetful
functor into the previous category.

Example 4.3.6. In the case of Rel, we get the sequence

1 Set
t0oo Rel

t1oo

We define a membership relation

∈ : Cat→ Sorts→ Set

whereC ∈S means thatC is one of theSi in the chainS0 ← . . .← Sn. We do
not want 1 ∈ S, as adding a constructor of that sort does not add anything
to the inductive definition.

Definition 4.3.7 (Sort membership). We formalise the membership relation
as the following inductive type:

data ∈ : Cat→ Sorts→ Set where

here : (S : Sorts) (R : J S K⇒ Set)→ J snoc S R K ∈ snoc S R

there : (S : Sorts) (R : J S K⇒ Set) (C : Cat)→ C ∈ S → C ∈ snoc S R

4.3. DEPENDENT SORTS 79

Example 4.3.8. Consider the specification of Rel (example 4.3.5). If we
want to say that J [R0] K ∈ [R0, R1] (recall that J [R0] K is equivalent to Set),
then we can do so by giving the following term:

there [R0] R1 J R0 K (here nil R0) : J [R0] K ∈ [R0, R1]

Suppose we have a chain of sorts S0 ← S1 ← . . .← Sn and a functor U :

C ⇒ Sn, then naturally we can extend this functor to Û : C ⇒ Si for any Si

in the chain by composing with the forgetful functors. We can implement
this operation with our inductive definition of sort membership:

Definition 4.3.9 (Extending functors along sort membership). For every
specification S : Sorts with a functor U : C ⇒ J S K, we define the function:

Û : (Si : Cat)→ Si ∈ S → C ⇒ Si

This function is defined by induction over the proof of Si ∈ S.
For the action of Û on objects and morphisms we will usually leave the

membership proof argument implicit, e.g. we just write ÛX and Ûf .

4.3.2 Makkai’s dependent sorts

As mentioned before, giving an inductive definition is similar to defining
an equational theory: we specify the type formation rules, or the sorts, we
specify the point constructors, or the function symbols and we specify the
path constructors, or the equations. The inductive types themselves are the
term models of the theory described by the constructors. One important
aspect of our inductive definitions is that our type formation rules do not
just give us a collection of types, but also type families: we do have dependent
sorts.

In Makkai’s FOLDS (first-order logic with dependent sorts) [Mak95],
these dependent sorts are represented as presheaves over certain categories.
Observe that the category of families Fam can either be defined as having
objects (X : Set)× (P : X → Set) or as having as objects (X Y : Set)× (p :

80 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

Y → X). The latter category can be explained as the presheaf category
SetI , where I is the arrow category · → ·.

Example 4.3.10. Suppose we have an inductive definition of a category,
which has sorts

• O : Set

• A : O → O → Set (a family of arrows)

• T : (x y z : O)→ A x y → A y z → A x z → Set (a family of triangles)

The corresponding category of sorts can be represented as presheaves over
the category:

· //// · // //
// ·

In Makkai, they consider dependent sorts to be specified by presheaves
on a direct category.

Definition 4.3.11 (Direct category). A category C is direct if C contains no
infinite descending chain of non-identity morphisms.

Intuitively this means that all the arrows go in the “same direction” and
that there are no non-trivial automorphisms.

If a category C is such that Cop is direct, then C is an inverse category.
Considering presheaves on a direct category is the same as considering
functors of an inverse category into Set.

There is also no finiteness restriction on direct categories, so one could
also talk about presheaves from the simplex category, without the degen-
eracies, ∆+:

· //// · ////
//
· ////

//// . . .

Our definition of sorts does not support infinitely many sorts, however one
could take a coinductive interpretation of the Sorts type.

Some sorts do not translate easily to the presheaf approach. Take for
example the sorts:

• A : Set

4.4. CATEGORIES OF ALGEBRAS 81

• B : List A→ Set

With the Sorts datatype, we are allowed to use arbitrary functors, so this
readily translates to that setting. In the presheaf setting, there is no such a
straightforward translation possible.

We have chosen our specific definition of sorts in this way as it follows
our syntax closely. Most importantly, the sort membership relation can be
defined easily and used in a straightforward manner.

4.3.3 Sort categories via comma categories

Another perspective on sort categories is seeing them as comma categories.
Recall that the category Fam can be seen as the arrow category SetI . SetI

is a presheaf category having as objects functors I ⇒ Set. Alternatively,
this arrow category is the comma category Set ↓ Set. By considering other
functors into Set on the right of this comma category instead of just the
identity functor, we arrive at our sort categories. For example, suppose we
have the following sequence of sort categories:

1

R0

��

S0

R1

��

t0oo S1

R2

��

t1oo S2
t2oo

Set Set Set

where Ri are the defining functors of the sorts. We have that S0 = Set ↓ R0,
S1 = Set ↓ R1 and S2 = Set ↓ R2.

4.4 Categories of algebras

Now that we have a way of specifying the type formation rules of an in-
ductive definition, we can talk about the introduction rules. We have also
seen how to deal with constructors referring to previous constructors in a
Set-sorted setting. We move on to the final two pieces of the puzzle: con-
structors of arbitrary sort and path constructors.

82 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

4.4.1 A Rel-sorted quotient inductive-inductive type

As a warm-up we will give an example of how the specification and the cat-
egories of algebras look like for the following quotient inductive-inductive
definition:

data A : Set

data B : A→ A→ Set

data A where

c0 : A

c1 : A

data B where

c2 : N→ B c0 c1

c3 : (n : N)→ c2 n = c2 (n+ 1)

In this section we will show step by step, i.e. constructor by constructor,
how the category of algebras of the above inductive definition is built up.
We will get a chain of categories:

Alg0 Alg1
V0oo Alg2

V1oo Alg3
V2oo Alg4

V3oo

where Algi is the category that “contains” the first i constructors. The func-
tors Vi are the forgetful functors. Alg4 is the category we are ultimately
interested in: this is the category of algebras that is associated with the full
inductive definition.

Sorts: (A : Set)× (B : A→ A→ Set)

The category of sorts is the category Rel of (proof-relevant) relations. In
example 4.3.5 we saw how this can be represented as a list of functors. This

4.4. CATEGORIES OF ALGEBRAS 83

category is also the first category of algebras, i.e. the algebras with no con-
structors, and will as such also be referred to as Alg0. It is important to note
that we have the forgetful functor t1 : Rel ⇒ Set, giving us the underlying
set of a relation.

First constructor: c0 : A

The first constructor c0 has no arguments and is of sort A : Set. Its argu-
ments can be described by the functor F0 : Rel ⇒ Set with F0 (X,R) :≡
1. The category of algebras for the first constructor is then (F0, t1)-dialg,
where t1 : Rel ⇒ Set is the forgetful functor. Strictly speaking, an (F0, t1)-
dialgebra structure on a relation (X,R) is a function 1 → X , but for this
example we will work with the equivalent definition: the category Alg1

has:

• objects: (X : Set)× (R : X → X → Set)× (θ0 : X).

• morphisms (X,R, θ0)→ (Y, S, ρ0) consist of:

– a function f : X → Y

– a dependent function g : (x y : X)→ R x y → S (f x) (f y)

– an equality f0 : f θ0 = ρ0

We see that we get a morphism (f, g) in Rel along with a computation rule
f0 that tells us that the morphism in Rel preserves the (F0, t1)-dialgebra
structure. Note that F0 is a functor from Rel to Set and is not an endofunc-
tor on Set: the constructor may refer to elements of fibres of the relation
X → X → Set being defined. The category Alg1 also comes with a forget-
ful functor V1 : Alg1 ⇒ Alg0 defined by V1((X,R), θ0) :≡ (X,R) — in fact,
every category of algebras Algi+1 has a similarly defined forgetful functor
Vi+1 : Algi+1 ⇒ Algi. Chaining all these together until we get to Rel, we get
functors Ui : Algi+1 ⇒ Rel.

84 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

Second constructor: c1 : A

For the second constructor c1, the specification is largely similar: it is given
by the functor F1 : Alg1 ⇒ Set defined by F1 (X,R, θ0) :≡ 1. Alg2 has the
same objects as Alg1, but extended with an extra point: |Alg2| = ((X,R, θ0) :

|Alg1|)×(θ1 : X). Equivalently,Alg2 can be thought of as being the dialgebra
category (F1, t1 ◦ U1)-dialg.

Third constructor: c2 : N→ B c0 c1

The third constructor c2 maps into a different sort which is not Set, hence
its definition will be slightly different. We want the resulting category Alg3

of algebras for constructors c0, c1, c2 to have as objects:

((X,R, θ0, θ1) : |Alg2|)× (θ2 : N→ R θ0 θ1)

The morphisms is where it gets a bit hairy: we want morphisms ((X,R), θ0, θ1, θ2)→
((Y, S), ρ0, ρ1, ρ2) to consist of (f, g, f0, f1) : Alg2(((X,R), θ0, θ1), ((Y, S), ρ0, ρ1))

together with an equality

g2 : (n : N)→ g θ0 θ1 (θ2 n) =
S
(f0,f1)

ρ2 n

Note how we have to use the equalities f0 : f θ0 = ρ0 and f1 : f θ1 = ρ1

to reconcile the types of

g θ1 θ2 (θ2 n) : S (f θ0) (f θ1)

and
ρ2 : S ρ0 ρ1.

Realising the above as a dialgebra category is a bit tricky. We now have
to deal with dependent functions and dependent equalities. The situation
can be simplified however. Observe that if we have the following type

(x : A)→ P (e x)

4.4. CATEGORIES OF ALGEBRAS 85

for some P : B → Set and e : A → B, we can rewrite it to the equivalent
type:

(x : A) (b : B)→ b = e x→ P b

By singleton contraction, we can show that the two types are indeed equiv-
alent. The latter version is sometimes referred to as the “Henry Ford”-style
type (you can have any b : B you want, as long as it is e x). Along these
lines, we can rewrite the type of θ2 to the equivalent:

θ̂2 : (x y : X)→ ((x = θ0)× (y = θ1)× N)→ R x y

and define the functorF2 : Alg2 ⇒ Rel byF2((X, Y), θ0, θ1) :≡ (X,λx y.(x =

θ0)× (y = θ1)×N) in order to see that θ̂2 is a (F2, U2)-dialgebra. The objects
in this category give us “too much”: such a dialgebra gives us a morphism
F2((X, Y), θ0, θ1) → (X, Y) in Rel, so we also get a function X → X . We
can solve this problem by adding an equation that the function X → X

need be the identity. Alg3 is therefore not a category of dialgebras, but a
subcategory of one, as we will elucidate later on in section 4.4.3.

Fourth constructor: c3 : (n : N)→ c2 n = c2 (n+ 1)

The fourth constructor c3 is a path constructor, hence we not only need to
supply a functor F3 : Alg3 ⇒ Alg0 to specify the arguments, but we also
need to specify the endpoints of the path. Just as for c2, we will first need
to rewrite the type of the constructor. We denote again by θ̂2 the Henry
Ford-version of θ2. We then have that the type (n : N) → θ2 n = θ2 (n + 1)

is equivalent to the type

(x y : X)→
(
(p : x = θ0)× (q : y = θ1)× (n : N)

)
→ θ̂2 x y p q n = θ̂2 x y p q (n+ 1)

The endpoints can then be specified as natural transformations ℓ, r : F3
.→

U3, where F3 : Alg3 ⇒ Rel is defined in a way similar to F2. Given an al-
gebra A : Alg3, ℓA and rA both define a morphism in Rel. ℓ(X,R,θ0,θ1,θ2) and

86 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

r(X,R,θ0,θ1,θ2) are defined as (idX , ℓ
1
(X,R,θ0,θ1,θ2)

) and (idX , r
1
(X,R,θ0,θ1,θ2)

) respec-
tively, with

ℓ1(X,R,θ0,θ1,θ2)
a b (p, q, n) :≡ θ̂2 a b p q n

r1(X,R,θ0,θ1,θ2)
a b (p, q, n) :≡ θ̂2 a b p q (n+ 1)

By function extensionality, we can then say the category of algebrasAlg4 has
objects (X : |Alg4|)× (θ3 : ℓX = rX), which can be described as an equaliser
category. The morphisms are just morphisms in Alg3 with no extra struc-
ture. For higher inductive types, one usually expects a path computation
rule for any path constructor, but as we are working with sets, equalities
between paths are trivial.

4.4.2 Specification of a quotient inductive-inductive defini-
tion

So far we have seen how to specify dependent sorts, deal with construc-
tors referring to previous ones and have worked out how the category of
algebras for a specific example, exhibiting point and path constructors of ar-
bitrary sort, can be built up. In this section we will put everything together,
arriving at our formal definition of a specification of a quotient inductive-
inductive definition.

A quotient inductive-inductive definition is given by a specification of
its sorts S : Sorts plus a list of constructors, which may be point or path
constructors, each of which has a sort A ∈ S and builds upon the category
of algebras of the previous constructors. We can formalise this as follows:

Definition 4.4.1 (Specification of quotient inductive-inductive definitions).
The specification of a quotient inductive-inductive definition with sorts S :

Sorts, along with its category of algebras and underlying carrier functor is

4.4. CATEGORIES OF ALGEBRAS 87

given by the following inductive-recursive definition of

data Spec : Set

Constr : (s : Spec) (A : Cat)→A ∈ S → Set

Alg : Spec→ Cat

U : (s : Spec)→ Algs ⇒ J S K
with

data Spec where

nil : Spec

snoc : (s : Spec) (A : Cat) (p : A ∈ S)→ Constr s A p→ Spec

where Constr s A p is defined as:

Constr s A p :≡ Constrpoint sA p+ Constrpath sA p

The functions Constrpoint, Constrpath, Alg and U will be defined in the remain-
der of this section, treating point constructors in section 4.4.3 and path con-
structors in section 4.4.4.

Let us compare this definition to the previous descriptions ofSet-sorted
definitions (definition 4.2.4). It looks largely similar in that we mutually
define the type of specifications with the definition of its categories of al-
gebras and forgetful functors. There is the addition of the function Constr,
snoc constructor has a different type, as does the forgetful functor U.

In the constructor snoc, instead of having as argument a functor from a
category of algebras into Set, we have:

snoc : (s : Spec) (A : Cat) (p : A ∈ S)→ Constr sA p→ Spec

The arguments A : Cat, p : A ∈ S define the sort of this particular con-
structor, where the type Constr s A p contains the further data needed to

88 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

specify the constructor. What this data is, i.e. the definition of Constrpoint
and Constrpath will be given in section 4.4.3 and section 4.4.4.

The forgetful functors U now do not map into Set, but into the category
of sorts J S K.
4.4.3 Point constructors

In this section we will define three things:

• what the data for a point constructor is, i.e. we will define Constrpoint,

• what, given these data, the category of algebras is,

• what the forgetful functor from this new category of algebras into the
category of sorts is.

Suppose we have Si ∈ S and s : Spec, and we have already constructed

• Algs : Cat,

• Us : Algs ⇒ J S K its forgetful functor, and

• the extension Ûs : Algs ⇒ Si of Us, which we get from Si ∈ S.

From the proof that Si ∈ S, we get some information about the category Si.
We know that we get a functor ti : Si ⇒ Si−1 for some category Si−1 and
that the objects of Si are of the form (X : |Si−1|) × (RiX → Set) for some
functor Ri : Si−1 ⇒ Set.

To make this more concrete: suppose S contains n sorts and s describes
m constructors, then an object in X : Algs is a tuple (X0, . . . , Xn, θ0, . . . , θm).
The functorUs gives us back all underlying carriers, i.e.Us(X0, . . . , Xn, θ0, . . . , θm) =

(X0, . . . , Xn) and the functor Ûs further projects down to the i first carriers
X0, . . . , Xi, with (X0, . . . , Xi−1) : |Si−1| and

Xi : Ri(X0, . . . , Xi−1)→ Set .

Recall that Ri : Si−1 ⇒ Set is the functor that describes how the family Xi

depends on the previous sorts X0, . . . , Xi−1. A point constructor structure

4.4. CATEGORIES OF ALGEBRAS 89

on X is of the form

θ : (x : Ri(X0, . . . , Xi−1))→ F 1 (X0, . . . , Xn, θ0, . . . , θm) x→ Xi x

where

F 1 : ((X0, . . . , Xn, θ0, . . . , θm) : |Algs|)→ Ri(X0, . . . , Xi−1)→ Set

Note that the functor Ûs can be decomposed into two parts: we have Û
0
:

Algs → Si−1 and Û
1
: (X : Algs)→ Ri (Û

0
X)→ Set. Û

0
can also be written

as ti ◦ Ûs, where ti : Si → Si−1 is the forgetful functor of Si. In order for the
point constructor specified byF 1 to be well-defined, i.e. to make sense of its
computation rule, we need FX :≡ (Û

0
X,F 1 X) to be a functor Algs ⇒ Si.

This leads us to the definition of a point constructor specification:

Definition 4.4.2 (Data for a point constructor). Given a specification s :

Spec, a point constructor of sort Si ∈ S is specified by giving a functor F :

Algs ⇒ Si such that the following commutes:

Algs
F //

Ûs

��

Si

ti
��

Si
ti // Si−1

In other words, we have

Constrpoint s Si p :≡ (F : Algs ⇒ Si)× (p : ti ◦ F = ti ◦ Ûs) .

The fact that F must satisfy the commutativity condition intuitively
means that F leaves the sorts (X0, . . . , Xi−1) “untouched”. We can think
of F as describing a family of functors, fibred over the sorts (X0, . . . , Xi−1).

We now explain how to construct the category Algs′ of algebras for a
specification with an additional point constructor. Suppose the specifica-
tion s′ has been obtained as the extension of a specification s by a point
constructor given by a functor F : Algs → Si, which decomposes as F =

(Û
0
, F 1). The previous characterisation of a point constructor algebra struc-

90 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

ture on an object X : |Algs| can be summarised as having a dependent
function of morphisms

θ : (x : Ri(Û
0
X))→ F 1 X x→ Û

1
X x

A morphism (X, θ) → (Y, ρ) consists of a morphism f : Algs(X,Y) along
with a “computation rule”:

f0 : (x : Ri (Û
0
X)) (y : F 1 X x)→

Û
1
f x (θ x y) = ρ (Ri(Û

0
f x) (F 1 f x y))

This category of algebras look similar to (F, Ûs)-dialg. However, as we have
seen previously, the category of dialgebras contains too much: morphisms
there also come with a superfluous endomorphism in Si−1. We want this
morphism to be an identity morphism, which we can achieve by taking an
equaliser. The category (F, Ûs)-dialg comes with two forgetful functors: V
that gives us the carrier of the algebra and V I that gives us algebra structure
on the carrier, which is a morphism in Si or equivalently, an object in the
arrow category SI

i . The definition of the new category of algebras is as
follows:

Definition 4.4.3 (Category of algebras for a point constructor). Let s′ : Spec
be the specification s extended with a point constructor of sort Si given by
a functor F : Algs → Si satisfying ti ◦ F = ti ◦ Ûs. The category of algebras
Algs′ is as the following equaliser in Cat:

Algs′
e // (F, Ûs)-dialg

V //

V I

��

Algs
Ûs // Si

ti // Si−1

id
��

SI
i

tIi // SI
i−1

where e is the projection map of the equaliser, tIi is the functor ti lifted to a
functor between the respective arrow categories and id is the functor that
assigns to each object the identity morphism of that object.

4.4. CATEGORIES OF ALGEBRAS 91

The forgetful functor Us′ : Alg
′
s → J S K is defined as the composite:

Algs′
e // (F, Ûs)-dialg

V // Algs
Us // J S K

Note that usually the construction of equalisers in the category Cat is
evil as it uses equality on objects. Since we are working with univalent
categories, equality of objects coincides with isomorphism of objects, hence
this is not an issue in our setting.

Remark 4.4.4. To explicate the phenomenon of a category of dialgebras con-
taining “too much”, we will look at how the category of algebras of the
following inductive-inductive definitions is built up:

data A : Set

data B : A→ Set

data A where

c0 : A

data B where

c1 : (x : A)→ 0→ B x

We can see that A is equivalent to 1. The second constructor c1 does not
add anything to any B x: B is the constantly empty family.

The constructor c0 can be described by the functor:

F0 : Fam ⇒ Set

F0(X,P) :≡ 1

The category of algebras containing only the first constructor is (F0, V)-dialg

where V : Fam ⇒ Set is the forgetful functor. The second constructor c1,
which does not add anything to the inductive type, can be described by the

92 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

functor:

F1 : (F0, V)-dialg⇒ Fam

F1((X,P), θ) :≡ (X,λx.0)

It is clear that this functor satisfies the condition that V ◦F1 = V ◦U0 where
U0 : (F0, V)-dialg⇒ Fam is the forgetful functor.

If we then unfold the definition of (F1, U0)-dialg, we see that it has ob-
jects:

|(F1, U0)-dialg| = (X : Set)× (P : X → Set)

× (θ0 : 1→ X)

× (θ1 : X → X)× (θ2 : (x : X)→ 0→ P (θ1 x))

= (X : Set)× (P : X → Set)× (θ0 : X)× (θ1 : X → X)

As mentioned before: we see that we get a superfluousX → X function.
For the inductive definition on its own, we are just interested in the initial
object of the category of algebras. Here we see that the initial object of the
dialgebra category is the natural numbers with a constantly empty family
over it, which is different from what we want: a unit type with a constantly
empty family over it.

4.4.4 Path constructors

Specifying the arguments for a path constructor is done in exactly the same
way as for a point constructor, while the endpoints of the path are given by
natural transformations. Suppose s : Spec, then a path constructor struc-
ture of sort Si ∈S on an object (X0, . . . , Xn, θ0, . . . , θm) : |Algs| is of the form:

θ : (x : Ri(X0, . . . , Xi−1))

→ (y : F 1 (X0, . . . , Xn, θ0, . . . , θm)) x

→ ℓ1(X0,...,Xn,θ0,...,θm) x y =Xi x r1(X0,...,Xn,θ0,...,θm) x y

4.4. CATEGORIES OF ALGEBRAS 93

where

• F 1 : (X : |Algs|)→ Ri(Û
0
X)→ Set, such that FX :≡ (Û

0
X,F 1X) is a

functor Algs ⇒ Si, and

• ℓ1, r1 : (X : |C|) (x : Ri(Û
0
X)) (y : F 1 X x) → Û

1
X x such that

ℓX :≡ (id
Û
0
X
, ℓ1) and rX :≡ (id

Û
0
X
, r1) are natural transformations

F .→ Ûs.

