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Abstract  

The light chains (KLCs) of the microtubule motor kinesin-1 bind cargoes and 

regulate its activity. Through their tetratricopeptide repeat domain (KLCTPR) 

they can recognise short linear peptide motifs found in many cargo proteins 

characterised by a central tryptophan flanked by aspartic/glutamic acid 

residues (W-acidic). Using a fluorescence resonance energy transfer 

biosensor in combination with X-ray crystallographic, biochemical and 

biophysical approaches, we describe how an intramolecular interaction 

between the KLC2TPR domain and a conserved peptide motif within an 

unstructured region of the molecule, partly occludes the W-acidic binding site 

on the TPR domain. Cargo binding displaces this interaction effecting a global 

conformational change in KLCs resulting in a more extended conformation. 

Thus, like the motor-bearing kinesin heavy chains, KLCs exist in a dynamic 

conformational state that is regulated by self-interaction and cargo binding. 

We propose a model by which, via this molecular switch, W-acidic cargo 

binding regulates the activity of the holoenzyme. 

 

Significance  
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Despite its importance for a host of cellular processes and contribution to 

neurological, viral and bacterial disease, the molecular mechanisms 

underlying the regulation of the heterotetrameric motor kinesin-1 by its light 

chains and the binding of its cargo are not well understood. Here, we describe 

how a previously unnoticed intramolecular interaction between the KLC2TPR 

domain and a highly conserved peptide motif within an unstructured region of 

the molecule occludes a key cargo binding site on the light chain TPR 

domain. Cargo binding displaces this intramolecular interaction effecting a 

global overall conformational change in KLCs that results in a more extended 

conformation. We propose a new model describing how, via this molecular 

switch, cargo binding regulates the activity of the holoenzyme. 
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\body 

The heterotetrameric microtubule motor kinesin-1 (also known as 

conventional kinesin) has diverse roles in protein, ribonuclear protein, 

vesicular and organelle transport by virtue of its ability to interact with many 

different cargoes (1, 2). It is also hijacked by pathogens during infection (3). 

Accumulating evidence suggests a key role for kinesin-1 dependent 

microtubule transport in several neurological disorders including Alzheimer’s 

disease (4). Thus, determining the molecular basis for cargo recognition and 

regulation of kinesin-1 is important for understanding its role in normal cell 

function and disease states. 

Kinesin-1 is composed of two heavy (KHCs) and two light chains 

(KLCs) that, in mammalian cells, are encoded by several closely related 

genes with distinct cell and tissue expression profiles (Kif5A-C and KLC1-4, 

respectively). The heavy chains have a microtubule-binding ATPase motor 

domain at their amino terminus followed by a neck coil and an extended 

series of coiled coils, separated by a hinge region(s), that results in heavy 

chain dimerization (5). The carboxy-terminal domain of the heavy chains is 

largely unstructured. The light chains associate with the heavy chain coiled 

coils at the carboxy-terminal portion of the molecule through a series of 

heptad repeats (6). A highly charged unstructured linker region connects this 

heavy chain binding region to a tetratricopeptide repeat domain (KLCTPR) 

formed of six helix-turn-helix TPR repeats (TPR1-6), followed by a C-terminal 

region that varies considerably between the different KLCs and splice 

variants. 
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In the absence of cargo binding, kinesin-1 exists in a folded, compact 

state that prevents unnecessary cycles of ATP hydrolysis. This is achieved via 

an intramolecular interaction in which the C-terminal isoleucine-alanine-lysine 

(IAK) motif (and flanking amino acids) of a single KHC tail binds at the N-

terminal motor dimer interface and participates in a ‘double lockdown’ 

mechanism whereby it cross-links the motor domains preventing movement of 

the neck linker region that is required for ADP release (7-12). In the cargo-

bound active state, tail-mediated inhibition is relieved resulting in a more 

elongated structure that is able to hydrolyse ATP and translocate along 

microtubules (12-16). As well as binding to cargoes, the KLCs are thought to 

regulate KHC autoinhibition, although the molecular mechanism(s) that couple 

these two functions are unclear (17). Several studies suggest that KLCs 

reduce interaction with microtubules and help to maintain the autoinhibited 

state in the absence of cargo (12, 13, 18), whereas in vitro biophysical studies 

have suggested that the presence of light chains reduces the affinity of the 

motor domains for the C-terminal autoinhibitory heavy chain tail through both 

steric and electrostatic factors (19).  

Vesicular cargoes interact via adaptor proteins that can bind to several 

sites on both KHCs and KLCs and it is generally thought that these multiple 

contacts help to stabilize the active state and/or destabilize the inactive state 

and thus promote cargo-dependent transport (15, 17, 20, 21). It has emerged 

that diversity of light chain cargo recognition is accomplished, in part, through 

TPR domain interaction with short linear peptide motifs (22-25). We have 

recently described how the TPR domain of KLC2 (KLC2TPR) recognizes one 

class of these peptides that are characterized by a central tryptophan typically 
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flanked by aspartic or glutamic acid residues (W-acidic). The X-ray structure 

of KLC2TPR in complex with a W-acidic peptide of the lysosome adaptor SKIP 

(SKIPWD) shows that these motifs interact with a concave positively charged 

groove at the KLCTPR N-terminus. Both sequence-specific and electrostatic 

elements contribute to peptide recognition, which is stabilized by residues 

from TPR2-TPR3 and the internal helix of TPR4 (23). Functional W-acidic 

motifs have been identified in a growing number of cargo adaptors, including 

the neuronal protein calsyntenin-1 (CSTN1) that plays a role in the axonal 

transport of amyloid precursor protein, as well as nesprin-2, gadkin, vaccinia 

virus A36R and cayman ataxia protein (BNIP-H), where in each case, they 

provide a crucial link between motor and cargo with diverse functions (16, 23, 

24, 26-31). It is interesting to note that W-acidic motifs share sequence 

similarity with the A (acidic) motif of several actin nucleation promoting factors 

(NPFs) including WASP, N-WASP and WAVE1 (32), and the mechanism of 

binding to KLCTPR is somewhat similar to the interaction of the fission yeast 

WASP A motif on the Arp2/3 complex (33). Indeed, in the case of gadkin, 

there also appears to be functional overlap (32). 

Here, we describe an intramolecular interaction between KLCTPR and 

the unstructured region immediately N-terminal to it. This flexible linker 

features a highly conserved leucine-phenylalanine-proline motif flanked by 

acidic residues (LFP-acidic) that interacts with KLCTPR partly occluding its W-

acidic motif binding site. This autoinhibitory interaction is displaced by cargo 

binding resulting in overall conformational changes within the light chains. 

Thus, paralleling the behaviour of KHCs, kinesin-1 KLCs also exist in a 

dynamic conformational state that is regulated by self-interaction and cargo 
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binding. We propose a model to explain how this previously unnoticed 

molecular switch may couple KLCTPR–W-acidic peptide recognition to the 

regulation of kinesin-1 activity. 
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Results 

The KLC region N-terminal to its TPR domain features a conserved LFP-

acidic motif and negatively regulates W-acidic cargo binding. 

