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ABSTRACT

This paper aims to present the development of a framework
for monitoring of wind turbine gearboxes and prognosis of
gear fracture faults, using vibration data and machine learn-
ing techniques. The proposed methodology analyses gear vi-
bration signals in the order domain, using a shaft tachometer
pulse. Indicators that represent the health state of the gear
are algorithmically extracted. Those indicators are used as
features to train diagnostic models that predict the health sta-
tus of the gear. The efficacy of the proposed methodology is
demonstrated with a case study using real wind turbine vibra-
tion data. Data is collected for a wind turbine at various time
steps prior to failure and according to the maintenance reports
there is enough data to form a healthy baseline. The data is
classified according to the time before failure that the signal
was collected.The learning algorithms used are discussed and
their results are compared. The case study results indicate
that this data driven model can lay the groundwork for a ro-
bust framework for the early detection of emerging gear tooth
fracture faults. This can lead to minimisation of wind turbine
downtime and revenue increase.

1. INTRODUCTION

Renewable energy generation capacity must be increased if
the ambitious targets of climate protection and energy secu-
rity are to be achieved. Wind energy harvesting has become a
strong and fast growing renewable energy technology world-
wide due to recent technological advances and commercial
growth. To ensure wind energy is truly competitive with tra-
ditional fossil fuel and nuclear energy generation, ways of
reducing the cost of energy cost must be investigated. A large
proportion of the total cost of energy from wind in large wind
farms is composed of operation and maintenance costs. These
costs can be reduced if incipient machinery faults are success-
fully detected before they become catastrophic failures. Un-
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expected failures of components directly translates to wind
turbine downtime, loss of reliability and revenue reduction.
Therefore, effective wind turbine condition monitoring (CM)
that enables optimum maintenance actions is becoming criti-
cal (Crabtree, Zappalá, & Hogg, 2015).

The main two categories of maintenance for wind turbines are
either corrective or preventive maintenance. Corrective main-
tenance concerns maintenance that is only performed once a
component fails completely, whereas preventive maintenance
is performed before the occurrence of a potential failure
(Nielsen & Sørensen, 2011). Preventive maintenance can be
further classified into scheduled maintenance and condition-
based maintenance. Scheduled maintenance refers to main-
tenance that happens at a fixed frequency whereas condition-
based maintenance involves continuous health monitoring of
wind turbine components. This type of maintenance utilises
an estimation of the current and future condition of a compo-
nent in order to provide an optimised maintenance scheduling
that prevents failures without resorting to over-maintenance
(Verbert, De Schutter, & Babuška, 2017). This optimised
maintenance scheduling offers extended machine lifetime, as
well as reduced maintenance costs and downtime.

Current practice in the wind turbine industry involves sched-
uled maintenance, but owing to recent developments in the
field of sensing and signal processing, modern wind turbines
are equipped with CM systems for the active remote moni-
toring of their components (Byon, Pérez, Ding, & Ntaimo,
2011). CM systems provide signals (vibration or electrical)
whose information is used to take suitable maintenance ac-
tions.

One of the most affected parts in a wind turbine in terms
of reliability, is the wind turbine gearbox that bears alternat-
ing loads (Carroll, McDonald, & McMillan, 2015). Common
failure modes include gear or bearing pitting and scuffing. If
breakdown of the gearbox occurs it significantly increases the
downtime and it is the most expensive component to maintain
throughout the expected 20-year design life of a wind turbine.
Effective health diagnosis of the gearbox is therefore vital in
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wind turbine fault detection and decision making. To achieve
this, a robust predictive framework is required.

To this end, a multi-criteria condition monitoring framework
is proposed that can be used as a basis for a robust condition-
based maintenance tool. This framework combines several
vibration signal features as input and returns the condition of
the gear as an output.