Algebra morphisms (X, θ) → (Y, ρ) are simply morphisms X → Y in Algs.
As we are working with sets, we do not need computation rules for the
paths: any equation between paths is trivial.

Summarising the above, we get to the following definition of path con-
structor specification:

Definition 4.4.5 (Data for a path constructor). Given a specification s : Spec,
a path constructor of sort Si ∈ S is specified by a functor F : Algs ⇒ Si

satisfying ti◦F = ti◦Ûs and two natural transformations ℓ, r : F .→ Ûs, such
that when whiskered1 with ti they are the identity natural transformation,
i.e. they satisfy ti ℓ = ti r = idti◦Ûs

:

Constrpath s Si p :≡ (F : Algs → Si)× (p : ti ◦ F = ti ◦ Ûs)

×(ℓ : F .→ Ûs)× (qℓ : ti ℓ = idti◦Ûs
)

×(r : F .→ Ûs)× (qr : ti r = idti◦Ûs
) .

The restriction on the natural transformations ℓ and r is the same kind
of restriction as the restriction onF : the natural transformations must leave
the sorts below Si untouched.

Note that by function extensionality, the type of θ is equivalent to ℓ1X =

r1X . Since ti ℓX = ti rX = idti◦Ûs
the equality ℓ1X = r1X of dependent functions

in Set is equivalent to the equality ℓX = rX of morphisms in Si. We also
observe that a natural transformation α : F .→ Ûs gives rise to a functor

1Whiskering a natural transformation α : F .→ G, with F,G : C ⇒ D with a functor
H : D ⇒ E yields a natural transformation Hα : HF .→ HG by applying H on every
component of α.

94 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

α̂ : Algs ⇒ SI
i , mapping X : |Algs| to αX : Si(F X, Ûs X). Functoriality of

this functor comes from the naturality of α. This leads us to the definition
of the category of algebras for a path constructor:

Definition 4.4.6 (Category of algebras for a path constructor). Let s′ : Spec
be the specification s extended with a path constructor of sort Si given by a
functor F : Algs → Si satisfying ti ◦F = ti ◦ Ûs and natural transformations
l, r : F → Ûs satisfying ti l = ti r = idti◦Ûs

. The category of algebras Algs′ is
defined as the following equaliser in Cat:

Algs′
e // Algs

r̂
//

ℓ̂ // SI
i

where e is the projection map of the equaliser.
The forgetful functor Us′ : Alg

′
s → J S K is defined as the composite

Algs′
e // Algs

Us // J S K
4.4.5 Worked example

In this section we will work out the description of the (Con,Ty) type family
of contexts and types in a context as described in section 3.1.6. First of all,
notice that it is a Fam-sorted definition. In example 4.3.4, we have seen
that these can be described with the following functors:

• RCon : 1⇒ Set, RCon x :≡ 1

• RTy : J RCon K⇒ Set, RTy(x,A) :≡ A x

This gives us the sorts category J R0, R1 K with:

• objects: (x : 1)× (A : 1→ Set)× (B : A x→ Set)

• morphisms (x,A,B) → (y, C,D): (f : 1 → 1) × (g : (x : 1) → A x →
C (f x))× (h : (a : A x)→ B a→ D (g x a))

To not clutter things too much with terms of type 1, we will leave these out
of the sorts part of the definition. The inductive-inductive definition we are

4.4. CATEGORIES OF ALGEBRAS 95

trying to fit into the framework we just presented is as follows, massaged
a bit to see more directly how it fits in the framework:

data Con : 1→ Set

data Ty : Con tt→ Set

data Con where

ϵ : 1→ Con tt

, : (Γ : Con tt)× (τ : Ty Γ)→ Con tt

data Ty where

‘0 : (Γ : Con tt)→ 1→ Ty Γ

‘1 : (Γ : Con tt)→ 1→ Ty Γ

‘Π : (Γ : Con tt)→ (A : Ty Γ)× Ty (Γ,A)→ Ty Γ

The specification s(Con,Ty) : Spec is a list of five elements, all containing
a point constructor. Of the point constructors, the first two are of the first
sort, 1→ Set, and the last three of sort Con tt→ Set. The following functors
describe the point constructors:

• Fϵ (A,B) :≡ (λ .1)

• F , ((A,B), θϵ) :≡ (λ .(Γ : A tt)× (τ : B Γ))

• F‘0 ((A,B), θϵ, θ ,) :≡ (A, λ .1)

• F‘1 ((A,B), θϵ, θ , , θ‘0) :≡ (A, λ .1)

• F‘Π ((A,B), θϵ, θ , , θ‘0, θ‘1) :≡ (A, λΓ.(X : B Γ)×B (θ , (Γ, X)))

96 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

The algebras we end up with, after singleton contraction, look as follows:

(A : 1→ Set)× (B : A tt→ Set)

× (θϵ : 1→ A tt)

× (θ , : (Γ : A tt)×B Γ→ A tt)

× (θ‘0 : (Γ : A tt)→ 1→ B Γ)

× (θ‘1 : (Γ : A tt)→ 1→ B Γ)

× (θ‘Π : (Γ : A tt)→ (X : B Γ)×B (θ , (Γ, X))→ B Γ)

If we squint our eyes a bit, we see that the algebras indeed coincide with
the constructors we wanted to give a specification of.

The pieces of the specification we have left out here for notational clarity,
are the sort membership proofs. An example of these proofs has been given
in example 4.3.8, also for the same sorts specification as the one we use here.

4.5 Other forms of constructors

We have characterised quotient inductive-inductive definitions as (subcat-
egories of) iterated dialgebras. For the dialgebras we have looked at, we
only had the freedom to choose the left functor, i.e. if we look at the point
constructors we have seen so far, they all are of the shape:

c : Si(FX,UX)

where s : Spec and F,U : Algs ⇒ Si for some sort category Si. We have only
considered the case where U is a forgetful functor. This begs the question
if we generalise this to a larger class of dialgebras. For example, can we
have constructors such as:

c : A→ List A

4.5. OTHER FORMS OF CONSTRUCTORS 97

It turns out that this particular example does not work out. To see this, let
us define the following inductive definition:

data A : Set where

c0 : A

c1 : A→ List A

Proposition 4.5.1. A does not exist, i.e. the category of algebras that corresponds
to the above inductive definition does not have an initial algebra.

Proof. Suppose (X, x, θ) is an initial algebra, i.e. a pointed set (X, x) with a
function θ : X → List X . By pattern matching, we know that θ x is either
nil or cons a as for some a : X and as : List A.

If θ x = nil, then we can define an algebra (1, tt, λx.[tt]). We observe
that there are no algebra morphisms from (X, x, θ) into (1, tt, λx.[tt]): for f :

X → 1, which obviously satisfies f x = tt, we have that nil = List f (θ x) ̸=
[tt].

In the case that θ x = cons a as, we can do something similar: instead of
having a singleton list as the algebra on (1, tt), we have the empty list. We
can then observe that there are no algebra morphisms from (X, x, θ) into
(1, tt, λx.nil).

There are examples of constructors that do make sense. If we want to
truncate our inductive type to be propositional, we can add a constructor:

c : is-prop A

This works out in this case, as is-prop A is equivalent to (x y : A)→ x = y.
Other examples that are allowed, are constructors of the form B →

A×A, as this is equivalent to have two constructors with type B → A. Gen-
eralising this, the result type may be given by any representable functor.
One notable example of such a representable functor is the stream functor,
e.g. we can have a constructor, with B : Set:

c : B → Stream A

98 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

as this is equivalent to B → N→ A.

4.5.1 Dependent dialgebras

As an earlier attempt to unifying the treatment of point and path construc-
tors, we have considered dependent dialgebras [Alt+15], i.e. given F : C ⇒
Set and G :

∫
C
F ⇒ Set a dependent dialgebra is an object X : |C| along

with:
θ : (x : FX)→ G(X, x)

The category
∫
C
F is the category of elements or the Grothendieck construction

of the functor F . It is defined as having:

• objects: (X : |C|)× FX

• morphisms (X, x)→ (Y, y): (f : C(X, Y))× (F f x = y)

In other words: the category of elements has as objects objects in X along
with a point in FX . Morphisms are morphisms in C that preserve the
points.

One nice feature of this approach is that it gives us a unified framework
to talk about both path constructors as well as point constructors of various
sorts.

However, formalising the category structure of dependent dialgebras
turns out to be rather involved. In particular, when defining what mor-
phisms between these algebras should be, we need to lift a morphism in C

to one in
∫
C
F . There is a canonical way of doing so, given an x : FX for

some X : |C|: given f : C(X,Y) with x : FX , we define:

f̂x :

∫
C

F ((X, x), (Y, F f x))

f̂x :≡ (f, refl)

This operation is not functorial in the untruncated setting: we do not have
ĝ ◦ fx and ĝFfx ◦ f̂x are equal. In fact, they have different types:

• ĝ ◦ fx :
∫
C
F ((X, x), (Z, F (g ◦ f) x))

4.5. OTHER FORMS OF CONSTRUCTORS 99

• ĝFfx ◦ f̂x :
∫
C
F ((X, x), (Z, F g (F f x)))

While we do have a proof that F (g ◦ f) x = F g (F f x), we do not have
in general that this equation holds definitionally. Writing down the cate-
gory structure therefore involves lots of transporting across the proofs of
functoriality of F and reasoning about these transports.

In the approach taken in this thesis, we build up the category of alge-
bras using easier to define building blocks, i.e. equaliser categories and cat-
egories of (ordinary) dialgebras. While this approach still has its share of
having to deal with transporting terms across proofs of functoriality, these
can be solved in a more abstract setting with fewer moving parts.

Another reason why this thesis does not use dependent dialgebras is
that they are too general for our purposes. If we try to prove properties
about them, e.g. the existence of limits and initial objects, it is not immedi-
ately clear what restrictions to put on the target functor G to make things
work. In this thesis we use a more bottom up approach, starting from the
inductive definitions we know and what functors show up when defining
them.

4.5.2 Currying

When a constructor has multiple arguments, we often write things down in
its curried form, e.g. suppose we have K,L : Set and define the following
constructor for type A:

c : K → (L→ A)

In our presentation, we consider dialgebras where the functor describing
the target of the constructor is usually a forgetful functor. As such, we are
forced to have all our constructors in uncurried form, e.g. the above case
would be K × L → A. To describe the curried constructor c, we can see it
as a (F,G)-dialgebra with FX :≡ K and GX :≡ (L → X). This approach
does not always work, if we were to consider instead the constructor:

c : K → (A→ A)

100 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

We cannot define GX :≡ (X → X) as it is not functorial. So it seems that at
this level of syntax, dialgebras are not the appropriate concept to describe
what is going on.

4.6 Positivity

Not all expressions of the type Set → Set are functorial: the arguments
may only be in positive positions in the result. As we have mentioned in
chapter 1, λX.(X → X) is problematic. Whilst problematic, such negative
occurrences can be useful. One example of is the higher order abstract
syntax embedding of untyped lambda calculus:

data Tm : Set where

app : Tm→ Tm→ Tm

lam : (Tm→ Tm)→ Tm

In the constructor lam, there is a recursive occurrence in both negative as
well as a positive position. The map λX.(X → X) is therefore not functo-
rial: it is neither contravariant nor covariant.

This is problematic with pattern matching semantics. Having an induc-
tive type such as Tm along with pattern matching (even when recursion
is restricted to structurally smaller subterms), is unsound and allows us to
write diverging terms.

Another example of this phenomenon is if we write down an inductive
definition with as constructors the axioms of a field:

data Field : Set where

0 : Field

...

inv : (x : Field)→ ((x = 0)→ 0)→ Field

...

4.7. RELATED WORK 101

The category of algebras of this specification should be equivalent to the
category of fields. If the datatype Field were to exist, it then would be the
initial object in this category. However, the category of fields does not have
an initial object. The problem with the datatype is that the constructor inv
has a recursive occurrence in a negative position: the constructor 0 occurs
in a negative position.

4.7 Related work

4.7.1 Inductive-inductive definitions

The approach we have taken in our framework builds heavily on the work
on inductive-inductive types [Alt+11]. In the article, the authors describe
the categorical interpretation of an inductive-inductive definition with one
Set-sorted point constructor, followed by one Fam-sorted point construc-
tor. We have slightly altered their idea of using an equaliser category for
theFam-sorted constructor to allow us to iterate the construction more eas-
ily. Furthermore, we have extended the framework to support a larger class
of sorts rather than Fam and have added support for path constructors.

4.7.2 Inductive definitions in Agda

Our framework allows us to specify most of the inductive definitions we
can write down in Agda. The notable exception is that we do not support
induction-recursion. However, some forms of induction-recursion can be
simulated, using the methods described in [Han+13].

Apart from the absence of induction-recursion, there is another funda-
mental difference between our framework and that of Agda. In Agda we
have to group all the constructors per sort, i.e. we cannot write down a
definition with sorts A : Set, B : A→ Set and constructors:

• c0 : A

• c1 : B c0

102 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

• c2 : c1 = c1 → A

We cannot alternate between the sorts in Agda, which prevents us from
defining types as the one given above. Our framework has no such restric-
tion.

Furthermore, Agda allows for certain negative inductive definitions. Its
positivity checker only checks whether the recursive occurrences referring
to the type being defined are in strictly positive positions. It does not check
whether references to previous constructors are in strictly positive positions.
For example, the following definition is accepted:

data A : Set where

c0 : A

c1 : ((c0 = c0)→ A)→ A

The operation λ(X, θ).(θ = θ)→ A is not functorial, so we cannot represent
this example in our framework. As of yet, it is unclear whether this is a bug
in Agda’s positivity checker, i.e. we have not found a way yet to use this to
prove falsity.

Similarly, Agda allows for sorts which are not positive. For example,
Agda accepts the following definition:

data A : Set

data B : (A→ A)→ Set

data A where

c0 : A

data B where

c1 : B (λx.x)

We cannot formalise definitions of this shape in our framework, as the oper-

4.7. RELATED WORK 103

ation λX.(X → X) is not functorial, hence we cannot define its dependent
sorts. As with the previous example, it is as of yet unclear to us whether
definitions of this form may lead to inconsistencies.

4.7.3 Higher inductive types

Our quotient inductive-inductive definitions are a first approximation to a
theory of higher inductive types. The presentation here has been inspired
by work on the semantics of higher inductive types [LS13b] via monads
in model categories. Furthermore, [Cap14] and [Alt+15], which also build
upon that note, have influenced the design choices of this framework.

104 CHAPTER 4. DESCRIBING INDUCTIVE DEFINITIONS

Chapter 5

Induction versus initiality

In the previous chapter we have seen how we can specify a quotient inductive-
inductive definition by giving a list of sorts and a list of constructors: we
have to give the type formation and introduction rules. From these rules,
we can then derive the category of algebras. The notion of algebra mor-
phism looks a lot like the recursion principle for the inductive definition.
In fact, saying that an algebra is weakly initial is precisely the statement that
the algebra satisfies the recursion principle. The link between full initiality
and the induction principle is a bit more involved. Initiality talks about the
morphism we get from the recursion principle being unique: its statement
involves equality of morphisms. The induction principle is something that
allows us to produce dependent functions into families over our inductive
definitions.

Initial algebra semantics is a very attractive way of “explaining” induc-
tive definitions: stating the property of being initial only requires us to
have defined the objects and morphisms:

Definition 5.0.1 (Initiality). An objectX of a categoryC is initial if for every
Y : |C| the set C(X,Y) is contractible.

From this definition it is also immediate that being initial is proposi-
tional.

105

106 CHAPTER 5. INDUCTION VERSUS INITIALITY

5.1 Categorical characterisation of induction

The induction principle of an inductive type T gives us a way to construct
dependent functions for families defined on T . The family P which we are
eliminating into is also called the motive of the induction. By providing
methods for every constructor for this motive, the induction principle gives
us a function (x : T)→ P x. Recall that in the case of the natural numbers,
the methods we have to supply have the following types:

• mzero : P zero,

• msucc : (n : N)→ P n→ P (succ n),

Given all this, the induction principle yields a dependent function s : (x :

N)→ P x satisfying certain computation rules.
We can think of the triple (P,mzero,msucc) as a family of algebras defined

over the algebra (N, zero, succ):

Definition 5.1.1. We define a type of algebra families for this particular
category of algebras as FamAlgλX.1+X

: |AlgλX.1+X | → Set with:

FamAlgλX.1+X
(X, θ0, θ1) :≡ (P : X → Set)

× (m0 : P θ0)

× (m1 : (x : X)→ P x→ P (θ1 x))

In order to see that this type does correspond to a notion of family, recall
that families on a type can also be represented as functions into said type,
i.e. as a fibration:

Proposition 5.1.2. Given X : Set, there is an equivalence:

(X → Set) = (Y : Set)× (p : Y → X)

Proof. Let P : X → Set be a family on X , we can map this to the pair
((x : X)×P x, π0), i.e. the family’s total space along with its projection map
into its base space. In the other direction we map (Y, p) to the preimage

5.1. CATEGORICAL CHARACTERISATION OF INDUCTION 107

family λx.(y : Y)×(p y = x). Checking that these two maps are each other’s
inverses can be done by using function extensionality and univalence.

For the aforementioned algebra families, we have a similar equivalence:

Proposition 5.1.3. Given X : AlgλX.1+X , there is an equivalence:

FamAlgλX.1+X
X = (Y : |AlgλX.1+X |)× (p : AlgλX.1+X(Y,X))

Proof. The proof follows the same structure as the Set case. Given an alge-
bra family (P,m0,m1), we can define its “total algebra” as follows:

total (P,m0,m1) :≡ ((x : X)× P x, (θ0,m0), (λ(x, p).(θ1 x,m1 x p)))

The projection function π0 : (x : X) × P x → X turns out to be an algebra
morphism total (P,m0,m1)→ (X, θ0, θ1): it satisfies the computation rules
definitionally. Let us denote this morphism as proj (P,m0,m1). The map-
ping from left to right maps (P,m0,m1) to the pair (total (P,m0,m1), proj (P,m0,m1)).

For the other direction we need to generalise the preimage family to
algebras: given (Y, ρ0, ρ1) with (p, p0, p1) : AlgλX.1+X((Y, ρ0, ρ1), (X, θ0, θ1)),
we define the following family:

(λx.(y : Y)× p y = x : X → Set

, (ρ0, p0) : (y : Y)× p y = θ0

, λx(y, z).(ρ1 y, w) : (x : X)→ (y : Y)× (p y = x)→ (y′ : Y)× (p y′ = θ1 x)

)

where w is defined as the following path:

p (ρ1 y)
p1

θ1 (p y)
ap θ1 z

θ1 x

Given a family P : X → Set, a dependent function (x : X) → P x

corresponds to a section of the projection function π0 : (x : X) × P x →

108 CHAPTER 5. INDUCTION VERSUS INITIALITY

X . As it turns out, the corresponding notion of dependent function for an
algebra family is a dependent function along with computation rules, i.e.
everything we get from the induction principle:

Definition 5.1.4. Given an algebra family (P,mzero,msucc), a dependent alge-
bra morphism is a dependent function s : (x : X)→ P x equipped with the
computation rules:

• szero : s zero = mzero

• ssucc : (n : N)→ s (succ n) = msucc n (s n)

As the definitions of function into X and section only refer to the cat-
egory structure, this generalises to any category. The induction princi-
ple that gives us a dependent morphism for any family can therefore be
phrased abstractly as follows:

Definition 5.1.5. The section principle for an object X in a category C says
that for every Y : |C| and p : C(Y,X), there exists s : C(X,Y) and a proof
of p ◦ s = idX , i.e. that there is a term of type:

(Y : |C|)× (p : C(Y,X))→ (s : C(X,Y))× (p ◦ s = idX)

5.2 The section principle is logically equivalent
to initiality

Now we have a category theoretic characterisation of the induction princi-
ple, we have to show that it is logically equivalent to initiality. Assuming a
bit more structure of the categories we are working with, namely that finite
limits exist, we can show that an object satisfies the section principle if and
only if it is an initial object.

To see that finite limits are exactly what we need, we will first sketch
what the proof of the logical equivalence looks like for the natural numbers.
Showing that initiality implies the induction principle means that we are
given X : Set with θ0 : X and θ1 : X → X , forming an initial algebra.

5.2. SECTION PRINCIPLE LOGICALLY EQUIVALENT TO INITIALITY109

Given P : X → Set with m0 : P θ0 and m1 : (x : X) → P x → P (θ1 x), we
have to define a dependent function s : (x : X)→ P x. Using the function
total we get an algebra and hence a unique algebra morphism (X, θ0, θ1)→
total (P,m0,m1). This algebra morphism gives us a function s : X → (x :

X)×P x and using uniqueness of the algebra morphism, we get that π0◦s =
idX , hence we get a dependent function (x : X) → P x. We furthermore
have that this dependent function satisfies the computation rules, which
follow from the computation rules satisfied by the algebra morphism.

To establish that the induction principle gives us initiality, we will pro-
duce an algebra morphism and then show it is in fact unique. Suppose
X : Set with θ0 : X and θ1 : X → X satisfies the induction principle, then
we have for any other algebra (Y, ρ0, ρ1) the algebra family (λx.Y, ρ0, λx.ρ1).
This family is the family that is “constantly (Y, ρ0, ρ1)”. In the categori-
cal proof, this corresponds to constructing the product of (X, θ0, θ1) with
(Y, ρ0, ρ1). We then get a function f : X → Y , which is an algebra morphism
thanks to the computation rules we get from the induction principle. We
have to show that this function is unique: for any other g : X → Y which is
an algebra morphism, we need to show that f = g. By employing function
extensionality, this is equivalent to showing (x : X) → f x = g x, which
means we can use the induction principle to prove this. The motive of the
induction is the family λx . f x = g x with the methods being of the types
f θ0 = g θ0 and (x : X) → f x = g x → f (θ1 x) = g (θ1 x). These methods
can be defined using the computation rules of f and g. In the categori-
cal proof, constructing this algebra family corresponds to constructing the
equaliser of the two algebra morphisms f and g, which gives us a proof of
f = g.

Lemma 5.2.1. Let C : Cat. If X : |C| is initial, then X satisfies the section
principle.

Proof. Assume X is initial. Given a morphism p : Y → X , we need to
produce a morphism s : X → Y such that p◦ s = idX . Since X is initial, we

110 CHAPTER 5. INDUCTION VERSUS INITIALITY

get a unique arrow s : X → Y such that:

X
idX //

s

X

Y

p

OO

The composite has to be equal to the identity morphism on X , as that by
initiality is the only endomorphism on X .

Lemma 5.2.2. Let C : Cat and assume C has finite limits. If X : |C| satisfies the
section principle, then X is initial.

