
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Progressive load balancing of asynchronous algorithms

Citation for published version:
Zarins, J & Weiland, M 2017, Progressive load balancing of asynchronous algorithms. in IA3'17
Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms., 5, ACM, pp.
5:1-5:9, The International Conference for High Performance Computing, Networking, Storage, and Analysis,
Denver, United States, 12/11/17. DOI: 10.1145/3149704.3149765

Digital Object Identifier (DOI):
10.1145/3149704.3149765

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
IA3'17 Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/141470825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3149704.3149765
https://www.research.ed.ac.uk/portal/en/publications/progressive-load-balancing-of-asynchronous-algorithms(ab319658-9572-43ee-aa23-b955f2b834bb).html


Progressive load balancing of asynchronous algorithms
Justs Zarins

University of Edinburgh
Edinburgh, UK

j.zarins@ed.ac.uk

Michèle Weiland
EPCC

Edinburgh, UK
m.weiland@epcc.ed.ac.uk

ABSTRACT
Synchronisation in the presence of noise and hardware perfor-
mance variability is a key challenge that prevents applications from
scaling to large problems and machines. Using asynchronous or
semi-synchronous algorithms can help overcome this issue, but
at the cost of reduced stability or convergence rate. In this paper
we propose progressive load balancing to manage progress imbal-
ance in asynchronous algorithms dynamically. In our technique the
balancing is done over time, not instantaneously.

Using Jacobi iterations as a test case, we show that, with CPU per-
formance variability present, this approach leads to higher iteration
rate and lower progress imbalance between parts of the solution
space. We also show that under these conditions the balanced asyn-
chronousmethod outperforms synchronous, semi-synchronous and
totally asynchronous implementations in terms of time to solution.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;

KEYWORDS
asynchronous algorithm, load balancing, performance variability
ACM Reference Format:
Justs Zarins and Michèle Weiland. 2017. Progressive load balancing of asyn-
chronous algorithms. In Proceedings of IA3’17: Seventh Workshop on Irregular
Applications: Architectures and Algorithms, Denver, CO, USA, November 12–17,
2017 (IA3’17), 9 pages.
https://doi.org/10.1145/3149704.3149765

1 INTRODUCTION
As supercomputers are growing in size, running large scale, tightly-
coupled applications e�ciently is becoming more di�cult. A key
component of the problem is the cost of synchronisation which in-
creases with system noise and performance variability. This a�ects
even high-end HPC machines like ARCHER [1] and Cirrus [2] as
shown in Figure 1.

An exciting and promising approach for addressing this problem
is to stop enforcing synchronisation points. This results in what are
known as “asynchronous” or “chaotic” algorithms [10]; commonly
they are iteratively convergent. The cores are allowed to compute
using whatever latest data is available to them, which might be
“stale”, instead of waiting for other threads to catch up. Existing

IA3’17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5136-2/17/11.
https://doi.org/10.1145/3149704.3149765

node 1 node 2 node 3

1.00

1.02

1.04

1.06

1.08

1.10

1.12

N
or

m
al

is
ed

 ti
m

e 
to

 s
ol

ut
io

n

(a) ARCHER
node A node B node C

1.00

1.02

1.04

1.06

1.08

N
or

m
al

is
ed

 ti
m

e 
to

 s
ol

ut
io

n

(b) Cirrus

Figure 1: Performance variability within and across di�er-
ent nodes on two HPC machines. Each point is a run of the
same application with the same settings.

applications of this methodology show good performance and fault
tolerance with respect to their synchronous counterparts.

While asynchrony removes the computational cost of requiring
all data to arrive at the same time, a di�erent cost takes its place -
progress imbalance. This is natural because synchronisation points
exist to coordinate progress. An imbalance in progress can result
in slower convergence or even failure to converge, as old data is
used for updates. This can be countered by putting a strict bound
on how stale data is allowed to be, but at a cost to performance.

In this paper we introduce the idea of progressive load balanc-
ing – balancing asynchronous algorithms over time as opposed to
balancing instantaneously. Instead of �ne-tuning iteration rates,
parts of the working set are periodically moved between computing
threads on a node. As a result we limit progress imbalance with-
out adding a large overhead. Our approach is similar to bounded
staleness, but it continues to work e�ciently in the presence of
continuous progress imbalance as a result of hardware performance
variability or workload imbalance.

We implement progressive load balancing and use Jacobi’smethod
as an evaluation platform.

Our paper makes the following contributions:

(1) We show that update spread is bounded under a variety of
scenarios using progressive load balancing.

(2) We show that, in a shared memory setting, the overhead of
balancing is small in most cases.

(3) We show an example of how asynchrony with progressive
load balancing is bene�cial in terms of time to solution over
other synchronisation methods and is successful at minimis-
ing the impact of noise.

https://doi.org/10.1145/3149704.3149765
https://doi.org/10.1145/3149704.3149765
rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


IA3’17, November 12–17, 2017, Denver, CO, USA Justs Zarins and Michèle Weiland

2 BACKGROUND
Synchronisation in HPC applications is a signi�cant performance
bottleneck. This is especially the case in classical bulk synchronous
algorithms where progress is made at the rate of the slowest compo-
nent. Even applications with uniform workload across threads are
a�ected due to hardware performance variation. A machine with
homogeneous CPUs and interconnect would still exhibit variable
performance due to chip manufacturing di�erences [3, 17], energy
usage management [26], network congestion [15] and OS noise [25].
It is predicted that the issue of performance variability will only
grow in future HPC systems [13, 22].

