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 22 

Abstract 23 

Purpose. We assessed the effects of four different types of tea extracts (green, oolong, black 24 

and pu-erh tea) on cellular surface properties (hydrophobicity and auto-aggregation) and the 25 

colonization attributes (attachment and biofilm formation) of four strains of Candida albicans 26 

and three strains of Candida krusei. 27 

Methodology. The cellular surface properties were determined using spectrophotometry. The 28 

colonization activities were quantified using colorimetric viability assays and visualized 29 

using scanning electron microscopy and confocal laser scanning microscopy. 30 

Results.  The tea extracts, in general, reduced the hydrophobicity (by 8-66%) and auto-31 

aggregation (by 20-65%), and inhibited the attachment of two C. krusei strains (by 41-88%). 32 

Tea extracts enhanced the biofilm formation of one C. albicans and two C. krusei strains (by 33 

1.4-7.5 folds). The observed reduction in hydrophobicity strongly correlated with the 34 

reduction in attachment of the two C. krusei strains (p<0.05). The ultrastructural images of 35 

the tea-treated C. krusei biofilm cells demonstrated central indentations, though remained 36 

viable.  37 

Conclusion. The tea extracts have the ability to retard C. krusei adhesion to glass surfaces 38 

possibly by reducing fungal cellular hydrophobicity, whilst paradoxically promoting biofilm 39 

formation. In practical terms, therefore, consumption of tea beverages appears to have a 40 

complex effect on oral candidal colonisation.  41 

 42 

Keywords: Candida; tea; cell surface hydrophobicity; microbial attachment; biofilm. 43 
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Abbreviations: HIV, human immunodeficiency virus; SDA, sabouraud dextrose agar; SDB, 44 

sabouraud dextrose broth; BATH, bacterial attachment to hydrocarbon; OD, optical density; 45 

XTT, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide; SEM, 46 

scanning electron microscopy; CLSM, confocal laser scanning microscopy. 47 

  48 
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Introduction 49 

 Candida spp. are oral inhabitants of approximately 50% of the human population [1]. 50 

These microbes are considered important opportunistic pathogens as they frequently cause 51 

infections in compromised individuals, such as those on chemotherapy and HIV-infected 52 

individuals [2], and organ transplant recipients on immunosuppressives [3]. In general, 53 

Candida albicans is the most common oral species, whilst others such as Candida glabrata, 54 

Candida tropicalis, Candida krusei and Candida guilliermondii are less abundant, though 55 

consistently isolated [1]. Indeed, in some communities, C. krusei is the most prevalent 56 

Candida species isolated from the oral cavity [4]. 57 

Upon gaining access to the oral milieu, Candida spp. colonize the mucosal surfaces 58 

and abiotic surfaces such as prosthesis, including dental implants, and survive essentially as 59 

biofilms, which in essence exhibit greater resistance to host defences and antifungal agents 60 

than their planktonic counterparts [2, 5, 6]. Auto-aggregation of Candida cells (blastospores), 61 

their co-aggregation with other oral microorganisms, as well as their attachment to dental 62 

hard and soft tissues, are the prerequisites for successful colonization and biofilm formation 63 

[7-9]. It is well known that the attachment of microorganisms to different surfaces (or to each 64 

other) involves surface physico-chemical interactions such as hydrophobic, electrostatic, and 65 

steric [10-13]. For example, attachment of oral streptococci to abiotic surfaces correlates well 66 

with their cell surface hydrophobicity [14], as well as their cell surface charge [15]. In the 67 

cases of fungi, especially yeasts which do not possess cell surface appendages and are 68 

therefore more similar to colloidal particles, physico-chemical interactions are likely to play 69 

an important role in the attachment and biofilm formation [16]. 70 

Traditional therapies for microbial infection are currently challenged due to their 71 

potential undesirable side effects, as well as emergence of antimicrobial resistance, 72 
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particularly in biofilm-related diseases [17]. Natural chemicals have therefore been of great 73 

interest, and extensively studied as novel agents to prevent Candida infections. Tea (Camellia 74 

sinensis), after water, is the second most popular drink worldwide [18] and its impact on oral 75 

candidal colonisation, including biofilm formation, has been little studied. To date, the 76 

majority of research on tea and its by-products has focused on its antimicrobial, including 77 

anti-candidal activities [19-23]. Yet, the impact of tea on candidal attachment and biofilm 78 

formation has not been extensively studied. We previously reported that tea extracts exhibited 79 

the ability to prevent Streptococcus mutans from attaching and forming biofilms on different 80 

abiotic surfaces, due to a superficial coat of tea components on the bacterial surfaces [13]. 81 