Proof. Given Y : |C|, we need to provide a unique arrow X → Y . Consider
the projection π0 : X×Y → X , which is an arrow into X and therefore has
a section s : X → X × Y . Our candidate arrow is then the composite:

X s // X × Y
π1 // Y

which we have to show is unique. Using equalisers, we can show that any
two arrows f, g out of X to some other object Y are equal:

E
i // X

f
//

g // Y

X

s

OO

idX

>>

Let E be the equaliser of f and g, then we get a projection map i : E → X .

5.3. LIMITS IN CATEGORIES OF ALGEBRAS 111

By the section principle, this map has a section s : X → E, hence we have:

f = idX ◦ f

= (s ◦ i) ◦ f

= s ◦ (i ◦ f)

= s ◦ (i ◦ g)

= (s ◦ i) ◦ g

= idX ◦ g

= g

Stating that an object is initial only requires us to define the type of ob-
jects and type of morphisms of the category. This makes it an attractive
notion to internalise and work with, as defining it will not give us any co-
herence issues. The section principle however, needs a bit more structure:
we need composition and identity morphisms. In order to show that ini-
tiality and the section principle coincide, we need even more structure: we
need the identity laws and associativity and the existence of certain limits.

5.3 Limits in categories of algebras

In this section we will show that the categories of algebras we are work-
ing with have products and equalisers, and hence satisfy the assumption
of lemma 5.2.2. This is done by induction on the specification of the in-
ductive definition, i.e. by induction on its number of constructors. We will
see that we also need that the forgetful functors into the category of sorts
preserve these limits, which we can prove simultaneously with the con-
struction of the limits.

112 CHAPTER 5. INDUCTION VERSUS INITIALITY

5.3.1 Sort categories

For the empty specification, an inductive definition with no constructors,
the resulting category of algebras is the category of sorts. We will show
that this category has the required limits:

Lemma 5.3.1. For each sort S : Sorts, the category J S K has binary products.

Proof. We proceed by induction on the specification of sorts S : Sorts. If
S = nil, then J S K = 1, which trivially satisfies our criteria.

In the induction step case, we have J S K = Si for a category Si which
is built out of the previous category of sorts Si−1 : Cat with Ri : Si−1 ⇒
Set. By the induction hypothesis Si−1 has products and equalisers. We
can then define products in Si as follows: suppose (X,P), (Y,Q) : |Si|, i.e.
X, Y : |Si−1| and P : RiX → Set, Q : RiY → Set, since Si−1 has products,
we can define:

(X,P)× (Y,Q) :≡ (X × Y, P ×Q)

where P ×Q : Ri(X × Y)→ Set is defined pointwise as:

(P ×Q) x :≡ P (Ri π0 x)×Q(Ri π1 x)

This definition satisfies the universal property of products, which can be
shown by appealing to the universal properties of products in Si−1 and Set:

5.3. LIMITS IN CATEGORIES OF ALGEBRAS 113

let (Z, T) : |Si|, then we have:

Si((Z, T), (X × Y, P ×Q))

= { definition of products in Si }

(f : Si−1(Z,X × Y))

× (g : (x : RiZ)→ T x→ (P ×Q) (Ri f x))

= { universal property of X × Y in Si−1 and functoriality of Ri }

(f0 : Si−1(Z,X))× (f1 : Si−1(Z, Y))

× (g : (x : RiZ)→ T x→ P (Ri f x)×Q (Ri g x))

= { universal property of P (Ri f x)×Q (Ri g x) in Set }

(f0 : Si−1(Z,X))× (f1 : Si−1(Z, Y))

× (g0 : (x : RiZ)→ T x→ P (Ri f x))

× (g1 : (x : RiZ)→ T x→ Q (Ri g x))

= { definition of products in Si }

Si((Z, T), (X,P))× Si((Z, T), (Y,Q))

Equalisers are constructed in similar way to products, however it in-
volves equalities between morphisms, which we can simplify using the fol-
lowing proposition:

Proposition 5.3.2. Suppose (f, f ′), (g, g′) : Si((X, Y), (Z,W)), then:

((f, f ′) = (g, g′)) = (p : f = g)

× (p′ : (x : X) (y : Y x)→ f ′ x y =W
Ri p x g′ x y)

where we denote the action of Ri on a proof of equality p : f = g by Ri p x :

Ri f x = Ri g x. Since f ′ x y : W (Ri f x) and g′ x y : W (Ri g x), we have to
transport the left hand side of the equation along the equality Ri p x.

Proof. This holds by function extensionality and using that an equality of
pairs is equivalent a pair of equalities.

114 CHAPTER 5. INDUCTION VERSUS INITIALITY

Lemma 5.3.3. For each sort S : Sorts, the category J S K has equalisers.

Proof. As before, we proceed by induction on the specification of sorts S :

Sorts. If S = nil, then J S K = 1, which trivially satisfies our criteria.
Given (f, f ′), (g, g′) : Si((X,Y), (Z,W)), by the induction hypothesis we

get an equaliser E : |Si−1| with a projection map e : Si−1(E,X). This
equaliser comes equipped with a proof p : f ◦ e = g ◦ e. The equaliser
is then defined as (E,F) with:

F x :≡ (y : Y (Ri e x))

× (f ′ (Ri e x) y =W
Ri p x g′ (Ri e x) y)

with (e, e′) : Si((E,F), (X, Y)) the projection morphism where

e′ x (y, p) :≡ y

Showing that (f, f ′) ◦ (e, e′) = (g, g′) ◦ (e, e′) is then straightforward. The
universal property can be shown similarly to that of the product: we have
to appeal to the universal properties of equalisers in Si−1 and Set.

Remark 5.3.4. Let 1 ← S0 ← S1 ← . . . ← Sn be a chain of sort categories.
All the forgetful functors ti : Si → Si−1 (with S−1 :≡ 1) preserve products
and equalisers. This follows directly from the definition of the limits.

5.3.2 Categories of algebras

For the categories of algebras, we will perform induction on the number
of constructors. We also need to simultaneously show that the forgetful
functors into the category of sorts preserve the limits.

The assumptions for the following lemmata are:

• S : Sorts is the definition of the sorts

• s : SpecS is the specification of the previous constructors, hence

• Algs will have products and equalisers

5.3. LIMITS IN CATEGORIES OF ALGEBRAS 115

• Us : Algs ⇒ J S K preserves these

• Si ∈ S is the sort of the constructor we are adding

The forgetful functor Us extends to Ûs : Algs ⇒ Si since Si ∈ S. By
remark 5.3.4 Ûs also preserves products and equalisers.

Note that Si ̸= 1, as this is prevented by the assumption that Si ∈ J S K.
Products

Lemma 5.3.5 (Products of point constructors). Let s′ : SpecS be s extended
with a point constructor of sort Si as specified by:

• F : Algs ⇒ Si, satisfying:

• ti ◦ F = ti ◦ Ûs

IfAlgs has products andUs preserves them, then the categoryAlgs′ has products
and its forgetful functor Us′ preserves them.

Proof. Suppose we have two algebras in Algs′ , i.e. we have:

• X,Y : |Algs|

• θ : Si(FX, ÛsX), ρ : Si(FY, ÛsY)

• tiθ = idti(ÛsX), tiρ = idti(ÛsY)

We will proceed by showing that X × Y : Algs has an algebra structure.
Let us define for X, Y the morphism ϕÛs

: Si(Ûs(X × Y), ÛsX × ÛsX) as
ϕÛs

:≡ ⟨Ûsπ0, Ûsπ1⟩. Per assumption ϕÛs
has an inverse ϕ−1

Ûs
. We can then

define the algebra structure ζ on X × Y as follows:

F (X × Y)
ϕF // FX × FY

θ×ρ // ÛsX × ÛsY
ϕ−1

Ûs // Ûs(X × Y)

where ϕF :≡ ⟨Fπ0, Fπ1⟩.

116 CHAPTER 5. INDUCTION VERSUS INITIALITY

For this to be an algebra structure, we need to establish that tiζ = idti(Ûs(X×Y)).
This holds as ti preserves products definitionally. We have:

ti(θ × ρ) = ti⟨θ ◦ π0, ρ ◦ π1⟩

= ⟨ti(θ ◦ π0), ti(ρ ◦ π1)⟩

= ⟨π0, π1⟩

= idtI(Ûs(X×Y))

and

tiϕF = ti⟨Fπ0, Fπ1⟩

= ⟨tiFπ0, tiFπ1⟩

= ⟨tiÛsπ0, tiÛsπ1⟩

= tiϕÛs

Putting it all together, we get:

tiζ = ti(ϕ
−1
u ◦ θ × ρ ◦ ϕF)

= tiϕ
−1
u ◦ ti(θ × ρ) ◦ tiϕF

= tiϕ
−1

Ûs
◦ idti(Ûs(X×Y)) ◦ tiϕÛs

= idti(Ûs(X×Y))

We furthermore have to check whether π0 : Si(X×Y,X) and π1 : Si(X×
Y, Y) are algebra morphisms. To this end, let us consider the following
diagram:

F (X × Y)
ϕF //

Fπ0

��

FX × FY
θ×ρ //

π0

xx

ÛX × ÛY
ϕ−1

Û //

π0
&&

Û(X × Y)

Ûsπ0
��

FX
θ

// ÛsX

The triangle on the left holds by definition of ϕF . The square (trapezoid)
in the middle holds by definition of θ × ρ. The triangle on the right can be

5.3. LIMITS IN CATEGORIES OF ALGEBRAS 117

established as follows: we have:

π0 ◦ ϕÛs
= Ûsπ0

= Ûsπ0 ◦ ϕ−1

Ûs
◦ ϕÛs

Since ϕÛs
is an isomorphism it is in particular a monomorphism, hence

from this equation we get that π0 = Ûsπ0 ◦ ϕÛs

−1. This shows that π0 is an
algebra morphism ζ → θ. The proof that π1 is an algebra morphism ζ → ρ

goes along the same lines.
Finally we have to show that the universal property is satisfied. Sup-

pose we have an algebra (A,α) : |Algs′|with f : Algs(A,X) and g : Algs(A, Y)

both algebra morphisms. We get a unique arrow ⟨f, g⟩ : Algs(A,X×Y). We
then have to ascertain that this is an algebra morphism α→ ζ , i.e. we have
to show that the following commutes:

FA
α //

F ⟨f,g⟩
��

⟨Ff,Fg⟩

''

ÛsA

Ûs⟨f,g⟩
��

⟨Ûsf,Ûsg⟩

ww

F (X × Y)
ϕF

// FX × FY
θ×ρ

// ÛsX × ÛsY
ϕ−1

Ûs

// Ûs(X × Y)

The left triangle holds by definition. The middle trapezoid holds as f and
g are algebra morphisms α→ θ and α→ ρ respectively. The right triangle
can be shown to hold by the following equational reasoning:

ϕÛs
◦ Ûs⟨f, g⟩ = ⟨Ûsf, Ûsg⟩

= ϕÛs
◦ ϕ−1

Ûs
◦ ⟨Ûsf, Ûsg⟩

Since ϕÛs
is an isomorphism, it is also an epimorphism, which means we

get Ûs⟨f, g⟩ = ϕ−1

Ûs
◦ ⟨Ûsf, Ûsg⟩.

Note that by construction, Ûs′ preserves products definitionally.

Lemma 5.3.6 (Products of path constructors). Let s′ : SpecS be s extended
with a point constructor of sort Si as specified by:

• F : Algs ⇒ Si, satisfying ti ◦ F = ti ◦ Ûs

118 CHAPTER 5. INDUCTION VERSUS INITIALITY

• l, r : F .→ Ûs satisfying ti l = ti r = idti◦Ûs
.

IfAlgs has products andUs preserves them, then the categoryAlgs′ has products
and its forgetful functor Us′ preserves them.

Proof. Suppose we have objects X,Y : |Algs| with algebra structures θ :

ℓX = rX and ρ : ℓY = rY . We will proceed by constructing an algebra on
the object X × Y .

Note that by naturality of ℓ, the following commutes:

F (X × Y)
ϕF //

ℓX×Y
��

FX × FY

ℓX×ℓY
��

Ûs(X × Y)
ϕ
Ûs

// ÛsX × ÛsX

Postcomposing with ϕ−1

Ûs
, we get the equation:

ℓX×Y = ϕ−1

Ûs
◦ ℓX × ℓY ◦ ϕF

Since we have ℓX = rX and ℓY = rY , we also have ℓX×Y = rX×Y .
Now the category of algebras Algs′ is a full subcategory of Algs, hence

we get automatically that the projections are algebra morphisms and that
the universal property is satisfied.

By construction of the products, the forgetful functorUs′ preserves prod-
ucts definitionally.

Equalisers

To talk about equalisers in a category of algebras, we need to know what
equality of algebra morphisms is. An algebra morphism is a pair of a mor-
phism in the underlying category and an equality stating that this mor-
phism preserves the algebra structure. If we have two pairs, since equal-
ity of pairs is a pair of equalities, an equality between them consists of an
equality between the morphisms and an equality between the proofs that
they preserve the algebra structure. Since we are working with types that

5.3. LIMITS IN CATEGORIES OF ALGEBRAS 119

satisfy uniqueness of identity proofs, we can ignore the latter part, hence
an equality between two algebra morphisms is just an equality of the two
underlying morphisms. This reasoning applies to both point constructor
algebra morphisms as well as path constructor algebra morphisms.

Lemma 5.3.7 (Equalisers of point constructors). Let s′ : SpecS be s extended
with a point constructor of sort Si as specified by:

• F : Algs ⇒ Si, satisfying:

• ti ◦ F = ti ◦ Ûs

IfAlgs has equalisers andUs preserves them, then the categoryAlgs′ has equalis-
ers and its forgetful functor Us′ preserves them.

Proof. Suppose we have two algebras in Algs′ , i.e. we have:

• X,Y : |Algs|

• θ : Si(FX, ÛsX), ρ : Si(FY, ÛsY)

• tiθ = idti(ÛsX), tiρ = idti(ÛsY)

along with morphisms f, g : Algs(X, Y) satisfying:

• Ûsf ◦ θ = ρ ◦ Ff

• Ûsg ◦ θ = ρ ◦ Fg

i.e. they are algebra morphisms θ → ρ.
DefineE : Algs to be the equaliser of f and g with inclusion e : Algs(E,X)

which satisfies f ◦ e = g ◦ e. We need to show that E has an algebra struc-
ture and e is an algebra morphism of this structure into θ. The following
diagram commutes by virtue of E being an equaliser and f and g being
algebra morphisms:

FE
Fe // FX

θ
��

Ff
//

Fg // FY

ρ
��

ÛsE
Ûse // ÛsX

Ûsf

//
Ûsg // ÛsX

120 CHAPTER 5. INDUCTION VERSUS INITIALITY

Since Ûs preserves equalisers, ÛsE is an equaliser, hence we get a unique
arrow ϵ : Si(FE, ÛsE). We need to check that we have tiϵ = idti(ÛsE). We
know that the following commutes:

ti(FE)
ti(Fe) //

tiϵ
��

ti(FX)

tiθ
��

ti(ÛsE)
ti(Ûse)// ti(ÛsX)

tiÛsf

//
tiÛsg // ti(ÛsX)

Furthermore, tiθ = idti(ÛsX) and ti(Fe) = ti(Ûse), and since ti preserves
equalisers, we necessarily have that tiϵ = idti(ÛsE).

We still have to establish that the universal property is satisfied. Sup-
pose we have (A,α) : |Algs′| along with a an algebra morphism α → θ, by
the universal property of E, we get a unique arrow h : Algs(A,E), satisfy-
ing a = e ◦ h. We have to establish whether this is an algebra morphism
α→ ϵ. Consider the following diagram:

FA
Fh //

α
��

Fa

##
FE

Fe //

ϵ
��

FX

θ
��

ÛsA
Ûsh

//

Ûsa

;;ÛsE
Ûse

// ÛsX
Ûsf

//
Ûsg // ÛsX

We have yet to establish whether the left square commutes, the other subdi-
agrams have already been shown to commute. Observe that we have two
cones (FA, θ ◦ Fa) and (FA, Ûsa ◦ α) for the fork Ûsf, Ûsg. Since a is an
algebra morphism, these two cones are actually the same. Both ϵ ◦ Fh and
Ûsh ◦ α are then cone morphisms from this cone into (ÛsE, Ûse), which by
the universal property of ÛsE means that Ûsh◦α = ϵ◦Fh, which establishes
the commutativity of the left square and thereby the universal property of
equalisers in Algs′ .

Lemma 5.3.8 (Equalisers of path constructors). Let s′ : SpecS be s extended

5.3. LIMITS IN CATEGORIES OF ALGEBRAS 121

with a path constructor of sort Si as specified by:

• F : Algs ⇒ Si, satisfying ti ◦ F = ti ◦ Ûs

• l, r : F .→ Ûs satisfying ti l = ti r = idti◦Ûs
.

IfAlgs has equalisers andUs preserves them, then the categoryAlgs′ has equalis-
ers and its forgetful functor Us′ preserves them.

Proof. Suppose we have objects X, Y : |Algs| with algebra structures θ :

ℓX = rX and ρ : ℓY = rY and morphisms f, g : Algs(X, Y). We claim that
the equaliser E : Algs of f and g has an algebra structure, i.e. we can show
that ℓE = rE .

Since ℓX = rX and the naturality of l and r, we have that the following
commutes:

FE
Fe //

ℓE ��

FX

ℓX
��

rX
��

ÛsE
Ûse // ÛsX

Ûsf

//
Ûsg // ÛsX

We observe that (FE, ℓX ◦ Fe) is a cone for the fork Ûsf, Ûsg. By ℓX = rX ,
(FE, rX ◦Fe) is the same fork. We then have that by naturality, both ℓE and
rE are cone morphisms from (FE, ℓX◦Fe) into the terminal cone (ÛsE, Ûse),
hence by universality we get that ℓE = rE .

Since Algs′ is a full subcategory of Algs, E with its proof ϵ : ℓE = rE

inherits its universal property directly from Algs.

Together with lemma 5.2.1 and lemma 5.2.2, this immediately gives the
main theorem of this section:

Theorem 5.3.9. For each sort S : Sorts and specification s : Spec, let X be an
object in the category of algebras Algs. Then X is initial if and only if X satisfies
the section principle.

In particular, this means that when implementing or formalising quo-
tient inductive-inductive types, one can restrict attention to the conceptu-
ally simpler notion of initial algebra.

122 CHAPTER 5. INDUCTION VERSUS INITIALITY

5.4 Deriving the induction principle

If we unfold the section principle for our categories of algebras, we will not
end up with a very natural induction principle. One of the key features of
type theory is that we have special machinery for dealing with type fam-
ilies/fibrations. If we want to define a predicate on a type X , the most
natural way to do it is usually to define a family X → Set, not to define
another type Y with a function Y → X .

Since our categories of sorts and algebras are built out of types, we can
try and derive a notion of families in these categories. In Set, we have the
equivalence, for any X : Set:

(X → Set) = (Y : Set)× (p : Y → X)

where the function left to right is defined as λP.((x : X)× P x, π0), i.e. we
map the family to its “total space” and its projection function. The inverse
operation is the preimage family: (Y, p) is mapped to λx.(y : Y)× (p y = x).

Apart from having the machinery to deal with type families, we also
have the machinery to deal with dependent functions, or equivalently, sec-
tions of fibrations. We have:

(x : X)→ P x = (s : X → (x : X)× P x)× (π0 ◦ s = idX)

where the map from left to right is the map that gives the “graph” of the
function: a dependent function s is mapped to the non-dependent func-
tion λx.(x, s x). The map in the other direction is the second projection π1,
which is well-typed due to s being a section.

We will start out with using this observation to make precise the deriva-
tion of algebra families and dependent algebra morphisms in F -alg for an
endofunctor F : Set ⇒ Set in section 5.4.1. We will then give a general
framework containing the ingredients for derivations of the induction prin-
ciple in section 5.4.2. Finally, in section 5.4.3, we give some examples of
induction principles of some quotient inductive-inductive definitions and
then employ the general framework to derive the induction principle for

5.4. DERIVING THE INDUCTION PRINCIPLE 123

arbitrary quotient inductive-inductive definitions in its full generality.

5.4.1 Induction for F -algebras

If we want to derive the notion of families of F -algebras for some endofunc-
tor F : Set ⇒ Set, then we proceed as follows: let (X, θ) : |F -alg|, we want
to solve the equivalence for the type τ :

(P : X → Set)× (m : τ)

= ((Y, ρ) : |F -alg|)× ((p, p0) : F -alg((Y, ρ), (X, θ)))

The idea here is that we want to determine the hypotheses needed to prove
(x : X)→ P x. The type τ that we will derive below, is the type of hypothe-
ses.

We set Y to (x : X)×P x and p to π0. We then have to simplify the type
(ρ : F ((x : X)× P x))× (p0 : π0 ◦ ρ = θ ◦ F π0), which leads us to:

m : (x : F ((x : X)× P x))→ P (F π0 x)

This can be simplified even further if we define the operation □F : (X →
Set) → FX → Set, i.e. the action of F on type families, which has the
defining equation F ((x : X) × P x) = (x : FX) × □F P x. Rewriting the
type of m using this notation gives us:

m : (x : FX)×□F P x→ P (θ x)

Intuitively the type □F P x is the induction hypothesis. We can also read
it as the modality “all”: □F P x holds if P holds for all values of type X

“contained” in x.

Now that we know what the algebra families are, we want to go on
and derive the dependent algebra morphisms. Let (X, θ) : |F -alg| with an
algebra family P : X → Set, m : (x : FX)×□F P x→ P (θ x). Our goal is

124 CHAPTER 5. INDUCTION VERSUS INITIALITY

to find a type τ such that the following equivalence holds:

((s : (x : X)→ P x)× τ) = (f : F -alg((X, θ), (ΣX.P, m̃)))× (is-section f)

where (ΣX.P, m̃) is the total space of the family of algebras (P,m), where
m̃ is given as the composite:

F (ΣX.P)
ϕ // Σ(FX).□F P

⟨θ◦π0,m⟩ // ΣX.P

where ϕ is the map given by the defining equivalence of □F .

As □F gives the functorial action of F on families, we need a similar
functorial actions on dependent functions, namely F : ((x : X) → P x) →
(x : FX)→ □F P x. F has the defining property:

graph (F s) = ϕ ◦ F (graph s)

where graph s = λx.(x, s x).

