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ABSTRACT: Immunomodulatory agents represent one of the
most promising strategies for enhancing tissue regeneration
without the side effects of traditional drug-based therapies.
Tissue repair depends largely on macrophages, making them
ideal targets for proregenerative therapies. However, given the
multiple roles of macrophages in tissue homeostasis, small
molecule drugs must be only active in very specific
subpopulations. In this work, we have developed the first
prodrug−fluorophore conjugates able to discriminate closely
related subpopulations of macrophages (i.e., proinflammatory M1 vs anti-inflammatory M2 macrophages), and employed them
to deplete M1 macrophages in vivo without affecting other cell populations. Selective intracellular activation and drug release
enabled simultaneous fluorescence cell tracking and ablation of M1 macrophages in vivo, with the concomitant rescue of a
proregenerative phenotype. Ex vivo assays in human monocyte-derived macrophages validate the translational potential of this
novel platform to develop chemical immunomodulatory agents as targeted therapies for immune-related diseases.

■ INTRODUCTION

The regenerative capacity of organisms is largely influenced by
the local immune response to tissue damage, with macrophages
being a central component.1 Macrophages are multifunctional
phagocytic cells, which play a pivotal role in the repair of most
tissues2 and exhibit different phenotypes depending on their
microenvironment.3 Conventionally, macrophages are catego-
rized into proinflammatory M1 and tissue-repairing M2
phenotypes.4 Tissue regeneration depends largely on macro-
phages, making them promising targets for proregenerative
immunomodulatory therapies.5 However, given the plasticity
and multiple roles of macrophages in tissue homeostasis, it is
essential that macrophage-targeting therapies deplete only
specific subpopulations. Whereas this can be partially achieved
by genetic methods in transgenic models,6 there are no
chemical agents that can be clinically translated which can
effectively target subpopulations of macrophages in vivo and
modulate tissue regeneration.
Our group and others have developed chemical tools to

examine macrophage activity in vivo.7−10 The groups of Schultz
and Bogyo described Förster resonance energy transfer
(FRET) probes to monitor the enzymatic activity of macro-
phages in pulmonary inflammation (e.g., matrix metalloprotease
12, MMP12)11 and cancer (e.g., cathepsins in tumor-associated
macrophages), respectively.12−14 Chang and co-workers
recently reported near-infrared fluorophores with preferential
uptake in macrophages and enhanced spectral properties for in

vivo imaging.15,16 These imaging probes provide generic
readouts of macrophage activity but cannot modulate their
function in vivo.
Prodrug−fluorophore conjugates have been described as

effective tools to deliver fluorescent and therapeutic loads into
target cells with enhanced selectivity and reduced side effects.17

Most conjugates have been reported in the context of cancer
therapy, either for photodynamic cell ablation18 or for
fluorescence-guided removal of tumor cells,19,20 as healthy
and cancer cells can be readily discriminated by several
biomarkers. In the context of immune modulation, very few
prodrugs have been reported to activate in subsets of immune
cells. Blum et al. described cathepsin-regulated theranostic
photosensitizers to ablate macrophages in aggressive breast
cancer mouse models and in atherosclerotic plaques.21,22 To
the best of our knowledge, there are no prodrug−fluorophore
conjugates that can monitor and modulate the function of M1
macrophages in vivo.
The 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)

scaffold has been widely used in the development of fluorescent
probes due to its excellent photophysical and cell permeability
properties.23−27 Our group has demonstrated the suitability of
BODIPY fluorophores for imaging phagosomal acidification in
macrophages in real time.28 Given the phagosomal pH and
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hydrolytic activity of M1 murine macrophages,29 we envisaged
that prodrug−fluorophore conjugates targeting acidic phag-
osomes would allow us to reprogram the immune function of
M1 macrophages with high precision and marginal side effects
while tracking the fate of drug-treated macrophages in vivo.
Herein we have developed BODIPY−prodrug conjugates
targeting M1 macrophages with negligible effects in other
macrophage subpopulations. The specific release of BODIPY
activatable fluorophores and cytotoxic drugs into M1 macro-
phages enabled blocking of the proinflammatory macrophage
phenotype in vivo in a model of tissue regeneration. Besides, the
translational potential of these novel conjugates in human
macrophages opens multiple avenues in precision medicine for
the chemical modulation of immune cell function.

■ RESULTS AND DISCUSSION
Synthesis and Characterization of Fluorescent Pro-

drug Activatable Conjugates for M1 Macrophages.
Activatable prodrugs have been widely described in the
literature as enhanced delivery molecules to improve
therapeutic efficacy in target cells while reducing potential
side effects in off-target cells.30,31 For instance, glutathione-
activatable prodrugs have been successfully developed as
theranostic agents with enhanced cytotoxic activity in cancer
cells.32,33 Similar chemical strategies have been also used in the
construction of smart nanomaterials with increased response-
to-noise ratios in specific tissues.34,35 Among the different
subpopulations of macrophages, M1 macrophages contain
intracellular acidic phagosomes. Acidic phagosomes present
pH values between 4.5 (late phagosomes) and 6.5 (early
phagosomes), depending on their maturation state.36,37 We
envisioned that the conjugation of cytotoxic drugs to pH-
activatable BODIPY fluorophores through phagosome-cleav-
able spacers would allow us to specifically deplete the
proinflammatory activity of M1 macrophages. In order to
construct BODIPY−prodrug conjugates that would be
specifically cleaved in M1 macrophages but not in other
macrophages, we synthesized the core scaffold of a pH-

activatable fluorophore including two ester spacers at different
positions of the BODIPY structure (3 and 4, Figure 1).
Compounds 3 and 4 were obtained in good yields by
derivatization of their corresponding isonitriles 1 and 2 via
Ugi multicomponent reaction at the meso position of the
BODIPY scaffold with diethylamine and methyl N-ethyl-
glycinate, respectively (Figure 1).
The key intermediates in the synthesis of 1 and 2 were their