In this context it is attractive to consider asynchronous algo-
rithms. These are normally iterative convergent algorithms. Ex-
amples include relaxation methods for linear systems of equa-
tions [5, 10], stochastic gradient descend (SGD) [18, 20], �nite di�er-
ence solvers of PDEs [4, 14], adaptivemesh re�nementmethods [21]
and Schwarz methods [23]. Asynchronous algorithms can progress
using “stale” values, so one CPU would not have to wait on another
that may have stalled, but instead use the most recent value from
the stalled worker. However, doing so replaces performance vari-
ability with “progress variability”, i.e. some parts of the problem
space have been progressed towards the solution more than others.
In general the time to solution ends up being a function of iteration
rate (which increases for asynchronous algorithms) and conver-
gence rate (which may decrease if using stale values for updates).
However, too much staleness can result in non-convergence [8].

A solution is to put a bound on how much staleness is allowed.
In terms of performance, bounded staleness can tolerate random
noise a�ecting all cores, but would be susceptible to continuous
performance variability in the machine (see Section 5).

Thus we are motivated to seek an alternative approach, that
would also be resilient against performance variability, via load bal-
ancing. In our approach we attempt to exploit the unique property
of asynchronous algorithms of tolerating staleness. This allows to
load balance in a di�erent way - over time as opposed to instanta-
neously. Indeed, we do not attempt to equalise the iteration rate (or
any other load metric), but rather vary it to keep a di�erent metric
- progress variation - bounded.

2.1 Related work
One of the earliest formulations of semi-synchronous algorithms
was done by Kung [19]. Recently this concept has been applied in
machine learning under the name of bounded staleness [12, 16]. In
this approach there is a hard limit on how out-of-date values can
be before a worker has to wait for fresher ones.

The same idea has been used to implement a memory consis-
tencymodel, but with the addition of a best e�ort refresh policy [27].
Refresher threads were used to preemptively refresh stale values.
This resulted in a 2.27x speedup over a purely asynchronous imple-
mentation.

Bahi et al. have implemented a load balancing algorithm in a
1D stencil application [7]. They found that signi�cant performance
gains could be achieved by balancing the iteration rate between
components in a grid computing context. Even bigger gains could
be gained by using the residual as a load estimator.

Asynchronous algorithms on GPUs face systematic biases in
updating due to patterns in GPU thread scheduling [6]. The prob-
lem can be tackled by managing the order of execution of thread
blocks [11]. This method e�ectively aims to reduce the staleness of
the values used for new updates.

Other approaches accept that there will be signi�cant di�erences
in iteration rates and instead try to manage the negative e�ects of
asynchrony using various algorithmic corrections. For asynchro-
nous SGD examples include tuning algorithmic momentum [24]
based on the degree of asynchrony, skipping updates that would
direct away from a projected solution [18] or compensating for
delayed gradients caused by calculating gradient updates using a
stale snapshot of global state [28].

3 METHODOLOGY
In this section we describe our general approach to comparing
di�erent synchronisation types of an asynchronous algorithm and
the implementation details of progressive load balancing.

3.1 Experimental method
Our general approach is to compare progressive load balanced asyn-
chronous with synchronous, semi-synchronous and asynchronous
implementations of the same algorithm. Since there are multiple
sources of uncertainty, it is important to take many performance
samples, including multiple di�erent nodes, to get a full picture of
the range of performance.

Noise generation. Noise can be transient or not present on every
node equally (see Figure 1). A variable execution environment
makes it di�cult to compare experiments. To alleviate this, we
inject noise so that there is consistency between experiments and
we can discern the e�ects of di�erent synchronisation types. We
simulate a noisy core by running a second, parasite application; for
details of the simulation see section 4.3.

Evaluation metrics. We evaluate the di�erent implementations
using three metrics:

Iteration rate The number of iterations completed per second. In
an asynchronous setting this value is not straightforward,
so we de�ne it as the total number of iterations across all
threads divided by the number of threads.

Spread A measure of the upper limit of progress imbalance. It is
the di�erence between the maximum and minimum number
of updates completed on subdomains of the problem at the
end of the run.

Time to solution Time taken to reach a chosen level of accuracy
of the solution.

3.2 Progressive load balancing
Our load balancing approach requires that the problem to solve
can be split into more parts than there are processing cores. For
example, if a 2D iterative stencil application splits the problem
domain equally among N CPU cores, we require that each domain
is subsplit further on each core. This requirement is not imposing
anything new on the application, as it would already have the
requirement of domain decomposition in order to parallelise.



Progressive load balancing of asynchronous algorithms IA3’17, November 12–17, 2017, Denver, CO, USA

Each subdomain has an associated counter to keep track of how
many times it has been updated. This information is used by the
load balancer to decide which subdomain updating needs to be sped
up and which need to be slowed down.

Subdomains start with some initial assignment to threads and
are updated as normal. Threads are pinned to 1 core each. At set
time intervals a load balancing function is run by one of the threads.
This function decides how to reassign subdomains to threads based
on di�erences in the number of updates to subdomains. Due to
the coarseness of managing in units of subdomains rather than
individual updateable elements, load balancing here is unlikely to
result in a stable work distribution where further load balancing is
not required. Instead it is continually adjusted so that the progress
of subdomains is balanced on average. We believe that progressive
load balancing is the best approach to counteract the unpredictable
and dynamic nature of system noise.

3.3 Implementation
The load balancing algorithm is detailed in the listing Algorithm 1.
Fundamentally, the algorithm works on both shared and distributed
memory, however in this paper we present a shared memory im-
plementation as a proof of concept.

