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We consider the problem of computing first-passage time distributions for reaction processes
modelled by master equations. We show that this generally intractable class of problems is equivalent
to a sequential Bayesian inference problem for an auxiliary observation process. The solution can
be approximated efficiently by solving a closed set of coupled ordinary differential equations (for the
low-order moments of the process) whose size scales with the number of species. We apply it to an
epidemic model and a trimerisation process, and show good agreement with stochastic simulations.

Many systems in nature consist of stochastically inter-
acting agents or particles. Such systems are frequently
modelled as reaction processes whose dynamics are de-
scribed by master equations [1]. There are several exam-
ples of stochastic modelling of reaction processes in the
fields of systems biology [2, 3], ecology [4], epidemiology
[5], social sciences [6] and neuroscience [7]. The mathe-
matical analysis of such stochastic processes, however, is
highly non-trivial.

A particularly important quantity of interest is the
first-passage time (FPT), that is, the random time it
takes the process to first cross a certain threshold [8, 9].
FPT distributions play a crucial role both in the theory
of stochastic processes and in their applications across
various disciplines as they allow us to investigate quanti-
tatively the uncertainty in the emergence of system prop-
erties within a finite time horizon. For example, the time
it takes cells to respond to external signals by expressing
certain genes may be modelled as a FPT problem. Dif-
ferent characteristics of this first time distribution, for
example the variance of the FPT, may represent evo-
lutionarily different strategies that organisms adopt to
filter fluctuations in the environment [10–12]. Examples
from other disciplines include the extinction time of dis-
eases in epidemic models, or the time it takes to form a
certain number of polymers in polymerisation processes.

FPTs for stochastic processes have been of interest in
statistical physics for many decades [13]. For certain
random walk or spatial diffusion processes analytic so-
lutions have been derived [14–16]. Recently, analytic re-
sults have been found for effective one-dimensional diffu-
sion processes to a target [17–19]. For multi-dimensional
diffusion processes to small targets approximate solution
have been derived using singular perturbation methods
and matched asymptotic expansions [20–23].

The problem of computing FPT distributions for re-
action processes modelled by master equations, however,
is much less explored. Generally, no tractable evolution
equations exist except for one variable, one step processes
[1, 13], or certain linear and/or catalytic processes [24–
26]. For single-time properties of the underlying master
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equation efficient approximation methods exist relying
on continuous state spaces [27], but it is not clear how
to extend them for the computation of FPTs. Spectral
methods constitute efficient approximations for small sys-
tems [28, 29]. Since these methods typically scale with
the size of the state space, they are not applicable to
large systems. Some existing FPT approaches for master
equations consider rare events in single-species systems
and/or mean FPTs only [30–33].

In this article, we approach the problem of comput-
ing FPTs from a novel perspective. We show that the
FPT problem can be formulated exactly as a Bayesian
inference problem. We achieve this by introducing an
auxiliary observation process that determines whether
the process has crossed the threshold up to a given time.
This novel formulation allows us to derive an efficient ap-
proximation scheme that relies on the solution of a small
set of ordinary differential equations. We will use this
approximation to analyse the FPT distributions in sev-
eral non-trivial examples. We focus on reaction networks
with discrete state spaces modelled by master equations,
but the developed method can also be applied to Fokker-
Planck equations.

The standard approach to compute the FPT of a pro-
cess xt to leave a certain region C is to compute the
survival probability Z[0,t], that is, the probability that
the process remains in C on the time interval [0, t] [13].
The FPT distribution is then given by the negative time-
derivative of Z[0,t]. The latter can be written as a path
integral over the process with absorbing boundary of C
[13]. Equivalently, one can reweigh the unconstrained
process by an indicator function p(C[0,t]|x[0,t]) on the
paths x[0,t] such that p(C[0,t]|x[0,t]) = 1 if xτ ∈ C for
τ ∈ [0, t] and zero otherwise. One can then write the
survival probability Z[0,t] up till time t as a path integral
over the density p(x[0,t]) of the unconstrained process as

Z[0,t] =

∫
Dx[0,t] p(x[0,t])p(C[0,t]|x[0,t]). (1)

At the heart of our method lies the interpretation of
p(C[0,t]|x[0,t]) as a binary observation process: an ob-
server external to the system assesses if the process has
left the region of interest or not. In this interpretation,
the survival probability Z[0,t] constitutes the marginal
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likelihood of this auxiliary observation process. The prob-
lem of computing Z[0,t] and hence the FPT distribution
is thus formally equivalent to a Bayesian inference prob-
lem. Note however, that there is no experimental data
involved and no data is being simulated.