Amino acid sequence alignment of all four KLCs from human and mouse as 

well as representative kinesin-1 light chains from several diverse species 

reveals that the heptad repeat region (that interacts with KHC via a predicted 

coiled coil, Figure S1A) and the TPR domain (that binds cargoes) are highly 

conserved whilst the intervening stretch of highly charged amino acids (F139-

P195 in mouse KLC2) is considerably more divergent (Figure 1A, B). Within 

this region, we noticed, however, that a leucine-phenylalanine-proline (LFP) 

motif (residues 167-169 in mouse KLC2) is totally conserved (in red in Figure 

1B). This short motif that is followed by Asn/Ser and flanked by negatively-

charged Asp/Glu residues (in blue in Figure 1B) is present in all KLCs. No 

function has been ascribed to this conserved LFP-acidic feature. Analyses 

using a panel of intrinsic disorder prediction packages (PrDOS, Disopred, 

IUPred, DisEMBL) indicate that this protein region is likely unstructured 

(Figure S1B) (34-37). 

To examine the role of the LFP-acidic motif in light chain function we 

performed GFP-TRAP immunoprecipitation experiments from HeLa cells with 

two independent W-acidic cargo proteins using full-length wildtype KLC2 or 

KLC2 where the LFP triplet was replaced by AAA. This revealed that 

disruption of this sequence enhances binding to both the N-terminal domain of 

SKIP (amino acids 1-310) and the cytoplasmic domain of calsyntenin-1 

(CSTN1, amino acids 879-971) by 36% and 78%, respectively (Figure 1C). 

Consistently, the LFP/AAA replacement in KLC1 enhanced binding to CSTN1 
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by 72% (Figure S1B). However, disruption of this motif did not affect binding 

to the non-W-acidic cargo JIP1, that mutagenesis data suggests binds to a 

distinct site on KLC1TPR (Figure S1D) (22, 34). Given that the LFP motif is 

located N-terminal to the TPR domain, we reflected that this could imply a 

mechanism of cross-talk between this linker region and the W-acidic binding 

site involving residues from TPR2-3 and the internal helix of TPR4 (23). We 

considered the possibility that this cross-talk could be mediated by an 

intramolecular interaction.  

To directly examine the contribution of this region to TPR domain cargo 

binding in vitro, we performed pull down assays using purified GST-SKIP (1-

310) or GST-CSTN1 (879-971). We compared binding to KLC2TPR, KLC2TPR 

with a N-terminal extension to include the LFP-acidic motif (KLC2 161-480, 

KLC2extTPR) or KLC2TPR fused N-terminally to a competitor W-acidic peptide 

from SKIP (KLC2WacTPR) (Figure 2A). For both SKIP and calsyntenin-1, amino 

terminal extension of the TPR domain up to residue 161, to include the LFP-

acidic motif, inhibits binding to the W-acidic motif-containing cargoes in a 

manner comparable to inclusion of a direct competitor peptide attached by a 

flexible linker (Figure 2B,C). This strongly supports the proposition that this 

linker region can compete with W-acidic cargo for a binding site on the TPR 

domain through an intramolecular interaction.  

 

The KLC region N-terminal to its TPR domain directly interacts in an LFP 

motif-dependent manner with the TPR domain 

Next, we used a biophysical assay to test whether the LFP-acidic motif can 

interact with purified KLC2 proteins. Fluorescence polarization measurements 
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using a 14 amino acid N-terminally carboxytetramethylrhodamine (TAMRA) 

conjugated peptide comprising the LFP motif and its flanking residues 

(LFPpept, DSLDDLFPNEDEQS) showed that this sequence binds to KLC2TPR 

with a dissociation constant (KD) estimated at ∼ 25μM (squares in Figure 3A). 

This interaction requires the LFP sequence because an equivalent peptide, in 

which this triplet was replaced by AAA (AAApept, DSLDDAAANEDEQS), did 

not bind to KLC2TPR (triangles in Figure 3A). Further supporting a self-

interaction model, binding between LFPpept and KLC2TPR was also strongly 

inhibited by the inclusion of the extended endogenous N-terminal sequence 

(crossed-squares in Figure 3A). Similarly, and consistent with our GST-pull 

down analysis, the presence of the N-terminal extension also reduced affinity 

for a TAMRA conjugated W-acidic cargo peptide from SKIP (SKIPWD, 

STNLEWDDSAI, KD increased from 1.05±0.14 to 8.43±0.24 μM) (Figure 3B). 

Moreover, a competition assay in which increasing amounts of non-labelled 

SKIPWD were titrated into a KLC2TPR:TAMRA-LFPpept complex revealed a 

concentration-dependent decrease in FP (Figure 3C). From this experiment 

we estimated a KI value (35) for the unlabelled SKIPWD peptide of 3.6 μM. 

This is in good agreement with the KD value for TAMRA-SKIPWD supporting a 

model in which W-acidic binding displaces the bound LFP peptide. In a 

separate experiment we also validated our immunoprecipitation analysis that 

indicated that KLC1 LFP/AAA replacement has little effect on JIP1 binding 

(Figure S1D). Consistent with this we found that inclusion of an N-terminal 

extension of KLC1TPR (KLC1extTPR) only marginally reduced its affinity for a 

TAMRA-conjugated peptide comprising the TPR binding C-terminal 11 amino 
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acids of JIP1 (YTCPTEDIYLE) (KD increased from 0.95±0.09 to 2.21±0.06 

μM, Figure S1E).  

To further define the interaction site on KLC2TPR we crystallized the extended 

KLC2extTPR protein. After substantial crystal screening we were able to obtain 

a data set at the 4 Å resolution (data collection and refinement statistics in 

Table S1). This allowed the modelling of the complete KLC2TPR domain, 

extending the available structures for this isoform, which lack either the 

complete TPR1 repeat (3ZFW) or its first α-helix (3CEQ). In the course of 

crystallographic refinement, difference Fourier maps also revealed the 

presence of elongated electron density in close proximity of the C-terminal 

end of the first α-helix of the TPR2 repeat (α2A) (Figure S2). In all three 

independent molecules present in the crystallographic asymmetric unit this 

residual density was satisfactorily modelled as a short peptide stretch (five 

amino acids in molecules A and B and two amino acids in molecule C) in an 

extended conformation (Figure 3D,E). Although the limited resolution of the 

data does not allow for exact amino acid identification, given that our 

biochemical and biophysical results support an LFP-dependent self-

interaction model, the bound peptide (ext in Figure 3D,E) almost certainly 

originates from the extended flexible region N-terminal to the TPR and 

involves the LFP-acidic motif. A structural comparison between autoinhibited 

and cargo-bound KLC2TPR highlights that stabilization of the ext peptide 

involving the C-terminal portion of α2A does not trigger the conformational 

change at the N-terminal TPR region observed upon W-acidic cargo binding 

(23) (Figure 3F). In the latter case, upon W-acidic recognition, an ‘induced fit’ 

rigid jaw movement closes TPR2-3 engendering the binding surface and 
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pockets for the SKIPWD peptide. Such movement is not seen in KLC2extTPR. 

Thus, the interactions involved in ext:KLC2TPR stabilization, appear different 

from those critical for SKIPWD binding. However, the X-ray structures do reveal 

a partial overlap between the W-acidic SKIPWD and the ext binding sites on 

the KLC2TPR domain. In particular, residues immediately C-terminal to the W-

acidic motif (SAI in SKIPWD) essentially occupy the same topological location 

as ext on the KLC2TPR receptor (Figure 3F). Thus, crystallographic analysis 

fully supports the notion that the autoinhibited (ext-bound) and the W-acidic 

cargo-bound states are mutually exclusive.   