5.4. DERIVING THE INDUCTION PRINCIPLE 125

Using this, we can derive dependent morphisms for F -alg as follows:

(f : F -alg((X, θ), ((x : X)× P x, m̃)))× (is-sectionF -alg (π0, refl) f)

= { definition of F -alg and is-sectionF -alg }

(f : X → (x : X)× P x)× (f ◦ θ = m̃ ◦ Ff)× (π0 ◦ f = idX)

= { dependent morphism structure on Set }

(s : (x : X)→ P x)× (s0 : graph s ◦ θ = m̃ ◦ F (graph s))

= { equality of pairs is pair of equalities }

(s : (x : X)→ P x)

× (s0 : π0 ◦ graph s ◦ θ = π0 ◦ m̃ ◦ F (graph s))

× (s1 : π1 ◦ graph s ◦ θ = π1 ◦ m̃ ◦ F (graph s))

= { π0 is an algebra morphism m̃→ θ and π0 ◦ graph s = idX }

(s : (x : X)→ P x)× (s0 : θ = θ)× (s1 : π1 ◦ graph s ◦ θ = π1 ◦ m̃ ◦ F (graph s))

= { unfold definition m̃, θ = θ is trivial by uniqueness of identity proofs }

(s : (x : X)→ P x)× (s1 : π1 ◦ graph s ◦ θ = π1 ◦ ⟨θ ◦ π0,m⟩ ◦ ϕ ◦ F (graph s))

= { computation rule of ⟨θ ◦ π0,m⟩, π1 ◦ graph s = s, defining property of F }

(s : (x : X)→ P x)× (s1 : s ◦ θ = m ◦ graph(F s))

If we η-expand and β-reduce the definitions, we see that a dependent
algebra morphism on an algebra family (P,m) on an algebra (X, θ) consists
of a dependent function s : (x : X)→ P x with computation rule s (θ x) =

m x (F s x).

5.4.2 General framework

To derive notions of families and dependent morphism in the categories of
algebras, we will introduce some notation, making precise what we have
to generalise. We want to define a type of families over an object that is
equivalent to the type of morphisms into that same object. We will call
such a structure the family structure on that category. This definition on
its own is not very useful: we can always trivially satisfy the definition by

126 CHAPTER 5. INDUCTION VERSUS INITIALITY

letting the type of families exactly be the type of morphisms into an object.
However, our categories are not completely arbitrary: they are always in
some way built out of objects and morphisms in Set. We can therefore use
the notion of families in Set for those parts and see how the remaining
parts simplify.

Definition 5.4.1 (Family structure on a category). The operations we need
from a category C to talk about families are as follows:

• FamC : |C| → Set

• total : {X : |C|} → FamC X → |C|

• proj : {X : |C|} (P : FamC X)→ C(total P,X)

• preimage : {X : |C|} (Y : |C|) (p : C(Y,X))→ FamC X

The operations should also satisfy the following correctness conditions, for
any X : |C|:

• for any family P : FamC X ,

preimage X (total P) (proj P) = P

• for any object Y : |C|with p : C(Y,X),

(total X (preimage Y p), proj X (preimage Y p))

= (Y, p)

A family structure as defined above gives us an equivalence FamC X =

(Y : |C|)×(p : C(Y,X)). We will sometimes explicitly define the operations
total, proj and preimage, but sometimes only some of them and will give the
definition of FamC along with the equivalence reasoning that lead up to that
definition. From this equivalence proof, we can reconstruct the operations.

To define these operations for the sort and algebra categories, we can
perform induction on the specification and apply the same techniques as
we did to derive the notion of families in F -alg.

5.4. DERIVING THE INDUCTION PRINCIPLE 127

Given these operations, we can generalise the □ operator to any functor
F : C ⇒ D.

Definition 5.4.2 (Functorial action on families). Given family structures
FamC and FamD , and X : |C| and P : FamC X , □F : (X : |C|) → FamC →
FamD is defined as:

□F P :≡ preimageD (F (totalC P), F (projC P))

Proposition 5.4.3. Given family structures FamC and FamD , and X : |C| and
P : FamC X , we have

F (totalC P) = totalD (□F P)

Proof. This follows directly from the correctness condition of the family
structure on D:

F (totalC P)

= { correctness condition of FamD }

totalD (preimageD (F (totalC P), F (projC P)))

= { definition of □F }

totalD (□F P)

Corollary 5.4.4. Applying proposition 5.4.3 to endofunctors onSet, we get, given
F : Set ⇒ Set, X : Set, P : X → Set:

F ((x : X)× Px) = (x : FX)×□F P x

Having defined families, we can then go on to generalise the notion of
dependent functions. In Set, given a family P : X → Set, a dependent
function (x : X) → P x corresponds to a function s : X → (x : X) ×
P x along with s0 : π0 ◦ s = idX . The function from left to right sends
a dependent function s to its graph λx.(x, s x), which is trivially a section.

128 CHAPTER 5. INDUCTION VERSUS INITIALITY

The other direction composes the section swith π1, but we have to transport
along the proof given by s0 to make it typecheck.

Definition 5.4.5. The type of sections in a category C is defined as:

SectC : {X : |C|} (Y : |C|) (p : C(Y,X))→ Set

SectC Y p :≡ (s : C(X,Y))× (s0 : p ◦ s = idX)

A dependent morphism structure on a category with a family structure
is something that allows us to perform the same construction as in Set:

Definition 5.4.6 (Dependent morphism structure). To generalise depen-
dent morphisms to a categoryC, we need a familyDepHomC : {X : |C|} (P :

FamC X)→ Set along with the following operations, given an objectX : |C|
and a family P : FamC X :

• graph : DepHom P → Sect (total P, proj P)

• snd : Sect (total P, proj P)→ DepHomC X P

The correctness conditions are:

• for any f : DepHomC P ,

snd P s (graph P f) = f

• for any s : Sect (total P, proj P),

graph P (snd P s) = s

Note that the correctness conditions give us an equivalence

DepHomC P = SectC X (projC P)

Similar to the action of a functor F on families, we can use this structure
to define the action of functors on dependent morphisms. Given a functor

5.4. DERIVING THE INDUCTION PRINCIPLE 129

F : C ⇒ D, we can define:

F : (X : |C|) (P : FamC X)→ DepHomC P → DepHomC FX (□F P)

If F happens to be an endofunctor on Set, this simplifies to:

F : (X : Set) (P : X → Set)→ ((x : X)→ P x)→ (x : FX)→ □F P x

Before we define F , observe that we can easily define a function:

SectC(s, p)→ SectD (Fs, Fp)

F can then be defined as the composite:

DepHomC P

graph
��

SectC (totalC P, projC P)

��
SectD (F (totalC P), F (projC P))

ϕ
��

SectD (totalD (□F P), projD (□F P))

snd
��

DepHomD (□F P)

The map ϕ we get from the equivalence given in proposition 5.4.3.

5.4.3 Induction for quotient inductive-inductive definitions

The family structure on Set is the usual one. We can derive definitions
of the family structure on categories of algebras by induction. Since they
are defined “on top of” Set, we can use the specification and the family
structure on Set to derive appropriate definitions. We will start out by
considering the induction principles for the contexts and types example

130 CHAPTER 5. INDUCTION VERSUS INITIALITY

and the interval type.

Induction principle for (Con,Ty)

The induction principle consists of four parts:

• the motive, which is intuitively the property that we are trying to
prove holds for every element of the inductive definition

• the methods: we show for every constructor that the motive holds for
that constructor, given the assumption that the motive holds for the
recursive arguments

• given the motive and methods, we get a dependent morphism from the
inductive type into the motive

• this dependent morphism comes with computation rules, telling us
how this dependent morphism behaves in conjunction with the con-
structors.

Consider the inductive definition of the syntax of type theory, restrict-
ing ourselves to contexts and types in a context, i.e. we have sorts Con : Set

and Ty : Con→ Set with constructors:

ϵ : Con

, : (Γ : Con)→ Ty Γ→ Con

‘Π : (Γ : Con) (A : Ty Γ) (B : Ty (Γ,A))→ Ty Γ

The motives for this definition are:

P : Con→ Set

Q : (Γ : Con)→ P Γ→ Ty Γ→ Set

P is a family over Con and Q is a family over both P and Ty. In the motive
for Ty we are allowed to refer to results of the induction principle applied
to the context at hand.

5.4. DERIVING THE INDUCTION PRINCIPLE 131

The methods are as follows:

mϵ : P ϵ

m , : (Γ : Con) (x : P Γ)

(A : Ty Γ) (y : Q Γ x A)

→ P (Γ,A)

m‘Π : (Γ : Con) (x : P Γ)

(A : Ty Γ) (y : Q Γ x A)

(B : Ty (Γ,A)) (z : Q (Γ,A) (m , Γ x A y) B)

→ Q Γ x (‘Π Γ A B)

The method for the constructor ϵ is unsurprising. For , we see that
its method, just like the constructor itself, refers to the motive of Ty. The
method for ‘Π refers to a previous method, reflecting the reference to the
corresponding previous constructor.

Given these motives and methods, the induction principle gives us the
following dependent functions:

Con-ind : (Γ : Con)→ P Γ

Ty-ind : (Γ : Con) (A : Ty Γ)→ Q Γ (Con-ind Γ) A

with computation rules:

Con-ind ϵ = mϵ

Con-ind (Γ,A) = m , Γ (Con-ind Γ) A (Ty-ind Γ A)

Ty-ind Γ (‘Π Γ A B) = m‘Π Γ (Con-ind Γ) A (Ty-ind Γ A) B (Ty-ind (Γ,A) B)

Reading these equations as a recursive definition of the morphisms, we
see that it is a mutual definition. Another thing to note is that the last equa-
tion, for the constructor ‘Π, has repeating variables on the left hand side, so
we cannot read it strictly as a pattern matching definition, but instead it is a
definition given by dependent pattern matching. Unifying the type of the

132 CHAPTER 5. INDUCTION VERSUS INITIALITY

constructor ‘Π with the signature of Ty-ind, we see that the two variables of
type Con have to be the same.

Induction principle for the interval type

Let us recall the inductive definition of the interval I with constructors:

zero : I

one : I

seg : zero = one

Since it is just a Set-sorted inductive definition, a motive for induction
on I is a family P : I→ Set. The methods are:

mzero : P zero

mone : P one

mseg : mzero =
P
seg mone

which gives us a dependent function I-ind : (x : I) → P x with compu-
tation rules:

I-ind zero = mzero

I-ind one = mone

The induction principle for I is not very different from its recursion prin-
ciple. The most interesting difference is that the method for seg is a depen-
dent equality, as mzero and mone have definitionally different types.

Since we are working with sets, we do not need to add a computation
rule for the path constructor seg, as that would introduce a path between
equalities, i.e. it would not introduce anything new.

5.4. DERIVING THE INDUCTION PRINCIPLE 133

Family and dependent morphism structure on Fam

Before we move on to sort categories and categories of algebras, let us first
consider the families and dependent morphisms in the category Fam. Re-
call that Fam is the sort category for the inductive-inductive type (Con,Ty)
of contexts and types in a context. We will use the intuition of the induc-
tion principle of that inductive-inductive definition to make sense of what
is going on here.

Our first goal is to derive a family FamFam : |Fam| → Set that satisfies,
for any X : |Fam|:

FamFam X = (Y : |Fam|)×Fam(Y,X)

We derive the definition by taking the right hand side of the above equation
and performing the following equational reasoning:

(Y : |Fam|)×Fam(Y,X)

= { definition of objects and morphisms in Fam }

(Y : Set)× (Q : Y → Set)× (p : Y → X)

× (q : (y : Y)→ Q y → P (p y))

= { combining Y and P using the family structure on Set }

(V : X → Set)× (Q : (x : X)× V x→ Set)

× (q : (y : (x : X)× V x)→ Q y → P (π1 y))

= { currying }

(V : X → Set)× (Q : (x : X)→ V x→ Set)

× (q : (x : X)→ (y : V x)→ Q x y → P x)

= { combining Q and q using family structure on Set }

(V : X → Set)× (W : (x : X)→ V x→ P x→ Set)

What we ended up with does match with what a motive for (Con,Ty) is,

134 CHAPTER 5. INDUCTION VERSUS INITIALITY

namely:

(P : Con→ Set)× (Q : (Γ : Con)→ P Γ→ Ty Γ→ Set)

A motive consists of a motive on Con, which is just a family on it, along
with a family on Ty, for every Γ : Con. Since we may also refer to results
we get from doing induction on Γ, we also have a P Γ in there.

We then give the following definitions:

FamFam (X,P) :≡ (V : X → Set)× (W : (x : X)→ P x→ V x→ Set)

totalFam {X,P} (V,W) :≡ ((x : X)× V x, (λ(x, z).(y : P x)×W x y z))

projFam {X,P} (V,W) :≡ (λ(x, y).x, λ(x, y) (z, w)→ z)

preimageFam {X,P} ((C,D), (p, q)) :≡ (λa.(c : C)× p c = a, λxy(z, z′).(w : D z)× (q z w =P
z′ y))

Now we have a family structure on Fam, we need to define what depen-
dent morphisms of these families are. Returning to the (Con,Ty) example,
given a motive P : Con → Set, Q : (Γ : Con) → P Con → Ty Γ → Set and
the appropriate methods, the induction principle gives us two functions:

Con-ind : (Γ : Con)→ P Γ

Ty-ind : (Γ : Con) (τ : Ty Γ)→ Q Γ (Con-ind Γ) τ

The function Ty-ind refers to Con-ind in its type as well: the results we get
from Con-ind may be used in the motive of Ty.

5.4. DERIVING THE INDUCTION PRINCIPLE 135

We can derive this formulation by the following equational reasoning:

(s : FamFam((X,P), (totalFam (X,P) (V,W))))

× (s0 : projFam (X,P) (V,W) ◦Fam s = idFam (X,P))

= { definition of morphisms in Fam, equality of pairs is pair of equalities }

(s : X → (x : X)× V x)

× (t : (x : X)→ P x→ (y : P (π0 (s x)))× (W (π0 (s x)) y (π1 (s x))))

× (s0 : π0 ◦ s = idSet X)× (t0 : λxz.π0 (t x z) = λxz.z)

= { combining s and s0 using the dependent morphism structure on Set }

(s : (x : X)→ V x)× (t : (x : X)→ P x→ (y : P x)×W x y (s x))

× (t0 : λxz.π0 (t x z) = λxz.z)

= { combining t and t0 using the dependent morphism structure on Set }

(s : (x : X)→ V x)× (t : (x : X) (y : Px)→ W x y (s x))

The dependent morphism structure on Fam is then:

DepHomFam {X,P} (V,W) :≡ (f : (x : X)→ V x)

× (g : (x : X)→ (y : P x)→W x y (f x))

Sort categories

The family structure on a sort category can be given by induction on the
specification. In the case of an empty specification, we define Fam1 X :≡ 1

for any X : |1|. The other definitions are equally trivial.
In the induction step case, we get a family structure on Si−1 and have to

provide one on the category Si which is built out of Si−1 with the functor
Ri : Si−1 ⇒ Set. Our goal is to find, given X : |Si−1| and P : RiX → Set, a
set FamSi

(X,P) such that:

FamSi
(X,P) = ((Y,Q) : |Si|)× (p : Si((Y,Q), (X,P)))

We can perform the following equational reasoning on the right hand side

136 CHAPTER 5. INDUCTION VERSUS INITIALITY

of the equation above:

(Y : |Si|)× (p : Si(Y, (X,P)))

= { definition of Si }

(Y : |Si−1|)× (Q : RiY → Set)× (p : Si−1(Y,X))× (q : (x : RiY)→ Q x→ P (Ri p x))

= { combining Y and p using family structure on Si−1 }

(V : FamSi−1
X)× (Q : Ri(totalSi−1

X V)→ Set)

× (q : (x : Ri(totalSi−1
X V))→ Q x→ P (Ri(projSi−1

X V) x))

= { rewrite Ri(totalSi−1
X V) with □Ri

}

(V : FamSi−1
X)× (Q : (x : RiX)×□Ri

X V x→ Set)

× (q : (x : RiX)× (y : □Ri
X V x)→ Q (x, y)→ P x))

= { combining Q and q using family structure on Set }

(V : FamSi−1
X)× (W : (x : RiX)×□Ri

X V x→ P x→ Set)

The family structure on Si is then:

FamSi
(X,P) :≡ (V : FamSi−1

X)×(W : (x : RiX)×□Ri
X V x→ P x→ Set)

with

totalSi
{X,P} (V,W) :≡ (totalSi−1

X V, λx.(y : P (Ri (projSi−1
X V) x))× (W (ϕ x) y))

projSi
{X,P} (V,W) :≡ (projSi−1

X V, λx(y, z).y)

where ϕ : (x : RiX) × □Ri
X V x → Ri (totalSi−1

X V) is the isomorphism
we get from the definition of □.

The dependent morphism structure on Si can be derived in a similar
way that of DepHomFam, arriving at:

DepHomSi
{X,P} (V,W) :≡ (f : DepHomSi−1

X V)

× (g : (x : Ri X) (y : P x)→W (x, R̄i f x) y)

5.4. DERIVING THE INDUCTION PRINCIPLE 137

Point constructors

Just as the sort and algebra categories are defined inductively as having
objects from the previous sort/algebra categories along with some extra
structures, the family structures on these categories reflect this pattern. We
have seen this happen in the previous section when describing the family
structure on sort categories.

Before we move on to the full generality of point constructors of arbi-
trary sort, we will consider Set-sorted point constructors. Let Algs be a cat-
egory of algebras of some specification s : Spec. A Set-sorted constructor
on Algs is given by a functor F : Algs ⇒ Set and the new category of alge-
bras is (F,Us)-dialg with Us : Algs ⇒ Set the forgetful functor. Following a
similar derivation to that of the family structure on F -alg for endofunctors
F on Set, we arrive at:

Fam(F,Us)-dialg (X, θ) :≡ (P : FamAlgs X)×(m : (x : FX)×□F P x→ □Us P (θ x))

We can recover FamF -alg from this ifAlgs = Set andUs is the identity functor,
as □idSet P = P .

Moving on to the fully general point constructor case, we have the fol-
lowing data:

• S : Sorts with s : SpecS

• Si : Cat with p : Si ∈ S

• F : Algs ⇒ Si such that ti ◦ F = ti ◦ Ûs

We start out by investigating what □F and □Ûs
look like. Recall that

we can split the functor F : Algs ⇒ Si into two operations, which are both
functorial:

• F 0 : |C| → |Si−1|, which we know to be equal to Û
0

s

• F 1 : (X : |C|)→ (x : Ri(F
0X))→ F 1 X x→ Set

138 CHAPTER 5. INDUCTION VERSUS INITIALITY

Knowing what the family structure onSi is, we know that forP : FamAlgs X

□F P has the following type:

□F P : (V : FamSi−1
F 0X)×(W : (x : Ri(F

0X))→ □Ri
V x→ F 1X x→ Set)

Splitting this into its constituents will turn out to be useful, just as we have
done with the functors itself. Let us call the first and second projections of
this □F 0 and □F 1 respectively:

□F 0 P : FamSi−1
(F 0 X)

□F 1 P : (x : Ri(F
0X))×□Ri

(□F 0 P) x→ F 1 X x→ Set

Since the □ operation is functorial, we will use □Ri◦F 0 instead of the nested
variant. Also since F 0 = Û

0

s, we will use □
Ri◦Û

0
s
.

Define s′ :≡ snoc s (Si, p, F) : Spec to be the new specification, which is
s extended with the point constructor given by the data above. We can now
derive the family structure on this category Algs′ (see fig. 5.1) and arrive at
the following:

FamAlgs′ (X, θ) :≡ (P : FamAlgs X)

× (m : (x : Ri(Û
0

sX))× (x′ : □
Ri◦Û

0
s
P x)

→ (y : F 1 X x)× (y′ : □F 1 P (x, x′) y)

→ □
Û
1
s
P (x, x′) (θ x y))

What we get out as the definition of algebra families for point construc-
tors looks a bit daunting at first glance. However, we can also see how it is
a generalisation of the original situation in F -alg for endofunctors on Set.
The first part, (x : Ri(Û

0

sX)) × (x′ : □
Ri◦Û

0
s
P x), gives us the induction hy-

potheses for all the sorts “below” the sort of the current constructors. The
second part, (y : F 1 X x)× (y′ : □F 1 P (x, x′) y), gives us the induction hy-
pothesis for the recursive arguments, which looks very similar to the F -alg

case. Finally, the result type is □
Û
1
s
P (x, x′) (θ x y), which is the dialgebra

5.4. DERIVING THE INDUCTION PRINCIPLE 139

(Y : |Algs|)
× (ρ : Si(FY, ÛsY))× (tiρ = idti(ÛsX))

× (Algs′((Y, ρ), (X, θ))

= { unfold definition of Algs′ }
(Y : |Algs|)× (ρ : Si(FY, ÛsY))× (tiρ = idti(ÛsY))

× (p : Algs(Y,X))× (p0 : Ûsp ◦ ρ = θ ◦ Fp)

= { combine Y and p using Fam structure on Algs }
(P : FamAlgs X)× (ρ : Si(F (total P), Ûs(total P)))× (tiρ = idti(Ûs(total P)))

× (p0 : Ûs(proj P) ◦ ρ = θ ◦ F (proj P))

= { unfold definition Si and expand p0 }
(P : FamAlgs X)

× (ρ : (x : Ri(Û
0

s(total P)))→ F 1(total P) x→ Û
1

s(total P) x)

× (p0 : (x : Ri(Û
0

s(total P))) (y : F 1(total P) x)

→ Û
1

s(proj P) x(ρ x y) = θ (Ri (Û
0

s(proj P)x) (F 1 (proj P) x y)))

= { rewriting using □ notation }
(P : FamAlgs X)

× (ρ : (x : Ri(Û
0

sX))× (x′ : □
Ri◦Û

0
s
P x)

→ (y : F 1 X x)× (y′ : □F 1 P (x, x′) y)

→ (z : Û
1

s X x)×□
Û
1
s
P (x, x′) z)

× (p0 : (x : Ri(Û
0

sX))× (x′ : □
Ri◦Û

0
s
P x)

→ (y : F 1 X x)× (y′ : □F 1 P (x, x′) y)

→ π0 (ρ (x, x′) (y, y′)) = θ x y)

= { singleton contraction }
(P : FamAlgs X)

× (m : (x : Ri(Û
0

sX))× (x′ : □
Ri◦Û

0
s
P x)

→ (y : F 1 X x)× (y′ : □F 1 P (x, x′) y)

→ □
Û
1
s
P (x, x′) (θ x y))

Figure 5.1: Derivation of the family structure for point constructors

140 CHAPTER 5. INDUCTION VERSUS INITIALITY

counterpart of what we had before.