Moreover, note that so far no approximations have
been made and (1) is exact. However, it is not obvi-
ous how to compute the path integral in (1). To make
progress, we approximate the continuous process with
paths x[0,t] by a discrete-time version (xt0 , . . . ,xtN ) at
points t0 = 0, . . . , tN = t with spacing ∆t = t/N . The
effects of such a discretisation of time on certain survival
probabilities has recently been studied in [34]. We will
later take the continuum limit ∆t→ 0 and are hence not
concerned with such effects.

This means that the global observation process
p(C[0,t]|x[0,t]) can be written as a product of local ob-
servation processes p(Cti |xti) as

p(C[0,t]|xt0 , . . . ,xtN ) =

N∏
i=0

p(Cti |xti), (2)

where p(Cti |xti) = 1 if xti ∈ C and zero otherwise. This
gives the model a Markovian structure and allows us to
cast it into a sequential Bayesian inference problem, as
follows. First, we approximate the binary observation
factors in (2) by a smooth approximation of the form

p(Cti |xti) ≈ exp (−∆t U(xti , ti)) , (3)

where U(xti , ti) is a smooth function that is large for
xti /∈ C and close to zero for xti ∈ C, with a sharp slope
at the boundary. Moreover, we require U(xti , ti) to have
a tractable expectation w.r.t. a normal distribution. The
smooth approximation in (3) proves computationally ex-
pedient in the algorithm below and will allow us to take
the continuum limit ∆t → 0. Note that this approxi-
mation is equivalent to approximating the global binary
constraint with the global soft (that is, continuous) con-
straint

p(C[0,t]|x[0,t]) = exp

(
−
∫ t

0

dτ U(xτ , τ)

)
. (4)

The survival probability Z[0,t] in (1) for the discrete-time
system factorises as

Z[0,t] ≈ p(Ct0)

N∏
i=1

p(Cti+1 |C≤ti), (5)

where p(Ct0) is the probability of being in C at time
t0 and p(Cti+1

|C≤ti) ≡ p(Cti+1
|Cti , Cti−1

, . . . , Ct0) =∫
dxti+1

p(Cti+1
|xti+1

)p(xti+1
|C≤ti) is the probability

that the process is found to be in C at time ti+1, given
that it was in C for all previous time points. The com-
putation of these factors corresponds to a sequential
Bayesian inference problem which can be solved by iter-
atively (i) solving the master equation forward between

measurement points and (ii) updating the distribution
using the observation model. More specifically, the two
steps comprise

(i) Suppose we know p(xti |C≤ti) ≡
p(xti |Cti , Cti−1

, . . . , Ct0) at time ti, that is,
the marginal distribution of the process at time
ti conditioned on the current and all previous
observations. Suppose further that using this as
the initial distribution, we can solve the system
(the master equation) forward in time until time
point ti+1 to obtain p(xti+1

|C≤ti), that is, the
marginal distribution of the process at time ti+1

conditioned on previous observations (note that
p(xti+1

|C≤ti) does not include the observation
Cti+1

at time ti+1).

(ii) To obtain p(xti+1 |C≤ti+1) we need to take the ob-
servation p(Cti+1 |xti+1) at time point ti+1 into ac-
count. This is achieved by means of Bayes’ theorem
as

p(xti+1 |C≤ti+1) =
p(Cti+1 |xti+1)p(xti+1 |C≤ti)

Zti+1

, (6)

where we defined the normalisation Zti+1
=

p(Cti+1
|C≤ti). Note that the latter is just a factor

in (5).