corresponding BODIPY nitro derivatives [see the Supporting
Information for full synthetic and characterization details],
which were hydrogenated, formylated with ethyl formate, and
dehydrated with POCl3 to render the corresponding pH-
insensitive BODIPY isonitriles (1 and 2). First, we evaluated
the fluorescence properties of the esters 3 and 4 at different pH
values in order to assess their suitability to monitor phagosomal
acidification in M1 macrophages. The two BODIPY esters (3
and 4) exhibited pH-dependent fluorescence emission, however
very divergent pKa values (Figure 2A and Figure S5).
Compound 3 showed a pKa of 6.0 as well as strong fluorescence
staining in lipopolysaccharide (LPS)-stimulated M1 macro-
phages but not in nonactivated macrophages (Figures 2C and
2D). On the other hand, compound 4 (pKa: 3.2) and the pH-
insensitive isonitrile 2 were unable to label M1 macrophages.
These results point at the diethylamine group in compound 3
as the key structural feature to achieve pH sensitivity in the
appropriate range for M1 macrophage sensing (i.e., between 4.5
and 6.5). The dissimilar behavior of compound 4 suggests that
any modifications in the diethylamine group might alter not
only the pH-dependent fluorescence response but also the
acidotropic accumulation of BODIPY fluorophores in macro-
phages.
In view of these results, we derivatized compound 3 with an

acid-cleavable N-acylhydrazone group for controlled release of
both fluorescent and therapeutic molecules in the acidic
phagosomes of M1 macrophages.38 In order to target and
block the proinflammatory function of M1 macrophages, we
conjugated the profluorophore 3 to doxorubicin as a cytotoxic
molecule for M1 macrophage depletion.39 We envisaged that

Figure 1. Synthesis of fluorogenic BODIPY−prodrug M1 activatable conjugates.
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the phagosomal pH would accelerate the cleavage of the N-
acylhydrazone group to activate both fluorescent and functional
responses in M1 macrophages. We prepared the BODIPY−
doxorubicin hydrazone 5 by hydrolysis of the ethyl ester 3 in
acidic conditions, followed by one-pot hydrazide formation via
activation as succinidimyl ester and reaction with hydrazine in
THF. The conjugation of the hydrazide to the carbonyl group
of doxorubicin was performed in MeOH using catalytic
amounts of trifluoroacetic acid to render compound 5 as an
activatable BODIPY−prodrug with a pH-labile linker (Figure
1). The nonlabile BODIPY−doxorubicin amide conjugate 6
was also prepared as a negative control. In this case, activation
of compound 3 with (1-cyano-2-ethoxy-2-oxoethylidenami-
nooxy)-dimethylamino-morpholino-carbenium hexafluorophos-
phate (COMU) and DIPEA in DMF, followed by conjugation
to the amine group of doxorubicin, yielded the amide derivative
6. Furthermore, hydrazone and amide BODIPY−doxorubicin
conjugates of the ester 4 (compounds 7 and 8, respectively)
were also prepared as additional negative controls of BODIPY−
prodrug conjugates including labile groups not matching the
phagosomal pH in M1 macrophages (Figure 1). Notably, the
spectral characterization of all derivatives showed that
excitation and emission wavelengths of the conjugates remained
unaltered after conjugation to doxorubicin (Table S1 and
Figure S7), with the BODIPY core being the main contributor
to the fluorescence emission (Figure S8).
Functional Assays in M1 and M2 Macrophage

Subpopulations. First, we evaluated the suitability of the
BODIPY−doxorubicin conjugates as efficient prodrugs for
macrophages. We compared the cell viability of nonactivated
RAW264.7 murine macrophages after treatment with doxor-

ubicin alone and with the conjugates 5−8 (Figure S6). Whereas
doxorubicin induced significant dose-dependent cell toxicity,
none of the BODIPY conjugates showed any effects in the cell
viability of macrophages, indicating that the cytotoxic action of
doxorubicin was effectively blocked via derivatization with N-
acylhydrazone (5, 7) or amide (6, 8) groups. Furthermore, we
also confirmed that the BODIPY fluorophores on their own
(compounds 3 and 4) did not induce any cytotoxicity in
macrophages (Figure S6).
Next, we assessed the functional effects of compound 5 in

separate M1 and M2 macrophage subpopulations. We
employed reported protocols to activate macrophage cells
toward classical M1 (treatment with LPS) or alternative M2
phenotypes (treatment with IL-4) and incubated them with
different concentrations of compound 5. As shown in Figure
3A, the phagosomal acidification in M1 macrophages enabled

the release of the cytotoxic doxorubicin in a dose-dependent
manner, whereas no functional effects were observed in either
quiescent or M2 macrophages. Polarization of macrophages
toward M1 or M2 phenotypes was confirmed by expression of
cell-surface markers in flow cytometry analysis (i.e., CD86 for
M1 macrophages,40 CD206 in M2 macrophages41) (Figure 3B)
and nitric oxide (NO) production42 (Figure 3C). Notably,

Figure 2. Comparative fluorescence staining of M1 macrophages using
BODIPY derivatives. (A) Fluorescence intensity of compounds 2
(square, gray), 3 (cross, green), and 4 (circle, blue) at different pH
values. (B) Fluorescence fold increase of compounds 3 (green, 15 μM)
and 4 (blue, 15 μM) between phagosomal and neutral pH. (C, D)
Flow cytometry analysis of LPS-induced M1 macrophages (LPS: 100
ng mL−1, 18 h) and nontreated macrophages after incubation with
compound 3 (10 μM). SSC: side cell scattering. QY: fluorescence
quantum yield. Values represented as means ± SD. (n = 4). ** for p <
0.01.