Similar investigations, to our knowledge, have yet to be performed with Candida spp. despite 82 

the fact that yeasts are key constituents of the oral microbiome and are often found to 83 

influence the colonization of other oral bacteria [8, 24].  84 

Therefore, in this study, we hypothesized that tea extracts affected the colonization 85 

behaviour of Candida spp. in a physico-chemical manner, akin to that of Streptococcus 86 

mutans, as demonstrated previously [13]. The aims of the current study, therefore, were to 87 

determine in vitro the impact of the extracts from four commercial tea products (with 88 

increasing degree of fermentation) on: i) the attachment and biofilm formation; and ii) the 89 

physico-chemical properties of seven different Candida strains belonging to C. albicans (four 90 

strains) and C. krusei (three strains). Furthermore, we aimed to correlate the physico-91 

chemical properties with the colonization potential of tea-treated Candida species. 92 

 93 

Materials and methods 94 

Microbial cultures 95 
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Four strains of C. albicans (strain 1, SF1, E1 200/5/92 and ATCC 90028), along with 96 

three strains of C. krusei (strain CamL 27B, CamL 37B and ATCC 6258) were used in this 97 

study. All Candida strains, except the ATCC strains, are clinical isolates, and were obtained 98 

from the Candida collection at the Oral Bisocience Laboratories, at the Faculty of Dentistry, 99 

University of Hong Kong. All strains were maintained on sabouraud dextrose agar (SDA; 100 

Sigma-Aldrich, USA) at 4°C, and grown in sabouraud dextrose broth (SDB; Sigma-Aldrich, 101 

USA) at 37°C under agitation (150 r.p.m.) for 24 h. Microbial cell suspensions were prepared 102 

by centrifuging 20 ml of SDB cultures at 3000 g for 5 min. Thereafter, the pellets were 103 

washed with 150 mM PBS (2.7 mM KCl, 10 mM Na2HPO4, 17 mM KH2PO4, and 137 mM 104 

NaCl, pH 7.4; Sigma-Aldrich, USA), and resuspended in 20 ml PBS for all experiments, 105 

unless otherwise stated. 106 

 107 

Preparation of tea extracts 108 

Extracts of four commercial tea products, namely green tea, oolong tea, black tea and 109 

pu-erh tea (T2 Co. Ltd, Australia; country of origin of the tea leaves: China), were prepared 110 

by mixing each tea with distilled water, at a 1/20 (w/v) ratio, for 24 h [25] at 37°C. 111 

Thereafter, the mixture was filtered, and the filtrate was evaporated under vacuum at 40°C, 112 

freeze dried and stored at -20°C for further use. The temperatures used in all steps were kept 113 

at or below 40°C, as a higher temperature would destroy tea polyphenols. 114 

Stock solutions of the tea extracts were prepared by dissolving 100 mg of the extract 115 

in 10 ml of PBS and filter sterilized through a 0.2 μm filter. 116 

 117 

Antimicrobial susceptibility tests 118 
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The minimal inhibitory concentrations (MICs) of the tea extracts against the Candida 119 

strains were determined using the micro-broth dilution method as previously described by 120 

James [26]. Briefly, 100 μl of each filter sterilized tea extract solution (at a final 121 

concentration of 20 mg ml-1) was subject to double dilution in a microtitre plate, mixed with 122 

100 μl of SDB containing suspended Candida cells (approximately 104 c.f.u. ml-1), and 123 

incubated at 37°C for 24 h. Growth was determined by visually assessing the turbidity in the 124 

wells. In subsequent experiments, each strain was treated with tea extracts at the 125 

concentration below the lowest MIC value among all tea extracts, to make the studies 126 

comparable. According to the results of the antimicrobial susceptibility tests, a concentration 127 

at 10 mg ml-1 was chosen for all tea extracts, for use in all subsequent assays. 128 