Performing steps (i) and (ii) iteratively from t0 to tN
and keeping track of the normalisation factors in (6) one
can thus, in principle, compute the survival probability
according to (5).

However, steps (i) and (ii) are generally intractable,
and we propose an approximation method in the follow-
ing. For step (i), we need to solve the system forward in
time. We do this approximately by means of the normal
moment closure [35–37], which approximates the dis-
crete process by a continuous one and assumes the single-
time probability distribution to be a multivariate normal
distribution N (xt;µt,Σt) with mean µt and covariance
Σt. Using this assumption on the master equation leads
to a closed set of ordinary differential equations for µt
and Σt which can be solved numerically [27].

Now suppose that we have solved the system forward
from time t to t + ∆t using normal moment closure
to obtain µ̂t+∆t and Σ̂t+∆t and hence the distribution

p(xt+∆t|C≤t) = N (xt+∆t; µ̂t+∆t, Σ̂t+∆t) (step (i)). We
next have to perform the observation update in (6) in
step (ii) to obtain p(xt+∆t|C≤t+∆t). In order to be able
to use normal moment closure again in the next (i) step,
we approximate p(xt+∆t|C≤t+∆t) by a multivariate nor-
mal distribution with mean µt+∆t and covariance Σt+∆t

of the r.h.s. in (6). This approach is known as assumed-
density filtering in the statistics literature [38]. In sum-
mary, with the described approximations, steps (i) and
(ii) comprise

(i) Solve normal moment closure equations for µt and

Σt from time t to t+∆t to obtain µ̂t+∆t and Σ̂t+∆t,
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where µt and Σt are respectively the mean and co-
variance of the approximating normal distribution
N (xt;µt,Σt).

(ii) Compute the mean µt+∆t and covariance Σt+∆t of
the r.h.s. of (6) and approximate p(xt+∆t|C≤t+∆t)
in (6) with a corresponding normal distribution
N (xt+∆t;µt+∆t,Σt+∆t).

Next, we derive a continuous time description combin-
ing step (i) and (ii). This is achieved by first expanding
the update in step (i) leading from µt and Σt to µ̂t+∆t

and Σ̂t+∆t in ∆t which gives a single Euler step update
of the moment closure equations. Similarly, we expand
step (ii) which leads from µ̂t+∆t and Σ̂t+∆t to µt+∆t

and Σt+∆t, as follows. Note first that by definition, the
normalisation Zt+∆t in (6) can be written as

Zt+∆t ≈
∫

dxN (x; µ̂t+∆t, Σ̂t+∆t) exp (−∆t U(x, t + ∆t)) .

(7)

Taking the logarithm of both sides, expanding in ∆t and
taking derivatives w.r.t. to µ̂ and Σ̂ one can derive the
desired expansion of the update in step (ii). The result-
ing expansions of steps (i) and (ii) can then be combined
to give unifying update equations for µ and Σ (see Sup-
plemental Material [39] for a derivation). Finally, taking
the continuum limit ∆t → 0 gives the following closed
set of differential equations

∂

∂t
µt =

(
∂

∂t
µt

)MC

−Σt
∂

∂µt
〈U(xt, t)〉N (xt;µt,Σt), (8)

∂

∂t
Σt =

(
∂

∂t
Σt

)MC

− 2Σt

(
∂

∂Σt
〈U(xt, t)〉N (xt;µt,Σt)

)
Σt,

(9)

∂

∂t
logZ[0,t] = −〈U(xt, t)〉N (xt;µt,Σt). (10)

Here, the first terms on the r.h.s. of (8) and (9) are re-
spectively the equations for the mean and covariance as
obtained from the normal moment closure (MC) for the
unconstrained system, while the second terms incorpo-
rate the auxiliary observation. Equation (10) gives the
desired survival probability for the process. We term
this method for computing FPT distributions Bayesian
First-Passage Times (BFPT).