For dependent morphisms, the Set-sorted case again follows the F -alg

for endofunctors F on Set in a straightforward way. Suppose we have F :

Algs ⇒ Set, along with (X, θ) : |(F,Us)-dialg| and (P,m) : Fam(F,Us)-dialg (X, θ),
we have:

DepHom(F,Us)-dialg (P,m) :≡ (s : DepHomAlgs P)×(s0 : (x : FX)→ Us s (θ x) = mx (F s x))

Generalising to the arbitrarily sorted point constructors follows the same
steps as we took to derive the notion of algebra family for point construc-
tors. We have to find out, given P : FamAlgs X and X : |Algs|, what F :

DepHomAlgs P → DepHomSi
(□F P) gives us for a functor F : Algs ⇒ Si. We

can split F into two parts:

F
0
: DepHomSi−1

(□F 0 P)

F
1
: (s : DepHomAlgs P)→ (x : Ri(F

0X)) (y : F 1 X x)→ □F 1 (x,Ri s x) y

The dependent morphism structure on Algs′ is then, given (X, θ) : |Algs′|
and (P,m) : FamAlgs′ (X, θ):

DepHomAlgs′ (P,m) :≡

(s : DepHomAlgs P)

× (s0 : (x : Ri(Û
0

sX)) (y : F 1 X x)

→ U
1

s s x (θ x y) = m (x,Ri ◦ Û
0

s s x) (y, F
1
s x y))

Path constructors

Let us first considerSet-sorted path constructors. Suppose we haveAlgs for
some specification s : Spec and F : Algs ⇒ Set describing the arguments
and ℓ, r : F .→ Us the end points of the path constructor. Let s′ : Spec

be s extend with the path constructor described by these data. Since Algs′

is a full subcategory of Algs, we have that FamAlgs′ (X, θ) for X : Algs and

5.4. DERIVING THE INDUCTION PRINCIPLE 141

θ : ℓX = rX is simply:

(P : FamAlgs)× (ρ : ℓtotal P = rtotal P)

We can simplify this a bit further. We can define ℓP : (x : FX)×□F P x→
(y : UsX)×□Us P y as ℓtotal P with the defining equivalences of □F and □u

plugged in at the right places. We furthermore will use the notation ℓ0P and
ℓ1P to indicate first and second projections of these functions respectively.
Note that by naturality ℓ0P = ℓX and r0P = rX . An equality ℓP = rP is then
an equality of functions mapping into a Σ-type, we can then perform the
following equational reasoning to simplify the expression:

(ℓtotal P = rtotal P)

= { definition of ℓP and rP }

(ℓP = rP)

= { equality of pairs is a pair of equalities }

(ρ0 : π0 ◦ ℓP = rP)× (ρ1 : π1 ◦ ℓP =λf.(x:FX)×□FPx→□UsP (fx)
ρ0

π1 ◦ rP)

= { by definition and naturality of ℓP and rP }

(ρ0 : ℓX = rX)× (ρ1 : π1 ◦ ℓP =λf.(x:FX)×□FPx→□UsP (fx)
ρ0

π1 ◦ rP)

= { by uniqueness of identity proofs, we can multiply by (ρ0 = θ) }

(ρ0 : ℓX = rX)× (ρ0 = θ)× (ρ1 : π1 ◦ ℓP =λf.(x:FX)×□FPx→□UsP (fx)
ρ0

π1 ◦ rP)

= { singleton contraction }

(π1 ◦ ℓP =λf.(x:FX)×□FPx→□UsP (fx)
ρ0

π1 ◦ rP)

= { function extensionality }

(x : FX)× (y : □F P x)→ l1P (x, y) =
□UsP
θx r1P (x, y)

In the general case, we have the following data describing a path con-
structor:

• S : Sorts with s : SpecS

• Si : Cat with p : Si ∈ S

142 CHAPTER 5. INDUCTION VERSUS INITIALITY

• F : Algs ⇒ Si such that ti ◦ F = ti ◦ Ûs

• l, r : F .→ Ûs such that til = tir = id

Define s′ :≡ snoc s (Si, p, F) : Spec to be the new specification, which is
s extended with the path constructor given by the data above. Let (X, θ) :

|Algs′|, i.e.:

θ : (x : Ri(Û
0

sX))→ (y : F 1 X x)→ ℓ1X x y = r1X x y

Deriving the family structure Algs′ follows both our Set-sorted situation
described above as well as the derivation for arbitrarily sorted point con-
structors. The family structure on Algs′ is then:

FamAlgs′
(X, θ) :≡ (P : FamAlgs X)

(m : (x : Ri(Û
0

sX))× (x′ : □
Ri◦Û

0
s
P x)

→ (y : F 1 X x)× (y′ : □F 1 P (x, x′) y)

→ ℓ1P (x, x′) (y, y′) =
□

Û
1
sP (x,x′)

θ x y r1P (x, x′) (y, y′))

Since Algs′ is a full subcategory of Algs, the dependent morphisms are sim-
ply inherited from Algs:

DepHomAlgs′
(P,m) :≡ DepHomAlgs P

5.4.4 Putting it all together

In the last subsection, we have seen what the induction principles of quo-
tient inductive-inductive definitions look like. Given a specification s :

Spec with sorts S : Sorts, we can construct the family and dependent mor-
phism structure on Algs by induction on s. We have seen that forSet-sorted
definitions it is a rather straightforward generalisation of the situation for
F -algebras with F an endofunctor on Set. The fully general case where we
may have arbitrary sorts is a bit more involved, but if we squint our eyes we
can still see that the induction principle is of the same form as the principle

5.5. RELATED WORK 143

for Set-sorted definitions.

5.5 Related work

The treatment of induction for ordinary inductive types presented here is
loosely based on the approach given in [GJF10].

In [Nor13], the induction principle for inductive-inductive definitions
is constructed by first considering the induction principle for ordinary in-
ductive types and using the categories with families [Dyb95] framework to
generalise this construction to inductive-inductive definitions. In this chap-
ter, we do not make use of the categories with families framework, but the
constructions are quite similar nonetheless.

144 CHAPTER 5. INDUCTION VERSUS INITIALITY

Chapter 6

Constructing quotient
inductive-inductive definitions

We have given a formal definition of what constitutes a quotient inductive-
inductive definition in terms of algebraic semantics. We have shown that
the resulting categories of algebras are sensible in the sense that an algebra
is initial if and only if it satisfies the induction principle. We have therefore
shown that the initial algebras are well-behaved in this regard. To justify
adding quotient inductive-inductive types to the theory, we still need to
establish their existence in the usual models. After all, these results are
all uninteresting if these models do not have quotient inductive-inductive
types, which would make our results vacuously true.

To start out we will address the issue of strict positivity in inductive
definitions, showing that our previous specification of quotient inductive-
inductive definitions includes definitions of which the category of algebras
does not have an initial object.

For definitions with no constructors, the category of algebras is the cat-
egory of sorts. We show that the categories of sorts always have an initial
object (theorem 6.2.3).

We discuss in section 6.3 the usual construction of initial algebras for an
endofunctor as a sequential colimit. We explore how this approach can be
both internalised as well as adapted to construct initial algebras for certain

145

146 CHAPTER 6. CONSTRUCTING QIIDS

classes of quotient inductive-inductive definitions. The key is here to not
only construct an initial object but establish that there is a left adjoint to
the forgetful functor Algn+1 ⇒ Algn, which allows us to do the construction
by induction on the length of the specification. We end up with a chain of
adjunctions:

Set
L0 ,,
⊤ Alg0
U0

kk

L1 ++
⊤ Alg1
U1

kk

L2
))⊤ . . .

U2

ll

Ln ,,
⊤ Algn
Un

jj

Since left adjoints preserve colimits, in particular initial objects, and Set

has an initial object 0, (Ln ◦ . . . ◦L0) 0 gives us the initial algebra in Algn we
are after.

6.1 Strict positivity

For ordinary inductive types we have to have several syntactic restrictions
on the point constructors in order for the inductive types to actually exist.
We have seen in section 4.6 that the recursive positions may only occur in
positive positions in order for the arguments to describe a covariant functor.
This is not enough to guarantee the existence of an initial algebra. If we
look at Set and consider the double powerset functor P : Set ⇒ Set:

P X :≡ (X → Bool)→ Bool

This defines a covariant functor on Set, yet P -alg does not have an initial al-
gebra. By Lambek’s lemma, having an initial algebra (X, θ) : |P -alg|would
imply that X ≃ P X . By Cantor’s theorem, we know that there is no set X
which is isomorphic to its powerset, hence we arrive at a contradiction.

6.2 Initial objects in sort categories

If we have an inductive specification with no constructors, the category of
algebras is the category of sorts. Constructing the initial object in these

6.2. INITIAL OBJECTS IN SORT CATEGORIES 147

categories is similar to the construction in Fam. We will construct the left
adjoint to the forgetful functors of sort categories, similar to that of Fam.
The forgetful functor Fam ⇒ Set has a left adjoint: the truth functor that
maps a set X to the family λx.1 : X → Set. This generalises to any functor
in the abovementioned chain of sort categories: suppose we have a sort
specification S : Sorts giving rise to the following chain of sort categories:

1 S0
t0oo S1

t1oo . . .
t2oo Sn

tnoo

Proposition 6.2.1. Every forgetful functor ti : Si+1 ⇒ Si has a left adjoint

Proof. We define the functor ui : Si ⇒ Si+1 as follows:

• on objects: uiX :≡ (X,λx.1)

• on morphisms: uif :≡ (f, λa x.x)

We then have to check whether we have for any X : |Si| and (Y,Q) : |Si+1|
that

Si+1(ui X, (Y,Q)) = Si(X,Y)

which we can show by simple equational reasoning:

Si+1(ui X, (Y,Q)) = Si+1((X,λx.1), (Y,Q))

= (f : Si(X, Y)× (g : (a : Ri+1X)→ 1→ 1)

= Si(X, Y)

Proposition 6.2.2. There exists an adjunction between S0 and Set

Proof. Note that S0 is equivalent to a category with objects A → Set for
some A : Set and morphisms between P,Q : A → Set being dependent
functions (x : A)→ P x→ Q x. Usually A = 1, so we have a trivial adjunc-
tion between S0 and Set. Whatever the choice of A is, we can construct the

148 CHAPTER 6. CONSTRUCTING QIIDS

following pair of adjoint functors between Set and S0:

Π : S0 ⇒ Set

Π P :≡ (x : A)→ P x

K : Set ⇒ S0

K X :≡ (λx.X)

We then have for any X : Set and P : A→ Set the following equality

S0(LX,P) = (x : A)→ X → P x

= X → (x : A)→ P x

= X → Π P

Therefore we have that K ⊣ Π.

We therefore get the following chain of adjunctions:

Set
K **
⊤ S0
Π

kk

u1 **
⊤ S1
t1

jj

u2
((⊤ . . .

t2

jj

un **
⊤ Sn
tn

jj

Theorem 6.2.3. Given a sorts specificationS : Sorts, every sort categorySi ∈ JS K
has an initial object.

Proof. Since Set has an initial object, we get the initial object of any sort
category Si by following the chain of left adjoints constructed in proposi-
tion 6.2.1 and proposition 6.2.2.

6.3 Initial objects via sequential colimits

Initial algebras of endofunctors can be constructed via sequential colimits,
given some reasonable assumptions on the endofunctor. In this section we
will review this result due to Adámek [AK79] and see how we can use it to

6.3. INITIAL OBJECTS VIA SEQUENTIAL COLIMITS 149

construct initial dialgebras. We will also discuss how these proofs can be
performed inside type theory itself.

Definition 6.3.1 (ω-cochain). An ω-cochain in a category C consists of:

• X : N→ |C|

• x : (n : N)→ C(Xn, Xn+1)

i.e., we have the following diagram:

X0
x0 // X1

x1 // X2
x2 // X3

x3 // X4
x4 // . . .

Definition 6.3.2 (Sequential colimit). Given anω-cochain (X, x), the colimit
of (X, x) consists of:

• An object Xω : |C|

• c : (n : N)→ C(Xn, Xω) its constructors

• g : (n : N)→ cn = cn+1 ◦ xn

with satisfies the universal property that for any other cocone (Y, d, h) we
get:

• a unique f : C(Xω, Y)

• with computation rule f ◦ cn = dn

Theorem 6.3.3 (Adámek). Let C : Cat be a category with an endofunctor F :

C ⇒ C. The category of algebras F -alg has an initial object if C has sequential
colimits and an initial object and F preserves these colimits.

Proof. Define Xω as the colimit of the cochain:

∅ ! // F ∅ F ! // F 2 ∅ F 2! // F 3 ∅ F 3! // F 4 ∅ // . . .

We get the following:

• cn : C(F n∅, Xω)

150 CHAPTER 6. CONSTRUCTING QIIDS

• gn : cn = cn+1 ◦ F n!

along with the universal property giving us a recursion principle. Similarly
for FXω: since F preserves sequential colimits, we have that FXω is the
colimit of the cochain formed by applying F to the one given above, hence
we have:

• Fcn : C(F n+1∅, FXω)

• Fgn : c′n = Fcn ◦ F n+1!

We can define the algebra structure on Xω by employing the recursion prin-
ciple of FXω. We define θ to be the morphism with computation rule, for
any n : N:

θ ◦ Fcn = cn+1

Now that we have an algebra, we need to show that it is initial. Suppose
(Y, ρ) is an F -algebra, then we first show that we get an algebra morphism
(Xω, θ) → (Y, ρ). Y comes equipped with a cocone by virtue of its algebra
structure, defined as follows:

∅ ! //

!
��

F ∅ F ! //

F !
��

F 2 ∅ F 2! //

F 2!
��

F 3 ∅ F 3! //

F 3!
��

. . .

Y F Yρ
oo F 2 Y

Fρ
oo F 3 Y

F 2ρ
oo . . .

F 3ρ
oo

We have the cocone (Y, yn) where yn is defined recursively:

y : (n : N)→ C(F n∅, Y)

y 0 :≡ !

y (n+ 1) :≡ ρ ◦ Fyn

It is immediate from this definition that we have yn = yn+1 ◦ F n!, hence
(Y, yn) is indeed a cocone.

We can now define f : C(Xω, Y) by recursion, satisfying the computa-
tion rule:

f ◦ cn = yn

6.3. INITIAL OBJECTS VIA SEQUENTIAL COLIMITS 151

Now we need to establish whether f ◦ θ = ρ ◦ Ff . Both the left hand and
right hand side are cocone morphisms (FXω, F cn)→ (Y, yn):

f ◦ θ ◦ Fcn = f ◦ cn+1

= yn+1

and

ρ ◦ Ff ◦ Fcn = ρ ◦ F (f ◦ cn)

= ρ ◦ Fyn

= yn+1

By the universal property of FXω they are indeed equal. The same line
of reasoning can be used to establish that if we have another algebra mor-
phism f ′ : (Xω, θ) → (Y, ρ), then f = f ′, which shows initiality of (Xω, θ).

6.3.1 Internal sequential colimits

The definition of sequential colimits is presented in such a way that we can
straightforwardly formalise it in type theory. The same goes for Adámek’s
theorem. We can also show internally that Set has sequential colimits, if
we have an internal version of coequalisers at hand.

Proposition 6.3.4. We can construct sequential colimits in Set from the natural
numbers and coequalisers.

Proof. Suppose we have X : N → Set with x : (n : N) → Xn → Xn+1.
Define the function f :

f : (n : N)×Xn → (n : N)×Xn

f (n, a) :≡ (n+ 1, xn a)

152 CHAPTER 6. CONSTRUCTING QIIDS

We define Xω to be the coequaliser:

(n : N)×Xn

id //

f
// (n : N)×Xn

c // Xω

We therefore get for any (n, a) : (n : N)×Xn:

c (n, a) = c (n+ 1, xn a)

Hence we get a cocone for the ω-cochain. Its universal property follows
directly from the universal property of the coequaliser.

We can generalise the result to arbitrary categories easily, but this does
not help us much as constructing coproducts in categories of algebras is
rather involved, and already involves sequential colimits themselves.

Moving beyond ω

In section 3.1.4, we hinted at the possibility of constructing quotient induc-
tive types where the recursive positions are in some sense finitary. In this
situation it seems we can construct the ordinary inductive part first and
then quotient it once and get what we want. When we have an inductive
definition with infinitary recursive occurrences, such as the example of the
infinitely branching trees given in section 3.1.4, then this construction does
not work. In that situation it is essential that the quotienting happens at
the same time as the construction of the ordinary inductive parts.

In this chapter we consider such a construction with sequential colimits.
However, everything we present in this chapter is about sequential colimits
of length ω and with all the functors involved preserving ω-colimits. This
means that the functors are finitary, which would then imply that there ex-
ists a construction where we only need to quotient once. However, the con-
structions given here do not make essential use of the fact that the cochains
are of length ω and therefore should carry over to cochains of arbitrary
length. Making this precise is not a trivial matter however, as we would
first have to come up with an appropriate formalisation of ordinals, which

6.3. INITIAL OBJECTS VIA SEQUENTIAL COLIMITS 153

we defer to future work.

6.3.2 Constructing Set-sorted quotient inductive-inductive
definitions

In this section we will look at the simplified setting of Set-sorted quotient
inductive-inductive definitions. Our ultimate goal is to show that for any
Set-sorted s : Spec, where all the functors preserve sequential colimits, we
have a left adjoint to the forgetful functor U : Algs ⇒ Set. We can do this by
induction on the specification s. To construct this left adjoint for a category
Algs extended with a point or path constructor, we need to have sequential
colimits, coequalisers and binary coproducts in Algs.

Set satisfies all these conditions, so the base case of the induction holds.
In the next two sections we will do the inductive step for point and path
constructors respectively.

Point constructors

If we have Algs with an adjunction L ⊣ U : Algs ⇒ Set and a functor
F : Algs ⇒ Set, then the category of (F,U)-dialgebras is equivalent to the
category of (L ◦ F)-algebras. As such, we can focus our attention on the
properties of categories of algebras of endofunctors. Also note that since L

is a left adjoint, it preserves colimits, hence L ◦F also preserves sequential
colimits.

It suffices to show that if a category C has sequential colimits, binary
coproducts and coequalisers and F is an endofunctor on C preserving col-
imits, then F -alg also has sequential colimits, binary coproducts and co-
equalisers and furthermore a left adjoint from C to the forgetful functor.

In the following we will assume that C is a category with sequential
colimits, binary coproducts and coequalisers and that F is an endofunctor
on C preserving sequential colimits.

Proposition 6.3.5. The category F -alg has sequential colimits.

154 CHAPTER 6. CONSTRUCTING QIIDS

Proof. Suppose we have the following cochain in F -alg:

(X0, θ0)
x0 // (X1, θ1)

x1 // (X2, θ1)
x2 // (X3, θ1)

x3 // (X4, θ1) // . . .

This means we have the following diagram in C:

FX0
Fx0 //

θ0
��

FX1
Fx1 //

θ1
��

FX2
Fx2 //

θ2
��

FX3
Fx3 //

θ3
��

FX4
//

θ4
��

. . .

X0 x0

// X1 x1

// X2 x2

// X3 x3

// X4
// . . .

To be precise, we have:

• X : N→ |C|with algebras θ : (n : N)→ C(FXn, Xn)

• x : (n : N)→ C(Xn, Xn+1) satisfying xn ◦ θn = θn+1 ◦ Fxn

We can take the colimit of the cochain (X, x) in C and we get Xω : |C|
with c : (n : N) → C(Xn, Xω) satisfying cn = cn+1 ◦ xn, satisfying the uni-
versal property of sequential colimits. Similarly, as F preserves sequential
colimits, we get that FXω with Fc : (n : N)→ C(FXn, FXω) is a colimit of
the cochain (FX,Fx). This allows us to construct an algebra structure on
Xω, which is the map θω defined by the computation property:

θω ◦ Fcn = cn ◦ θn

For this to work, we have to make sure that cn◦θn does in fact form a cocone,
i.e. we need to check whether cn ◦ θn = cn+1 ◦ θn+1 ◦Fxn. This follows from
the fact that Xω is a colimit of (X, x), giving us cn = cn+1 ◦ xn. Every xn is
an algebra morphism: xn ◦ θn = θn+1 ◦ Fxn, so we are done.

By definition of θω, every cn is an algebra morphism.
Finally we have to check whether (Xω, θω) satisfies the universal prop-

erty. This follows from the universal property of Xω.

Proposition 6.3.6. The category F -alg has binary coproducts.

Proof. Let (X, θ), (Y, ρ) : |F -alg|. Observe that by assumption we have the
coproductX+Y inC, but there is no evidence that this will carry an algebra

6.3. INITIAL OBJECTS VIA SEQUENTIAL COLIMITS 155

structure, let alone one such that the inclusions X → X+Y and Y → X+Y

will preserve this structure.
Instead, we will create a sequence of objects An in C, which have an

approximate algebra structure (a map αn : FAn → An+1). For every An, we
also have inln : X → An and inrn : Y → An, such that inln+1 ◦ θ = αn ◦ F inln,
and similarly for inrn and ρ. In other words: the inclusions preserve the
approximate algebra structure.

We define the objects An inductively:

• A0 :≡ X+Y with inl0 :≡ inl and inrn0 :≡ inr

• An + 1 :≡ pushout ⟨F inln, F inrn⟩ (θ + ρ) with ⟨inln+1, inrn+1⟩ : X+Y →
An+1 and αn : FAn → An+1 being its two inclusion maps. (We have
pushouts in C as it has binary coproducts and coequalisers.)

The corresponding pushout diagram for An+1 is the following:

FX+FY
θ+ρ //

⟨F inln,F inrn⟩
��

X+Y

⟨inln+1,inrn+1⟩
��

FAn αn
// An+1

The morphisms an : An → An+1 are also defined inductively:

• a0 :≡ ⟨inl1, inr1⟩, which satisfies by definition a0 ◦ inl0 = inl1 and a0 ◦
inr0 = inr1.