Figure 3. Functional assays in M1 and M2 mouse macrophages. (A)
Incubation of compounds 6 (10 μM, white) and 5 (5 μM, gray; 10
μM, black) in different subpopulations of macrophages confirm a dose-
dependent release of doxorubicin (determined by cell viability) from 5
in M1 macrophages. (B) Flow cytometry histograms of LPS-induced
(100 ng mL−1, 18 h) M1 macrophages and IL-4-induced (100 ng
mL−1, 18 h) M2 macrophages vs nontreated macrophages (M0) after
incubation with anti-CD86-APC (M1 marker, 2 μg mL−1) or anti-
CD206-APC (M2 marker, 2 μg mL−1). (C) NO production assay in
cell supernatants from nontreated, M1, and M2 macrophages. Values
represented as means ± SD (n = 4). n.s. for p > 0.05, * for p < 0.05, **
for p < 0.01, *** for p < 0.001.
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incubation of M1 and M2 macrophage subpopulations with the
noncleavable amide derivative 6 did not cause any cytotoxicity,
indicating the phagosomal pH-induced cleavage as the primary
mechanism for the specific release of doxorubicin in M1
macrophages (Figure S9). HPLC−MS analysis of the acid-
cleavable hydrazone 5 confirmed the cleavage of doxorubicin
only under acidic environments, with no drug release observed
at neutral pH or for the noncleavable amide conjugate 6
(Figure S10). We further characterized the functional effects of
the hydrazone 5 in M1 macrophages by immunochemical
analysis (Figure S11). In these assays, we measured the levels of
several cytokines in LPS-stimulated M1 macrophages that had
been treated or not with hydrazone 5 and observed a reduction
in the production of key cytokines and chemokines (e.g., TNF-
α) associated with the M1 macrophage phenotype. In addition,
we corroborated that IL-4-stimulated macrophages presented
increased arginase activity as a result of their M2 polarization43

(Figure S12).
Fluorescence Analysis of M1 Macrophages. Prodrug−

fluorophore conjugates are advantageous in that they enable
monitoring cell fate upon drug release using fluorescence
readouts.44 As such, we compared the fluorescence staining of
nonactivated macrophages and M1 macrophages after
incubation with compound 5 by flow cytometry. Nonactivated
macrophages displayed low BODIPY fluorescence staining
(Figure 4A), while strong fluorescence emission was observed

in LPS-stimulated M1 macrophages (Figures 4B), indicating
the efficient cell uptake of compound 5 and its intracellular
activation upon phagosomal acidification. Furthermore, we
compared the apoptotic index of both macrophage subpopu-
lations by coincubation with Annexin V as a direct functional
readout of cellular apoptosis due to doxorubicin release inside
macrophages. The low apoptotic index in nonactivated
macrophages increased 3-fold in LPS- and 5-treated M1
macrophages (Figure 4C). Moreover, apoptotic cells (i.e.,
Annexin V stained cells) displayed also strong BODIPY
fluorescence (Figure 4B), confirming the simultaneous release
of doxorubicin and the BODIPY fluorophore in M1 macro-
phages.
Next, in order to assess the subcellular localization of the

released cargo in live macrophages, we imaged RAW264.7
macrophages after incubation with compound 5 under
fluorescence confocal microscopy. Macrophages were stimu-
lated with zymosan, a glycan isolated from yeast cells that
induces classical M1 activation.45 Zymosan beads were
conjugated to the pH-insensitive fluorophore Texas red so
that two-color fluorescence images could be acquired. As shown
in Figure 4E, strong colocalization was observed between the
green BODIPY fluorophore and red-fluorescent zymosan in the
intracellular phagosomes of live macrophages. This observation
confirms that M1 macrophages uptaking zymosan beads turn
on the pH-activatable BODIPY fluorophore. To confirm this

Figure 4. Flow cytometry analysis after treatment with compound 5 (10 μM) and Annexin V-AF647 (1:100) in (A) nonactivated mouse
macrophages and (B) LPS-induced (100 ng mL−1, 18 h) M1 mouse macrophages. (C) Histograms showing Annexin V-AF647 staining in mouse
macrophages that were treated with LPS (100 ng mL−1, 18 h) (blue), compound 5 (10 μM) (purple), and combined LPS (100 ng mL−1, 18 h) and
compound 5 (10 μM) (red). (D) Normalized quantification of fluorescence intensities for Annexin V-AF647 (gray) and BODIPY fluorescence
(black). Values represented as means ± SD (n = 3). * for p < 0.05, ** for p < 0.01. (E) Fluorescence confocal microscopy of live macrophages upon
treatment with green-fluorescent BODIPY hydrazone 5 (150 nM) and red-fluorescent (Texas Red) zymosan beads (0.05 mg mL−1, 1 h). Brightfield
(top), green fluorescence (center), and merged green-red fluorescence (bottom) images of macrophages without (E) or with bafilomycin A (100
nM, 1 h) preincubation (F). Yellow arrows (in E) and white arrows (in F) point at zymosan-uptaking M1 macrophages. Scale bar: 10 μm.
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hypothesis, we preincubated live macrophages with bafilomycin
Aan inhibitor of the vacuolar-type H+-ATPase required for
phagosomal acidification46and then treated them with red
zymosan beads and compound 5. The images shown in Figure
4F confirmed that phagosomal acidification was the main
intracellular mechanism for the activation of the pH-sensitive
BODIPY fluorophore, as bafilomycin-treated M1 macrophages
were not green fluorescently stained despite having taken up
red zymosan beads. Together with the functional assays, these
results assert the potential of compound 5 as an effective
prodrug and activatable BODIPY imaging agent to visualize and
modulate the function of M1 macrophages.
Subpopulation Discrimination of Macrophages and

ex Vivo Assays in Human Macrophages. To evaluate the
selective activation of compound 5 in mixtures of cells with
different phenotypes, we cultured M1 and M2 macrophages in
a Transwell assay to coincubate both subpopulations with the
same concentration of compound 5. RAW264.7 macrophages
were plated and polarized toward M1 and M2 populations and
then treated for 20 h with compound 5 under physiological
conditions. The two subpopulations were exposed to the same
experimental conditions, being only separated by a membrane
permeable to small molecules (Figure 5A). After incubation,
both subpopulations were isolated, treated with Annexin V, and
analyzed by flow cytometry. As shown in Figure 5B, M1
macrophages showed around 4-fold higher apoptotic index than
M2 macrophages (indicated by Annexin V staining, 72% vs
19%). Annexin V positive cells were also stained with the
BODIPY fluorophore, confirming the enhanced hydrolytic
activity of M1 over M2 macrophages after 20 h. These results
confirm the preferential activation of compound 5 (i.e.,
doxorubicin intracellular release and fluorescence emission) in
M1 macrophages, even in the presence of other macrophage
subpopulations.
Whereas in vivo cell ablation has been achieved by