The intuition behind the algorithm is as follows: each thread
updates a number of subdomains and it is possible to increase
or decrease the update (or iteration) rates of those subdomains
by removing subdomains from a thread or assigning more to it,
respectively. However, reassignment of subdomains to di�erent
threads must be done carefully and requires considering the e�ect
this will have on the progress of other subdomains belonging to
the a�ected threads.

In more detail: if a subdomain topSubd has had the most updates,
the thread that it belongs to, topThread is likely fast (e.g. because
it is pinned to a core not experiencing any noise or it has less
work). The load balancer will reduce the iteration rate of topSubd
by slowing down thread topThread through giving it an additional
subdomain to work on. At the same time, we wish to increase the
iteration rate of the subdomain botSubd that has had the least
updates. We �nd the associated thread botThread, which owns
botSubd, and pick a subdomain from it other than botSubd and
reassign this to topThread. Now that botThread has one fewer
subdomains to update, the iteration rate of botSubd will increase.

The iteration rate of the subdomain that is reassigned may go
up or down, depending on the relative number of subdomains
on topThread and botThread. The algorithm therefore picks the
subdomain that has had the most updates on botThread to move
to topThread, because that subdomain will usually be close to the
average in terms of updates completed, so it is unlikely to race too
far ahead or fall behind.

Repeatedly performing this load balancing achieves a progressive
“braiding” of iteration gradients, hence limiting spread of updates
per subdomain (see Figure 2).

These are the user tuneable parameters in the algorithm:

nPairs number of most and least updated subdomains to consider
lowThresh minimum number of subdomains on a thread
highThresh maximum number of subdomains on a thread

Data: nPairs, lowThresh, highThresh
1 doms list of subdomains sorted by update count (descending);
2 for i  0 to nPairs do
3 topSubd doms[i];
4 botSubd doms[�1 � i];
5 topThread topSubd.GetThread();
6 botThread botSubd.GetThread();
7 if topThread.GetNumSubds() < highThresh and

botThread.GetNumSubds() > lowThresh then
8 subdToSend FindMostUpdatedSubd(botThread);
9 subdToSend.SetThread(topThread);

10 end
11 end

Algorithm 1: Progressive load balancing.

The two thresholds (line 7) are to provide some “momentum”
and to avoid large swings in iteration rates. Considering more than
one pair of subdomains for balancing (line 2) helps the algorithm
load balance the whole problem, rather than one part of it. The
range of possible settings for these parameters is determined by
the degree of subsplitting - itself a tuneable parameter. In general,
splitting domains into more subdomains gives greater ability to
reduce spread, but it may reduce performance. For example, if the
application does stencil computation, performance would decrease
due to higher communication frequency between subdomains to
exchange halos and less contiguous cache use.

Since the cost of moving data within a CPU or across sockets is
di�erent, we developed 3 variants of the algorithm:
Joint All cores are treated the same. Subdomains may be moved

across sockets.
Split CPUs on di�erent sockets are balanced separately.
Hybrid CPUs on di�erent sockets are balanced separately. Pe-

riodically (this is another tuneable parameter) a random
subdomain is moved from a thread on the socket that has
completed the least updates on average to a thread on the
socket that has done the most.

3.4 Development of the algorithm
The progressive load balancing algorithm was developed itera-
tively, improving upon a simple starting point. For completeness,
we brie�y outline our thought process here without entering into
too much detail.

Initially all balancingmethods worked bymoving whole problem
domains between threads.

We �rst tried swapping the least and most updated domains
between threads. This worked well if all domains took the same
amount of time to compute. However, if there was some workload
imbalance, the scheme still reduced update spread, but the spread
was growing over time.

We then tried a gradient based method, where the most updated
domains were moved to threads that had the smallest iteration rate.
This method worked better than the previous, even with workload
imbalance. Still, we found that increasing workload imbalance in
proportion to hardware performance variability would result in a
sudden breakdown of the load balancing algorithm.



IA3’17, November 12–17, 2017, Denver, CO, USA Justs Zarins and Michèle Weiland

Time

Ite
ra

tio
ns

Update spread

Per-subdomain iteration rates
are continuously changing
to keep spread bounded

Inflexion points appear
when the balancer is called

Figure 2: An example of progressive load balancing. Problem
subdomains (represented by one coloured line each) are be-
ing moved between slow and fast running threads to ensure
an overall even progress towards the solution. This picture
is drawn using data from a real experiment. Showing only 8
of 96 subdomains for clarity.

Finally, subsplitting problem domains and thinking carefully
about the e�ect of moving subdomains on iteration rates yielded
the method presented in this paper. It showed the ability to bound
spread with both workload imbalance and hardware performance
variation present, and without the requirement to have these in
some speci�c balance.

4 EXPERIMENTS
In this section we describe the speci�c setup of our environment
and experiments used to evaluate the progressive load balancing
approach.

4.1 Setup
The experiments were run on 2 actively used HPC systems of dif-
ferent generations. Details can be seen in Table 1.

We ran each experiment a 100 times on 3 nodes making for a
total of 300 samples per experiment. The data from the 3 nodes was
aggregated. On live HPC systems it would have been extremely time
consuming to get the same set of nodes across all the experiments
we ran. Instead, we used randomly assigned nodes which resulted
in shorter queuing times as well as giving a more representative
landscape of performance.

4.2 Test problem and load balancing settings
We chose Jacobi’s algorithm in 2D as the test application for our
evaluations. It is used to solve the heat equation on a rectangular do-
main by repeatedly applying a 5-point stencil to average the values
in the 4 nearest neighbour cells and store the result in the central
cell. When neighbouring cells are located within a di�erent domain,

Table 1: Machine and compilation details.