• an+1 is defined using the universal property of An+1:

FX+FY
θ+ρ //

⟨F inln,F inrn⟩
��

⟨F inln+1,F inrn+1⟩

��

X+Y

⟨inln+1,inrn+1⟩
��

X+Y

⟨inln+2,inrn+2⟩

��

FAn αn
//

Fan
��

An+1

an+1
((

FAn+1 αn+1

// An+2

Note that we can assume that the left “triangle” commutes by induction
hypothesis. As we have seen, it holds for n = 0. We then have to show that

156 CHAPTER 6. CONSTRUCTING QIIDS

for the an+1 we define here, it again holds. By the computation rules of an+1

we have an+1 ◦ ⟨inln+1, inrn+1⟩ = ⟨inln+2, inrn+2⟩.
If we take the colimit of the cochain (A, a), we get an object Aω in C with

constructors cn : An → Aω satisfying cn = cn+1 ◦ an, such that it satisfies
the universal property of sequential colimits. Similarly, since F preserves
sequential colimits, we also have that FAω with Fcn forms a colimiting
cocone of the cochain (FA, Fa).

We now have to construct and check for several things on Aω:

• an algebra structure FAω → Aω

• inclusions inlω : X → Aω and inrω, such that they are algebra mor-
phisms θ → αω and ρ→ αω respectively

• (Aω, αω) should have the universal property of being a coproduct of
(X, θ) and (Y, ρ)

To construct the algebra structure onAω, we define a cocone with carrier
Aω on the cochain (FA,Fa) with a family of morphisms dn : FAn → Aω

defined as the composite:

FAn
αn // An+1

cn+1 // Aω

In order for this to be a cocone, we have to check whether dn = dn+1 ◦ Fan.
For n = 0, we have that it follows from the computation rule of a1 and

from the fact that c1 and c2 are constructors of the colimit Aω:

c1 ◦ α0 = c2 ◦ a1 ◦ α0 = c2 ◦ α1 ◦ Fa0

From this we get a unique morphism αω : FAω → Aω with computation
rules αω ◦ Fcn = cn+1 ◦ αn.

The inclusions maps inlω, inrω from X and Y respectively into Aω are
defined as composing inl0 and inr0 with c0. We then have to establish that

6.3. INITIAL OBJECTS VIA SEQUENTIAL COLIMITS 157

these maps are in fact algebra morphisms. We will show this here for inlω:

inlω ◦ θ = c0 ◦ inl0 ◦ θ

= c1 ◦ a0 ◦ θ

= c1 ◦ inl1 ◦ θ

= c1 ◦ α0 ◦ F inl0

= αω ◦ Fc0 ◦ F inl0

= αω ◦ F (c0 ◦ inl0)

= αω ◦ F inlω

By the same reasoning inrω is an algebra morphism ρ→ αω.
Finally we have to show that given an algebra (Z, ζ) with algebra mor-

phisms f : θ → ζ and g : ρ → ζ , we get a unique algebra morphism
h : αω → ζ satisfying h ◦ inlω = f and h ◦ inrω = g.

Observe that Z comes with a cocone for the cochain (A, a) with zn :

An → Z defined inductively:

• z0 : A0 → Z defined as ⟨f, g⟩, as A0 :≡ X+Y .

• zn+1 is defined using the universal property of An+1:

FX+FY
θ+ρ //

⟨F inln,F inrn⟩
��

X+Y

⟨inln+1,inrn+1⟩
��

X+Y

⟨f,g⟩

��

FAn αn
//

Fzn
��

An+1

zn+1
$$

FZ
ζ

// Z

In order for the definition of zn+1 to make sense, we have to check whether
outer square commutes. For n = 0, it commutes as f and g are algebra mor-
phisms. For the inductive step, it follows from the computation rule of zn+1

and the fact that f and g are algebra morphisms. As for the inductive step,

158 CHAPTER 6. CONSTRUCTING QIIDS

we consider the following diagram:

FX+FY
θ+ρ //

⟨F inln,F inrn⟩
��

⟨F inln+1,F inrn+1⟩

��

X+Y

⟨inln+1,inrn+1⟩
��

X+Y

⟨inln+2,inrn+2⟩

��

X+Y

⟨f,g⟩

��

FAn αn
//

Fan
��

An+1

an+1
((

FAn+1 αn+1

//

Fzn+1

��

An+2

zn+2

((
FZ

ζ
// Z

The triangle on the left commutes as before. This means that the outer
square is the cocone on Z that defines zn+1. By the universal property of
An+1 we then get that zn+1 and zn+2 ◦ an+1 are equal.

We therefore get a unique morphism zω : Aω → Z satisfying zω◦cn = zn.
Showing that this is an algebra morphism αω → ζ can be done by showing
that we have a cocone of the cochain (FA, Fa) with carrier Z and that both
ζ ◦ Fzω and zω ◦ αω are cocone morphisms from FAω into Z, hence by the
universal property of FAω they are equal.

The cocone on Z is defined with morphisms ζ ◦ Fzn : FAn → Z. We
have ζ ◦Fzn = ζ ◦Fzn+1◦Fan, as zn itself is a cocone on (A, a). The fact that
ζ ◦ Fzω follows directly from the computation rules for zω. Showing that
zn+1 ◦αn is a cocone morphism also follows directly from the computation
rules of zω and αω.

Lastly, we have to check whether composing zω with the inclusions from
X and Y into Z gives us back f and g respectively. We can show this by
performing the following computation:

zω ◦ inlω = zω ◦ c0 ◦ inl0
= z0 ◦ inl0
= ⟨f, g⟩ ◦ inl

= f

6.3. INITIAL OBJECTS VIA SEQUENTIAL COLIMITS 159

Showing that zω ◦ inrω = g can be done analogously.

Proposition 6.3.7. The category F -alg has coequalisers.

Proof. Let (X, θ), (Y, ρ) : |F -alg| with f, g : θ → ρ algebra morphisms. The
coequaliser of f and g can be defined using a construction similar to that
of coproducts in proposition 6.3.6. We again use the idea of constructing
a sequence of approximations to the coequaliser, using pushouts to ensure
that the inclusion maps are algebra morphisms.

We define the objects An inductively:

• A0 :≡ coeqf,g

• An+1 :≡ pushout (Fβn ◦ ⟨Finf,g⟩) ⟨inf,g ◦ ρ⟩

i.e. the following is a pushout diagram:

coeqFf,Fg

⟨inf,g◦ρ⟩ //

⟨Finf,g⟩
��

coeqf,g

βn+1

��

F (coeqf,g)

Fβn

��
FAn αn

// An+1

where inf,g : Y → coeqf,g is the constructor of coeqf,g and β0 :≡ idcoeqf,g .
We can define the morphisms an : An → An+1 in the same way as before,

using the universal property of pushouts. We can then proceed to define
an algebra αω : FAω → Aω on the colimit of (A, a). This algebra has an
inclusion from (Y, ρ), which coequalises f and g and satisfies the universal
property of coequalisers in F -alg. The details for these constructions are all
analogous to the proof of proposition 6.3.6.

Proposition 6.3.8. The forgetful functor U : F -alg⇒ C has a left adjoint.

Proof. This is a straightforward generalisation of proposition 4.1.4. Since F
preserves sequential colimits, so does F̄X for any X : |C|, hence the initial
algebra F ∗X exists.

160 CHAPTER 6. CONSTRUCTING QIIDS

Path constructors

Suppose we have a category C : Cat with an adjunction L ⊣ U : C ⇒ Set.
To describe a path constructor on C, we need the following data:

• F : C ⇒ Set, describing the arguments of the constructor

• ℓ, r : F .→ U , giving the end points of the equations

In the following we will assume that C is a category with sequential
colimits, binary coproducts and coequalisers and that F is an endofunctor
on C preserving sequential colimits.

Let us define the category C′ as the full subcategory of C with objects
X : |C| satisfying ℓX = rX .

Proposition 6.3.9. C′ has an initial object.

Proof. Since we have L ⊣ U , we have isomorphisms

ϕX,Y : C(LX, Y)→ (X → UY)

ϕ is natural in both X and Y , hence we have natural transformations:

ϕ ◦ ℓ, ϕ ◦ r : L ◦ F .→ idC

It suffices to show that we have an initial object in the subcategory of C of
objects X : |C| satisfying ϕ ◦ ℓX = ϕ ◦ rX .

We define Xω to be the colimit of the following cochain in C:

LFX0

ϕ◦ℓX0

��
ϕ◦rX0

��

LFX1

ϕ◦ℓX1

��
ϕ◦rX1

��

LFX2

ϕ◦ℓX2

��
ϕ◦rX2

��

LFX3

ϕ◦ℓX3

��
ϕ◦rX3

��

LFX4

ϕ◦ℓX4

��
ϕ◦rX4

��
∅ :≡ X0 x0

// X1 x1

// X2 x2

// X3 x3

// X4 x4

// . . .

6.3. INITIAL OBJECTS VIA SEQUENTIAL COLIMITS 161

That is, the ω-cochain (X, x) is defined as:

X : (n : N)→ |C|

X 0 :≡ ∅

X (n+ 1) :≡ coeqϕ◦ℓXn ,ϕ◦rXn

with xn the constructor of corresponding coequaliser.
We need to show that for Xω, ϕ ◦ ℓXω = ϕ ◦ rXω . This we will achieve

by showing that Xω has a cocone structure for the cochain (LFXn, LFxn).
Both ϕ ◦ ℓXω and ϕ ◦ rXω are cocone morphisms LFXω → Xω, which means
that by the universal property of LFXω they must be equal.

For Xω we have:

• constructors dn : C(Xn, Xω)

• satisfying dn = dn+1 ◦ xn

F preserves sequential colimits and L preserves all colimits as it is a
left adjoint, hence L ◦ F preserves sequential colimits. We then have that
LFXω is the colimit of the ω-cochain (LFXn, xn) and therefore have:

• constructors LFdn : C(LFXn, LFXω)

• satisfying LFdn = LFdn+1 ◦ LFxn

We define the (LFXn, LFxn)-cocone on Xω with zn as the composite:

LFXn
ϕ◦ℓn // Xn

dn // Xω

Note that it does not matter whether we use l or r here, as dn = xn ◦ dn+1

and xn is the coequaliser map, hence precomposing with ϕ ◦ ℓ or ϕ ◦ r is
going to yield the same result.

We have to check that zn = zn+1 ◦ LFxn, which holds as we have the

162 CHAPTER 6. CONSTRUCTING QIIDS

following commutative diagram:

LFXn
ϕ◦ℓn //

LFxn

��

Xn
dn //

xn

��

Xω

LFXn+1ϕ◦ℓn+1

// Xn+1

dn+1

<<

The left square holds by naturality of ϕ ◦ ℓ, the right square holds as Xω is
a colimit with dn its constructors.

Now we have constructed a (LFXn, LFxn)-cocone structure on Xω, we
need to check whether ϕ ◦ ℓXω and ϕ ◦ rXω are indeed cocone morphisms.
This amounts to checking whether the following commutes:

LFXn
LFdn //

ϕ◦ℓXn

��

LFXω

ϕ◦ℓXω

��
Xn dn

// Xω

This square commutes by naturality of ϕ ◦ ℓ. By the same reasoning
ϕ◦rXω is a cocone morphism, hence by the universal property of LFXω we
get that ϕ ◦ ℓXω = ϕ ◦ rXω .

Proposition 6.3.10. The inclusion/forgetful functor U ′ : C′ ⇒ C has a left ad-
joint.

Proof. We can take the proof of initiality and replace the object X0 with any
X : |C|. We define the left adjoint L′ : C ⇒ C′ with L′X being the colimit
of this sequence.

Proposition 6.3.11. C′ has coproducts and coequalisers.

Proof. We claim that the left adjoint L′ to the inclusion functor of the sub-
category C′ into C gives us coproducts and coequalisers.

Let X, Y : |C| with θ : ℓX = ρX and ρ : ℓY = ρY . By assumption, C has
coproducts. The object L′(X+Y) is the coproduct of (X, θ) and (Y, ρ), as

6.3. INITIAL OBJECTS VIA SEQUENTIAL COLIMITS 163

we have for any (Z, ζ) : |C′|:

C′(L′(X + Y), (Z, ζ)) = C(X + Y, Z)

= C(X,Z)× C(Y, Z)

= C′((X, θ), (Z, ζ))× C′((Y, ρ), (Z, ζ))

Similarly for coequalisers, suppose that we again have (X, θ), (Y, ρ) :

|C′| with f, g : C′((X, θ), (Y, ρ)), so we really just have f, g : C(X, Y), then
taking the coequaliser to be L′(coeqf,g), we can calculate for any (Z, ζ) : |C′|:

C′(L′(coeqf,g), (Z, ζ)) = C(coeqf,g, Z) = (h : C(Y, Z))× (h ◦ f = h ◦ g)

which again by C′ being a full subcategory means that L′(coeqf,g) is indeed
a coequaliser in C′ of f and g.

Proposition 6.3.12. C′ has sequential colimits.

Proof. Suppose we have a cochain in C′, i.e. we have:

• X : N→ |C|

• θ : (n : N)→ ℓXn = rXn

• x : (n : N)→ C(Xn, Xn+1)

By the assumptions on C, we the colimit of the cochain (X, x) in C: we
have:

• Xω : |C|

• c : (n : N)→ C(Xn, Xω)

• g : cn = cn+1 ◦ xn

Similarly, as F preserves sequential colimits FXω with Fc is a colimiting
cocone of the cochain (FX,Fx).

Note that the natural transformation ℓ gives rise to the following cocone
of the cochain (FX,Fx):

164 CHAPTER 6. CONSTRUCTING QIIDS

• UXω : |C|

• d : C(FXn, UXω) defined as Ucn ◦ ℓXn

• h : dn = dn+1 ◦ Fxn

The equality h holds by the considering the following diagram:

FXn

ℓXn //

Fxn

��

UXn

Uxn

��

Ucn // UXω

FXn+1 ℓXn+1

// UXn+1

Ucn+1

::

The left square holds by naturality of ℓ and the right triangle commutes
due to the fact that Xω is the colimit of the cochain (X, x).

We claim that both lXω and rXω are cocone morphisms from colimiting
FXω with Fc into UXω with Uc, as we have Ucn ◦ ℓXn = ℓXω ◦ Fcn by natu-
rality. Since ℓXn = rXn for every n : N, lXω and rXω are cocone morphisms
from the same cocone, hence lXω = rXω . This gives us that Xω is in the
subcategory C′. Since it is a full subcategory, we also get the universality
from C.

6.3.3 Putting it all together

We can now put all the results together and show that we have initial alge-
bras for Set-sorted quotient inductive-inductive definitions where all the
arguments functors preserve sequential colimits.

Theorem 6.3.13. Let s : Spec be a specification of aSet-sorted quotient inductive-
inductive definition. If all the arguments functors contained in the specification s

preserve sequential colimits, then the category Algs has an initial object.

Proof. Using the results from the previous section, we can create a left ad-
joint L : Set ⇒ Algs to the forgetful functor U : Algs ⇒ Set by induction on
s. Since left adjoints preserve colimits, L ∅ is the initial object of Algs.

6.4. RELATED WORK 165

Making the theorem work for arbitrary quotient inductive-inductive
definitions means generalising in two dimensions. We have to be able to
deal with:

• arbitrary sorts: the constructions given in this chapter only work for
Set-sorted definitions

• cochains of arbitrary length: our construction works with colimits of
length ω. In general we will need longer cochains, e.g. for infinitely
branching trees, we need to consider the colimit of a cochain of length
ω + ω.

6.4 Related work

A well-known result from category theory on constructing left adjoints is
Freyd’s adjoint functor theorem. This theorem gives us a left adjoint for
a functor, given that its domain is complete, that the functor is continu-
ous and that the solution set condition is satisfied. In section 5.3, we have
basically shown that the categories we are working with are finitely com-
plete and that the forgetful functors are continuous. (We have not explicitly
shown that the categories have a terminal object, but this is easy to show.)
Extending this to completeness means that we have to show that they have
terminal objects and generalise binary products to arbitrary ones. More
difficult would be to show that the solution set condition is satisfied. This
seems to be as difficult as constructing the left adjoint itself in our case.

As for showing cocompleteness of categories of monad algebras, there
are several treatments of colimits of monad algebras [Lin69; BW85]. The
main result in [Lin69] is that, given that C is cocomplete, the category of
monad algebras M -Alg for a monad M : C ⇒ C is cocomplete if and only
if it has reflexive coequalisers. M -Alg has reflexive coequalisers if M pre-
serves them.

In [LS13b], the authors use sequential colimits to construct the mon-
ads corresponding to the higher inductive types, using techniques from
[Kel80]. Evaluating these monads at the initial object yields the carrier of

166 CHAPTER 6. CONSTRUCTING QIIDS

the initial algebra for the higher inductive type. The construction given
by the authors is therefore not hugely dissimilar from ours. An important
difference is that our construction is carried out in type theory itself.

The construction of the initial object for path constructors can also be
seen as a generalisation of the construction of propositional truncation as
a sequential colimit [Doo16]. Our construction is performed in a set trun-
cated setting. However, seeing as the technique is very similar to the one
used to construct propositional truncation, it seems that our result can be
generalised to the untruncated setting.

Chapter 7

Concluding remarks

In this thesis we have given a formal specification of quotient inductive-
inductive definitions, intended as a stepping stone towards a theory of
higher inductive(-inductive) types. This theory has been presented in such
a way that formalising it in type theory is straightforward.

After the first two introductory and preliminary chapters, chapter 3 was
devoted to giving examples and intuition for quotient inductive-inductive
types, before diving into the formal definition. We argued that even only
considering higher inductive(-inductive) types truncated to sets is already
a useful extension over ordinary inductive types. The set truncation also
entails that we have to consider only the point and first path constructors,
as anything higher will be trivial.

In the examples of chapter 3, we uncovered that quotient inductive-
inductive definitions set themselves apart from ordinary inductive defini-
tions in the following regards:

• instead of defining a single type, we may have a collection of depen-
dent sorts

• any constructor may refer to any previous constructor

• the result type of a constructor may be an equation in any of the sorts,
i.e. we allow for path constructors

167

168 CHAPTER 7. CONCLUDING REMARKS

Both inductive-inductive definitions as well as higher inductive types have
the property of allowing for references to previous constructors, which
prompted our investigations into a uniform treatment of both classes of
inductive definitions.

In chapter 4 we give the formal specification of quotient inductive- in-
ductive definitions, which is given simultaneously with its interpretation
as categories of algebras: we characterise quotient inductive-inductive def-
initions roughly as iterated dialgebras (definition 4.4.1). Dealing with de-
pendent sorts means that ordinary dialgebras do not suffice: the categories
of dialgebras are fibred over all sorts below the sort of the current con-
structor. Dealing with this means we define the category of algebras as
an equaliser category of a category of dialgebras. The category of algebras
for a path constructor is simply the category of algebras of the previous
constructors extended with an equation on those algebras given by natural
transformations.

Since we have not focussed on our specifications of inductive definitions
being sound in the sense of the categories of algebras having initial objects,
the system can also be used to work with equational theories in type theory.
While there are plenty of equational theories that are nicely behaved in the
sense that the corresponding category of models has an initial object, this is
not always the case. A notable example of this phenomenon is the category
of fields, which can be described with our framework, but does not have
an initial object.

As we have given a specification of quotient inductive-inductive defini-
tions, we ought to prove properties about them. In this thesis we investi-
gate several properties: the logical equivalence of initiality and induction
and the construction of initial algebras via sequential colimits.

Chapter 5 is devoted to the correspondence between initiality and in-
duction in the context of quotient inductive-inductive definitions (theo-
rem 5.3.9). We first give a categorical characterisation of the induction prin-
ciple as the section principle: every algebra fibration has a section. We then
go on to show that in the presence of binary products and equalisers this
principle is logically equivalent to initiality. This proof follows what one

169

would intuitively do in type theory if one shows that some induction princi-
ple implies initiality: you first show that weak initiality holds for which we
need to produce a constant algebra family (this is the construction of prod-
ucts). Establishing that the resulting morphism is unique can be done by
employing the induction principle again with the motive being the point-
wise equivalence of the two morphisms. Giving the methods then amounts
to giving the equaliser of the two morphisms. Since we already know the
categorical structure of the algebras, proving that the section principle and
initiality coincide then amounts to giving constructions of products and
equalisers. This approach saves us from first having to come up with an
induction principle.

Interesting to note is that while initiality is a property of an object that
requires us only to have the objects and morphisms of the category at hand,
the section principle requires the full categorical structure, i.e. we need
composition, identity morphisms and laws and associativity. Initiality is
an attractive property in the light of working in an untruncated setting,
i.e. working with hom-types as opposed to hom-sets, as we do not have
to bother with the category laws and hence do not have to deal with any
further coherence laws. However, comparing it to the section principle re-
quires us to use more category structure and laws.

The second part of chapter 5 gives a derivation of the induction princi-
ple for quotient inductive-inductive definitions. Since we know what dis-
play maps and sections amount to in Set in a type theoretic sense, i.e. they
are type families and dependent functions, and given that all our categories
are in some way built upon Set, we can use this information to derive the
type theoretic induction principle for our quotient inductive-inductive def-
initions.

In chapter 6 we consider the existence of inductive definitions, i.e. the
existence of initial objects in the categories of algebras. The way we set
things up in chapter 4 allows us to give inductive definitions of which the
corresponding category of algebras does not necessarily have an initial ob-
ject. As our quotient inductive-inductive definitions subsume ordinary in-
ductive types in the sense of providing an endofunctor on Set, we can con-

170 CHAPTER 7. CONCLUDING REMARKS

sider the double powerset functor which does not have an initial algebra.
We therefore need to make sure that our definitions are strictly positive.

We give constructions of initial algebras for a class of Set-sorted quo-
tient inductive-inductive definitions where the functors areω-cocontinuous
(theorem 6.3.13). These constructions can be performed inside the type the-
ory, which gives us the result that having natural numbers and coequalis-
ers/quotients is enough to be able to construct a wide range of quotient
inductive-inductive definitions.

In appendix A we present some preliminary work on characterising
strictly positive functors for quotient inductive-inductive definitions, by
generalising containers. We give a generalisation of these to functors from
any category into Set, which allows us to express the data needed for a
Set-sorted quotient inductive definition. We also present a generalisation
of this to situations where the category of sorts is a presheaf category over
Set.

In appendix B we try to lift the restriction to sets: instead of considering
hom-sets in our categories of sorts and algebras, we broaden this to hom-
types. This would turn our theory of quotient inductive-inductive types
into one of higher inductive-inductive types with point constructors and
path constructors that construct paths between points, i.e. no higher path
constructors. As opposed to moving to (∞, 1)-categories straight away, we
move from hom-sets to hom-types and go through all the constructions to
see where we run into coherence issues. Somewhat surprisingly issues al-
ready show up when considering only point constructors for Type-sorted
definitions. The category of F -algebras for an endofunctor on Type is no
longer a category that satisfies the category laws strictly, unlike Type it-
self. Even if F happens to be a strict functor, we still do not end up with
a strict (∞, 1)-category. If we add a point constructor to this category of
algebras, we increase the level of coherence needed. Therefore the number
of coherence problems we have to deal with increases with the number of
constructors, whether they are point constructors of path constructors.