 

In vivo conformational dynamics of KLC are governed by self-interaction 

and cargo binding 

The above data imply that an intramolecular interaction within KLC2 

mediated, at least in part, by amino acids in LFPpept, must be displaced for W-

acidic cargo binding to occur. This could have an effect on the overall 

conformation of the light chain. To test this hypothesis in vivo, we designed a 

KLC2 fluorescence resonance energy transfer (FRET) conformation 

biosensor (Figure 4A). A similar approach has been used previously to study 

conformational change within kinesin-1, but not to assess conformational 

changes within the light chains themselves (13). To achieve this, we coupled 

the amino-terminus of full length KLC2 to a donor eGFP and the carboxy-

terminus to a HaloTag that allows in-cell conjugation to a 

tetramethylrhodamine (TMR) FRET acceptor. We then used fluorescence 

lifetime imaging microscopy (FLIM) to quantify changes in the efficiency of 

energy transfer from GFP to HaloTag-TMR. These measures subsequently 
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inform on quantitative conformational changes in KLC caused by the 

modulation of the distance between the N- and C-terminal fluorophores. 

Western blot analysis of TMR-labelled cell extracts confirmed specific 

targeting of TMR to the GFP-KLC2-HaloTag biosensor and comparable 

labelling of wild-type and mutant proteins. Immunoprecipitation showed that 

the biosensor retained capacity to interact with KHC (Kif5C) (Figure S3A,B). 

Expression and labelling of the wild-type biosensor in HeLa cells (without 

addition of exogenous KHC or cargo) gave a robust baseline FRET efficiency 

of 12.3±0.8% (Figure 4B,C). This was significantly reduced by the 

replacement of the LFP motif with AAA (3.0±0.3%), demonstrating that the 

LFP triplet contributes to a relatively compact KLC2 conformation (compare 

first two columns on graph 4C). Co-expression of a W-acidic cargo (myc-

tagged cytoplasmic domain of CSTN1 (869-971)) reduced wild-type KLC2 

FRET efficiency by a similar extent (5.6±0.5%) but did not significantly affect 

FRET in the LFP/AAA background (3.6±0.5%, compare columns 3 and 4 on 

graph 4C). Importantly, introduction of the N287L substitution in KLC2 that 

disrupts W-acidic cargo binding (23) or mutation of the W-acidic residues in 

CSTN1 (16, 27, 28), supressed the cargo-dependent response (Figure 

S3C,D). In comparison, FRET efficiency for GFP directly coupled to HaloTag-

TMR was 31.3±0.76%, whereas expression of the two fluorophores on 

separate polypeptide chains (N-terminal labelled (GFP-KLC2) and C-terminal 

labelled (KLC2-Halo)) resulted in low levels of FRET (4.76±1.26%) indicating 

that the biosensor predominantly reports on intramolecular interaction within 

KLC2 (Figure S4E,F).  To determine whether these cargo/LFP-dependent 

changes also occur in the context of the kinesin-1 tetramer, equivalent 
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experiments were carried out in the presence of KHC. Inclusion of the heavy 

chain resulted in an increase in baseline FRET efficiency to 22.5±1.0%, 

indicating that binding to KHC helps to support a more compact KLC 

conformation. FRET efficiency was significantly lower in the LFP/AAA 

replacement biosensor (13.3±0.6%) (columns 5 and 6 on graph 4C). Co-

transfection of cargo reduced FRET efficiency to comparable levels in both 

backgrounds (6.4±0.5% vs 7.1±0.5%, columns 7 and 8 on graph 4C) showing 

that KLC undergoes significant cargo dependent conformational change in the 

context of the kinesin-1 tetramer. This cargo dependent change in FRET was 

again supressed by the KLC2 N287L variant and W-acidic mutations in CSTN 

(Figure S3C,D) and separation of the fluorophores on different polypeptides 

resulted in only minimal levels of FRET (4.09±1.23%), indicating that the 

measured FRET efficiency remains predominantly intramolecular in the 

context of the holoenzyme (Figure S1E,F).   

To examine the effect of LFP motif mediated intramolecular interaction 

in KLC on the microtubule dependent ATPase activity associated with KHC, 

kinesin-1 containing either wildtype or LFP/AAA KLC2 was expressed in, and 

isolated from, mammalian cells by covalent coupling of GFP-KLC2-Halo to 

HaloLink resin and subsequent release by TEV protease cleavage of the 

HaloTag (Figure S4A,B). As assessed by measurement of inorganic 

phosphate resulting from hydrolysis of ATP, these kinesin-1 preparations had 

no detectable ATPase activity in the absence of microtubules (Figure S4C).  

However, in the presence of microtubules, the ATPase rate of wildtype 

kinesin-1 was 543.3±7.2 nmol min-1 mg-1 (of KHC). The LFP/AAA subsitition 

resulted in an increase in the ATPase rate to 827.7±21.2 nmol min-1 mg-1, 
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demonstrating that this intramolecular interaction within the light chain can 

modulate KHC associated ATPase activity.  

Taken together, these data show that the LFP motif-mediated 

intramolecular interaction within KLC regulates KLC conformation in the 

context of the holoenzyme in vivo. This autoinhibitory interaction and 

conformation are themselves directly governed by W-acidic cargo binding. 

 

Discussion 

Despite its importance for a host of cellular processes and contribution to 

neurological, viral and bacterial disease, the molecular mechanisms 

underlying the regulation of kinesin-1 by its light chains and the binding of its 

cargo are not well understood. The data presented here provide new 

conceptual insight into the molecular events that occur both in its regulated 

state and following W-acidic cargo recognition. We show that, like the kinesin 

heavy chain, the light chains of kinesin-1 exist in a dynamic conformational 

state that is regulated by self-interaction and cargo binding. We highlight how 

recognition of short linear peptide motifs by the TPR domain can be 

transduced and amplified to result in larger scale modification of the 

organisational state of the light chain. Thus, we uncover unanticipated 

mechanistic parallels between the heavy and light chain components of the 

kinesin-1 tetramer. 

Such an intramolecular interaction mediated by a TPR domain is 

reminiscent of the interaction of the N-arm helix of the mitochondrial outer 

membrane protein Fis1 with its TPR domain (36), although in this case the 

self-interacting helix forms an important component of the binding interface for 
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other proteins. A closer mechanistic analogy perhaps lies in the regulation of 

protein phosphatase 5 (Ppp5) activity by its TPR domain where, in its 

autoinhibited state, the TPR domain engages with the catalytic channel of 

Ppp5 (37). This conformation is stabilized by the C-terminal αJ helix that 

contacts a region of the Hsp90 binding groove on the TPR domain. Binding of 

the C-terminal MEEVD peptide of Hsp90 disrupts this interaction, relieving 

auto-inhibition and activating the phosphatase. The notion that TPR domain 

function is not restricted to that of a protein-protein interaction module and 

that peptide binding can be transduced through conformational change to 

control function is supported by studies of the dimeric bacterial transcription 

factor and virulence regulator PlcR where TPR binding of the PapR signal 

peptide is propagated to control the DNA binding properties of helix-turn-helix 

DNA binding domains (38). We note some functional parallels in another 

transport/trafficking system with a recent report describing how the interaction 

of the AP2 β2 hinge (containing a clathrin-binding motif) with the core of the 

molecule that is disrupted (in an allosteric manner in this case) by 

phospholipid and cargo binding, promoting clathrin binding activity (39). 