ARCHER Cirrus

System type Cray XC30 SGI ICE XA
CPU Sockets 2 2
CPU Intel E5-2697 v2 Intel E5-2695
Core count per CPU 12 18
Clock 2.7 GHz 2.1 GHz
Architecture Ivy Bridge Broadwell
L3 cache 30 MB 45 MB
RAM per CPU 32 GB 128 GB
Compiler CCE 8.5 Intel 16.0
Main compilation �ags Cray default (-O2) -O2
Noise gen. �ags -O0 -O0

the data is transferred using halo exchange. This algorithm meets
asynchronous execution stability requirements [10] which means
that we did not have to worry about failure to converge. It is there-
fore suitable as a comparison point across di�erent synchronisation
types, which made it possible to focus on the performance and load
balancing aspect of the investigation. While Jacobi’s algorithm is
not in wide production use, we believe that our �ndings will be
transferable to other stencil applications or di�erent asynchronous
algorithms (e.g. ones listed in Section 2).

The load balancer is implemented within the Jacobi application
using C and OpenMP threading. Threads take turns (round robin)
to call the load balancing routine at a set frequency and proceed to
reassign subdomains to threads as decided. Threads that are a�ected
by the balancing (either gaining or losing work) are marked as dirty.
At the start of an iteration, each thread checks whether its working
set has been dirtied before computing updates. If it has, it takes
note of the new working set and proceeds calculating updates.

The boundary conditions used were all zeros on 3 sides of the
global domain and a Gaussian shaped source on the 4th side. The
domains were sized 300 by 300 cells per thread and initialised to
1s. Each domain was subsplit into 4 subdomains; we found this to
give a good balance between balancing power and performance
overhead. The load balancing lower threshold was set to 2, the
upper threshold was set to 6 (a modest o�set from the base number
of subdomains per thread to avoid large iteration rate swings) and
6 subdomain pairs were considered for moving (see Section 3.2).
The latter parameter was empirically found to give reasonable
performance in most cases.

The termination criterion for iteration rate and spread experi-
ments was one thread reaching 5000 iterations, or 5000 multiplied
by the number of subdomains each domain was split into. For time
to solution experiments the criterion was reaching 10�4 global l2-
norm of the residual normalised by the initial global l2-norm of the
residual.

4.3 Simulated noise level
In these experiments we simulated only one noisy core. This is a
minimum case and illustrates the weakness of bulk synchronicity
as the whole node is a�ected by a single slow thread.



Progressive load balancing of asynchronous algorithms IA3’17, November 12–17, 2017, Denver, CO, USA

To generate noise we are running a parasite process in the back-
ground (due to job scheduling speci�cs, on ARCHER this is a pro-
cess and on Cirrus a thread within the main application). The
background application (pinned to one core) switches between
sleeping for 200 microseconds and performing 10000 iterations of
sum = sum · a + b. On both machines the loop takes on average 46
microseconds to compute so the noisy core is about 19% slower than
the rest. This level of CPU frequency variation can be reasonably
expected when applying even a small power cap [17].

In addition to the amount of noise, its noise placement has an
e�ect on the time to solution. Threads are usually pinned to cores
in HPC applications because doing so removes time wasted due to
thread migration. Given that the problem is decomposed based on
threads, a noisy core would a�ect a particular part of the problem
domain.Which domains are sensitive to noise is problem dependent,
but, given a complex set of equations, it could bemost of the problem
space. In our experiments, to demonstrate the e�ect on convergence
rate, we placed the noise next to the boundary that contains the
source, as this domain was found to be sensitive to to stale values.

5 EVALUATION
In this section we present experiment results and evaluate and
compare the di�erent synchronisation types based on the metrics
de�ned in Section 3.

Figure 3 shows how iteration rate and spread compares across
synchronisation types. The best methods are in the lower right
corner, i.e. the aim is to minimise spread and maximise iteration
rate. Also, the the best methods will not change position on the
plot by much when noise is added.

Figures 4 and 5 show the time to solution of a representative
subset of methods. Less time and smaller variance is better.

The di�erent synchronisation types are denoted using the fol-
lowing labels:
sync synchronised by global barrier
ssync(n) halos from neighbouring domains must be within n iter-

ations of the updating cell
async(n) totally asynchronous version with each domain subsplit

into n subdomains
Load balancing types are speci�ed by:

split(f) each CPU socket is balanced independently every f sec-
onds

joint(f) all CPU sockets are balanced together every f seconds
hybrid(f, n) each CPU socket is balanced independently every f

seconds and cross socket adjustments are done every nth
balancing

5.1 Spread reduction
Adding load balancing to asynchronous Jacobi decreases update
spread, with higher load balancing frequency resulting in lower
spread (see Figure 3). Invoking the balancer more often results in a
tighter “braid”, as illustrated in Figure 2, thus reducing spread.

The spread of load balanced versions is comparable to, or lower
than, the semi-synchronous versions, except for ssync(1). Among
the load balanced versions, the joint scheme achieves the lowest
spread. The split and hybrid schemes follow closely, however it
should be noted that the split scheme would slowly grow in update

spread with increased iteration count while the joint and hybrid
schemes would remain steady. This is the case because the split
scheme does not exchange subdomains between CPU sockets, so
load balancing is done with respect to each socket separately.

Adding noise to a core has the least impact on spread when using
a load balanced scheme. Across the two machines, this ranges from
a decrease in spread of 38% (ARCHER, async(4) + hybrid(0.001,500))
to an increase by 24% (Cirrus, asnyc(4) + hybrid(0.001, 500)). The
semi-synchronous schemes increased by between 8% (ARCHER,
ssync(1)) and 76% (ARCHER, ssync(30)), while the totally asynchro-
nous schemes range between an increase of 107% (Cirrus, async(1))
to 443% (ARCHER, async(1)).