incorporating genetically encoded receptors (e.g., diphtheria
toxin receptor, DTR) into specific cell lineages,47 including
macrophages, such approaches are poorly translatable to clinical
environments. In order to examine the translational potential of
compound 5 to deplete subpopulations of human M1
macrophages, we isolated and cultured monocyte-derived
macrophages from human peripheral blood. Macrophages
were stimulated with LPS and polarized toward the M1
phenotype, which was confirmed by increased expression of the
cell-surface marker CD86 (Figures 5C and 5D) and the tumor
necrosis factor alpha (TNF-α)48 (Figure S13). Under these
conditions, human macrophages were treated with both
activatable and nonactivatable BODIPY−prodrug conjugates
(i.e., compounds 5 and 6, respectively). The incubation of LPS-
stimulated human M1 macrophages with compound 5 led to
significant enhancement of the fluorescence emission (Figures
5C and 5D) and effective doxorubicin release that resulted in
reduced cell viability (Figures 5E and 5F). Flow cytometric
analysis confirmed the double-positive staining of human M1
macrophages with a fluorescently labeled anti-CD86 antibody
and compound 5 (Figure S14), indicating preferential
activation of compound 5 in human M1 macrophages.
Furthermore, we also corroborated that the treatment of
human M1 macrophages with the noncleavable BODIPY−
prodrug 6 did not cause any cytotoxic effect (Figure S15).
These results suggest that phagosomal pH is a species-
independent activation mechanism to release prodrugs in
defined subpopulations of macrophages and also assert the

potential of compound 5 for translational studies in human
macrophages.

In Vivo Functional and Imaging Assays. In view of the
excellent properties of 5 as a BODIPY−prodrug conjugate to
deplete subpopulations of macrophages, we investigated its
application to modulate immune cell function in a zebrafish
model of tissue regeneration. When their tail fin is amputated at
2 days postfertilization (dpf), zebrafish larvae regenerate their

Figure 5. Discrimination of M1/M2 mouse macrophages and ex vivo
assays in human macrophages. (A) Schematic representation of the
Transwell assay with mouse macrophages, where M1 and M2
subpopulations are physically isolated through a membrane permeable
to small molecules. (B) Flow cytometry analysis of both M1 and M2
mouse subpopulations after coincubation with compound 5 (10 μM)
under physiological conditions and subsequent costaining with
Annexin V. (C, D) Flow cytometry histograms and quantification of
LPS-induced (100 ng mL−1, 18 h) human M1 macrophages vs
nontreated macrophages (M0) after incubation with anti-CD86-APC
(M1 marker, 2 μg mL−1) and compound 5 (1 μM). (E) Cytospin
analysis of human M1 macrophages after treatment with LPS alone or
LPS and compound 5 revealed morphological differences between
viable macrophages (white arrows) and preapoptotic nonviable
macrophages (red arrows) due to doxorubicin release. (F) Cell
viability of human macrophages after M1 polarization (100 ng mL−1

LPS, 18 h) and incubation with compound 5 (10 μM). Values
represented as means ± SD (n = 3). ** for p < 0.01, *** for p < 0.001.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.7b00262
ACS Cent. Sci. XXXX, XXX, XXX−XXX

E

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.7b00262/suppl_file/oc7b00262_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.7b00262/suppl_file/oc7b00262_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.7b00262/suppl_file/oc7b00262_si_001.pdf
http://dx.doi.org/10.1021/acscentsci.7b00262


fin within 72 h postwounding (hpw). Under these conditions,
macrophages migrate toward the amputation site within 1−2
hpw and their number is typically maintained to enable tissue
regeneration.49 We explored the applicability of compound 5 to
visualize recruited macrophages by fluorescence imaging as well
as to alter tissue regeneration in situ by depleting M1
macrophages in vivo. Upon tail fin amputation, we treated
zebrafish larvae with compound 5 and performed time-lapse
imaging by live fluorescence confocal microscopy. As shown in
Figure 6A and Movie S1, mCherry-expressing macrophages
were recruited to the injury site but only a few macrophages
showed green fluorescence corresponding to the intracellular
activation of compound 5. This is in agreement with reported
observations that correlate the initial recruitment of macro-
phages to injury sites to the M2 wound-healing phenotype and
not the M1 proinflammatory phenotype.50 Images at longer
time points [i.e., 24 h post-treatment (hpt), Figure 6B and
Movie S2] showed enhanced green fluorescence in the
intracellular phagosomes and reduced cell mobility, likely due
to an increased polarization toward the M1 phenotype.
However, we did not see significant changes in macrophage
numbers at 48 hpw after the treatment with compound 5
(Figure 6E), which suggests that M1 macrophages may
represent a relatively small subpopulation in the tail fin under
these experimental conditions. Therefore, we treated wounded
larvae with LPS, which leads to a marked increase in TNF-α
M1 macrophages in the regenerating fin in vivo (Figure S16).
Indeed, whereas most macrophages in 5-treated larvae showed
weak green fluorescence and unaffected morphology (Figure
6C), brighter fluorescence emission was detected in the wound
edges of zebrafish treated with LPS and compound 5, with
most macrophages showing green fluorescent phagosomes and
rounded cellular morphology, characteristic of apoptotic and
necrotic cells due to the release of doxorubicin (Figure 6D).

We further confirmed this observation using TUNEL (terminal
deoxynucleotidyl transferase dUTP nick-end labeling) staining,
which is used to detect apoptotic cells that undergo extensive
DNA degradation, and observed increased apoptosis in
zebrafish larvae that had been cotreated with LPS and
compound 5 (Figure S17). Under these conditions, a
significant reduction in the macrophage numbers within the
regenerating fin was observed when compared to the DMSO
control (Figure 6E and Figure S18).
Whereas there is experimental evidence that macrophages are

required for tail fin regeneration, the exact contribution of
specific macrophage subpopulations in the regenerative process
is not fully understood. Thus, we measured the regeneration of
the tail fin area under different experimental conditions (Figure
6F and Figure S19). First, we observed a significant reduction
in the regenerated area for 5-treated larvae, suggesting that the
depletion of M1 macrophages can impair tissue regeneration.
Second, in vivo stimulation with LPS, which enhances M1
macrophage polarization, and cotreatment with compound 5
were sufficient to rescue tail fin regeneration to a similar level as
the DMSO control. These results are in agreement with the
recent observations described by Nguyen-Chi et al. in which
TNF-α positive M1 macrophages but not TNF-α negative
macrophage subpopulations were required for tissue regener-
ation in zebrafish.51