Hence, this paper aims to present the development of a frame-
work concerning the processing of vibration data and train-
ing of appropriate models for the condition monitoring of
wind turbine gearboxes, focusing on specific failure modes.
Section 1 introduces the papers scope and motivation of re-
search. Section 2 refers to the research background which
involves the analysis of the vibration signals and the fault de-
tection process, taking into account the variable speed of the
turbine. In Section 3 the structure of a wind turbine gearbox
is explained and the proposed methodology on vibration data
analysis and model training is presented. Section 4 demon-
strates the implementation and validation of the methodol-
ogy in a case study concerning a real wind turbine gear fault.
Section 5 presents the results of the case study and Section
6 concludes with the discussion and future research steps for
the methodology development. The novelty in this paper lies
in the combination of identification techniques used to detect
the fault and train the prognostic model. A further element
of novelty is the high quality vibration data and failure mode
used to validate the techniques in the case study.

2. RESEARCH BACKGROUND

The aim of health condition prognostics is to predict the
equipment future health conditions and the remaining useful
life, based on the condition measurements at each inspection
point. Some prognostics methods are also capable of estimat-
ing the associated prediction uncertainties. The health con-
dition prediction methods can be divided into model-based
methods and data-driven methods. The model-based meth-
ods, also known as the physics-of failure methods, perform
reliability prognostics using equipment physical models and
damage propagation models. Model-based prognostics meth-
ods have been reported for analyzing component reliabil-
ity such as bearings (Marble & Morton, 2006) and gear-
boxes (Kacprzynski, Roemer, Modgil, Palladino, & Maynard,
2002), (Li & Lee, 2005). However, physics-of-failure mod-
els pose some limitations in building models and calculating
dynamic responses in complex systems. On the other hand,
data-driven methods directly utilize the collected condition
monitoring data for health condition prediction, and do not re-
quire physics-of-failure models. Examples of the data-driven
methods include the proportional hazards model (Banjevic,
Jardine, Makis, & Ennis, 2001), the Bayesian prognostics
methods (Gebraeel, Lawley, Li, & Ryan, 2005), and the ANN

based prognostics methods (Tian, 2012), (Tian, Wong, &
Safaei, 2010).

Based on data-driven approaches, vibration analysis is one
of the most commonly used mechanisms for condition mon-
itoring of wind turbines, especially on gearboxes (Randall,
2011). Vibration signals produced by the rotating gears and
bearings whose current health conditions need to be diag-
nosed are commonly analyzed either by broadband-based
methods or spectral line analysis methods (Lu & Chu, 2010).
In broadband analysis, parameters such as root mean square,
or kurtosis are calculated based on the obtained output sig-
nals. Spectral line analysis methods measure the increase in
the frequencies of the impulse signals and can indicate when
a component failure is about to occur (Lu & Chu, 2010).

Vibration analysis requires the installation of acceleration
transducers on the gearbox surface, which offers sensitivity
in fault discovery. Different vibration analysis methods are
evaluated and presented in (Sheng, 2012) . In terms of di-
agnosis methods, spectral kurtosis has been used to detect
a tooth crack in the ring gear of a wind turbine planetary
gearbox (Barszcz & Randall, 2009). A demodulation analy-
sis method based on ensemble empirical mode decomposition
and energy separation to diagnose planetary gearbox faults is
proposed in (Teng, Wang, Zhang, Liu, & Ding, 2014). Side-
band energy ratio can be calculated from spectrum data and it
is sensitive to amplitude and frequency modulation, giving an
indication of the health state of the gear (Hanna, Hatch, Kalb,
Weiss, & Luo, 2011).

A condition based maintenance method applied on a wind
farm level is proposed in (Tian, Jin, Wu, & Ding, 2011), us-
ing Artificial Neural Networks. Support Vector Machines
(SVMs) with different kernels are tested on wind turbine
gearbox vibration data, examining imbalance and misalign-
ment in (Santos, Villa, Reñones, Bustillo, & Maudes, 2015).
SVMs are also used in (Leahy, Hu, Konstantakopoulos,
Spanos, & Agogino, 2016) to diagnose wind turbine faults
based on operational data.

A decision tree is a simple representation used for classify-
ing. As shown in Figure 1 (Goodfellow, Bengio, & Courville,
2016), each node of the decision tree is associated with a re-
gion in the input space, and internal nodes (circles) break that
region into one sub-region for each child of the node (typ-
ically using an axis-aligned cut). Space is thus sub-divided
into non-overlapping regions, with a one-to-one correspon-
dence between leaf nodes (squares) and input regions. Each
leaf node usually maps every point in its input region to the
same output.