 129 

Determination of cell surface hydrophobicity 130 

The cell surface hydrophobicity was determined using the Bacterial Attachment to 131 

Hydrocarbon (BATH) method as previously described by Wang et al. [27], with the 132 

following modifications. Briefly, cell suspensions containing dissolved tea extracts were 133 

adjusted to OD595 = 1.0±0.2. Controls were prepared by using PBS without tea extracts, and 134 

using tea extracts-PBS solution without Candida cells. A 3 ml aliquot of each sample was 135 

mixed with 1 ml of hexane and vortexed for 2 min. The mixture was allowed to phase 136 

separate for 1 h. The OD595 of the aqueous layer was measured before (A0) and after (A) the 137 

addition of hexane. The cell surface hydrophobicity was expressed as % of binding to hexane 138 

= (1–A/A0) × 100 %. 139 

 140 

Auto-aggregation assays 141 
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Auto-aggregation measurements were performed as described by Wang et al. [27]. A 142 

volume of 1 ml of cell suspension (with or without tea extracts) was adjusted to OD595 =  143 

0.25±0.05 prior to incubation at 37°C for 6 h. The OD595 was measured before (Ai) and after 144 

(Af) the incubation. Aggregation percentage was expressed as % of auto-aggregation = (1–145 

Af/Ai) × 100 % [28, 29]. 146 

 147 

Preparation of glass beads 148 

Glass beads (4 mm; Eureka Beads, Australia) were degreased by soaking in acetone 149 

for 1h, washed with 0.1 M HCl for 30 min, followed by 0.1 M NaOH for 30 min, and rinsed 150 

in distilled water for 30 min, prior to autoclaving. Sterilized beads were oven dried overnight 151 

and thereafter appropriately stored for use in attachment experiments (and biofilm formation 152 

assays). 153 

 154 

Microbial attachment assays 155 

Microbial attachment assays were performed on prepared glass beads (as described 156 

above), using the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide 157 

(XTT) reduction assay [30]. Briefly, a glass bead with 100 μl of cell suspension (at 107 c.f.u. 158 

ml-1; with or without tea extracts), was incubated in a single well of a microtitre plate at 37°C 159 

for 1 h with shaking at 80 r.p.m.. After incubation, the bead was removed from the well, 160 

gently washed three times with PBS to remove loosely attached cells, placed in a well of 161 

another microtitre plate containing 79 μl PBS, 20 μl XTT solution (1 mg ml-1; Sigma-162 

Aldrich, USA) and 1 μl of fresh prepared menadione solution (0.4 mM; Sigma-Aldrich, 163 

USA), and further incubated in the dark for 3h at 37°C. Thereafter, the bead was removed 164 

from the well and colour changes of the solution in the well were measured using a microtitre 165 



9 
 

plate reader (Spectra Max 340 tunable microplate reader; Molecular Devices Ltd, Sunnyvale, 166 

CA) at 492 nm. 167 

 168 

Biofilm assays 169 

Biofilm formation assays were performed on prepared glass beads using the XTT 170 

reduction assay [30]. Briefly, a glass bead with 50 μl of tea extract (at a final concentration of 171 

the sub-MIC) and 50 μl double concentrated SDB culture (105 c.f.u. ml-1) was incubated in a 172 

well of a microtitre plate at 37°C for 48h with shaking at 80 r.p.m.. Controls were prepared 173 

by using distilled water instead of tea extract solutions. After incubation, the beads were 174 

treated as described in the microbial attachment assay protocol above.   175 

 176 

Scanning electron microscopy (SEM) study 177 

The biofilm structures, cell distributions and the surface topography of tea treated and 178 

untreated samples were visualized using SEM. The untreated and tea treated Candida 179 

biofilms were grown on glass slides (1cm × 1cm) by immersing a slide in 10 ml SDB culture 180 

and incubating in a falcon tube at 37°C for 48 h. After incubation, the slides were washed in 181 

