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Multi-Frame Blind Deconvolution of 
Atmospheric Turbulence Degraded Images 
with Mixed Noise Models 
 

Afeng Yang, Xue Jiang and David Day-Uei Li 

 
This letter proposes a mixed noise model and uses the multi-frame blind 

deconvolution to restore the images of space objects under the Bayesian 

inference framework. To minimize the cost function, an algorithm based 

on iterative recursion was proposed. In addition, three limited bandwidth 

constraints of the point spread functions were imposed into the solution 
process to avoid converging to local minima. Experimental results show 

that the proposed algorithm can effectively restore the turbulence 

degraded images and alleviate the distortion caused by the noise. 

 

Introduction: Space object surveillance plays a fundamental and critical 

role in future space exploration. Images of space objects are usually 

acquired with ground-based telescopes. The image resolution, however, 

is limited due to the presence of the atmospheric turbulence (which 

causes the uneven distribution of the refractive index and leads to the 

wavefront distortion). This greatly deteriorates the quality and resolution 

of the images. A powerful approach called multi-frame blind 

deconvolution (MFBD) can significantly reduce the impact of 

atmospheric turbulence on an imaging system. MFBD can 

simultaneously estimate the unblurred object and the point spread 

functions (PSF) from a set of observed noise-inflicted images. The key 

step of applying MFBD is to accurately introduce a priori information in 

the restoration process. Many MFBD algorithms and theoretical results 

have been developed; they used different a priori information in image 

restoration. Conventional MFBD algorithms usually assume that the 

observed images are corrupted by a single type of noise, either Poisson 

noise [1-3] or Gaussian noise [4, 5]. Instead of adopting these strategies, 

we propose a novel multi-frame image restoration algorithm by adopting 

a mixed noise model (MFRAM); MFRAM can achieve a faster 

convergence, reduce noise more effectively and preserve more image 

details. The flowchart of MFRAM is shown in Fig. 1. 
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Fig. 1 Flowchart of MFRAM  

 

Mixed noise model based MFBD: In order to reserve more details, the 

current ground-based telescopes usually grab multi-frame short-exposure 

images and use them to restore the object image. The process of the 

blurring effects (caused by the atmospheric turbulence) degrading the 

observed images can be viewed as an independent random process. The 

effect of atmospheric turbulence on an image can be considered as a 

linear shift-invariant system. In addition, the observed images are mainly 

corrupted by Poisson distributed quantum noise and additive Gaussian 

noise. The Poisson noise is signal-dependent [1], whereas the Gaussian 

noise is signal-independent [4]. Although Schulz et al. proposed to 

include a mixed noise model earlier [6], their approach is limited because 

1) it only works when the parameters of the image system are fully known 

and 2) actually, their probability model was derived from Poisson noise, 

different to our approach. The mathematical model of the atmospheric 

turbulence degraded images with mixed noise can be described as: 

( ) ( )2
P N ,s= Ä + ×g h f 0 1 ,                             (1) 

where g , h  and f  denote the observed image, the PSF and the object 

image, respectively. The P( )× represents a Poisson distribution and the 

variance of the additive Gaussian noise is 2
s . Since the intensities of the 

observed images are significantly larger than the Gaussian noise in Eq. 

(1), ( )P Äh f  can be approximated to a Gauss process according to the 

central limit theory, as ( ) ( )P N ,l l l» , and Eq. (1) is simplified to 

( )2 2
P +s s+ × = Ä ×g h f1 1 .                           (2) 

In Eq. (2), each pixel in the degraded image g  is an independent Poisson 

random variable with a mean 2
+h fµ s= Ä . For multi-frame 

acquisitions, the K-frame observed images are mutually independent, and 

the joint probability density distribution are 

{ } { }( ) ( )

( )( ) ( )( )

( )( )

2
1

( , )
2 2

2
1 ,

p | , p | ,

, exp ,

, !

k k

K

k k k k

k
g x y

K
k k k k

k x y k k

h f x y h f x y

g x y

s
s s

s

=
+

=

=

é ù é ùÄ + - Ä +ë û ë û=
+

Õ

ÕÕ

g h f g h f

.  (3) 

The main task of the blind restoration is to estimate the object image f  

and PSFs 
1{ }K

k k=
h

 
from the observed image 

1{ }K
k k=
g  simultaneously. This 

involves solving the (K+1) unknown parameters using only K equations; 

this is a typical ill-posed inverse problem. According to the Bayes’ law, 

the posterior probability density function (PDF) of the object image f  

and the PSFs { }
1

K

k k=
h on the observed images 

1{ }K
k k=
g  is 

( )
( ) ( )
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The estimations of f  and 
1{ }K

k k=
h  are equivalent to finding the minimum 

of the negative logarithm likelihood of PDF, i.e.: 
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In Eq. (5), it is assumed that the object image f  is independent to the 

PSFs 
1{ }K

k k=
h , and ( )p f

 
and { }( )p

k
h

 
are the a priori distributions of 

f  and { }
k
h , respectively. f  and the PSFs can be considered as the 

Gibbs random fields [7]. Their PDFs can be expressed as: 
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where, ( )1
J f

 
and ( )2 { }

k
J h

 
are the energy functions, and 

1
C

 
and 

2
C

 
are constants. Combining Eqs (6) and (3), Eq. (5) is simplified as: 
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where 

{ }( ) { } { }( )0 , ln p | ,
k k k

J é ù= - ë ûf h g f h .                          (8) 