■ CONCLUSIONS

We have developed novel fluorogenic BODIPY−prodrug
conjugates targeting proinflammatory subpopulations of macro-
phages. To the best of our knowledge, these are the first
chemical probes able to modulate the function of M1
macrophages in vivo without affecting other macrophage
subpopulations. Specific cleavage of the prodrug conjugates
within the acidic phagosomes of M1 macrophages led to the

Figure 6. In vivo imaging of macrophages in a zebrafish model of tissue regeneration. Snapshot fluorescence microscopy images of macrophages
recruited to the wounded edge at 1 hpt (A, Movie S1, white arrows) and 24 hpt (B, Movie S2, yellow arrows). High magnification images of
macrophages at the regenerative tail fin of 5-treated zebrafish (3 μM) without (C) and with (D) LPS treatment (100 ng mL−1) at 48 hpt. Yellow
arrowheads point at rounded apoptotic and necrotic macrophages upon doxorubicin release. Scale bars: 50 μm. (E) Quantification of macrophage
numbers after incubation with DMSO or compounds 3, 5, and LPS. (F) In vivo quantitative analysis of the regenerated tissue area. Zebrafish larvae
were treated with DMSO or compound 5 with and without LPS pretreatment, and the regeneration area upon tail fin injury was determined at 48
hpt. Values represented as means ± SD (n ≥ 10). n.s for p > 0.05, * for p < 0.05, ** for p < 0.01.
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intracellular release of a pH-activatable fluorophore as well as
the cytotoxic drug doxorubicin for in situ cell tracking and
subpopulation-specific macrophage depletion. We have dem-
onstrated the applicability of these conjugates in vivo using
regeneration models to image and deplete phagocytic M1
macrophages. Notably, we have observed a proregenerative role
for TNF-α expressing M1 macrophages in vivo, which opens
new avenues to noninvasively interrogate the contribution of
macrophage subpopulations in multiple pathologies without the
need for transgenic modifications. This platform will accelerate
the development of chemical immunomodulatory agents as
subpopulation-specific targeted therapies for immune-related
disorders.

■ EXPERIMENTAL SECTION
General Materials. Commercially available reagents were

used without further purification. Thin-layer chromatography
was conducted on Merck silica gel 60 F254 sheets and
visualized by UV (254 and 365 nm). Silica gel (particle size
35−70 μm) was used for column chromatography. 1H and 13C
spectra were recorded in a Bruker Avance 500 spectrometer (at
500 and 125 MHz, respectively). Data for 1H NMR spectra are
reported as chemical shift δ (ppm), multiplicity, coupling
constant (Hz), and integration. Data for 13C NMR spectra are
reported as chemical shifts relative to the solvent peak. HPLC−
MS analysis was performed on a Waters Alliance 2695
separation module connected to a Waters PDA2996 photo-
diode array detector and a ZQ Micromass mass spectrometer
(ESI-MS) with a Phenomenex column (C18, 5 μm, 4.6 × 150
mm). Conjugates were purified using a Waters semipreparative
HPLC system using a Phenomenex column (C18 Axial, 10 μm,
21.2 × 150 mm) and UV detection.
Chemical Synthesis. BODIPY Ester 3. To a solution of the

corresponding BODIPY formamide (17, Figure S2) (45 mg,
0.105 mmol) in 6 mL of CHCl3 under inert atmosphere was
added 0.1 mL (0.737 mmol) of DIPEA. The resulting mixture
was cooled at 0 °C, and POCl3 (24 μL, 0.260 mmol) was added
dropwise. The reaction mixture was stirred in the cold for 3 h.
Then, 10 mL of 2 M NaHCO3 was added, and the mixture was
stirred for 5 min. The aqueous layer was extracted with CH2Cl2
(3 × 20 mL), and the organic extracts were dried over MgSO4,
filtered, and evaporated under reduced pressure. The resulting
isonitrile (1) was used without any purification and dissolved in
600 μL of tBuOH:CHCl3 (3:2). Formic acid (24 μL, 0.630
mmol), formaldehyde (30% in H2O, 34 μL, 0.315 mmol), and
diethylamine (32 μL, 0.315 mmol) were added. The reaction
mixture was stirred for 16 h, and the solvent was removed
under reduced pressure to yield a crude residue, which was
purified by flash chromatography. Column chromatography in
hexane:EtOAc (4:6), synthetic yield 86%. HPLC (H2O−ACN
with 0.1% HCOOH): tR 5.8 min. 1H NMR (500 MHz,
CDCl3): δ 7.83−7.67 (m, 2H), 7.26 (d, J = 8.4 Hz, 2H), 6.03
(d, J = 14.4 Hz, 2H), 4.29−4.09 (m, 2H), 3.30 (t, J = 7.5 Hz,
2H), 3.21 (br s, 4H), 2.75 (m, 6H), 2.57 (s, 3H), 1.47 (s, 3H),
1.46 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H), 1.15 (br s, 6H). MS (m/
z): [M + H]+ calcd for C29H38BF2N4O3

+, 539.3; found, 539.3.
BODIPY Ester 4. To a solution of the corresponding

BODIPY formamide (18, Figure S2) (39 mg, 0.105 mmol)
in 6 mL of CHCl3 under inert atmosphere, was added 1 mL
(0.737 mmol) of DIPEA. The resulting mixture was cooled at 0
°C, and POCl3 (24 μL, 0.260 mmol) was added dropwise. The
reaction mixture was stirred in the cold for 3 h. Then, 10 mL of
2 M NaHCO3 was added, and the mixture was stirred for 5

min. The aqueous layer was extracted with CH2Cl2 (3 × 20
mL), and the organic extracts were dried over MgSO4, filtered,
and evaporated under reduced pressure. The resulting isonitrile
(2) was used without any purification and dissolved in 600 μL
of tBuOH:CHCl3 (3:2). Formic acid (24 μL, 0.630 mmol),
formaldehyde (30% in H2O, 34 μL, 0.315 mmol), and N-ethyl
glycinate (39 μL, 0.315 mmol) were added. The reaction
mixture was stirred for 16 h, and the solvent was removed
under reduced pressure to yield a crude residue, which was
purified by flash chromatography. Column chromatography in
hexane:EtOAc, (1:1), synthetic yield 84%. HPLC (H2O−ACN
with 0.1% HCOOH): tR 7.9 min. 1H NMR (500 MHz,
MeOD): δ 7.88 (d, J = 8.5 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H),
6.08 (s, 2H), 3.77 (s, 3H), 3.60 (s, 2H), 3.44 (s, 2H), 2.81 (q, J
= 7.2 Hz, 2H), 2.50 (s, 6H), 1.49 (s, 6H), 1.14 (t, J = 7.2 Hz,
3H). MS (m/z): [M + H]+ calcd for C26H32BF2N4O3

+, 497.2;
found, 497.4.