PBS, air dried and fixed with 4% (v/v) glutaraldehyde (Sigma-Aldrich, USA) in PBS. The 182 

fixed slides were washed again in PBS, frozen in a -80°C freezer and freeze dried [13]. The 183 

slides were then gold-sputtered and examined using a field emission scanning electron 184 

microscope (Carl Zeiss Inc., Oberkocken, Germany) at 15 kV and an 8.4 mm working 185 

distance.  186 

 187 

Confocal laser scanning microscopy (CLSM) study 188 
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The viability of tea treated and untreated biofilm cells was assessed using CLSM. The 189 

untreated and tea treated Candida biofilms were grown on glass cover slips (1cm × 2cm) as 190 

described in the SEM study protocol above. After incubation, the slides were stained with 191 

SYTO® 9 dye and Propidium iodide (Live/Dead BacLight Bacterial Viability kit; Invitrogen, 192 

Eugene, OR, USA) [31] prior to visualization using a Nikon C2 confocal laser scanning 193 

microscope (Nikon Corp., Tokyo, Japan). The CLSM study was undertaken only for the non-194 

fermented green tea extract and post-fermented pu-erh tea, in order to compare the effects of 195 

monomeric and polymeric tea polyphenols. 196 

 197 

Statistical analysis 198 

All assays were carried out in triplicate with independently grown cultures, and all 199 

values were expressed as mean ± standard deviation. A one way ANOVA (Tukey’s 200 

comparison) was performed to compare the control and treatments in each assay. The 201 

relationships between cell surface properties and their colonization abilities were determined 202 

using regression plots. All data expressed as percentage values were normalized by arcsine-203 

transformation. All analysis were conducted using the SPSS software (PASW Statistics 18; 204 

SPSS Inc.) at a 95% confidence level. 205 

 206 

Results 207 

Antimicrobial susceptibility tests 208 

The results of antimicrobial susceptibility tests indicated that the tea extracts at 20 mg 209 

ml-1 could not kill or inhibit any of the Candida spp. (data not shown). Therefore, a 210 

concentration of 10 mg ml-1 (a non-lethal dose) was chosen and used for all tea extracts in all 211 
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assays in order to ensure that the effects of the tea extracts on the properties and colonization 212 

behaviour of Candida spp. could be tested without either killing or inhibiting the cells. 213 

 214 

Determination of cell surface properties and colonization behaviour 215 

The results of the cell surface hydrophobicity assays are shown in Fig. 1. It was found 216 

that the tea extracts significantly reduced the cell surface hydrophobicity of most of the tested 217 

Candida strains (p<0.05) by 8-66%, except for C. krusei ATCC 6258 (p>0.05), whose 218 

hydrophobicity was not reduced by any of the tea extracts. Of all the tea extracts tested, the 219 

pu-erh tea extract was the most effective in reducing the hydrophobicity (p<0.05), by 27-66% 220 

reduction in hydrophobicity.  221 

  Similarly to the results obtained for the hydrophobicity assays, the tea extracts 222 

significantly reduced the auto-aggregation of all Candida strains, in most of the cases 223 

(p<0.05) by 20-65%, except for C. krusei ATCC 6258 (p>0.05) (Fig 2).  224 

The results from the microbial attachment assays indicated that the tea extracts could 225 

only inhibit the attachment to glass beads of the C. krusei strains 27B and 37B (p<0.05), by 226 

41-88% (Fig. 3). However, the biofilm assays indicated that the tea extracts did not inhibit the 227 

biofilm formation of most of the Candida spp. (p>0.05), yet enhanced the biofilm production 228 

by 1.4-7.5 folds for C. albicans strain ATCC 90028 and for C. krusei strains ATCC 6258 and 229 

37B (p<0.05) (Fig. 4). C. krusei strain 37B was therefore selected for subsequent microscopy 230 

studies. 231 

 232 

Correlations between cell surface properties and colonization behaviours 233 
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The correlation between the changes in cell surface properties (hydrophobicity and 234 

auto-aggregation) and the changes in colonization behaviours (attachment and biofilm 235 

formation), due to the tea extract treatments, were determined using a regression plot (Fig. 5). 236 