3. METHODOLOGY

The methodology elaborated in this paper concerns the de-
termination of the fundamental gear frequencies based on
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Figure 1. Diagrams describing how a decision tree works.
Each node of the tree chooses to send the input example to
the child node on the left (0) or or the child node on the right
(1) (Top). The tree divides space into regions (Bottom).

(Goodfellow et al., 2016)

the wind turbine gearbox vibration signal, the angular re-
sampling of the signal due to the variable speed, the feature
extraction and the model training. This methodology was de-
veloped using MATLAB programming language and utilises
the signal processing and classification libraries.

3.1. Wind Turbine Vibration Signal

In this section, the wind turbine gearbox structure, signal ac-
quisition system and processing are presented.

3.1.1. Wind Turbine Gearbox Structure

Thanks to the advantages of large transmission ratio and
strong load-bearing capacity, planetary gearboxes are widely
used in wind turbines. A typical wind turbine gearbox struc-
ture consists of three stages: one low speed planetary stage
(PS) and two parallel stages, namely a high speed (HS) stage
and an intermediate speed (IS) stage. The main shaft is con-
nected to the planet carrier (PLC) and the HS pinion of the
gearbox is coupled to the generator.

The gearbox internal structure is shown in Figure 2 and the
characteristic gear mesh frequencies (GMF) are determined
in Table 1.

Table 1. Fundamental Gear Frequencies

Gear Element # Teeth Speed GMF
PS Planet Carrier fa
PS Ring Gear Zr Fixed
PS Planet Gear Zp fa

Zr

Zp faZrPS Sun Pinion Zs fs = fa(1− Zr

Zs
)LS Gear Zl ZipfiIS Pinion Zip fi = Zl

Zip
fsIS Gear Wheel Zig Zhfh

HS Pinion Zh fh =
Zig

Zh
fi

Figure 2. Gearbox Internal Nomenclature

3.1.2. Wind Turbine Signal Acquisition

Vibration signals are obtained by accelerometers which are
mounted on the gearbox surface. Each sensor has a different
sensitivity and represents a different component of the gear-
box. A tachometer pulse signal is usually provided as well, so
that the equal time sampled data can be converted into equal
shaft angular space data. The multi-channel vibration signals
are collected and analysed in the frequency domain. The fun-
damental frequencies of the gears are computed according to
Table 1.

3.1.3. Data Pre-Processing: Angular Re-sampling

The required rotational speed of the wind turbine rotor is
determined by the torque controller in response to the wind
speed and therefore is not constant. In variable-speed rotating
machinery, vibration signals are non-stationary due to speed
alteration. Due to the rotor speed variation within the time
window of the data acquisition, conventional signal process-
ing techniques are insufficient because spectral leakage can
occur in the frequency domain. The frequencies of the vibra-
tions though, are proportional to the rotational speed and the
constants of proportionality are the orders. By re-sampling
the non-stationary vibration signals, it is possible to recon-
struct cyclo-stationary vibration signals in the angular do-
main, to avoid the mismatch between angle and time infor-
mation. Therefore, computed order tracking is used and its
principles are explained in (Fyfe & Munck, 1997).

The data is recorded by the tachometer and constant time in-
crements. Each pulse of the tachometer signal represents a
once-per-shaft-revolution event, so that is used to measure
the shaft speed and is the reference for measuring the vibra-
tion phase angle. The signal is then up-sampled and low pass
filtered. The re-sampled signal is interpolated linearly into
a uniform phase domain grid. Then, the Short-Time Fourier
Transform of the interpolated signal is computed.
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3.2. Fault Detection

When a gear has a local defect, such as a fatigue crack, the
stiffness of the neighboring teeth is affected and this produces
changes in the vibration signal. These changes are defined by
amplitude and frequency modulation. The modulated gear
meshing vibration is given by Eq. (1) (McFadden, 1986).

y(t) =

M∑
m=0

Xm(1 + am(t)) cos(2πmZfst+ φm + βm(t))

(1)
Where Z is the number of teeth on the gear, fs is the shaft ro-
tational frequency and therefore Zfs is the mesh frequency,
am(t) is the amplitude modulation function, bm(t) is the fre-
quency modulation function, φm is the initial phase of ampli-
tude modulation and m is the integer.