It is an interesting observation that some of the balancing vari-
ants performed better with added noise. We postulate that these
variants bene�t from iteration rate changes that are less sharp. For
example, removing a subdomain from the noisy thread would make
the iteration rates increase by a smaller amount than if the subdo-
mains were on a normal thread, thus avoiding overshooting the
spread bound.

5.2 Iteration rate
The best performance in terms of iteration rate is achieved by
totally asynchronous methods, though ssync(30) on ARCHER is an
exception (Fig. 3c).

The overhead (with respect to async(1)) of load balancing varies
signi�cantly by method. On Cirrus, split balancing has an over-
head of 1%–2%, joint 7%–9% and hybrid 1%–2%. On ARCHER, split
balancing has an overhead of 5%–7%, joint 17%–19% and hybrid
4%–7%; it should be noted that the subsplitting itself introduces a
4% overhead on ARCHER (async(4) compared to async(1)).

The joint policy has the worst iteration rate due to data move-
ment across CPU sockets. The hybrid policy mitigates this issue,
often providing performance similar to or exceeding the split pol-
icy. In all cases increasing load balancing frequency has a negative
impact on iteration rate.

Importantly, the load balanced versions are not heavily a�ected
(less than 1% slowdown on Cirrus, and up to 2% on ARCHER) by
the addition of noise - it is e�ectively spread out among the cores.
The addition of progressive load balancing retains the essential
property of asynchronous methods to resist noise. Synchronous
and semi-synchronous methods are very sensitive to noise and
largely become slower (8%–10% on Cirrus, 15% on ARCHER) than
load balanced asynchronous variants.

Overall, the relative performance of di�erent synchronisation
types is a�ected by both algorithm settings and machine parame-
ters, as evidenced by the di�erent positions of equal points in the
landscape plots (Fig. 3). Nevertheless, the above analysis points out
trends that ought to be generalisable and load balancer overhead is
low in most cases.

5.3 Time to solution improvement
Figures 4 and 5 give an example of the bene�ts of the progressively
load balanced asynchronous approach.

When the systems are running normally, the asynchronous meth-
ods converge in the least time. The version with split load balancing
follows close behind. Now, if noise is added to the systems, there



IA3’17, November 12–17, 2017, Denver, CO, USA Justs Zarins and Michèle Weiland

3400 3600 3800 4000 4200 4400 4600
Iteration rate

0

200

400

600

800

1000

U
pd

at
e 

sp
re

ad

sync

async(1)

ssync(1)

ssync(10)
ssync(30)

async(4)

async(4)
split(0.01)

async(4)
split(0.001)

async(4)
joint(0.01)

async(4)
joint(0.001)

async(4)
hybrid(0.01, 50)

async(4)
hybrid(0.001, 500)

Normal
Load balanced

(a) Cirrus, No added noise

3400 3600 3800 4000 4200 4400 4600
Iteration rate

0

200

400

600

800

1000

U
pd

at
e 

sp
re

ad

sync

async(1)

ssync(1)

ssync(10)

ssync(30)

async(4)

async(4)
split(0.01)

async(4)
split(0.001)

async(4)
joint(0.01)

async(4)
joint(0.001)

async(4)
hybrid(0.01, 50)

async(4)
hybrid(0.001, 500)

Normal
Load balanced

(b) Cirrus, With added noise

4600 4800 5000 5200 5400 5600 5800 6000
Iteration rate

0

200

400

600

800

1000

U
pd

at
e 

sp
re

ad

sync

async(1)

ssync(1)

ssync(10)

ssync(30)

async(4)

async(4)
split(0.01)

async(4)
split(0.001)

async(4)
joint(0.01)

async(4)
joint(0.001)

async(4)
hybrid(0.01, 50)

async(4)
hybrid(0.001, 500)

Normal
Load balanced

(c) ARCHER, No added noise

4600 4800 5000 5200 5400 5600 5800 6000
Iteration rate

0

200

400

600

800

1000

U
pd

at
e 

sp
re

ad

sync

async(1)

ssync(1)

ssync(10)

ssync(30)

async(4)

async(4)
split(0.01)

async(4)
split(0.001)

async(4)
joint(0.01)

async(4)
joint(0.001)

async(4)
hybrid(0.01, 50)

async(4)
hybrid(0.001, 500)

Normal
Load balanced

(d) ARCHER, With added noise

Figure 3: Landscape of synchronisation types on Cirrus and ARCHER. The best synchronisation methods are in the bottom
right corners (high iteration rate and low spread), and do not change signi�cantly when noise is added. The points represent
median values and the error bars show the 25th and 75th percentiles.

is a drastic di�erence in time to solution response, as shown in
Table 2. The synchronous and semi-synchronous versions take the
longest to converge; they are limited by the slowest component.
The totally asynchronous versions leave behind the slow running
thread thus maintaining their iteration rate, but these iterations
are less useful due to the increase in update spread. Adding load
balancing successfully mitigates the negative e�ect of the noisy
core. The balanced versions e�ectively distribute the penalty of one
slow core across all available cores on the node.

As a result, with hardware performance variability present, our
best load balanced method resulted in 22%–25% speedup over syn-
chronous, 14%–19% speedup over semi-synchronous and 5%–8%
speedup over totally asynchronous schemes.