A significant positive correlation was observed between the changes in cell surface 237 

hydrophobicity and the changes in attachment of C. krusei strains 27B (Fig. 5A) and 37B 238 

(Fig. 5B). Regression values (R2) of 0.724 and 0.799 were observed respectively (p<0.05 for 239 

both strains), suggesting that the reduction in hydrophobicity could be a mechanism 240 

underlying the attachment inhibitory effect of the tea extracts on C. krusei (strains 27B and 241 

37B). A similar correlation was not observed for other strains (p>0.05). No correlation was 242 

observed between auto-aggregation and attachment/biofilm formation for all strains (p>0.05). 243 

 244 

Microscopy   245 

The SEM and CLSM images of the untreated and tea-treated C. krusei 37B cells are 246 

shown in Fig. 6. Although multiple SEM micrographs and CLSM images were taken, only 247 

one representative micrograph or image is presented here per treatment (Fig. 6, A-G). While 248 

there were no significant morphologic differences observed between the tea extract-treated 249 

and untreated cells in the attachment assays (images not shown), a marked difference was 250 

observed for the tea-treated and untreated cells in the biofilms.  Despite all treated and 251 

untreated cells were processed in the same manner to avoid sample preparation biases, the tea 252 

extract-treated biofilm cells appeared to form denser clusters, and presented with a dent or 253 

pock mark in the middle of each cell (Fig. 6 C and D). However, the untreated cells appeared 254 

to be intact and formed relatively smaller clusters (Fig. 6 A and B). As this phenomenon was 255 

observed with Candida treated with all the tested tea extracts, only the images of green tea 256 

treated cells are shown (Fig. 6). Furthermore, the live/dead CLSM images indicated that the 257 
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pock-marked, indented cells treated with green tea were all viable (Fig. 6F) unlike those   258 

treated with the pu-erh tea extract, where a scant distribution of non-viable cells was 259 

observed within the biofilm matrix (Fig. 6G).  260 

 261 

Discussion 262 

The results from the antimicrobial susceptibility tests indicated that none of the crude 263 

tea extracts evaluated exerted any antifungal effect on the tested Candida spp., as they 264 

appeared not to kill or inhibit the yeasts at a relatively high tea concentration (20 mg ml-1). 265 

The choice of whole crude tea extracts instead of isolated tea compounds could be a possible 266 

reason for our findings, which contradict those of recent research, where a strong fungicidal 267 

effect has been reported [16, 20, 21].  However, our data imply that the crude polyphenols or 268 

their derivatives in tea are unlikely to inhibit or kill oral Candida, due to their relatively low 269 

concentrations, as well as the high temperature that would also destroy the tea compounds 270 

[25]. Nevertheless, we demonstrate here that ordinary drinking tea is likely to alter Candida 271 

colonisation of the oral cavity in a species and strain dependent manner. 272 

The results obtained from the surface property assays showed that the four tea extracts 273 

reduced cell surface hydrophobicity and their ability to auto-aggregate. One could speculate 274 

that the tea components present in these extracts may have affected the cell surfaces by 275 

possibly binding physically or chemically to the yeast blastospore surface, thereby altering 276 

their cell surface properties. We have previously observed this phenomenon for 277 

Streptococcus mutans, a major cariogenic organism commonly found in the oral cavity [13]. 278 

In the latter study, we observed that tea polyphenols (especially tannins) coating the cells of 279 

Streptococcus mutans suppressed their adhesion, as well as biofilm formation on three 280 

different abiotic surfaces: glass, stainless steel, and hydroxyapatite - the major constituent of 281 
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tooth enamel. Furthermore, this veneer of `tea coating` was also visible through electron 282 

microscopy. However, in the present study, no such visible alterations of the cell surfaces of 283 

C. krusei were observed after tea-extract treatment (Fig. 6). 284 

As the tea components were extracted using water, it could be surmised that most of 285 

the extracts were highly polar and were able to interfere with the hydrophobicity of the cell 286 

surfaces. According to the interfacial thermodynamic theory [32], the reduced hydrophobicity 287 

may result in weaker hydrophobic interactions between the cells and the substratum surface, 288 

as well as between different cells, which in turn would reduce the auto-aggregation, and thus, 289 

in theory, the attachment of the cells to the contact surface. The findings of our study fit the 290 

foregoing model very well as we observed a very high correlation between reduction in 291 

hydrophobicity and attachment due to tea extract exposure (R2 at 0.724 and 0.799). 292 