As the modulation is periodic with the gear shaft rotation fre-
quency fs, these functions may be represented by discrete
Fourier series, as in Eq. (2, 3).

am(t) =

N∑
n=0

Amn cos(2πnfst+ amn) (2)

bm(t) =

N∑
n=0

Bmn cos(2πnfst+ βmn) (3)

Note that the modulation functions may differ with m.

In the frequency domain, the Fourier transform Y (f) will
comprise the fundamental and harmonics of the meshing fre-
quency surrounded by modulation sidebands. Multiple fre-
quencies in the modulation cause multiple sidebands to ap-
pear in the spectrum. These sidebands occur at frequencies
of Zfs ± kfs where k is an integer of 1 or higher.

The signal analysis is performed through the MATLAB signal
processing toolbox. Spectral line analysis is used to diagnose
the health state of the vibration signals. After the application
of order tracking, the spectrum has clear distinct frequency
components which allows for an automatic procedure of al-
gorithmic order peak detection. The health indicators used to
diagnose the state of the gear are computed on the second har-
monic of the gear mesh frequencies of the vibration signals:

• Sideband Energy Ratio (SER)

• Sideband Average Power (SAP)

• Narrowband Kurtosis (KUR)

The SER algorithm sums the amplitudes of the first six
sideband peaks on each side of the center mesh frequency∑6

i=−6ASB,i and divides by the amplitude of the center
mesh frequency AF , as in Eq. (4).

SER =

∑6
i=−6ASB,i

AF
(4)

For a healthy gear mesh the sidebands have a small amplitude
compared to the center mesh frequency. As damage develops
on a gear tooth, the sideband rise in amplitude which results
in a larger SER value.

The SAP algorithm calculates the total power of the first
six sidebands rising around the center mesh frequency. The
power is normalised with the length of the data segment.

SAP =

∑N
i=1 |A(i)|2

N
(5)

Where N is the length of the narrowband data segment and A
is the Amplitude of the signal.

Kurtosis is a measure of how outlier-prone a distribution is.
Assuming that the part of the spectrum that includes the cen-
ter mesh frequency and a frequency interval of up to six mul-
tiples of the shaft rotational speed represents a distribution,
then the kurtosis is calculated. If the kurtosis has a high value
it means that the distribution is quite sharp and most values
are concentrated in the center frequency. In case of a fault
development, sidebands have increased amplitude in a spec-
trum, which means that the values are more distributed to-
wards the tails, so the kurtosis is lower.

KUR =
1
N

∑N
i=1(A(i)− Ā)4

( 1
N

∑N
i=1(A(i)− Ā)2)2

(6)

Lastly, the model should take into account that loading con-
ditions affect the gear vibration signature to a great extent.
Thus, the reference torque is calculated based on the pro-
duced electrical power P and generator speed ω and is nor-
malised with the rated torque TR.

Ref. Torque =
P

ω TR
(7)

3.3. Fault Prediction Model

The final aim of the methodology is to train fault prediction
a model based on the extracted features. The features are la-
beled as ‘healthy’ or ‘faulty’ based on whether the gearbox
eventually failed within a time frame of 2 months. The fea-
tures considered for the model training are presented in Table
2.These include the health indicators but also the reference
torque, so as to distinguish any signal variations due to loads
from the variations due to faults.

A decision tree classifier is trained based on historic data. It’s
a non-parametric supervised learning method used for classi-
fication and its goal is to create a model that predicts the value
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Table 2. Input features and equations.

Input Feature Equation

SER
∑6

i=−6 ASB,i

AF

SAP
∑N

i=1|A(i)|2

N

KUR
1
N

∑N
i=1(A(i)−Ā)4

( 1
N

∑N
i=1(A(i)−Ā)2)2

Ref. Torque P
ω TR

of a target variable by learning simple decision rules inferred
from the data features.

The cross validation method used to assess the performance
for the model is k-fold cross validation with 5 folds. The val-
idation accuracy calculated then is the average mean squared
error between the observations in a fold when compared
against predictions made with a tree trained on the out-of-fold
data. The model is trained recursively 10000 times in order
to ensure consistency in the results. The average model accu-
racy is calculated based on the mean value of all the trained
model accuracies.