7.1. FUTURE WORK 171

7.1 Future work

7.1.1 Metaprogramming and generic programming

Given that our definition of quotient inductive-inductive types can be for-
mulated inside type theory, one avenue for future work would be applying
this definition to generic programming ideas. Having these definitions as
the basis of the implementation of inductive definitions in your theory is
useful when one wants to use metaprogramming techniques to define pro-
grams abstracting over data types. One aspect of our approach is that we
stay with the idea of an inductive definition being given as a list of con-
structors, as opposed to simplifying the situation to being a code of a sin-
gle endofunctor. Staying with the list of constructors idea also means that
we could build a system for writing attribute grammars internally without
needing any external tools, allowing for aspect oriented programming.

7.1.2 Invariance of descriptions under equivalence of con-
structors

An important property that should hold is that the definitions should be
invariant under equivalence of constructors. If we have two specifications
s, s′ : Spec with the same dependent sorts, such that if |Algs| = |Algs′|, i.e.
all the constructors combined of s are equivalent to those of s′, then the
initial object of Algs should have an isomorphic carrier to that of Algs′ . This
is an important property that is used often to reason about equivalence
of inductive definitions. For example, it implies that the definitions are
invariant under reordering of constructors.

7.1.3 Generalised containers

We have given the definition of generalised containers as a means of de-
scribing functors into Set and presheaf categories. For descriptions of quo-
tient inductive-inductive definitions we need to be able to handle functors

172 CHAPTER 7. CONCLUDING REMARKS

into sort categories. Generalising the containers to support this is an av-
enue of future work.

Along with this one should also establish that the usual properties of or-
dinary containers hold, i.e. container morphisms completely describe nat-
ural transformations between extensions of containers.

We have noted that we can use quotient inductive types to define func-
tors on Set which are not representable as an ordinary container, namely
propositional truncation. It would be interesting to see whether we can
adjust the definition of container to subsume such functors.

7.1.4 Constructing initial algebras

We have given constructions of initial algebras for Set-sorted definitions
where the arguments functors were ω-cocontinuous/finitary. Future work
would be to generalise this to other ordinals as well and make the construc-
tion work for arbitrarily sorted definitions.

One possible approach would be to have internally to the type theory a
syntax for (strictly positive) quotient inductive-inductive definitions with
ordinal annotations, so one could compute at what ordinal the colimits
stabilise.

7.1.5 Generalising to higher inductive types

The ultimate goal of this project is to have a theory of higher inductive
types. In appendix B we have shown what the kind of issues are we run into
when trying to move our results from the category theoretic setting, where
we work only with sets, to a higher category theoretic setting without any
truncation. In the chapter we also argue that the naive approach gets un-
workable very quickly. To adequately describe a theory of higher induc-
tive types, one has to turn to (∞, 1)-categories. Defining (∞, 1)-categories
in type theory is ongoing work and seems to require extending the type
theory with an internal notion of strict equality, which allows us to talk
about definitional equalities in the type theory itself, as well as proposi-
tional equality [ACK16b; ACK16a].

Appendix A

Containers for quotient
inductive-inductive definitions

The inductive definitions therefore need to be strictly positive: positivity
alone does not suffice. There are different ways to formally specify strictly
positive functors. We can use a syntactic way to describe them as the class
of functors that contains all constant functor, closed under sums and prod-
ucts of strictly positive functors, exponentiation with a constant on the
left of the arrow, and taking fixpoints [Mor07]. A more compact way to
characterise strictly positive functors on Set in type theory is as containers
[AAG05]:

Definition A.0.1. A container on Set consists of:

• S : Set, a type of shapes

• P : S → Set, a family of position, indexed by the shapes.

The container with shapes S and positions P is denoted as S ◁ P

The corresponding functor is called the extension of the container:

Definition A.0.2. Given a container S ◁ P , its extension is the functor JS ◁
P K : Set ⇒ Set with its action on objects defined as, for every X : Set:

JS ◁ P K X :≡ (s : S)× (P s→ X)

173

174 APPENDIX A. CONTAINERS FOR QIIDS

and its action on functions f : X → Y :

JS ◁ P K f :≡ λ(s, t).(s, f ◦ t)

A.1 Containers for Set-sorted definitions

To give the data for a quotient inductive-inductive definition, we often need
more than just endofunctors on Set. We are generally working with func-
tors Algs ⇒ Si where s : Spec describes the previous constructors and Si is
sort category describing the sort of the constructor we are defining. Con-
tainers have a generalisation to indexed containers which describe functors
between slice categories of Set. This concept is again an instance of the
more general notion of polynomial functor [Koc11], which describes strictly
positive functors between slice categories of a locally cartesian closed cate-
gory. We cannot expect Algs to be locally cartesian closed in general: if we
take s to be the specification corresponding to setoids, then Algs is equiva-
lent to the category setoids, which is not locally cartesian closed [AK12].

If we look at containers a bit more closely, we see that they are coprod-
uct of a family of representable functors. This observation leads us to gen-
eralised containers, also known as familially representable functors [CJ95]:

Definition A.1.1. A generalised container on a category C consists of:

• S : Set, a type of shapes,

• P : S → |C|, a family of representing objects, indexed by the shapes.

The extension generalises straightforwardly:

Definition A.1.2. Given a container S ◁ P on a category C, its extension
is the functor JS ◁ P K : C ⇒ Set with its action on objects defined as, for
every X : |C|: JS ◁ P K X :≡ (s : S)× C(P s,X)

and its action on functions f : X → Y :

JS ◁ P K f :≡ λ(s, t).(s, f ◦ t)

A.2. CONTAINERS FOR ARBITRARILY SORTED DEFINITIONS 175

To describe the end points of path constructors, we use natural trans-
formations. Container morphisms are used to represent natural transforma-
tions between containers. For generalised containers they are as follows:

Definition A.1.3. Given C-containers S ◁ P and T ◁ Q, a container mor-
phism consists of:

• f : S → T

• g : (s : S)→ C(Q (f s), P s)

with its extension being the natural transformation:

Jf, gK : (X : |C|)→ JS ◁ P K X → JT ◁QK XJf, gK X (s, t) :≡ (f s, t ◦ (g s))

Naturality follows from the associativity law of C.

A.2 Containers for arbitrarily sorted definitions

We have given a way to describe strictly positive functors and natural trans-
formations needed to describe Set-sorted quotient inductive-inductive def-
initions. However, the functors we work with are not generally functors
into Set, but may also be into any sort category.

In this section we will show how this can be done for the special case
Fam. Suppose we have a category C, which we can think of as being a
category of Fam-sorted algebras. It is therefore equipped with a forget-
ful functor U : C ⇒ Fam. Describing the arguments of a Fam-sorted
constructor over C requires us to give a functor F : C ⇒ Fam such that
t1 ◦ F = t1 ◦ U , where t1 : Fam ⇒ Set is its forgetful functor.

Note that we have Fam = SetI , therefore by the cartesian-closedness
of Cat, we have C ⇒ SetI = C×I ⇒ Set. To give a functor F : C ⇒ Fam is
to give two functors F 0, F 1 : C ⇒ Set along with a natural transformation
α : F 1 .→ F 0.

176 APPENDIX A. CONTAINERS FOR QIIDS

Furthermore, we have the requirement that F 0 = t1 ◦ U . If we assume
that we have an adjunction L ⊣ U : C ⇒ Fam, t1 ◦ U will also have a
left adjoint (as t1 also has a left adjoint). If t1 ◦ U has a left adjoint, it is a
representible functor, which means it is also a container.

A.3 Limitations of containers

While in the traditional setting, containers (on Set) seem to be an adequate
way to characterise strictly positive functors, it has its limitations. Let us
consider the propositional truncation operation on Set: || || : Set → Set.
Let S ◁ P be its container representation, then the following holds:

1 = ||1|| = (s : S)× (P s→ 1) = S

Therefore we know that that the shapes S = 1, hence || || has to be a repre-
sentable functor. Let P : Set be its representing object. P has to either be
empty or inhabited. If it is empty, then we have 0 = ||0|| = 0 → 0 = 1, a
contradiction. If it is inhabited, we have 1 = ||Bool|| = P → Bool, however
P → Bool has at least two distinct inhabitants: λx.true and λx.false, also a
contradiction. Hence || || is not a container.

Now this fact is not necessarily bad for the expressiveness of our system.
If we wanted to express a constructor of a type A such as c : ||A|| → A,
we could simply incorporate propositional truncation into our inductive
definition, i.e. add another sort B : Set which has a constructor d : A→ B

and a constructor of type (x y : B)→ x = y.

Appendix B

Moving to an untruncated setting

In the previous chapters, we have mostly worked with sets. In this chapter
we show what kind of issues one encounters if we work in an untruncated
setting instead, motivating why we went with the choice to work in the set
truncated setting in the first place. If we want to generalise the theory to
higher inductive types, we have to lift this restriction and somehow deal
with these issues.

The place where we had to ensure that certain types were sets, was in
the definition of category: we worked with sets of morphisms. This means
that the category laws are propositions and saves us from having to worry
too much about reasoning about equality of morphisms: any two such
proofs will be equal.

If we have categories with hom-types, then we have no guarantees that
the category laws interact nicely. For example, if we have four composable
morphisms:

X
f // Y

g // Z
h // W

i // V

If we want to show that the following equation holds:

((i ◦ h) ◦ g) ◦ f = i ◦ (h ◦ (g ◦ f))

then we have a choice in what order we apply the category laws. There is
a priori no guarantee that these choices yield equal proofs: we need to add

177

178 APPENDIX B. MOVING TO AN UNTRUNCATED SETTING

this assumption as an extra coherence condition. In the case of associativity
interacting with itself, it is as follows:

Definition B.0.1 (Coherence condition for associativity). The witness of
associativity

assoc : (h : C(Z,W)) (g : C(Y, Z)) (f : C(X,Y))→ ((h◦g)◦f) = (h◦ (g ◦f))

is coherent if for any composable arrows i, h, g, f the following commutes:

(i ◦ (h ◦ g)) ◦ f
assoc i (h ◦ g) f

((i ◦ h) ◦ g) ◦ f

(assoc i h g) ◦f

assoc (i ◦ h) g f

i ◦ ((h ◦ g) ◦ f)
i ◦ assoc h g f

(i ◦ h) ◦ (g ◦ f)
assoc i h (g ◦ f)

i ◦ (h ◦ (g ◦ f))

We can formulate similar conditions for the interactions between the
identity laws and associativity. The story does not end there however:
there is no reason to assume that the equality between equalities of mor-
phism is propositional. The coherence condition of associativity needs to
behave nicely in harmony with the other category laws and coherence con-
ditions: the coherence conditions themselves require further coherence
conditions. This phenomenon does not stop: we get an infinite tower of
coherence conditions.

Sometimes we are lucky with the concrete categories we are working
with, in that the category laws hold up to definitional equality: they are
satisfied strictly. Examples of such categories are Type and Fam. In these
cases, as the category laws themselves are satisfied trivially, any higher co-
herence law will also be satisfied trivially.

For categories of algebras, this is not the case. Even if we consider F -
algebras with F a strict endofunctor on Type, F -alg will not satisfy the cat-
egory laws strictly, with the usual definition. In [Cra13], the author shows
essentially that we cannot find a definition of the category of pointed types

B.1. COHERENCE LAWS FOR FUNCTORS 179

that satisfies the category laws strictly. Since pointed types are a special
case of F -algebras, we therefore cannot hope to find a nice definition of
F -alg that is strict.

The way to deal with coherences is by considering (∞, 1)-categories
[Cam13]. The usual definitions/models of (∞, 1)-categories are given by
using simplicial sets. This is not a practical approach for our purposes,
as we cannot easily move between simplicial sets and types. Another ap-
proach is to consider simplicial types, which is as of yet an open problem in
homotopy type theory. One attempt to solve this and give a definition of
(∞, 1)-categories is by extending the type theory with an internal notion of
strict equality [ACK16b; ACK16a].

However, as we are only concerned with a finite amount of categorical
structure: we are really only interested in the category of algebras satisfy-
ing the identity and associativity laws, we will in this chapter see how far
we get by taking a lazy approach. We will only add those coherence condi-
tions we actually need to show that the categorical laws are satisfied in all
the categories of algebras.

B.1 Coherence laws for functors

Talking about the category laws in an untruncated setting also means that
we now have to worry about what it means for a functor to preserve them.
If we take for example the left identity law, we notice that there are multi-
ple ways to produce an equality F (idY ◦ f) = Ff . we can either use the
left identity law of the domain of F or the one of its codomain, by first ap-
pealing to the fact that F preserves composition and identity morphisms.
The functor F preserves the left identity law if these two approaches yield
the same equality:

Definition B.1.1. A functor F : C ⇒ D satisfies the coherence law for the

180 APPENDIX B. MOVING TO AN UNTRUNCATED SETTING

left identity law of C if the following commutes for any f : C(X,Y):

F (idCY ◦C f)
F (left-idC f)

F -◦ (idC Y) f

Ff

left-idD F f

F (idCY) ◦D f
F -id Y ◦D f

idD(FY) ◦D f

where F -id and F -◦ are the witnesses of the functoriality of F .
The coherence law for the right identity law is defined similarly.

Definition B.1.2. A functor F : C ⇒ D satisfies the coherence law for the
associativity law of C if, given three composable arrows:

X
f // Y

g // Z
h // W

the following commutes

F ((h ◦ g) ◦ f) F (assocC h g f)

F -◦ (h ◦ g) f

F (h ◦ (g ◦ f))
F -◦ h (g ◦ f)

F (h ◦ g) ◦ Ff

F -◦ h g ◦ F f

Fh ◦ F (g ◦ f)
F h ◦ F -◦ g f

(Fh ◦ Fg) ◦ Ff
assocD Fh Fg Ff

Fh ◦ (Fg ◦ Ff)

B.1.1 Generalised containers

Although we are not able to internally define the type of strict functors,
there is a definable class of functors that happen to be strict: containers on
Type (see definition A.0.1). As the functorial action of containers are de-
fined in terms of composition of functions in Type, the functor laws reduce
to the identity and associativity laws of Type, which are satisfied strictly.
As such, containers on Type form a class of strict functors.

For generalised containers (definition A.1.1), the functors again inherit
the functor laws from the category laws of the domain of the functor. If the
generalised container maps out of a strict category, then it defines a strict

B.2. SORT CATEGORIES 181

functor. However, in practice, these categories will not be strict as they will
be categories of algebras.

B.2 Sort categories

The categories Type and Fam satisfy the category laws and their (higher)
coherences definitionally. Whether a sorts category J S K given by a S :

Sorts is strict, depends on the functors in the listS. Looking at the definition
of the sorts categories, if all the functors involved satisfy the functor laws
definitionally then the resulting categories will be strict as well. This means
that if we give all the functors in S as generalised containers, we end up
with strict sort categories, which is quite a reasonable assumption to make.

B.3 Categories of dialgebras

So far we have not given a precise definition of (F,G)-dialg for some func-
tors F,G : C → D: we have not formally defined composition and so
on. In definition 4.2.2, we have defined the category its objects and mor-
phisms. The objects are defined in terms of objects from C and morphisms
from D. Morphisms are defined in terms of morphisms in C and D along
with equalities between them. If we are only interested in objects and mor-
phisms of (F,G)-dialg, we need to know what the objects and morphisms
of C and D are and the actions of F and G on those. Once we go beyond
morphisms, we run into trouble.

To illustrate these issues, we will look at the definition of the (F,G)-dialg

in detail.

B.3.1 Identity morphisms

Given an object (X, θ) : |(F,G)-dialg|, we define the identity morphism as

id(F,G)-dialg (X, θ) :≡ (idC X, id0)

182 APPENDIX B. MOVING TO AN UNTRUNCATED SETTING

with id0 defined as:

G idC ◦ θ
id0

G-id ◦ θ

θ ◦ F idC

θ ◦ F -id

idD ◦ θ

left-idD

θ ◦ idD

right-idD

θ

Unsurprisingly, the construction of identity morphisms relies on the
functor F and G preserving identity morphisms. Perhaps more surprising
is that the construction also relies on the identity laws of the category D, i.e.
a category structure “one level up” from identity morphisms.

In our cases, the codomain of functors F and G is always Type or some
other category of sorts: it does not change with the number of constructors.

B.3.2 Composition

Suppose we are given algebras (X, θ), (Y, ρ)(Z, ζ) : |(F,G)-dialg| and mor-
phisms (g, g0) : (Y, ρ) → (Z, ζ) and (f, f0) : (X, θ) → (Y, ρ). If we want to
compose the two morphisms, we need a way to glue the squares g0 and f0

together, i.e. we need an operation:

FX θ //

Ff
��

f0

GX

Gf
��

FY
ρ //

Fg
��

g0

GY

Gg
��

FX θ //

F (g◦f)
��

g0◦0f0

GX

G(g◦f)
��

FY ρ
// GY FZ

ζ
// GZ FZ

ζ
// GZ

// //

B.3. CATEGORIES OF DIALGEBRAS 183

The (vertical) composition of the squares g0◦0f0 is defined as the composite:

G (g ◦ f) ◦ θ g0 ◦0 f0

G-◦ g f ◦ θ

ζ ◦ F (g ◦ f)
ζ ◦ F -◦ g f

(G g ◦G f) ◦ θ
assocD

ζ ◦ (F g ◦ F f)

assocD

G g ◦ (G f ◦ θ)
G g ◦ f0

(ζ ◦ F g) ◦ F f

g0 ◦ F f

G g ◦ (ρ ◦ F f) assocD
(G g ◦ ρ) ◦ F f

Composition of dialgebra morphisms is then:

(g, g0) ◦ (f, f0) :≡ (g ◦ f, g0 ◦0 f0)

As with identity morphisms, we notice that we need to appeal to the func-
tors preserving the same kind of structure we are defining here: they need
to preserve composition. We also need categorical structure one level up
from composition from the category D, namely associativity.

Looking at this definition of composition, we notice that even when C

and D are strict categories, with F and G being strict functors, e.g. when
we consider F -algebras on Type with F given as a container, composition
will not be strictly associative.

B.3.3 Category laws

If we want to talk about the identity laws in a category of dialgebras, we
need to know what equality between dialgebra morphisms looks like. We
can characterise it as follows:

Proposition B.3.1. Let (f, f0), (g, g0) be two dialgebra morphisms (X, θ) →

184 APPENDIX B. MOVING TO AN UNTRUNCATED SETTING

(Y, ρ) in (F,G)-dialg, then we have the following equivalence of equalities:

((f, f0) = (g, g0)) = (p : f = g)

× (p0 : G f ◦ θ f0

G p ◦ θ

ρ ◦ F f

ρ ◦ F p

G g ◦ θ g0
ρ ◦ F g

)

Proof. Using the fact that an equality of dependent pairs is a dependent
pair of equalities, we get that

((f, f0) = (g, g0)) = (p : f = g)× (p0 : f0 =
λh.G h ◦ θ=ρ ◦ F h
p g0

Having a path p0 over a family of equalities is equivalent to the square by
the usual reasoning.

To give a witness for the left identity law, we need to show given:

• objects (X, θ), (Y, ρ) : |(F,G)-dialg|

• with a morphism (f, f0) : (X, θ)→ (Y, ρ)

that id(F,G)-dialg (Y, ρ) ◦(F,G)-dialg (f, f0) = (f, f0). Unfolding definitions this
reduces to having to show that:

(idC Y ◦C f, id0 ρ ◦0 f0) = (f, f0)

Applying proposition B.3.1 this is the same as giving a proof p : idC Y ◦f =

f along with a square:

G (idC Y ◦ f) ◦ θ id0 ρ ◦0 f0

G p ◦ θ

ρ ◦ F (idC Y ◦ f)
ρ ◦ F p

G f ◦ θ
f0

ρ ◦ F f

We will work this out in detail, assuming the category D is strict. This
assumption is reasonable as per the reasons given in appendix B.2.

B.4. UNTRUNCATEDTYPE-SORTED INDUCTIVE-INDUCTIVE DEFINITIONS185

For p we can fill in left-idC f . Furthermore we know that, assuming the
functors F and G preserve the left identity laws:

F (left-idC f) = F - ◦ (idC Y) f � F -id Y ◦ Ff

and similarly for G. The diagram we end up with is the one shown in
fig. B.1, where the double lines indicate a refl path. The non-trivial part of
the diagram is the following square:

G(idCY) ◦Gf ◦ θ G (idC Y) ◦ f0

G-id Y ◦ G f ◦ θ

G(idCY) ◦ ρ ◦ Ff

G-id Y ◦ ρ ◦ Ff

Gf ◦ θ
f0

ρ ◦ Ff

Since we have f0 = idDGY ◦f0, the above square follows from the naturality
property enjoyed by homotopies.

As we see, even when we simplify the situation by assuming that D is
strict, we end up with a rather involved calculation. Working out the asso-
ciativity law in detail is even more strenuous. It seems that we can show
that the category (F,G)-dialg has all the category laws that are preserved
by the functors F and G.

B.4 UntruncatedType-sorted inductive-inductive
definitions

In the previous section we have sketched how the category laws can be es-
tablished in the untruncated dialgebra categories, assuming the codomain
of the functors is a strict category. This means that it explains what we need
from of aType-sorted inductive-inductive definition to be able to show that
the resulting category of algebras does in fact satisfy the category laws: all
the arguments functors have to preserve the category laws.

While it seems that the coherence data is constant in the amount of con-
structors, in practice we see that this is not the case. To show that a functor

186 APPENDIX B. MOVING TO AN UNTRUNCATED SETTING

Gf ◦ θ
G-id Y ◦ Gf ◦ θ

f0

G(idCY) ◦Gf ◦ θ
G-◦ (idC Y) f ◦ θ

G(idCY ◦ f) ◦ θ

G-◦ (idC Y) f ◦ θ

G(idCY) ◦Gf ◦ θ

G (idC Y) ◦ f0

G(idCY) ◦ ρ ◦ Ff

G-id Y ◦ ρ ◦ Ff

ρ ◦ Ff

ρ ◦ F -id Y ◦ Ff

ρ ◦ F (idCY) ◦ Ff

ρ ◦ F -◦ (idC Y) f

ρ ◦ Ff
ρ ◦ F -id Y ◦ Ff

ρ ◦ F (idC) ◦ Ff
ρ ◦ F -◦ (idC Y) f

ρ ◦ F (idCY ◦ f)

Figure B.1: Establishing the left identity law

B.5. PATH CONSTRUCTORS AND THEIR COMPUTATION RULES 187

preserves category laws, we may need more structure from the domain cat-
egory. For generalised containers, we see that to show it preserves identity
morphisms, we need to have identity laws in the domain category, i.e. we
need coherence “one level up”. To show that it preserves the identity laws,
we need the higher coherence condition for identity laws from the domain
category. This means that the amount of coherence levels needed stacks
up every time we add a constructor to the definition.