In the context of the present study, it is interesting to note that several 

reports have demonstrated that fusion of W-acidic motifs to otherwise non-

kinesin-1 binding proteins is sufficient to promote kinesin-1 dependent 

transport/dispersion of specific cellular compartments, such as lysosomes (16, 

24, 40). The strong implication of these studies is that W-acidic motifs have an 

intrinsic capacity to promote (at least partial) relief of kinesin-1 autoinhibition. 

However, given that kinesin-1 ATPase activity is predominantly controlled by 

an intramolecular interaction between the motor domains and the IAK C-



 17

terminal region of a single heavy chain, it was not obvious how a TPR 

domain-peptide interaction could contribute to this change. Our present data 

suggest a possible model. Here we show that mutational disruption of the LFP 

motif in KLC enhances the inherent MT stimulated ATPase activity of purified 

kinesin-1. Rice and colleagues demonstrated that the heptad repeat–TPR 

linker region contributes to light chain-mediated destabilisation of the heavy 

chain carboxy-tail/microtubule interaction in vitro (19), implying a mechanism 

of communication between the linker and heavy chain tail. Moreover, the 

same study reported that the TPR domain itself contributes to a light chain-

mediated reduction in the affinity of the KHC head for its C-terminal tail, 

through a mechanism requiring steric and electrostatic factors. Incorporating 

that analysis, we propose a model whereby the W-acidic motif-mediated 

displacement of the highly charged linker from the TPR will result in 

interactions (predominantly electrostatic) with the heavy chain tail that 

combine with steric changes resulting from a large scale change in 

conformation of the light chains to promote the cargo-dependent transition of 

holoenzyme to its active state (Figure S5). 

If so, it would seem likely that this mechanism can be generalised to 

other W-acidic motif containing cargo given their shared binding determinants 

on the KLCTPR (23, 30). The strong sequence conservation of the LFP motif 

and our similar observation for CSTN1 and KLC1 (Figure S1C) suggests that 

this will also apply to other light chain isoforms. However, only a subset of 

kinesin-1 cargoes contain W-acidic motifs and it is clear that KLCTPR has the 

capacity to interact with other peptides, including the C-terminal eleven amino 

acids of JIP1 (JIP1C11, sequence YTCPTEDIYLE) (22). Despite this, the 
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LFP/AAA replacement does not affect binding to JIP1 in immunoprecipitation 

experiments (Figure S1D) and N-terminal extension of the KLC1TPR only has a 

marginal impact on its affinity for JIP1C11. The JIP1C11 peptide is also 

insufficient to promote activation of transport (16). Indeed, JIP1 requires 

interactions with the coiled-coil heavy chain and the heavy chain tail binding 

protein Fez1 for full activity (15, 17). Although the precise JIP1C11 binding site 

on the KLCTPR still awaits structural definition, mutagenesis experiments 

highlight a particularly crucial role for residues on TPR4/5 that are distinct 

from the primary determinants of W-acidic binding on TPR2/3 (22, 23). Thus, 

it may be that the site of peptide binding on the KLCTPR has different 

functional outcomes, and that this is in part due to its capacity to displace the 

LFP motif containing linker region, resulting in differential requirements for 

supporting interactions to promote kinesin-1 activity. It is therefore likely that 

there are multiple pathways to activation of kinesin-1 depending upon site(s) 

of cargo binding.   

The dissociation constant (KD) of approximately 25 μM (or the 

equivalent association constant KA = 1/KD ≈ 0.04 μM-1) measured here by 

fluorescence polarization between TAMRA-LFPpept and KLC2TPR reflects a 

bimolecular binding process. However, the proposed mechanism of KLC 

autoinhibition is unimolecular, as the LFPpept is covalently linked to the TPR 

domain. The balance between the latched (autoinhibited) and unlatched 

(available to W-acidic cargoes) states is therefore regulated by the 

intramolecular association constant KA
i. This has been shown to be related to 

KA by KA
i = p(d)KA (eq. 1, methods) where p(d) is known as the effective 

concentration, the ligand concentration that would be required to achieve the 
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same fraction of bound state in a bimolecular interaction (41, 42). From the 

structure of KLC2extTPR we can estimate the value of p(d) at approximately 

18.2 mM (see methods). Thus, using (eq. 1), we obtain KA
i ≈ 728. The 

implication of this is that the equilibrium fraction of cargo-available KLC2TPR is 

only ≈ 0.14%. This suggests that autoinhibition of the light chains tightly 

regulates cargo binding. A similarly stringent intramolecular regulation has 

been observed for the myristoylated N-terminal latching to the C-terminal lobe 

of c-Abl that maintains the kinase in an inactive state (43, 44). The low 

fraction of cargo-available KLC2TPR raises the obvious question of how 

significant W-acidic cargo binding is achieved. The X-ray structures of cargo-

bound KLC2TPR and autoinhibited KLC2extTPR highlight that only a partial 

overlap exists between the W-acidic motif and the ext autoinhibitory peptide. 

In particular, the binding region for the most N-terminal part of the W-acidic 

motif (N-terminal to the central tryptophan residue) appears accessible even 

in the ext-bound state (Figure 3F). Thus, one possible mechanism for the 

relief of KLC autoinhibition is the initial recognition of a portion of the W-acidic 

cargo motif at this topological location. This could be sufficient to initiate the 

‘induced-fit’ adaptation of the TPR domain, which, in turn, may drive 

destabilization of ext binding.  

Therefore, as well as acting as a component of a pathway to kinesin-1 

activation, our findings also suggest that the intramolecular interaction 

between the linker region and KLCTPR may serve to buffer cargo-binding 

sensitivity and so provide a point of regulatory access to control the proper 

loading and unloading of cargo. It is conceivable that binding of other proteins 

or post-translational modifications of the light chains could serve to stabilize or 
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destabilize this self-interacting state and thus regulate cargo binding 

properties of the TPR domain in a spatial and temporal manner.  

 

Materials and Methods 

Fluorescence polarization  

N-terminal carboxytetramethylrhodamine (TAMRA) conjugated peptides and 

non-conjugated peptides used for fluorescence polarization and competition 

measurements were supplied by Bio-Synthesis Inc (Lewisville, TX, USA). 

Sequences were SKIPWD, STNLEWDDSAI, LFPpept, DSLDDLFPNEDEQS, 

AAApept, DSLDDAAANEDEQS, JIPC11, YTCPTEDIYLE. Measurements were 

performed on a BMG Labtech PolarStar Omega platereader at 20 °C by 

incubating 300 nM TAMRA-labelled peptides with the indicated protein at 

increasing concentrations in 25 mM Hepes pH 7.5, 150mM NaCl, 5 mM β-

mercaptoethanol. Estimation of the equilibrium dissociation constant (KD) for 

the different peptides was performed assuming a one-site specific-binding 

model. For competition experiments a mixture of TAMRA-LFPpept and 

KLC2TPR at 300 nM and 12 μM, respectively, were incubated with increasing 

concentrations of unlabelled SKIPWD peptide in buffer supplemented by 5% 

(v/v) DMSO. The concentration-dependent decrease in FP signal was fitted to 

a sigmoidal equation to derive IC50. Analyses and Ki estimation were 

performed using the Prism package (GraphPad Software Inc., San Diego CA, 

USA). All data points are the mean of 3 replicates. 