BODIPY Hydrazone 5. N2 was bubbled through a suspension
of doxorubicin (22 mg, 0.038 mmol) and hydrazide BODIPY
22 (Figure S4) (20 mg, 0.038 mmol) in anhydrous MeOH (6
mL) for 30 min. Then TFA (0.5 mL) was added, and the
reaction mixture was stirred for 48 h at rt in the dark. Volatiles
were removed under reduced pressure, and the resulting
residue was purified by semipreparative HPLC to obtain 5 as a
red solid, synthetic yield 16%. HPLC (H2O−ACN with 0.1%
HCOOH): tR 5.03 min. 1H NMR (500 MHz, MeOD): δ 8.54
(s, 1H), 8.08−7.99 (m, 1H), 7.94−7.86 (m, 1H), 7.84 (d, J =
8.6 Hz, 2H), 7.66−7.58 (m, 1H), 7.31 (d, J = 8.6 Hz, 2H), 6.14
(s, 1H), 6.12 (s, 1H), 5.49 (d, J = 3.0 Hz, 2H), 5.21−5.14 (m,
2H), 4.73 (d, J = 3.1 Hz, 2H), 4.58 (s, 1H), 4.31 (dt, J = 7.2, 6.0
Hz, 1H), 4.07 (s, 3H), 3.99 (s, 1H), 3.70−3.65 (m, 2H), 3.62−
3.54 (m, 1H), 3.49−3.44 (m, 2H), 3.37 (d, J = 3.7 Hz, 2H),
3.23 (t, J = 7.7 Hz, 1H), 3.21−3.16 (m, 1H), 3.17−3.13 (m,
1H), 3.10 (s, 1H), 2.80 (q, J = 7.1 Hz, 1H), 2.58 (dd, J = 8.2,
7.1 Hz, 1H), 2.51 (s, 3H), 2.39 (dt, J = 14.8, 2.2 Hz, 2H), 2.27
(s, 1H), 2.22 (dd, J = 14.7, 5.2 Hz, 1H), 2.06 (td, J = 12.8, 3.9
Hz, 1H), 1.94−1.87 (m, 1H), 1.50 (s, 3H), 1.49 (s, 3H), 1.41
(d, J = 6.5 Hz, 1H), 1.31 (d, J = 6.6 Hz, 3H), 1.18 (t, J = 7.1 Hz,
6H). HRMS (m/z): [M]+ calcd for C54H62O12N7BF2

+,
1049.4512; found, 1049.4571.

BODIPY Amide 6. To a solution of doxorubicin hydro-
chloride (9 mg, 0.015 mmol) and the corresponding BODIPY
carboxylic acid 21 (Figure S4) (8 mg, 0.015 mmol) in DMF
(0.5 mL) was added DIPEA (8 μL, 0.045 mmol). The solution
was stirred for 15 min, and COMU (9 mg, 0.022 mmol) was
added predissolved in DMF (0.2 mL). After 6 h stirring at rt,
the crude mixture was extracted with CH2Cl2, and the organic
extracts were dried over MgSO4, filtered, and evaporated under
reduced pressure. The mixture was purified by semipreparative
HPLC to obtain 6 as a red solid, synthetic yield 16%. HPLC
(H2O−ACN with 0.1% HCOOH): tR 5.9 min. 1H NMR (500
MHz, DMSO-d6): δ 10.20 (s, 1H), 7.93 (d, J = 14.4 Hz, 1H),
7.84 (d, J = 8.0 Hz, 2H), 7.71−7.63 (m, 1H), 7.58−7.49 (m,
1H), 7.30 (d, J = 8.3 Hz, 2H), 6.35 (s, 1H), 6.20 (s, 1H), 5.48
(s, 2H), 5.25 (s, 2H), 4.98 (d, J = 4.9 Hz, 1H), 4.83 (dt, J = 9.0,
6.1 Hz, 2H), 4.62−4.51 (m, 2H), 4.17−4.05 (m, 1H), 3.99 (s,
3H), 3.45−3.34 (m, 2H), 3.18 (d, J = 5.1 Hz, 2H), 2.74−2.62
(m, 3H), 2.45−2.33 (m, 3H), 2.30 (s, 3H), 2.25−2.15 (m, 4H),
1.89−1.79 (m, 2H), 1.40 (dd, J = 7.8, 3.0 Hz, 2H), 1.38 (s,
6H), 1.17−1.11 (m, 2H), 1.09 (t, J = 5.4 Hz, 6H). HRMS (m/
z): [M + Na]+ calcd for C54H60O13N5BF2Na