Figure 3. Methodology flowchart.

4. CASE STUDY

To validate the suggested methodology, a case study on vibra-
tion data from the same type of gearbox but for three different
wind turbines is presented. The wind turbines considered in
this study are rated at between 1.5 and 3 MW. The vibra-
tion data acquisition system consists of eleven accelerome-
ters and a tachometer on the high speed shaft. The generator

speed, the wind speed and the power produced by the turbine
are also recorded. The acquisition time of the signal is be-
tween 10 and 11s and the sampling frequency is over 25kHz.
Ranges are provided for the rated power, sampling period and
sampling frequency for confidentiality reasons.

This failure occurs on the pinion tooth of the intermediate
stage of the gearbox. The tooth issue has been recorded as a
gear tooth tip and flank fracture, as shown in Figure 4. Root
cause analysis of this gear tooth issue has not yet been com-
pleted by the OEM and is out with the scope of this paper.

Figure 4. Broken pinion on intermediate shaft

Data is collected for the wind turbines at various time steps
prior to failure. The oldest dataset dates back to 2.5 years
prior to failure and according to the maintenance reports the
gearbox at this time is in a healthy state.

The data is classified as ‘faulty’ 2 months prior to failure,
as this is the time when the sidebands are highly prominent
(see Section 5) and at the same time is a sufficient period to
schedule maintenance activities.

5. RESULTS

The signals obtained from the sensor on the intermediate
speed shaft are collected and order tracking is applied. The
order domain spectra of the vibration signals at different ac-
quisition dates prior to failure is shown in Figure 5. The or-
der number axis shows the high speed shaft order, where the
tachometer pulse is located. The vibration signal from gears
depends highly on load and therefore the signatures plotted
belong to similar loading conditions (Ref. Torque=0.8). The
rising of sidebands around the center mesh frequency (order
8.6) becomes more prominent in time steps closer to failure,
as expected.

To further illustrate the difference between healthy and faulty
vibration signatures, Figure 6 shows order spectra for the
same gearbox, which eventually failed, at 2 years (healthy)
and 2 weeks (faulty) before failure respectively.

As such, the features explained in Section 3 are extracted
from each vibration signal. The health indicators as a func-
tion of the reference torque are shown in Figure 7. The data is
classified according to the time before failure that the signal
was collected.
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Figure 5. Order Spectra of Intermediate Speed Shaft Accel-
eration for Varying Times Prior to Failure
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The input features of the prediction model are given in Sec-
tion 3.3.

The performance of the classifier is visualised in the confu-
sion matrix shown in Figure 8. Faulty condition can be trans-
lated as up to 2 months prior to failure. The probability den-
sity function of the model’s accuracy after the 10000 runs is
shown in Figure 9. The mean value is 95.6% and the standard
deviation is 0.011.

Out of the 27 healthy samples only 1 is detected as faulty
and out of the 18 faulty samples only 1 is detected as healthy.
Overall, 95.6% of the predictions are correct and 4.4% are
wrong classifications.

The downside of predicted faulty but actually healthy is a re-
dundant inspection. The downside of predicted healthy but
actual faulty is more sever because it can lead to critical fail-
ure.

Practically, this means that the model can either diagnose that
a gear is healthy or predict that the gear is 1-2 months be-
fore complete failure. With continuous monitoring, this can
give sufficient time for maintenance actions and/or changes
in operation to extend lifetime.

6. CONCLUSIONS

This paper aims to present a framework for wind turbine vi-
bration data processing and fault identification and prognosis
on component level. First, an overview of the current state of
research in wind turbine condition monitoring was presented.
Then, proposed methodology was presented and elaborated
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through a case study using real wind turbine vibration data.
The case study validated the model performance and effec-
tiveness. According to the results, SAP,SER, narrowband
kurtosis and a decision tree algorithm can be used to cor-
rectly classify healthy or faulty data in discrete time ranges.
These indicators have some dependence on the loading con-
ditions and therefore the torque is taken into consideration in
the model training.

Future research steps include further model verification using
datasets from more wind turbine fleets, so that model robust-
ness is increased. Testing other types of learning algorithms
will also be considered.
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