See SI Materials and Methods for additional materials and methods. 
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Figure Legends 

 

Figure 1. Mutational disruption of a conserved leucine-phenylalanine-

proline (LFP) motif in KLC2 enhances binding to W-acidic cargoes. 

(a) Schematic showing domain organisation of KLC2 (numbering refers to 

mouse protein). The heptad repeat region (HR) that interacts with KHC is 

shown in grey, the six TPR repeats comprising the TPR domain are 

represented by orange circles. 

(b) Multiple sequence alignment using Clustal W showing the region linking 

the HR and the first TPR repeat in KLCs 1-4 from human and mouse as well 

as representative fly (Dm), zebrafish (Dr) or chicken (Gg) homologues as 

annotated in the Homologene database. The highly conserved HR and TPR 

regions are highlighted in grey and orange respectively. An asterisk (*) 

indicates a completely conserved residue, whilst a colon (:) indicates strong 

conservation of residue properties. A universally conserved LFP motif (red), 

located within the otherwise divergent linker region is highlighted in red as 

well as flanking conserved acidic residues in (blue).  

(c) Western blot analysis of GFP-TRAP immunoprecipitation experiments 

from transfected HeLa cells showing enhanced binding between GFP-SKIP 

(1-310) (left) or GFP-CSTN1 (879-971) (right) to HA-KLC2 when the LFP 

triplet is replaced to AAA. Graphs show quantification of relative binding from 

three independent experiments.  Error bars show s.e.m. **=p<0.01, *= p<0.05. 
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Figure 2. The LFP-acidic motif containing HR-TPR linker region inhibits 

W-acidic cargo binding in vitro. 

(a) Schematic showing KLC2TPR , KLC2WacTPR and KLC2extTPR proteins used in 

this work. KLCTPR consists of residues (196-480) of KLC2 comprising its six 

TPR repeats, KLCextTPR consists of residues (161-480) encompassing the six 

TPR repeats and an N-terminal extension (ext) to include the conserved LFP-

acidic motif. KLCWacTPR  comprises residues (196-480) of KLC2 with the first 

W-acidic motif of SKIP (STNLEWDDSAI, aa 202-212) coupled by a flexible 

(TGS)4 linker. 

(b,c) GST-pull down experiment showing interaction between the above TPR 

proteins with (b) GST-CSTN1 (879-971) or (c) GST-SKIP (1-310). The TPR 

domain alone shows robust binding to both W-acidic cargo proteins but 

binding is reduced to background levels by inclusion of the N-terminal region 

carrying the LFP-acidic motif. Similarly, inclusion of a competitor peptide 

sequence in also inhibits the interaction. 
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Figure 3. The HR-TPR linker region interacts in an LFP-dependent 

manner with KLC2TPR at a binding site partly overlapping with that of 

cargo W-acidic motifs 

(a) Fluorescence polarization (FP) measurements showing concentration and 

LFP- dependent interaction between TAMRA conjugated LFPpept 

(DSLDDLFPNEDEQS) and KLC2TPR. Mutation of the LFP motif to AAA 

(DSLDDAAANEDEQS) essentially eliminates binding. Amino terminal 

extension of the TPR domain to residue 161 (KLCextTPR) also inhibits 

interaction with LFPpept. (b) FP measurements showing amino terminal 

extension of the TPR domain to residue 161 (KLCextTPR) inhibits interaction 

with SKIPWD compared to KLC2TPR
 alone. (c) FP experiment titrating 

increasing amounts of non-labelled SKIPWD in a KLC2TPR:LFPpept complex 

showing that binding of LFPpept and SKIPWD to KLC2TPR are mutually 

exclusive. (d,e) Illustrated cartoon representations of the KLC2extTPR X-ray 

structure in two orthogonal orientations. The peptide originating from the 

extended N-terminal region (ext in blue) is bound to the KLC2TPR domain 

(orange). 2mFo-DFc electron density map is shown at the 1.2σ level. Individual 

TPR repeats composed by helix1-turn-helix2 elements are highlighted. The 

non-TPR helix between TPR5 and TPR6 is labelled αN.  (f) Superposition 

between KLC2extTPR and cargo-bound SKIPWD:KLC2TPR (3ZFW) structures in 

the same orientation as (e). The SKIPWD W-acidic cargo peptide is shown in 

green and the cargo-bound KLC2TPR is shown in yellow. The KLC2extTPR 

structure is color-coded as in (d,e). The SKIPWD and ext peptides binding sites 

on KLC2TPR partly overlap.   
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Figure 4.  In vivo conformational dynamics of kinesin light chain are 

controlled by self-interaction and cargo binding 

(a) Schematic showing KLC2 FRET biosensor with an N-terminal eGFP and a 

C-terminal HaloTag that allows covalent coupling of TMR. Red arrows 

indicate mechanistic questions addressed using the biosensor. (b) 

Multiphoton fluorescent lifetime images of FRET between GFP and TMR-

HaloTag. ‘GFP int.’ are multiphoton GFP intensity images whereas lifetime 

image refers to the fluorescence lifetime of GFP (τ) and is represented by a 

pseudo-colour scale.  In these images a reduction in lifetime (change in colour 

from blue to red) indicates FRET and therefore close association of GFP and 

TMR-HaloTag. (c) Graphs show data from 15 cells expressed as FRET 

efficiency (see methods). Scale bar 10μm. Error bars are SEM. *** = p<0.001. 

(left) light chain biosensor alone (with and without co-transfection of myc-

CSTN (879-971) cargo, (right) equivalent experiments where exogenous KHC 

is included.  
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SI Materials and Methods 

 

Plasmids 

Full length, wild type mouse kinesin light chain-2 (KLC2) and rat kinesin-1 

heavy chain (KHC, Kif5C) were cloned into the mammalian expression vector 

CB6-HA. The W-acidic kinesin-1 cargo proteins, SKIP (amino acids 1-310) 

and Calsyntenin-1 (CSTN1, amino acids 879-971), were subcloned into GST-

(pMW-GST) or myc-(CB6-myc) expression vectors from CB6-GFP expression 

constructs described previously (24). WD/AA mutations in CSTN1 were 

introduced by site-directed mutagenesis. CB6-HA-KLC1 (isoform A) was 

described previously (23). The TPR domain of KLC2 alone (KLC2TPR, amino 

acids A196-S480), a longer version containing the conserved LFP motif 

(KLC2extTPR, K161-S480), and equivalent constructs for KLC1, (KLC1TPR, 

A211-S495 and KLC1extTPR ,K173-S495) as well as a chimera of the first W-

acidic motif of SKIP (amino acids 202-212) fused to the N-terminus of 

KLC2TPR via a TGSx4 linker (SKIPWacTPR) were cloned into the bacterial 

expression vector pET28His-Thrombin. A GFP-KLC2-HaloTag. FRET 

biosensor was generated by inserting GFP-KLC2 into a C-terminal HaloTag 

vector carrying a TEV protease cleavage site between KLC2 and HaloTag 

(Promega). Control GFP-KLC2 or KLC2-Halo expression constructs were 

derived from this plasmid. Plasmids with mutations that disrupt the LFP motif 

in KLC2 (L167, F168, P169 to AAA), or equivalent mutations in KLC1 (179-

181), as well as binding between KLC2 and its cargoes (N287L) were 

generated by site-directed mutagenesis. All plasmids were verified by DNA 

sequencing.  