Based on the landscapes in Figure 3, we expected the split(0.001)
load balanced version to converge the quickest on Cirrus and hy-
brid(0.001, 500) on ARCHER. The results on Cirrus (Fig. 4) met
our expectation, but on ARCHER (Fig. 5) they did not; instead, the
split(0.001) balancer gave the quickest convergence again. It ap-
pears that update spread, while useful and simple to evaluate, may
not be the precise metric to use when choosing the optimum load
balancing goal.

Table 2: Time to solution increase of di�erent synchronisa-
tion types when adding 19% noise to one core. Cirrus has 36
cores on a node and ARCHER has 24.

Cirrus ARCHER

Normal
sync 13% 18%
ssync(1) 11% 18%
ssync(30) 11% 18%
async(1) 8% 10%
async(4) 9% 11%

Load balanced
async(4) + split(0.001) 1% <1%
async(4) + joint(0.001) 1% 1%
async(4) + hybrid(0.001, 500) -2% 1%

6 FUTUREWORK
Distributed memory. More noise is expected in the distributed

memory case when the network and long data transfer latencies
come into e�ect, thus we intend to investigate progressive load



Progressive load balancing of asynchronous algorithms IA3’17, November 12–17, 2017, Denver, CO, USA

sync ssync(1) ssync(30) async(1) async(4) async(4)
split(0.001)

async(4)
joint(0.001)

async(4)
hybrid(0.001, 500)

Synchronisation type

24

26

28

30

32

34

36

T
im

e 
to

 s
ol

ut
io

n 
(s

)

Normal
With added noiseLoad balancedNormal

Figure 4: Time to solution on Cirrus. The load balanced versions are least sensitive to noise.

sync ssync(1) ssync(30) async(1) async(4) async(4)
split(0.001)

async(4)
joint(0.001)

async(4)
hybrid(0.001, 500)

Synchronisation type

16

17

18

19

20

21

22

23

T
im

e 
to

 s
ol

ut
io

n 
(s

)

Normal
With added noiseLoad balancedNormal

Figure 5: Time to solution on ARCHER. The load balanced versions are least sensitive to noise.

balancing in that setting as well. The hybrid load balancer mod-
els an approach that can be taken in distributed memory, as it is
concerned with mixing local and global load balancing already, but
between CPU sockets rather than nodes. In distributed memory the
algorithm would be largely the same but with exchange frequency
tweaks to account for longer transfer times. An obvious challenge
is whether balancing decisions can be made using global knowl-
edge or would it have to be limited to neighbourhoods and rely on
dissipative balancing.

Other applications. All the balancing logic happens within a
routine not speci�c to our Jacobi application, so the balancer could
be abstracted out as a library in the future. Given small changes to
the user code, this would enable extension to other stencil based
asynchronous applications.

We also intend to evaluate progressive load balancing in the
context of Stochastic Gradient Descent. This algorithm is widely
used in machine learning and can be run asynchronously, how-
ever using stale values reduces statistical e�ciency. We want to
investigate whether balancing the progress rate of learners would
lead to convergence rate similar to that of Synchronous SGD while
maintaining the hardware e�ciency advantage of asynchronous
methods.

Comparison with work stealing. A popular load balancing strat-
egy which is similar to our approach is work stealing [9]. It would
be interesting to see how this method compares with progressive
load balancing. The implementation, however, is not obvious be-
cause in principle an asynchronous algorithm always has “available
work” because it can continue iterating using the latest available
data, even if it is stale, and thus would not have a need to steal
work. More research would be required to fully evaluate this load
balancing strategy in the context of asynchronous algorithms.

7 CONCLUSIONS
Wehave presented progressive load balancing – an approach to limit
progress imbalance in asynchronous algorithms. Using Jacobi’s
algorithm as a test case, we have shown that an implementation
of this method lowers update spread while maintaining a high
iteration rate under most settings, especially in the presence of
noise. As a result, our load balanced method achieved a 5%–25%
speedup over other synchronisation types, with 19% noise added
to one core.



IA3’17, November 12–17, 2017, Denver, CO, USA Justs Zarins and Michèle Weiland

ACKNOWLEDGMENTS
We would like to thank Martin Ruefenacht and Dave Turner for
various discussions on the topics covered in this paper.

This work was supported by grant EP/L01503X/1 for the Uni-
versity of Edinburgh School of Informatics Centre for Doctoral
Training in Pervasive Parallelism (pervasiveparallelism.inf.ed.ac.uk)
from the UK Engineering and Physical Sciences Research Council
(EPSRC).

This work used the ARCHER UK National Supercomputing Ser-
vice [1] and EPCC’s Cirrus HPC Service [2].

REFERENCES
[1] 2017. ARCHER. (2017). Retrieved 5-9-2017 from http://www.archer.ac.uk
[2] 2017. Cirrus. (2017). Retrieved 5-9-2017 from https://www.epcc.ed.ac.uk/cirrus
[3] Keith A. Bowman, Steven Duvall, and J.D. Meindl. 2002. Impact of die-to-die and

within-die parameter �uctuations on the maximum clock frequency distribution
for gigascale integration. IEEE Journal of Solid-State Circuits 37, 2 (Feb 2002),
183–190.