Equations (8)-(10) are the central result of this article.
They constitute closed form ordinary differential equa-
tions for the mean, covariance and log-survival probabil-
ity of the process, for which efficient numerical integra-
tors exist. Solving these equations forward in time on an
interval [0, t] provides an approximation of the survival
probability Z[0,τ ] for all τ ∈ [0, t] (on the time grid of the
numerical integrator), from which the FPT distribution
p(τ ;C) can be derived for all τ ∈ [0, t] by taking the neg-
ative derivative of Z[0,τ ], that is, p(τ ;C) = −∂/∂τZ[0,τ ].
The number of equations scales with the square of the
number of species and the method hence is applicable
to large systems. Crucially, and in contrast to stochas-
tic simulations and spectral methods, the complexity of
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FIG. 1. Results for the epidemic system (12). (a) simu-
lated path of the process. (b) mean, variance and mode
of the FPT distribution of species I becoming extinct as a
function of the initial populations x0 of species S, from the
stochastic simulation algorithm (SSA, dots, 106 samples per
point) and from BFPT (lines). The rate constants are set to
k1 = 0.5 and k2 = 1 and the initial value for species I is set to
y0 = 2x0. (c) and (d) FPT distributions as obtained from the
SSA (dots, 107 samples per parameter set) and BFPT (lines)
for the parameter set (x0, y0, k1, k2) chosen as (6, 1, 0.25, 1)
(blue, (c)), (20, 10, 0.5, 1) (red, (c)), (20, 1, 0.5, 2) (blue, (d)),
(40, 10, 0.25, 1) (red, (d)). The parameter a in (11) was cho-
sen as a = −3 for the blue curve in (c) and a = −1.5 for
all other figures. (e) and (f) same results as (c) and (d) but
logarithmic scale.

the method is independent of the population size and the
size of the state space. Similar equations were obtained
in a different context in [40, 41] by means of a variational
approximation.

In the derivation of (8)-(10) we utilised three approx-
imations: after discretising time, we approximated the
unconstrained process using normal moment closure and
the observation updates by projections onto a normal dis-
tribution. We then approximated the binary observation
model by a soft loss function which allowed us to take the
continuum limit in time. Depending on the problem, the
relative contribution of the three sources to the overall
error may vary.

The choice of loss function U(x, t) depends on the
problem at hand. In general, for computational conve-
nience one needs to be able to compute analytically the
expectation of the loss function w.r.t. a multivariate nor-
mal distribution. In our examples, we use an exponential
loss function to constrain the ith component of the state
vector x about a threshold c

U(x, t) = exp(a(xi − c)), a ∈ R, c ∈ R. (11)
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The absolute value of the parameter a determines the
steepness of the loss function. In principle, we choose a
as large as numerically feasible. For a detailed discussion
on the choice of loss function see Supplemental Material
[39].

We now examine the performance of BFPT on three
examples. For the analytically tractable Poisson birth
process we find that BFPT captures the low order mo-
ments and the bulk mass of the distribution accurately
whilst giving the correct scaling law for the tail of the
distribution (see Supplemental Information for details).

Next, we consider an epidemic system consisting of a
susceptible population S, an infected population I and a
recovered population R and interactions

S + I
k1−−−−−→ 2I, I

k2−−−−−→ R. (12)

This system is frequently modelled as a continuous-
time Markov-jump process to model a disease spreading
through a population. k1 and k2 in (12) are the corre-
sponding rate constants. Let xt = (zt, yt, zt), where xt, yt
and zt denote the populations of S, I and R, respectively.
We are interested in the probability distribution of time
for the disease to be permanently eradicated, that is, the
time it takes the process to reach a state with yt = 0.

Fig. 1 (b) shows the mean, variance and mode of the
FPT to extinction as obtained from our method and the
stochastic simulation algorithm [42]. We find that BFPT
accurately captures the mean, variance and mode of the
FPT over a wide range of varying initial values for S
and I.

Fig. 1 (c) and (d) show the FPT distributions for
four different parameter sets. The modality, mode and
overall shape of the FPT are well captured, even for
highly skewed and bimodal distributions (c.f. blue curve
in Fig. 1 (c) and (d), respectively). In some cases the
method predicts less peaked distributions than actual
(not shown here). Fig. 1 (e) and (f) show the same re-
sults on logarithmic scale. We observe that our method
correctly predicts an exponential scaling (straight lines
in logarithmic scale), although the scaling is not always
accurate, indicating a worse approximation in the tails of
the distribution.