 

Cell culture, transfection, immunoprecipitation 

HeLa cells were maintained in Dulbecco's modified Eagles medium (DMEM) 

supplemented with 10 % fetal bovine serum (FBS), L-glutamine and 

penicillin/streptomycin and cultured in a humidified 5 % CO2 environment.  To 

determine the impact of the LFP motif on KLC cargo binding, 1 X 106 HeLa 

cells were plated on 10 cm dishes and transfected with HA-KLC2WT or HA-

KLC2LFP/AAA and GFP, GFP-SKIP (1-310) or GFP-CSTN1 (879-971). After 16  

hours, transfected cells were lysed in 1ml of 25mM HEPES pH 7.5, 150 mM 

NaCl, 0.5 % NP-40, 0.5X Triton-X 100 containing a protease inhibitor cocktail 

(Roche) for 10 mins prior to centrifugation at 13,000 g for 10 mins at 4°C. The 

resulting supernatant was incubated with 15μl of prewashed GFP-Trap 

(Chromotek) beads for 90 minutes. Beads were washed 4X in assay buffer 

(25 mM HEPES pH 7.5, 150mM NaCl), resuspended in 100 μl of buffer and 

25μl of SDS-loading buffer before boiling. 20μl of samples were subjected to 

SDS-PAGE and analysed by western blot using antibodies against GFP and 

HA. 20μl of total cell lysate was loaded for analysis of input levels. To 

immunoprecipitate FLAG-JIP/KLC1 complexes, lysates from cells expressing 

FLAG-JIP1 (15) and HA-KLC1WT, HA-KLC1LFP/AAA, were incubated with 100 µl 

Protein A Agarose bound to 5ug anti-FLAG (F1804 Sigma) or negative IgG for 

4 hours at 4°C. Beads were washed 4X in assay buffer, resuspended in 100μl 

of buffer and 25μl of SDS-loading buffer before boiling. 20μl of samples were 

subjected to SDS-PAGE and analysed by western blot using antibodies 

against FLAG and HA. 10μl of total cell lysate was loaded for analysis of input 

levels. 



 

FRET/FLIM sample preparation and data acquisition 

For FRET studies, 1 X 104  HeLa cells were seeded onto 13 mm fibronectin-

coated coverslips in 24-well plates. Cells were transfected with combinations 

of plasmids expressing GFP-KLC2-HaloTag (WT, LFP/AAA or N287L), HA-

KHC and myc-CSTN1 (869-971) (WT or binding deficient mutants). After 6 

hours post-transfection, media was replaced with fresh media containing 

HaloTag TMRDirect ligand (Promega) at a 1:1000 dilution according to 

manufacturer’s instructions. After an overnight incubation, cells were fixed in 

4% paraformaldehyde and permeabilized in 0.2% (wt/vol) Triton X-100 in 

PBS. After quenching with 1 mg/ml sodium borohydride in PBS for 10 min at 

RT, cells were washed in PBS and mounted in Mowiol containing 2.5% Dabco 

(Sigma-Aldrich). Time domain FLIM was performed with a multiphoton 

microscope system (with TE2000 microscope; Nikon) described in detail 

previously (45). Fluorescence lifetime imaging capability was provided by 

time-correlated single-photon counting electronics (SPC-700; Becker & Hickl). 

A 40X objective was used throughout (Plan Fluor NA 1.3; CFI 60; Nikon), and 

data were collected at 500 ± 20 nm through a band pass filter (35–5040; 

Coherent, Inc.). Acquisition times of the order of 300 s at a low 890-nm 

excitation power were used to achieve sufficient photon statistics for fitting, 

while avoiding either pulse pile up or significant photobleaching. Histogram 

data are plotted as mean FRET efficiency from specified numbers of cells per 

sample over two/three independent experiments. Lifetime images of example 

cells are presented using a pseudocolor scale, whereby blue depicts normal 



GFP lifetime (no FRET) and red depicts lower GFP lifetime (areas of high 

FRET). 

 

FRET data analysis 

Data was analysed as previously described (3). Bulk measurements of FRET 

efficiency (i.e. intensity-based methods) cannot distinguish between an 

increase in FRET efficiency (i.e. coupling efficiency) and an increase in FRET 

population (concentration of FRET species) since the two parameters are not 

resolved.  Measurements of FRET based on analysis of the fluorescence 

lifetime of the donor can resolve this issue. The assumption that non-

interacting and interacting fractions are present allows the determination of 

the efficiency of interaction. The FRET efficiency ߟ୊ୖ୉୘  is related to the 

molecular donor-acceptor separation and the fluorescence lifetime of the 

interacting fraction by:  

 

୊ୖ୉୘ߟ =  ܴ଴଺ܴ଴଺ + ଺ݎ  = 1 − ߬୊ୖ୉୘߬ௗ  

 

Where ܴ଴  is the Förster radius, ݎ  the molecular separation, ߬୊ୖ୉୘  is the 

lifetime of the interacting fraction and ߬ௗ  is the lifetime of the donor in the 

absence of acceptor. ߬୊ୖ୉୘ and ߬ௗ can also be taken to be the lifetime of the 

interacting fraction and non-interacting fraction, respectively. All data were 

analysed using TRI2 software (developed by P. Barber, Gray Cancer Institute, 

London UK).  Histogram data presented here are derived from bi-exponential 

analysis and plotted as mean FRET efficiency from specified numbers of cells 

per sample from at least 2 independent experiments. 



 

 

Protein expression and purification 

Proteins were expressed in E.coli BL21(DE3) cells. Briefly, single colonies 

were picked and grown at 37 °C overnight. Small scale overnight bacterial 

cultures were used to inoculate 2 X 1L cultures that were incubated at 37 °C 

until they reached an OD600 of 0.5. The temperature was then lowered to 16 

°C and protein synthesis was induced by the addition of 300 μM IPTG for 16 

hours. Cells were harvested by centrifugation at 5000 g for 15 minutes at 4 

°C. For GST-tagged proteins, cells were resuspended in lysis buffer (25 mM 

HEPES pH 7.5, 500 mM NaCl, 5 mM β-mercaptoethanol) supplemented with 

protease inhibitor cocktail (Roche). Lysis buffer containing 20 mM imidazole 

was used to purify His-tagged proteins. Cell lysis was accomplished by 

sonication. Insoluble material was sedimented by centrifugation at 16500 g for 

1 hour at 4 °C. GST-tagged proteins were obtained via batch purification 

using Glutathione Sepharose beads (GE Life Sciences) and His-tagged 

proteins were purified using His-trap FF columns (GE Life Sciences). Purified 

proteins from both methods were dialysed overnight against gluthathione or 

imidazole-free lysis buffer respectively. His-tagged protein samples were 

further purified by size-exclusion chromatography (SEC) on a 16∕60 HiLoad 

Superdex 75 column (GE Healthcare). For crystallization experiments, the 

His-tag was cleaved from KLC constructs and removed from solution using a 

thrombin cleavage/capture kit (Merck Millipore) according to the manufacturer 

instructions and was followed by a second round of SEC. 