[4] Dganit Amitai, Amir Averbuch, Samuel Itzikowitz, and Eli Turkel. 1994. Asyn-
chronous and corrected-asynchronous �nite di�erence solutions of PDEs on
MIMD multiprocessors. Numerical Algorithms 6, 2 (sep 1994), 275–296. https:
//doi.org/10.1007/BF02142675

[5] Hartwig Anzt, Stanimire Tomov, Jack Dongarra, and Vincent Heuveline. 2013. A
block-asynchronous relaxation method for graphics processing units. J. Parallel
and Distrib. Comput. 73, 12 (dec 2013), 1613–1626. https://doi.org/10.1016/j.jpdc.
2013.05.008

[6] Hartwig Anzt, Stanimire Tomov, Jack Dongarra, and Vincent Heuveline. 2013. A
block-asynchronous relaxation method for graphics processing units. J. Parallel
and Distrib. Comput. 73, 12 (dec 2013), 1613–1626. https://doi.org/10.1016/j.jpdc.
2013.05.008

[7] Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphael Couturier. 2005. Dy-
namic Load Balancing and E�cient Load Estimators for Asynchronous Itera-
tive Algorithms. IEEE Trans. Parallel Distrib. Syst. 16, 4 (April 2005), 289–299.
https://doi.org/10.1109/TPDS.2005.45

[8] Dimitri P Bertsekas and John N Tsitsiklis. 1991. Some aspects of parallel and
distributed iterative algorithms – a survey. Automatica 27, 1 (1991), 3–21.

[9] Robert D Blumofe and Charles E Leiserson. 1999. Scheduling multithreaded
computations by work stealing. Journal of the ACM (JACM) 46, 5 (1999), 720–
748.

[10] D. Chazan and W. Miranker. 1969. Chaotic relaxation. Linear Algebra Appl. 2, 2
(apr 1969), 199–222. https://doi.org/10.1016/0024-3795(69)90028-7

[11] Edmund Chow and Hartwig Anzt. 2015. Asynchronous Iterative Algorithm for
Computing Incomplete Factorizations on GPUs. Lecture Notes in Computer Sci-
ence, Vol. 9137. Springer International Publishing. https://doi.org/10.1007/
978-3-319-20119-1

[12] James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory Ganger, Garth
Gibson, Kimberly Keeton, and Eric Xing. 2013. Solving the Straggler Problem
with Bounded Staleness. In Proceedings of The 14th Workshop on Hot Topics in
Operating Systems.

[13] Jack Dongarra et al. 2011. The International Exascale Software Project Roadmap.
Int. J. High Perform. Comput. Appl. 25, 1 (Feb. 2011), 3–60. https://doi.org/10.1177/
1094342010391989

[14] Diego A. Donzis and Konduri Aditya. 2014. Asynchronous �nite-di�erence
schemes for partial di�erential equations. J. Comput. Phys. 274 (oct 2014), 370–
392. https://doi.org/10.1016/j.jcp.2014.06.017

[15] Pedro J Garcia, J Flich, J Duato, I Johnson, Francisco J Quiles, and F Naven.
2005. Dynamic evolution of congestion trees: Analysis and impact on switch
architecture. Lecture Notes in Computer Science (HiPEAC 2005) 3793 (2005), 266–
285.

[16] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B.
Gibbons, Garth A. Gibson, Greg Ganger, and Eric P. Xing. 2013. More E�ective
Distributed ML via a Stale Synchronous Parallel Parameter Server. In Advances
in Neural Information Processing Systems. 1223–1231.

[17] Yuichi Inadomi, Tapasya Patki, Koji Inoue, Mutsumi Aoyagi, Barry Rountree,
Martin Schulz, David Lowenthal, YasutakaWada, Keiichiro Fukazawa, Masatsugu
Ueda, et al. 2015. Analyzing and mitigating the impact of manufacturing vari-
ability in power-constrained supercomputing. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
ACM, 78.

[18] Janis Keuper and Franz-Josef Pfreundt. 2015. Asynchronous parallel stochastic
gradient descent: A numeric core for scalable distributed machine learning algo-
rithms. In Proceedings of the Workshop on Machine Learning in High-Performance
Computing Environments. ACM, 1.

[19] H T Kung. 1976. Synchronized and asynchronous parallel algorithms for mul-
tiprocessors. New Directions and Recent Results in Algorithms and Complexity
(1976).

[20] Thorsten Kurth, Jian Zhang, Nadathur Satish, Ioannis Mitliagkas, Evan Racah,
Mostofa Ali Patwary, Tareq Malas, Narayanan Sundaram, Wahid Bhimji, Mikhail
Smorkalov, et al. 2017. Deep Learning at 15PF: Supervised and Semi-Supervised
Classi�cation for Scienti�c Data. arXiv preprint arXiv:1708.05256 (2017).

[21] Barry Lee, Stephen F. McCormick, Bobby Philip, and Daniel J. Quinlan. 2003.
Asynchronous Fast Adaptive Composite-Grid Methods: Numerical Results. SIAM
Journal on Scienti�c Computing 25, 2 (jan 2003), 682–700. https://doi.org/10.1137/
S1064827502407536

[22] Robert Lucas, James Ang, Keren Bergman, and Shekhar Borkar. 2014. DOE
ASCAC Subcommittee Report February 10, 2014. (2014).

[23] Frédéric Magoulès, Daniel B. Szyld, and Cédric Venet. 2017. Asynchronous
optimized Schwarz methods with and without overlap. Numer. Math. 137, 1 (01
Sep 2017), 199–227. https://doi.org/10.1007/s00211-017-0872-z

[24] Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. 2016. Asyn-
chrony begets momentum, with an application to deep learning. In Communica-
tion, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference on.
IEEE, 997–1004.

[25] Fabrizio Petrini, Darren J Kerbyson, and Scott Pakin. 2003. The case of the
missing supercomputer performance: Achieving optimal performance on the
8,192 processors of ASCI Q. In Supercomputing, 2003 ACM/IEEE Conference. IEEE,
55–55.

[26] Allan Porter�eld, Rob Fowler, Sridutt Bhalachandra, Barry Rountree, Diptorup
Deb, and Rob Lewis. 2015. Application runtime variability and power optimiza-
tion for exascale computers. In Proceedings of the 5th International Workshop on
Runtime and Operating Systems for Supercomputers. ACM, 3.