+, 1058.4141;
found, 1058.4139.
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BODIPY Hydrazone 7. N2 was bubbled through a suspension
of doxorubicin (12 mg, 0.020 mmol) and the corresponding
hydrazide BODIPY 20 (Figure S3) (15 mg, 0.030 mmol) in
anhydrous MeOH (6 mL) for 30 min. Then TFA (0.5 mL) was
added, and the reaction mixture was stirred for 48 h at rt in the
dark. Finally, volatiles were removed under reduced pressure,
and the resulting residue was purified by semipreparative
HPLC to obtain 7 as a red solid, synthetic yield 17%. HPLC
(H2O−ACN with 0.1% HCOOH): tR 5.58 min. 1H NMR (500
MHz, MeOH-d4): δ 8.57 (s, 1H), 8.04 (dd, J = 7.7, 1.1 Hz,
1H), 7.95−7.86 (m, 3H), 7.67−7.60 (m, 1H), 7.31 (d, J = 8.7,
2H), 6.08 (s, 2H), 5.49 (d, J = 3.8 Hz, 2H), 5.22−5.14 (m,
2H), 4.73 (d, J = 3.1 Hz, 2H), 4.31 (q, J = 7.0 Hz, 1H), 4.07 (s,
3H), 4.01 (s, 1H), 3.89 (s, 1H), 3.69−3.65 (m, 2H), 3.62−3.44
(m, 1H), 3.40 (s, 1H), 3.37 (s, 1H), 3.21−3.16 (m, 1H), 3.15
(d, J = 1.7 Hz, 2H), 3.10 (s, 1H), 3.06 (s, 1H), 2.80 (q, J = 7.2
Hz, 1H), 2.51 (s, 3H), 2.49 (s, 3H), 2.43−2.38 (m, 1H), 2.37
(d, J = 2.3 Hz, 1H), 2.23 (d, J = 5.2 Hz, 1H), 2.20 (d, J = 5.2
Hz, 1H), 2.17 (s, 1H), 2.13 (s, 1H), 2.03 (d, J = 3.9 Hz, 1H),
1.94−1.88 (m, 1H), 1.49 (s, 6H), 1.31 (d, J = 6.6 Hz, 2H),
1.19−1.11 (m, 3H). HRMS (m/z): [M + H]+ calcd for
C52H59O12N7BF2

+, 1022.4277; found, 1022.4258.
BODIPY Amide 8. To a solution of doxorubicin hydro-

chloride (9 mg, 0.015 mmol) and the corresponding BODIPY
carboxylic acid 19 (Figure S3) (7 mg, 0.015 mmol) in DMF
(0.5 mL) was added DIPEA (8 μL, 0.045 mmol). The solution
was stirred for 15 min, and COMU (9 mg, 0.022 mmol) was
added predissolved in DMF (0.2 mL). After 6 h stirring at rt,
the crude mixture was extracted with CH2Cl2, and the organic
extracts were dried over MgSO4, filtered, and evaporated under
reduced pressure. The mixture was purified by semipreparative
HPLC to obtain 8 as a red solid, synthetic yield 26%. HPLC
(H2O−ACN with 0.1% HCOOH): tR 6.6 min. 1H NMR (500
MHz, DMSO-d6): δ 10.43 (s, 1H), 7.94−7.86 (m, 2H), 7.80 (d,
J = 8.6 Hz, 2H), 7.62 (dd, J = 6.6, 3.2 Hz, 1H), 7.26 (d, J = 8.5
Hz, 2H), 6.14 (s, 2H), 5.48 (s, 2H), 5.25 (d, J = 3.7 Hz, 2H),
4.99−4.93 (m, 1H), 4.83 (dd, J = 6.2, 5.1 Hz, 2H), 4.60−4.54
(m, 2H), 4.07−3.97 (m, 1H), 3.95 (s, 3H), 3.57 (s, 2H), 3.49−
3.35 (m, 2H), 3.30−3.10 (m, 2H), 2.72−2.60 (m, 3H), 2.45 (s,
6H), 2.39−2.31 (m, 1H), 2.21−2.14 (m, 1H), 1.95−1.77 (m,
1H), 1.51 (dd, J = 12.4, 4.5 Hz, 2H), 1.41 (s, 1H), 1.36 (s, 6H),
1.24 (s, 1H), 1.14 (d, J = 6.5 Hz, 2H), 1.00 (t, J = 7.1 Hz, 3H).
HRMS (m/z): [M + Na]+ calcd for C52H56O13N5BF2Na

+,
1030.3828; found, 1030.3850.
Spectral Characterization of BODIPY−Prodrug Con-

jugates. Spectroscopic and quantum yield data were recorded
on a Synergy HT spectrophotometer (Biotek). Compounds
were dissolved at the indicated concentrations, and spectra
were recorded at rt. Spectra are represented as means from at
least two independent experiments with n = 3. Quantum yields
were calculated by measuring the integrated emission area of
the fluorescence spectra and comparing it to the area measured
for fluorescein in basic EtOH as reference (QY: 0.97).52

Cell Culture and Polarization to M1 and M2 Macro-
phages. RAW264.7 macrophages were grown in DMEM cell
culture media supplemented with 10% FBS, antibiotics (100 U
mL−1 penicillin, 100 mg mL−1 streptomycin), and 2 mM L-
glutamine in a humidified atmosphere at 37 °C with 5% CO2.
For M1 polarization, macrophages were treated with LPS (100
ng mL−1) for 18 h as reported.53 M2 macrophages were
isolated upon treatment with IL-4 (100 ng mL−1) for 18 h as
reported.54 Flow cytometry analysis of M1 and M2 mouse
macrophage populations was performed as detailed below using

fluorescent anti-CD86-APC (2 μg mL−1, Biolegend) and anti-
CD206-APC antibodies (2 μg mL−1, Biolegend) as M1 and M2
markers, respectively.
For NO production assays, cell supernatants from RAW264.7

macrophages (∼90−100% confluence in 24-well plates) that
had been polarized or not toward M1 or M2 as described above
were collected. NO production was determined using the
Griess reagent (Sigma) in which equal volumes (100 μL) of
Griess reagent and cell supernatants were mixed and incubated
in the dark for 15 min before determining the absorbance at
540 nm in a spectrophotometer.
For arginase activity assays, mouse macrophages were

polarized or not toward M1 or M2 as detailed above and the
production of urea generated by the arginase-dependent
hydrolysis of L-arginine was measured as reported.55

Cell Viability. Cell viability was determined using a TACSR
MTT Cell Proliferation assay (Trevigen) following the
manufacturer’s instructions. Briefly, RAW264.7 macrophages
were plated on 96-well plates and stimulated as described above
when appropriate, reaching 90−95% confluence on the day of
the experiment. Compounds were added to the cells at
indicated concentrations and incubated at 37 °C overnight.
Then cells were washed and treated according to the
manufacturer’s instructions, and their absorbance values (570
nm) were measured in a Synergy HT spectrophotometer
(Biotek). Data analysis was performed using GraphPrism 5.0.
Cell viability data was normalized to the proliferation of the
cells in cell culture medium.