The value of the approach is borne out by consider-
ing its computational efficiency: for the results shown
in Fig. 1, BFPT is several orders of magnitude faster
than stochastic simulations. For example, simulating 107

paths to obtain the results shown in Fig. 1 (c)-(f) takes
about 103−104 seconds in our implementation of the di-
rect stochastic simulation algorithm [42], whereas BFPT
takes less than a second.

Finally, we apply BFPT to a polymerisation system of
monomers X, dimers XX and trimers XXX with inter-
actions

X + X
k1−→ XX, XX + X

k2−→ XXX. (13)

Starting from a fixed number of 103 of monomers, zero
dimers and zero trimers, we are interested in the FPT it
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FIG. 2. Results for the polymerisation system in (13). (a)
FPT distribution for the parameters k1 = k2 = 10−3 ob-
tained from the stochastic simulation algorithm (SSA, dots,
104 samples). (b) and (c) heat plots of the mean and the coef-
ficient of variation (defined as standard deviation divided by
mean) of the FPT to produce 200 trimers starting with 103

monomers, as a function of k1 and k2 on logarithmic scale.
(d) corresponding 3D-plot for the normalisation of the FPT
distribution, that is, the probability with which at least 200
trimers are being produced. The white areas in (b) and (c)
indicate that either the value is larger than the plotted range
or that the target state is reached with such small probability
that an estimation of moments is not sensible. The parameter
a in (11) was fixed to a = 0.2 for all figures.

takes to produce 200 trimers. We are interested in ex-
ploring the dependence of this FPT distribution on the
parameters of the system (dimerisation and trimerisation
rate k1 and k2 respectively); such parameter exploration
is computationally too demanding to be performed by
brute force simulation without access to dedicated hard-
ware since the FPT distribution needs to be estimated
for a large number of parameter sets.

Fig. 2 shows the results for this process. We observe
excellent agreement between BFPT and simulations for a
particular value of the parameters (Fig. 2 (a)). The heat
plot for the mean as a function of k1 and k2 indicates that
for a given trimerisation rate k2 a minimal mean FPT is
achieved for an intermediate value of dimerisation rate
k1 (Fig. 2 (b)). We find a linear relationship k2 ≈ 2.3k1

between the two rates for the location of these minima.
The variance of FPT behaves quantitatively similarly
(not shown in the figure). The coefficient of variation
(Fig. 2 (c)), however, becomes minimal for small values
of k1 for a given k2. This reveals an unexpected trade-
off between an optimal mean FPT and optimal noise-to-
mean ratio (coefficient of variation). Fig. 2 (d) shows the
probability that the target state is reached, that is, the
probability that at least 200 trimers are being produced.
We find that there are two parameter regions, one with
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probability close to one and one with probability close
to zero, and a small transition range between these two
with boundary k2 ≈ 0.55k1.

In conclusion, we have shown that the problem of
computing survival probabilities and FPT distributions
for stochastic processes can be formulated as a sequen-
tial Bayesian inference problem. This novel formulation
opens the way for a new class of efficient approxima-
tion methods from machine learning and computational
statistics to address this classical intractable problem.
Here, we derived an approximation for FPT distributions
which relies on solving a small set of ordinary differential
equations. This results in considerable efficiency gains;
empirically, we found the approximation to be highly ac-

curate in several examples. However, we do not have at
present systematic error estimates for the method; we
leave the investigation of such bounds and possible cor-
rection methods for future work. In particular, it will
be interesting to study the tail behaviour of FPT dis-
tributions with our method, as these were not always
captured well in our examples. We notice that, while
we applied our method to processes with discrete state
spaces modelled by master equations, in principle it can
equally easily be applied to Fokker-Planck processes.

This work was supported by the Leverhulme Trust
[RPG-2013-171]; and the European Research Council
[MLCS 306999]. We thank Manfred Opper for insightful
discussions.
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