 



X-ray crystallography 

Untagged KLC2extTPR (KLC2 161-480) was concentrated at 4.8 mg/ml in 20 

mM Hepes pH 7, 500 mM NaCl, 5 mM 2-mercaptoethanol and crystals were 

obtained in the PGA screen (Molecular Dimensions) in the presence of 0.1 M 

Na-cacodylate pH 6.5, 0.3 M Na-malonate, and 8% (w/v) PGA-LM. For data 

collection, crystals were cryoprotected in reservoir enriched with 20% (v/v) 

ethylene glycol. A complete data set at the 4 Å resolution was measured at 

the I24 beam line of Diamond Light Source (UK) and data were processed 

using the xia2 package in space group C2  (a=148.70 Å, b=86.28 Å, c=111.74 

Å, α=90°, β=98.4° γ=90°). The structure was solved by the molecular 

replacement (MR) technique using the software packages Phaser  and Molrep  

of the CCP4 suite. An initial estimation of the Matthews’ coefficient suggested 

the presence of three to five KLC2 molecules in the a.u. with a solvent content 

ranging from 38% (five molecules) to 63% (three molecules). Using an 

ensemble defined by KLC2TPR monomers from 3CEQ and 3ZFW Phaser 

positioned two molecules. The TFZ score (8.7) together with the presence of 

additional electron density consistent with the additional α1A helix not present 

in the search probe suggested this to be a genuine solution. Inspection of 

residual electron density suggested the presence of an additional KLC2 

molecule. This was positioned using a second MR search with Molrep using 

the previous solution after rigid-body refinement as fixed model. Model 

building and crystallographic refinement was performed using COOT and 

Buster 2.0 (Global Phasing Ltd), respectively. A summary of data collection 

and refinement statistics are shown in Table S1. Structural images were 

prepared with PyMol (Schrödinger). 



 

GST-pull down 

GST-SKIP 1-310 or GST-CSTN 869-971 (0.5 nmol of protein per reaction) 

bound to Glutathione Sepharose beads was incubated with 1ml of 1.0 μM His- 

KLC2TPR, His- KLC2extTPR or His-SKIPWacTPR proteins for 2 hours at 4 °C. 

Beads were washed 4 X with assay buffer (25 mM HEPES pH 7.5, 150 mM 

NaCl, 5 mM β-mercaptoethanol, 25 mM imidazole), resuspended in 100μl of 

buffer and 25μl of SDS-loading buffer before boiling. 20μl of each sample was 

loaded and the SDS-PAGE gel was stained with InstantBlue Protein Stain 

(Expedeon). 

 

Purification of HaloTag protein from mammalian cells and kinesin ATPase 

activity assay. 

106 293T cells were seeded onto 10 cm dishes. Cells were transfected with 

plasmids expressing HA-KHC and GFP-KLC2-HaloTag (WT or LFP/AAA). A 

total of four plates of cells were transfected per sample. Purification of 

HaloTag proteins was performed using the HaloTag Mammalian Protein 

Detection and Purification System (Promega). Briefly, 16 hours post 

transfection cells were washed with PBS and collected with gentle scraping 

and centrifugation at 200 g for 5 minutes. Cell pellets were resuspended in 1 

ml lysis buffer (50 mM Tris-HCL pH 7.5, 150mM NaCl, 1 % Triton X-100, 0.1 

% sodium deoxycholate) supplemented with protease inhibitor followed by 

incubation with rotating at RT for 15 minutes. The lysates were diluted 1:3 

with HaloTag® protein purification buffer (50 mM HEPES pH 7.5, 150 mM 

NaCl, 1 mM DTT, 0.005% IGEPAL® CA-630). After centrifugation at 10 000 g 



for 30 minutes at 4 °C, the supernatants were added to 200 µl equilibrated 

HaloLink™ resin and incubated at RT for 1.5 hours with end-over-end rotation. 

After protein binding, the beads were washed 3X in HaloTag® protein 

purification buffer and bound proteins were released by HaloTEV protease 

cleavage. The ATPase activity of purified HA-KHC and GFP-KLC2 (WT or 

LFP/AAA) complexes was measured with the Kinesin ATPase End-point 

Biochem Kit (Cytoskeleton Inc.) according to manufacturer’s instructions. 30 

ng of purified proteins (KHC) were incubated with 2 µg microtubules and 

reaction buffer (15 mM PIPES pH 7.0, 5 mM MgCl2) in a 30 µl volume. A final 

concentration of 0.3 mM ATP was added per reaction and left to proceed for 

the indicated times before reactions were terminated with the addition of 70 µl 

CytoPhos. Absorbance at 650 nm was measured after 10 minutes incubation 

using a BMG Labtech PolarStar Omega plate reader. The amount of ATP 

hydrolysis was calculated based inorganic phosphate standards. ATPase 

rates and associated errors are derived from the slope of a straight line fitted 

using Prism. Data points are mean of 3 replicates and error bars show S.E.M. 

 

Intramolecular binding analysis 

Under the assumption that binding of the ext peptide to the TPR domain does 

not interfere with the statistical distribution of the flexible linker consisting of L 

peptide bonds that connects them at an end-to-end distance d, the 

intramolecular association constant ܭ஺௜  is related to the bimolecular 

association constant ܭ஺by the equation 

஺௜ܭ = ;݀)݌  ஺              (eq. 1)ܭ(ܮ



where ݌(݀;  is the effective concentration (41, 42, 44). Using the wormlike (ܮ

chain model, a good approximation for ݌(݀;  is given by (ܮ

;݀)݌ (ܮ = ൬ ଷସగ௟೛௟೎൰యమ ݁൬ି య೏మర೗೛೗೎൰(1 − ହ௟೛ସ௟೎ − ଶௗమ௟೎మ + ଷଷௗర଼଴௟೛௟೎య + ଻ଽ௟೛మଵ଺଴௟೎మ +  ଷଶଽௗమ௟೛ଵଶ଴௟೎య − ଺଻ଽଽௗరଵ଺଴଴௟೎ర +
ଷସସଵௗలଶ଼଴଴௟೛௟೎ఱ − ଵ଴଼ଽௗఴଵଶ଼଴଴௟೛మ௟೎ల).       (eq. 2) 

In the equation above, ݈௖ and ݈௣ are the contour length and the persistence 

length, respectively. The contour length ݈௖can be calculated as ܾܮ, where ܾ = 

3.8 Å is the nearest Cα-Cα distance. The persistence length ݈௣ is ∼3 Å for 

peptide linkers (9, 10, 11). In the case of KLC2extTPR, application of eq. 2 using 25 = ܮ and ݀ = 17.5 Å gives an effective concentration of 18.2 mM. The value 

of ݀ has been determined from the crystallographic structure using the Cα 

positions of the most C-terminal residue of the ext peptide and P195 

positioned at the beginning of α1A (TPR1) as end-to-end extremes of the 

flexible linker. The value for ܮ has been derived from the MmKLC2 sequence 

assuming that ext is LFPpept. This appears a reasonable assumption on the 

basis of our biophysical (fluorescence polarization), biochemical and cellular 

data.  