What is somewhat surprising about this, is that we have not even con-
sidered path constructors yet. The coherence issues grow in the number of
constructors no matter whether they are point or path constructors.

B.5 Path constructors and their computation rules

In the set truncated setting we could ignore the computation rules for path
constructors, as all paths between equalities were trivial. In the untrun-
cated setting they need to be accounted for. Suppose we have a category
of algebras C with forgetful functor U : C ⇒ Type. A path constructor
defined on this category is given by a functor F : C ⇒ Type along with
two natural transformations l, r : F .→ U . Let X,Y : |C|, with θ : ℓX = rX

and ρ : ℓY = rY . A morphism f : X → Y preserves the algebra structures θ
and ρ, if “applying” the equality θ first and then the morphism yields the
same equality as first applying the morphism and then the equality ρ. We
would like to say:

Uf ◦ θ = ρ ◦ Ff

but this does not type check as we have Uf ◦ θ : Uf ◦ ℓX = Uf ◦ rX and
ρ ◦ Ff : ℓY ◦ Ff = rY ◦ Ff . We have to appeal to naturality in order for
this equation to make sense. Let us denote for the witnesses of naturality
as ℓf : Uf ◦ ℓX = ℓY ◦ Ff . For f to be an algebra morphism requires us to

188 APPENDIX B. MOVING TO AN UNTRUNCATED SETTING

have a witness of the following:

Uf ◦ ℓX
U f ◦ θ

ℓf

Uf ◦ rX
rf

ℓY ◦ Ff
ρ ◦ Ff

rY ◦ Ff

Bibliography

[AAG05] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. ‘Con-
tainers: constructing strictly positive types’. In: Theoretical Com-
puter Science 342.1 (2005), pp. 3–27 (cit. on pp. 64, 173).

[AAL11] Thorsten Altenkirch, Thomas Anberrée, and Nuo Li. ‘Defin-
able quotients in type theory’. In: Draft paper (2011) (cit. on
pp. 48, 49, 54, 60).

[Ace00] Fabio Acerbi. ‘Plato: Parmenides 149a7-c3. a proof by complete
induction?’ In: Archive for History of Exact Sciences 55.1 (2000),
pp. 57–76 (cit. on p. 1).

[ACK16a] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. ‘Ex-
tending Homotopy Type Theory with Strict Equality’. In: CSL.
2016 (cit. on pp. 12, 172, 179).

[ACK16b] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. ‘Higher
Categories in Homotopy Type Theory’. In: TYPES preproceed-
ings. 2016 (cit. on pp. 172, 179).

[Acz77] Peter Aczel. ‘An introduction to inductive definitions’. In: Stud-
ies in Logic and the Foundations of Mathematics 90 (1977), pp. 739–
782 (cit. on p. 5).

[AGS12] Steve Awodey, Nicola Gambino, and Kristina Sojakova. ‘Induc-
tive types in homotopy type theory’. In: Proceedings of the 2012
27th Annual IEEE/ACM Symposium on Logic in Computer Science.
IEEE Computer Society. 2012, pp. 95–104 (cit. on pp. 12, 64).

189

190 BIBLIOGRAPHY

[AK12] Thorsten Altenkirch and Nicolai Kraus. Setoids are not an LCCC.
http://www.cs.nott.ac.uk/~psznk/docs/setoids.pdf. 2012
(cit. on p. 174).

[AK16] Thorsten Altenkirch and Ambrus Kaposi. ‘Type theory in type
theory using quotient inductive types’. In: ACM SIGPLAN No-
tices 51.1 (2016), pp. 18–29 (cit. on pp. 12, 57).

[AK79] Ji Adámek and Václav Koubek. ‘Least fixed point of a functor’.
In: Journal of Computer and System Sciences 19.2 (1979), pp. 163–
178 (cit. on p. 148).

[AKS15] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman.
‘Univalent categories and the Rezk completion’. In: Mathemat-
ical Structures in Computer Science 25.05 (2015), pp. 1010–1039
(cit. on p. 37).

[Alt+11] Thorsten Altenkirch, Peter Morris, Fredrik Nordvall Forsberg,
and Anton Setzer. ‘A categorical semantics for inductive-inductive
definitions’. In: CALCO 2011. Ed. by Andrea Corradini, Bartek
Klin, and Corina Cirstea. Vol. 6859. Lecture Notes in Computer
Science. Springer, Heidelberg, 2011, pp. 70–84 (cit. on pp. 12,
60, 101).

[Alt+15] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, and Fredrik
Nordvall Forsberg. ‘Towards a theory of higher inductive types’.
In: Presentation at TYPES 15 (2015) (cit. on pp. 13, 15, 98, 103).

[Alt+16] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, and Fredrik
Nordvall Forsberg. ‘Quotient inductive-inductive types’. In: arXiv
preprint arXiv:1612.02346 (2016) (cit. on p. 15).

[Bac+89] Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik
Saaman. ‘Do-it-yourself type theory’. In: Formal Aspects of Com-
puting 1.1 (1989), pp. 19–84 (cit. on pp. 6, 63).

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development: CoqArt: The Calculus of Inductive Construc-
tions. Springer Science & Business Media, 2004 (cit. on p. 6).

http://www.cs.nott.ac.uk/~psznk/docs/setoids.pdf

BIBLIOGRAPHY 191

[BCH14] Marc Bezem, Thierry Coquand, and Simon Huber. ‘A model
of type theory in cubical sets’. In: 19th International Conference
on Types for Proofs and Programs (TYPES 2013). Vol. 26. 2014,
pp. 107–128 (cit. on p. 60).

[BDJ03] Marcin Benke, Peter Dybjer, and Patrik Jansson. ‘Universes for
generic programs and proofs in dependent type theory’. In:
Nord. J. Comput. 10.4 (2003), pp. 265–289 (cit. on p. 11).

[BHW07] Frédéric Blanqui, Thérèse Hardin, and Pierre Weis. ‘On the im-
plementation of construction functions for non-free concrete
data types’. In: European Symposium on Programming. Springer.
2007, pp. 95–109 (cit. on p. 60).

[Bru16] Guillaume Brunerie. ‘On the homotopy groups of spheres in
homotopy type theory’. PhD thesis. Université de Nice Sophia
Antipolis, 2016 (cit. on p. 10).

[BW85] Michael Barr and Charles Wells. Toposes, triples and theories. Springer-
Verlag New York, 1985 (cit. on p. 165).

[Cam13] Omar Antoln Camarena. A whirlwind tour of the world of (, 1)-
categories. 2013 (cit. on pp. 12, 179).

[Cap14] Paolo Capriotti. Mutual and Higher Inductive Types in Homotopy
Type Theory. 2014. url: http://cs.nott.ac.uk/~pvc/away-
day-2014/mhit.pdf (cit. on pp. 13, 103).

[Cav15] Evan Cavallo. ‘Synthetic cohomology in homotopy type the-
ory’. MA thesis. Carnegie Mellon University, 2015 (cit. on p. 10).

[CDP14] Jesper Cockx, Dominique Devriese, and Frank Piessens. ‘Pat-
tern matching without K’. In: International Conference on Func-
tional Programming (ICFP 2014). 2014 (cit. on pp. 5, 22).

[Cha09] James Chapman. ‘Type theory should eat itself’. In: Electronic
Notes in Theoretical Computer Science 228 (2009), pp. 21–36 (cit.
on p. 55).

http://cs.nott.ac.uk/~pvc/away-day-2014/mhit.pdf
http://cs.nott.ac.uk/~pvc/away-day-2014/mhit.pdf

192 BIBLIOGRAPHY

[CJ95] Aurelio Carboni and Peter Johnstone. ‘Connected limits, famil-
ial representability and Artin glueing’. In: Mathematical Struc-
tures in Computer Science 5.04 (1995), pp. 441–459 (cit. on p. 174).

[Coh+15] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mört-
berg. ‘Cubical type theory: a constructive interpretation of the
univalence axiom’. In: Preprint, December (2015) (cit. on pp. 44,
60).

[Coq86] T Coquand. ‘An analysis of Girard’s paradox’. In: (1986) (cit.
on p. 19).

[Coq92] Thierry Coquand. ‘Pattern matching with dependent types’.
In: Informal proceedings of Logical Frameworks. Vol. 92. 1992, pp. 66–
79 (cit. on pp. 4, 22).

[Cra13] James Cranch. ‘Concrete categories in homotopy type theory’.
In: arXiv preprint arXiv:1311.1852 (2013) (cit. on p. 178).

[Dan06] Nils Anders Danielsson. ‘A formalisation of a dependently typed
language as an inductive-recursive family’. In: International Work-
shop on Types for Proofs and Programs. Springer. 2006, pp. 93–109
(cit. on p. 55).

[Dia75] Radu Diaconescu. ‘Axiom of choice and complementation’. In:
Proceedings of the American Mathematical Society 51.1 (1975), pp. 176–
178 (cit. on p. 53).

[Doo16] Floris van Doorn. ‘Constructing the propositional truncation
using non-recursive HITs’. In: Proceedings of the 5th ACM SIG-
PLAN Conference on Certified Programs and Proofs. ACM. 2016,
pp. 122–129 (cit. on pp. 50, 166).

[DS99] Peter Dybjer and Anton Setzer. ‘A finite axiomatization of inductive-
recursive definitions’. In: Typed Lambda Calculi and Applications.
Springer, 1999, pp. 129–146 (cit. on p. 5).

[Dyb95] Peter Dybjer. ‘Internal type theory’. In: International Workshop
on Types for Proofs and Programs. Springer. 1995, pp. 120–134 (cit.
on p. 143).

BIBLIOGRAPHY 193

[Gir72] Jean-Yves Girard. ‘Interprétation fonctionelle et élimination des
coupures de larithmétique dordre supérieur’. PhD thesis. PhD
thesis, Université Paris VII, 1972 (cit. on p. 19).

[GJF10] Neil Ghani, Patricia Johann, and Clément Fumex. ‘Fibrational
induction rules for initial algebras’. In: Computer Science Logic.
Springer. 2010, pp. 336–350 (cit. on p. 143).

[GK13] Nicola Gambino and Joachim Kock. ‘Polynomial functors and
polynomial monads’. In: Mathematical Proceedings of the Cam-
bridge Philosophical Society. Vol. 154. 01. Cambridge Univ Press.
2013, pp. 153–192 (cit. on p. 70).

[GMM06] Healfdene Goguen, Conor McBride, and James McKinna. ‘Elim-
inating dependent pattern matching’. In: Algebra, Meaning, and
Computation. Springer, 2006, pp. 521–540 (cit. on pp. 5, 22).

[Hag87] Tatsuya Hagino. ‘Category theoretic approach to data types’.
PhD thesis. University of Edinburgh, 1987 (cit. on p. 72).

[Han+13] Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malat-
esta, and Thorsten Altenkirch. ‘Small induction recursion’. In:
Typed Lambda Calculi and Applications. Springer, 2013, pp. 156–
172 (cit. on p. 101).

[Hof95] Martin Hofmann. ‘Extensional concepts in intensional type the-
ory’. PhD thesis. University of Edinburgh, 1995 (cit. on pp. 13,
46, 53, 60).

[Hou+16] Kuen-Bang Hou (Favonia), Eric Finster, Dan Licata, and Peter
LeFanu Lumsdaine. ‘A mechanization of the Blakers-Massey
connectivity theorem in Homotopy Type Theory’. In: arXiv preprint
arXiv:1605.03227 (2016) (cit. on p. 10).

[HS98] Martin Hofmann and Thomas Streicher. ‘The groupoid inter-
pretation of type theory’. In: Twenty-five years of constructive type
theory (Venice, 1995) 36 (1998), pp. 83–111 (cit. on p. 8).

[Jon03] Simon Peyton Jones. Haskell 98 language and libraries: the revised
report. Cambridge University Press, 2003 (cit. on p. 2).

194 BIBLIOGRAPHY

[Kah01] Stefan Kahrs. ‘Red-black trees with types’. In: Journal of func-
tional programming 11.04 (2001), pp. 425–432 (cit. on p. 4).

[Kap16] Ambrus Kaposi. ‘Type theory in a type theory with quotient
inductive types’. PhD thesis. University of Nottingham, 2016
(cit. on p. 57).

[Kel80] G Max Kelly. ‘A unified treatment of transfinite constructions
for free algebras, free monoids, colimits, associated sheaves,
and so on’. In: Bulletin of the Australian Mathematical Society 22.01
(1980), pp. 1–83 (cit. on p. 165).

[KLV12] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Vo-
evodsky. ‘The simplicial model of univalent foundations’. In:
arXiv preprint arXiv:1211.2851 (2012) (cit. on p. 9).

[Koc11] Joachim Kock. ‘Polynomial functors and trees’. In: International
Mathematics Research Notices 2011.3 (2011), pp. 609–673 (cit. on
p. 174).

[Kra15] Nicolai Kraus. ‘Truncation levels in homotopy type theory’. PhD
thesis. University of Nottingham, 2015 (cit. on p. 50).

[KS15] Nicolai Kraus and Christian Sattler. ‘Higher homotopies in a
hierarchy of univalent universes’. In: ACM Transactions on Com-
putational Logic (TOCL) 16.2 (2015), p. 18 (cit. on p. 9).

[LB13] Daniel R Licata and Guillaume Brunerie. ‘π n (S n) in Homo-
topy Type Theory’. In: International Conference on Certified Pro-
grams and Proofs. Springer. 2013, pp. 1–16 (cit. on p. 10).

[Li15] Nuo Li. ‘Quotient types in type theory’. PhD thesis. University
of Nottingham, 2015 (cit. on pp. 13, 60).

[Lic11] Daniel R Licata. Running Circles Around (In) Your Proof Assistant;
or, Quotients that Compute. Apr. 2011. url: https://homotopytypetheory.
org/2011/04/23/running-circles-around-in-your-proof-

assistant/ (cit. on p. 57).

https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/

BIBLIOGRAPHY 195

[Lin69] Fred EJ Linton. ‘Coequalizers in categories of algebras’. In: Sem-
inar on triples and categorical homology theory. Springer. 1969, pp. 75–
90 (cit. on p. 165).

[LS13a] Daniel R Licata and Michael Shulman. ‘Calculating the funda-
mental group of the circle in homotopy type theory’. In: Pro-
ceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic
in Computer Science. IEEE Computer Society. 2013, pp. 223–232
(cit. on p. 10).

[LS13b] Peter LeFanu Lumsdaine and Michael Shulman. Semantics of
higher inductive types. https://uf-ias-2012.wikispaces.com/file/detail/semantics.pdf.
2013 (cit. on pp. 10, 13, 60, 70, 103, 165).

[Lum09] Peter LeFanu Lumsdaine. ‘Weak ω-categories from intensional
type theory’. In: International Conference on Typed Lambda Calculi
and Applications. Springer. 2009, pp. 172–187 (cit. on pp. 9, 25).

[Mak95] Michael Makkai. ‘First order logic with dependent sorts, with
applications to category theory’. http://www.math.mcgill.
ca/makkai/folds/. 1995 (cit. on p. 79).

[Mal+12] Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Han-
cock, and Conor McBride. ‘Small induction recursion, indexed
containers and dependent polynomials are equivalent’. In: Sub-
mitted for publication 35 (2012) (cit. on p. 74).

[Mar71] Per Martin-Löf. ‘Hauptsatz for the intuitionistic theory of iter-
ated inductive definitions’. In: Studies in Logic and the Founda-
tions of Mathematics 63 (1971), pp. 179–216 (cit. on p. 5).

[Mar72] Per Martin-Löf. An intuitionistic theory of types. 1972 (cit. on p. 5).

[McB06] Conor McBride. On Berry’s Majority Function. June 2006. url:
https://www.mail-archive.com/epigram@durham.ac.uk/

msg00229.html (cit. on p. 22).

[Mor07] Peter Morris. ‘Constructing universes for generic programming’.
In: PhD thesis, The University of Nottingham (2007) (cit. on pp. 22,
173).

http://www.math.mcgill.ca/makkai/folds/
http://www.math.mcgill.ca/makkai/folds/
https://www.mail-archive.com/epigram@durham.ac.uk/msg00229.html
https://www.mail-archive.com/epigram@durham.ac.uk/msg00229.html

196 BIBLIOGRAPHY

[Nor07] Ulf Norell. Towards a practical programming language based on de-
pendent type theory. Vol. 32. Citeseer, 2007 (cit. on p. 4).

[Nor13] Fredrik Nordvall Forsberg. ‘Inductive-inductive definitions’. PhD
thesis. Swansea University, 2013 (cit. on pp. 1, 5, 12, 55, 143).

[Pea89] Guiseppe Peano. ‘Arithmetices Principia nova methodo exposita,
Aug’. In: Taurinorum (D Opere scelte, a cura dellUnione Matemat-
ica Italiana 2: 20–55) (1889) (cit. on p. 1).

[PL04] Emir Paali and Nathan Linger. ‘Meta-programming with typed
object-language representations’. In: International Conference on
Generative Programming and Component Engineering. Springer.
2004, pp. 136–167 (cit. on p. 4).

[Rij12] Egbert Rijke. A type theoretical Yoneda lemma. May 2012. url:
https://homotopytypetheory.org/2012/05/02/a- type-

theoretical-yoneda-lemma/ (cit. on p. 36).

[Shu11a] Michael Shulman. An Interval Type Implies Function Extensional-
ity. Apr. 2011. url: https://homotopytypetheory.org/2011/
04/04/an-interval-type-implies-function-extensionality/

(cit. on p. 46).

[Shu11b] Michael Shulman. Re: Homotopy Type Theory, VI. Apr. 2011. url:
https://golem.ph.utexas.edu/category/2011/04/homotopy_

type_theory_vi.html#c041358 (cit. on pp. 7, 70).

[Soj14] K. Sojakova. ‘Higher Inductive Types as Homotopy-Initial Al-
gebras’. In: ArXiv e-prints (Feb. 2014) (cit. on p. 11).

[Tho86] Simon Thompson. ‘Laws in miranda’. In: Proceedings of the 1986
ACM conference on LISP and functional programming. ACM. 1986,
pp. 1–12 (cit. on p. 60).

[Tho90] Simon Thompson. ‘Lawful functions and program verification
in Miranda’. In: Science of Computer Programming 13.2 (1990),
pp. 181–218 (cit. on p. 60).

https://homotopytypetheory.org/2012/05/02/a-type-theoretical-yoneda-lemma/
https://homotopytypetheory.org/2012/05/02/a-type-theoretical-yoneda-lemma/
https://homotopytypetheory.org/2011/04/04/an-interval-type-implies-function-extensionality/
https://homotopytypetheory.org/2011/04/04/an-interval-type-implies-function-extensionality/
https://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html#c041358
https://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html#c041358

BIBLIOGRAPHY 197

[Tur85] David A Turner. ‘Miranda: A non-strict functional language
with polymorphic types’. In: Conference on Functional Program-
ming Languages and Computer Architecture. Springer. 1985, pp. 1–
16 (cit. on p. 60).

[Uni13] The Univalent Foundations Program. Homotopy Type Theory:
Univalent Foundations of Mathematics. Institute for Advanced Study:
http://homotopytypetheory.org/book, 2013 (cit. on pp. 5, 7,
12, 17, 30, 33, 55).

[VG11] Benno Van Den Berg and Richard Garner. ‘Types are weak ω-
groupoids’. In: Proceedings of the London Mathematical Society
102.2 (2011), pp. 370–394 (cit. on pp. 9, 25).

http://homotopytypetheory.org/book

	Introduction
	Induction in mathematics
	Induction in computer science
	Formal treatment of induction
	In type theory
	In category theory

	Higher inductive types and homotopy type theory
	A theory of quotient inductive-inductive definitions
	Related work
	Overview of the thesis and contributions
	List of main contributions
	Declaration of authorship and previous work

	Preliminaries
	Basic type formers
	Universes
	Implicit arguments
	Inductive data types

	Equality
	Dependent equality
	Functoriality of functions
	Truncation levels
	Equivalence
	Univalence
	Function extensionality
	Equivalences of -types
	Alternative formulation of identity types

	Category theory in type theory
	Higher categories

	Core type theory

	Quotient inductive-inductive definitions
	Examples
	Interval type
	Quotients and colimits
	Propositional truncation
	Infinitely branching trees
	Cauchy reals
	Syntax of type theory

	Implementation
	Cubical type theory

	Related work

	Describing inductive definitions
	Algebraic semantics
	Monad algebras

	Set-sorted inductive-inductive definitions
	Avoiding induction-recursion

	Dependent sorts
	Sort membership
	Makkai's dependent sorts
	Sort categories via comma categories

	Categories of algebras
	A Rel-sorted quotient inductive-inductive type
	Specification of a quotient inductive-inductive definition
	Point constructors
	Path constructors
	Worked example

	Other forms of constructors
	Dependent dialgebras
	Currying

	Positivity
	Related work
	Inductive-inductive definitions
	Inductive definitions in Agda
	Higher inductive types

	Induction versus initiality
	Categorical characterisation of induction
	The section principle is logically equivalent to initiality
	Limits in categories of algebras
	Sort categories
	Categories of algebras

	Deriving the induction principle
	Induction for F-algebras
	General framework
	Induction for quotient inductive-inductive definitions
	Putting it all together

	Related work

	Constructing quotient inductive-inductive definitions
	Strict positivity
	Initial objects in sort categories
	Initial objects via sequential colimits
	Internal sequential colimits
	Constructing Set-sorted quotient inductive-inductive definitions
	Putting it all together

	Related work

	Concluding remarks
	Future work
	Metaprogramming and generic programming
	Invariance of descriptions under equivalence of constructors
	Generalised containers
	Constructing initial algebras
	Generalising to higher inductive types

	Containers for quotient inductive-inductive definitions
	Containers for Set-sorted definitions
	Containers for arbitrarily sorted definitions
	Limitations of containers

	Moving to an untruncated setting
	Coherence laws for functors
	Generalised containers

	Sort categories
	Categories of dialgebras
	Identity morphisms
	Composition
	Category laws

	Untruncated Type-sorted inductive-inductive definitions
	Path constructors and their computation rules