[27] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. 2014. ASPIRE: Exploiting
Asynchronous Parallelism in Iterative Algorithms Using a Relaxed Consistency
Based DSM. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications (OOPSLA ’14). ACM,
861–878. https://doi.org/10.1145/2660193.2660227

[28] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma,
and Tie-Yan Liu. 2017. Asynchronous Stochastic Gradient Descent with Delay
Compensation. In International Conference on Machine Learning. 4120–4129.

http://www.archer.ac.uk
https://www.epcc.ed.ac.uk/cirrus
https://doi.org/10.1007/BF02142675
https://doi.org/10.1007/BF02142675
https://doi.org/10.1016/j.jpdc.2013.05.008
https://doi.org/10.1016/j.jpdc.2013.05.008
https://doi.org/10.1016/j.jpdc.2013.05.008
https://doi.org/10.1016/j.jpdc.2013.05.008
https://doi.org/10.1109/TPDS.2005.45
https://doi.org/10.1016/0024-3795(69)90028-7
https://doi.org/10.1007/978-3-319-20119-1
https://doi.org/10.1007/978-3-319-20119-1
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1016/j.jcp.2014.06.017
https://doi.org/10.1137/S1064827502407536
https://doi.org/10.1137/S1064827502407536
https://doi.org/10.1007/s00211-017-0872-z
https://doi.org/10.1145/2660193.2660227


Progressive load balancing of asynchronous algorithms IA3’17, November 12–17, 2017, Denver, CO, USA

A ARTIFACT DESCRIPTION
A.1 Abstract
We provide code and scripts to reproduce the same experiments
whichwere used in evaluation of our proposedmethod - Progressive
load balancing. The artifact are meant to provide evidence for the
contributions of the paper by producing similar results to the ones
published. We also provide the original data presented in the paper.

A.2 Description
A.2.1 Check-list (artifact meta information).
• Algorithm: Progressive load balancing.
• Run-time environment: Linux. Require C compiler with
MPI and OpenMP support.

• Hardware: Shared memory node with 1 or 2 sockets and
Intel CPUs, preferably a recent Xeon with a total of 12 or
more cores in the node.

• Execution: Sole user of node, process and thread pinning,
preferably a batch submission system like PBS.

• Output: Figures and table from paper.
• Experimentwork�ow: CustomiseMake�le and batch sub-
mission script. Use provided bash and python scripts to gen-
erate experiments used in the paper and submit them to back
end node. Use python script to generate �gures.

• Experiment customization: Edit experiment con�gura-
tion �le and submission script.

• Publicly available?: Yes.

A.2.2 How delivered. Download code from public git repository
at https://bitbucket.org/Justs/ia3_2017.git

A.2.3 Hardware dependencies. Shared memory node with 1 or
2 sockets and Intel CPUs, preferably a recent Xeon with a total of
12 or more cores in the node.

A.2.4 So�ware dependencies.
• Linux
• C compilation environment with support for OpenMP and
MPI

• python 2
• python 3 with modules:
– matplotlib
– seaborn
– numpy
– pandas

A.3 Installation
Edit Make�le to use your preferred C compiler and link with MPI
and OpenMP. Run make to compile.

A.4 Experiment work�ow
There are detailed instructions and examples in README �les in the
root and experiments folders. The work�ow is as follows:

(1) Use the provided submission scripts and README in the root
folder to produce your own submission script, with thread/process
pinning appropriate for your environment.

(2) Navigate to the folder experiments.
(3) Use the README in the folder experiments to augment your

submission script for experiment output redirection.
(4) Use the script generate.py to generate experiments used

in the paper.
(5) Launch experiments using the script runBatch.sh.
(6) Run bash generate_plots.sh to summarise experiments

as �gures.

A.5 Evaluation and expected result
The �nal outputs are 3 pdf �gures and 1 table, corresponding to the
ones in the Evaluation section of the associated paper. The results
likely will not match the ones presented in our paper exactly, but
we expect the trends to be the same. In particular:

• Landscapes:
– The update spread increases signi�cantly (moves up on
y axis) for async methods without load balancing when
noise is added.

– The iteration rate decreases signi�cantly (moves left on x
axis) for sync and ssync method when noise is added.

– The load balanced async methods do not move signi�-
cantly when noise is added. Additionally, they are in bot-
tom right corner of the landscape plot (i.e. spread is low
and iteration rate is high (in most cases). (paper contribu-
tions 1 and 2)

• Boxplot: Some of the load balanced version are fastest when
noise is added. (paper contribution 3)

• Table: Load balanced versions experience least slowdown
when noise is added. (paper contribution 3)

A.6 Experiment customization
New experiments can be created by following the pattern of the
�les in the experiments folder. All algorithm settings are set in the
application’s input �le config.txt. The meaning of the variables
is explained in the README in the root folder.

A.7 Notes
The original data is available as a separate download; see instruc-
tions at the end of experiments/README.


	Abstract
	1 Introduction
	2 Background
	2.1 Related work

	3 Methodology
	3.1 Experimental method
	3.2 Progressive load balancing
	3.3 Implementation
	3.4 Development of the algorithm

	4 Experiments
	4.1 Setup
	4.2 Test problem and load balancing settings
	4.3 Simulated noise level

	5 Evaluation
	5.1 Spread reduction
	5.2 Iteration rate
	5.3 Time to solution improvement

	6 Future work
	7 Conclusions
	Acknowledgments
	References
	A Artifact description
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected result
	A.6 Experiment customization
	A.7 Notes