In Eq. (7), ( ),{ }
k

J f h
 

is the cost function of MFRAM. ( )0 ,{ }
k

J f h
 

is 

the fidelity. ( )1
J f  and ( )2 { }

k
J h

 
are used for regularization. l  and 

b
 

are non-zero constants. The Tikhonov regulation and the total 

variation (TV) regulation are applied to PSFs and f respectively to 

obtain: 

( ) { }( ) ( )
2

1 21
1 ,

,   ,
K

k k

k x y

J J h x y
=

= Ñ =ååf f h .                           (9) 

In this letter, an iterative recursive method is used to optimise 

( ),{ }
k

J f h . The first order partial derivative of ( ),{ }
k

J f h  is derived 

from Eq. (7): 
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where *( , ) ( , )k kx y x y= - -h h . The optimised condition can be found when 

0J¶ ¶ =f , and we obtain the recursive form: 
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A similar form can be obtained for the PSFs { }
1

K

k k=
h : 

( )

( ) 2
( 1) ( )*

2( )

2

+

+1

n

n nk k k

k n

k kk
J

s
sb

+ æ ö
= × Äç ÷

Ä+ Ñ è ø

h g
h f

h fh
.                     (12) 



2 

 

With an appropriate initial value, ( ),{ }
k

J f h  can be solved following 

the iterative recursion steps of Eqs (11) and (12). It is worth noting that, 

( )1
J f

 
and ( )2 { }

k
J h

 
are constants if no regularization constraint is 

applied to f
 

and { }
k
h , and 2

=0
k

s  if we only consider Poisson noise. 

In this case, Eqs (11) and (12) are degenerated to the classic Richardson-

Lucy iterative blind deconvolution (RLIBD) algorithm. In fact, Eqs (11) 

and (12) are the expansion forms of RLIBD. In addition, the object image 

and the PSFs are physically constrained during the iterative procedure, 

that is, (a) the object image and the PSFs are non-negative; (b) the energy 

between observed image and object image remains the same; (c) the PSFs 

are bandwidth-limited functions due to the diffraction limits of the optical 

system. Fig. 1 shows the flowchart of MFRAM. Note that the imaging 

parameters of the ground-based telescopes should be known beforehand 

in order to enforce additional bandwidth restrictions to the PSFs. 

However, in some situations, the imaging parameters cannot be obtained, 

and therefore we cannot add bandwidth constraints to the PSFs in the 

deconvolution process, but our method still works efficiently although 

causing minimal degradation. 

 

Experimental Results and Analysis: The image of the marine satellite 

OCNR5 was selected to validate the effectiveness of MFRAM. This 

image is frequently used for blind restoration of atmospheric turbulence 

degraded images. We also compared MFRAM with RLSATV [2] and 

OBD algorithms [4]. RLSATV and OBD are derived assuming that the 

noise is Poisson noise and Gaussian noise, respectively. We measured the 

image quality through both visual inspection and quantitative analysis. 

The quantitative measurements include the mean square error (MSE) and 

the peak signal-to-noise ratio (PSNR). The size of the original satellite 

OCNR5 is 256×256, as shown in Fig. 2 (a). The Zernike polynomials as 

well as appropriate Poisson noise and Gaussian noise were included to 

the images to simulate a series of atmospheric turbulence blurred images. 

A synthetic PSF and a degraded image are shown in Figs 2 (b) and 2 (c), 

respectively. 
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Fig. 2 Comparison of restoration results on Synthetic turbulence 

degraded images (a) Original image (b) Synthetic turbulence PSF (c) 

Synthetic turbulence-degraded image (d) RLSATV-restored image (e) 

OBD- restored image (f) MFRAM -restored image 

 

In the blind restoration experiment, 10 turbulence degraded images 

were selected as inputs. The regularization parameters: 0.002l =  

0.001b = . The variance of Gaussian noise were calculated in the 

background area of the degraded images. We applied additional 

bandwidth constraints to the PSFs in the iterative process and compared 

the results of MFRAM with those obtained by RLSATV and OBD. The 

initial estimation of the object image is set as the average of the 10 input 

images. The initial conditions of the PSFs are set as the normalized 

constant matrix. The resultant object images are shown in Figs 2 (d), (e) 

and (f). The MSE and PSNR of the object image during the iterative 

process are illustrated in Figs 3 (a) and (b). Table 1 summarises the 

comparisons (in MSE and PSNR), and MFRAM shows the best results. 

Figs 2 (d), (e) and (f) are the object images obtained by RLSATV, 

OBD and MFRAM, respectively. Through visual inspection, MFRAM 

can reduce the noise and distribute the image brightness more evenly, and 

it shows more details. From Fig. 2 and Table 1, MFRAM shows much 

better noise-removal and image quality than RLSATV and OBD. Fig. 3  

shows that an excellent restoration result is obtained by MFRAM after 

only 150 iterations. It is faster than RLSATV, much faster than OBD. 

 

  
    (a)                                                 (b) 

Fig. 3 MSE and PSNR for the estimated object image with respect to the 

number of iterations 

 

Table 1: Comparisons of the blind deconvolution results  

 RLSATV OBD MFRAM 

MSE 221.0 276.6 184.2 

PSNR(dB) 24.68 23.71 25.48 

 

Conclusions: In this letter, we proposed a novel algorithm named 

MFRAM to effectively restore the true object image from a sequence of 

turbulence-degraded images. Using the Bayesian framework, the general 

cost function of the multi-frame image blind deconvolution with a mixed 

noise model was derived. An iterative recursion method was adopted to 

solve the cost function. Three limited bandwidth constraints of PSFs were 

included to the recursion process to avoid converging to local minima. 

We compared the results of MFRAM to well-known RLSATV and OBD. 

The results show that, MFRAM can achieve a faster convergence speed 

and preserve more image details. 
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