Cytokine Immunochemical Profiling. Cytokine levels
were determined using a Mouse Cytokine Array Panel A
(Proteome Profiler, R&D System) following the manufacturer’s
instructions. Briefly, RAW264.7 macrophages were plated on
12-well plates on the day before the experiment, reaching 70−
80% confluence on the day of the experiment. Macrophages
were polarized toward the M1 phenotype with LPS (100 ng
mL−1) and incubated in the presence or absence of compound
5 (10 μM) at 37 °C for 24 h. Cell supernatants were collected,
centrifuged, and treated following the manufacturer’s instruc-
tions. Membranes were developed in an X-ray Ecomax
Processor (Photon Imaging System), scanned, and analyzed
using ImageJ.

Flow Cytometry. RAW264.7 macrophages were plated on
24-well plates 4 h before the experiment and incubated at 37
°C. Macrophages were stimulated (with LPS or IL-4), and
compounds were added to the cells at the indicated
concentrations and incubated at 37 °C for 20 h. Cells were
detached, resuspended in CaCl2 buffer (20 mM HEPES Buffer,
140 mM NaCl, 2 mM CaCl2, 0.1% BSA), and analyzed by flow
cytometry (BD FACSCalibur cytometer, Becton Dickinson)
using Annexin V-AF647 (Invitrogen) as the marker for
apoptotic cells and/or compound 5 as indicated. Data analysis
was performed with the software Flowjo.

Live-Cell Fluorescence Confocal Microscopy. Cells
were plated on glass chamber slides Lab-Tek II (Nunc),
stimulated with Texas Red conjugated Zymosan A S. cerevisiae
BioParticles (0.05 mg mL−1), washed with PBS, and incubated
with compound 5 (150 nM) at 37 °C. Cells were imaged under
a Zeiss LSM510 META fluorescence confocal microscope
equipped with a live cell imaging stage. Fluorescence and
brightfield images were acquired using a 40× oil objective.
Fluorophores were excited with 488 nm (BODIPY) or 543 nm
(Texas Red) lasers. All images were analyzed and processed
with ImageJ.
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Transwell Assays in M1 and M2 Macrophages.
RAW264.7 macrophages were plated on 24-well plates
equipped with Transwell insert membranes, presoaking the
insert in cell growth medium prior to cell seeding overnight.
Macrophages were polarized toward M1 (LPS, 100 ng mL−1)
or M2 (IL-4, 100 ng mL−1) on separated wells at 37 °C for 24
h. Then, macrophages were washed with PBS and compound 5
(10 μM) was added and incubated in M1/M2 macrophages at
37 °C for 18 h. Macrophages were detached, resuspended in
CaCl2 buffer, and analyzed by flow cytometry using Annexin V-
AF647. Data analysis was performed with Flowjo.
Assays in ex Vivo Human Monocyte-Derived Macro-

phages. Ex vivo experiments with fresh human peripheral
blood from healthy donors were approved by the Accredited
Medical Regional Ethics Committee (AMREC, reference
number 15-HV-013). Monocytes were obtained by negative
isolation from mononuclear cells obtained from whole blood
using magnetic beads (pan monocyte isolation kit, Miltenyi) as
described elsewhere56 and cultured for 7 days in IMDM media
with 5% autologous serum. Macrophages were then plated in
96-well plates (40,000 cells/well). Cells were stimulated with
LPS (100 ng mL−1), treated with the compounds at indicated
concentrations, and incubated at 37 °C overnight to measure
their effect in human macrophages as described above. Flow
cytometry analysis of M1 human macrophages was performed
as detailed above using a fluorescent anti-CD86-APC antibody
(2 μg mL−1) (Biolegend).
Total RNA samples from human monocyte-derived macro-

phages were prepared using RNeasy kits (Qiagen) and reverse
transcribed with Quantitect Reverse Transcription kits
(Qiagen) following the manufacturer’s instructions. cDNA
samples were analyzed using a SYBR green based quantitative
fluorescence method (Invitrogen) and Kiqstart primers
(Sigma). Data was analyzed with β-actin as the housekeeper
gene and presented as ΔCT values.
Zebrafish Tissue Regeneration Model. Transgenic

macrophage reporter fish Tg(cfms::Gal4-UAS::mCherry)
were used to monitor macrophage recruitment in tail fin
regene r a t i on a s s ay s . A doub l e t r an sgen i c Tg -
(tnfα::eGFP;mpeg1::mCherry) was used to image M1 macro-
phage polarization in vivo upon LPS treatment. For whole-
mount TUNEL staining experiments, the transgenic macro-
phage reporter zebrafish Tg(mfap4::tdTomato-CAAX) were
used. Fish were fixed for 2 h in 4% p-formaldehyde (PFA) in
PBS, permeabilized for 12 h in PBS containing 0.1% Triton X-
100 and 3% bovine serum albumin (BSA), and washed in PBS.
Zebrafish were stained with the Click-iT TUNEL Alexa 647
Imaging Assay kit (ThermoFisher) following the manufac-
turer’s instructions.
At 2 days post fertilization (dpf), larvae were anesthetized

using 0.01% MS222. Tail fins were amputated from the second
last section of notochord without damaging the blood vessel
using a scalpel. Larvae were then returned to fresh Daneau’s
solution in a 28.5 °C incubator for 4 h before chemical
treatment. Wounded larvae were treated with different
compounds in Daneau’s solution and then incubated at 28.5
°C at the indicated times and concentrations. Treated larvae
were fixed at 48 hpt to quantify macrophage infiltration into
regenerating fin. Regeneration was quantified at 72 hpw by
measuring the fin area above the cut line, which was identified
as a sharp transverse line through the notochord.
In Vivo Experiments. Macrophage number and behavior

were monitored during chemical treatment in zebrafish larvae.

Individual larvae were anesthetized in 0.01% MS222 and then
mounted on a coverslip in 60 mm glass-bottom dishes using 1%
low melting agarose. After immobilization, the dish was filled
with Daneau’s solution. Live imaging experiments were
performed on an inverted Leica SP5 confocal microscope
using a 40× water immersion lens. A 594 nm laser was used for
excitation of mCherry, and a 488 nm laser was used to excite
BODIPY derivatives. Videos were taken at 4 hpw, with 0.5 hpt
and 24 hpt. Time-lapse videos were taken at 30 s/frame. All
images and videos were analyzed using Volocity 6.0
(PerkinElmer).
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