Analysis of intrinsic disorder in KLC2 

A panel of software was used to analyse the heptad repeat – TPR linker 

regions in KLC2 – PrDOS (http://prdos.hgc.jp/cgi-bin/top.cgi), Disopred3 

(http://bioinf.cs.ucl.ac.uk/psipred/), IUPred (http://iupred.enzim.hu/) and 

DisEMBL (http://dis.embl.de/).  
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Supplementary Figure 1 

(a) Coil probability plot using PCOILS (http://toolkit.tuebingen.mpg.de/pcoils) 

showing predicted end of the KHC interacting heptad repeat region in KLC2. 

(b) Disorder probability plot using 4 different disorder prediction servers 

(IUPred – Magenta, DisEMBL – Green, Disopred3 – Blue, PrDOS – Grey) 

showing predicted disorder in the HR-TPR linker region. Predicted end of 

heptad repeat (HR L138) and start of TPR1 (A196) are highlighted in blue and 

orange respectively. LFP motif is in red.  Residue K161 that is the start 

KLC2extTPR construct is also indicated. (c) Western blot analysis of GFP-TRAP 

immunoprecipitation experiments from transfected HeLa cells showing 

enhanced binding between GFP-CSTN1 (879-971) and HA-KLC1 when the 

LFP motif is mutated to AAA. Graphs show quantification of relative binding 

from 3 independent experiments.  Error bars show S.E.M. ** = p<0.01. (d) 

Western blot analysis of FLAG-immunoprecipitation experiment from 

transfected HeLa cells showing comparable binding between FLAG-JIP1 and 

HA-KLC1, with or without the LFP>AAA mutation. Graph shows quantification 

of relative binding from 3 independent experiments. Error bars show S.E.M. 

ns – not statistically significant. (e) (left) FP measurements showing effect of 

amino terminal extension of the KLC1extTPR to residue 173 (KLC1extTPR) on 

interaction with a TAMRA conjugated peptide derived from the C-terminus of 

JIP1 (JIPC11). (right) Panel from Figure 3B is reproduced for comparison.  

 

Supplementary Figure 2 

Illustrated cartoon representations in two orthogonal orientations of the 

KLC2extTPR (KLC2 residues 161-480) X-ray structure during crystallographic 



refinement. 2mFo-DFc and mFo-DFc electron density maps are shown in grey 

(1.2σ level) and in magenta (+3σ level), respectively. The KLC2TPR model 

(residues 195-421 and 440-479) used at this stage of refinement is shown in 

as a tube in rainbow color (blue to red) going from the amino-terminus to the 

carboxy-terminus. Broken lines indicate amino acid stretches absent in the 

model. Individual TPR repeats composed by helix1-turn-helix2 elements are 

highlighted. The non-TPR helix between TPR5 and TPR6 is labelled αN. 

Elongated and unaccounted for electron density that is believed to arise from 

a portion of the (161-195) extension N-terminal to KLC2TPR is seen in 

proximity of α2A.  

 

Supplementary Figure 3 

(a) GFP-TRAP immunoprecipitation experiment showing that GFP-KLC2-

HaloTag  (wildtype or LFP>AAA) efficiently co-immunoprecipitates with HA-

KHC. (b) GFP western blot and in-gel HaloTag-TMR fluorescence of whole 

cell TMR labelled extracts expressing GFP-HaloTag vector and GFP-KLC2-

HaloTag constructs. (c,d) Graphs showing fold change in FRET efficiency 

following cargo addition (myc-CSTN1 879-971) in the indicated conditions. 

(c) shows effect of the N287L mutation in KLC2 that inhibits W-acidic cargo 

binding, (d) shows effect of mutating both W-acidic (WD) motifs in CSTN to 

AA. Data are from 15 cells per condition. Error bars show S.E.M. ***  = 

p<0.001. (e) Multiphoton fluorescent lifetime images of FRET between GFP 

and TMR-HaloTag for GFP directly coupled to TMR (top) or GFP-KLC2 and 

KLC2-Halo with and without exogenous KHC (bottom). ‘GFP int.’ are 

multiphoton GFP intensity images whereas lifetime image refers to the 



fluorescence lifetime of GFP (τ) and is represented by a pseudo-colour 

scale.  In these images a reduction in lifetime (change in colour from blue to 

red) indicates FRET and therefore close association of GFP and TMR-

HaloTag. (f) Graphs show data from 16 cells expressed as FRET efficiency. 

Scale bar 10μm. Error bars are SEM.  

 

Supplementary Figure 4 

(a) Coomassie stained SDS-PAGE gels and western blot analysis showing 

kinesin-1 (KLC wildtype) and KLC2 LFP/AAA purifications. Whole cell extracts 

and TEV cleaved samples are shown. Note increase in mobility of KLC2 

following TEV protease cleavage. (b) Coomassie stained gel showing direct 

comparison between wildtype and LFP/AAA preparations. (c) Graph showing 

MT stimulated ATPase activity of wildtype and LFP/AAA kinesin-1 

preparations at 10, 20 and 30 minute time points following ATP addition. Y-

axis shows nmols of inorganic phosphate released. Control reactions without 

microtubules (MTs) or MTs alone are shown as a single point at the 30 minute 

timepoint.  Values are mean of three replicates and error bars show S.E.M. 

 

Supplementary Figure 5 

Model showing representation of KHCs (green) and KLCs (grey/orange) in the 

autoinhibited (a) and W-acidic cargo bound states (b). In (a) both KHCs and 

KLCs are engaged in a double autoinhibited conformation mediated by IAK 

motif in KHC and LFP motifs in KLC, with the amino and carboxy termini of 

KLCs in close proximity.  In (b) W-acidic cargo binding displaces the LFP-

acidic/ext sequence. This triggers a large-scale conformational change in KLC 



that results in separation of the amino and carboxy termini of the light chains. 

We propose that resulting electrostatic interactions between the displaced 

ext/linker region and KHC combined with steric changes from TPR domain 

reorientation may destabilise the tail mediated KHC inhibition and contribute 

to activation of the holoenzyme. 



Table S1. Data collection and refinement statistics. 

 

Data set  KLC2extTPR 

Data collection 

Beam Line I24 (DLS) 

Wavelength (Å) 0.96861 

Resolution range (Å) 

Highest res. bin (Å) 

42.88-4.00 

(4.10-4.00) 

Space group C2 

Cell dimensions  

a, b, c (Å) 

β (°) 

 

148.70, 86.28, 111.74 

98.4 

Unique reflections 
11813 

(893) 

Overall redundancy 
3.0  

(3.1) 

Completeness, (%) 
98.4 

(98.8) 

Rmerge, (%) 
12.4 

(121.8) 

Rpim (I), (%) 
10.0 

(100.52) 

I/σ(I)  
3.9 

(0.6) 



Wilson B factor (Å2) 216 

Refinement 

PDB code 5FJY 

Rfactor (%)/Rfree (%) 23.4/26.1 

rms bond lengths (Å) 0.010 

rms bond angles (°) 1.17 
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