However, this was not the case for the attachment of all C. albicans strains tested, and 293 

for some strains of C. krusei. Clearly, hydrophobic interactions alone may not entirely 294 

explain the key mechanisms that mediate the attachment of these strains. Microbial 295 

attachment is often deemed as a two-step process. Physico-chemical interactions usually 296 

dominate the initial step, helping the cells to approach the contact surface and loosely attach 297 

to it. In the second step, cell surface proteins/adhesins play their role in helping the cells to 298 

firmly stick to the surface [33]. Hence, for those strains whose attachment could not be 299 

affected by hydrophobic interactions, other physico-chemical factors, such as electrostatic 300 

interactions or non-physico-chemical factors, such as cell surface adhesins, might play the 301 

major role in their attachment behaviour [34].  302 

As for C. krusei strains 27B and 37B, the reduction in hydrophobicity eventuated by 303 

the tea extract treatment strongly correlated with the reduction in attachment, indicating that 304 

hydrophobic interactions may be the key factor affecting their attachment. In other words, 305 
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reducing the hydrophobic interactions in the system could possibly control the initial 306 

colonization of these C. krusei strains. However, the attachment of the type-culture C. krusei 307 

strain (ATCC 6258) was not affected by the tea extracts, suggesting that the yeast may have 308 

altered cell surface components.  It is known that type culture strains, such as C. krusei  309 

ATCC 6258, which are repeatedly sub-cultured in the laboratory over a prolonged period, 310 

loose their cell surface attributes in comparison to their wild-type counterparts [1]. The latter 311 

phenomenon may account for the disparate behaviour of C. krusei ATCC 6258 we observed. 312 

As attachment is the first stage of biofilm formation, it would be reasonable to assume 313 

that inhibiting attachment would reduce biofilms. Yet, the results obtained from the biofilm 314 

assays in this study indicated otherwise. The tea extracts did not inhibit biofilm formation by 315 

the tested Candida strains, but rather enhanced biofilm formation for some strains (C. 316 

albicans strain ATCC 90028 and C. krusei strains ATCC 6258 and 37B), suggesting there 317 

might be variables other than physico-chemical interactions affecting their biofilm formation, 318 

such as chemical and biological factors. It could be speculated that the tea extracts might 319 

have induced a chemical stress on the cells, thus impelling them to aggregate and form 320 

thicker biofilms as a protective mechanism against this stress [35], which is evident in the 321 

microscopic images where the tea extract treated cells formed denser biofilms. However, this 322 

was not supported by the auto-aggregation assays conducted in this study probably due to the 323 

different experimental conditions used in the auto-aggregation and biofilm assays such as 324 

incubation duration (6h and 48h, respectively) and growth media (PBS and SDB, 325 

respectively). Furthermore, it has been reported that tea polyphenols inactivate proteasomal 326 

enzymes in Candida cells, and these enzymes are used by the cells to regulate metabolism 327 

and respond to environmental signals [36]. Interfering with the functions of these enzymes 328 

could affect cell behaviour, in terms of proliferation and forming biofilms. Evensen and 329 

Braun [36] also reported that inactivating these enzymes inhibited biofilm formation by 330 
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Candida spp., but this was not the case here. A possible reason could be that the tea 331 

polyphenols used by Evensen and Braun were pure compounds at relatively high 332 

concentrations, while the present study used crude tea leaf extracts. 333 

Interestingly, the microscopic images showed tea extract treated C. krusei 334 

blastospores with central indentations or pock marks, in spite of which the cells were viable, 335 

as observed by live/dead stain microscopy. One exception was the pu-erh tea treated samples, 336 

where a few non-viable cells were observed in the biofilm. Such findings could be explained 337 

in terms of the undissociated protons from the polyphenol molecules within the tea extract, 338 

causing cellular energy depletion with an increased ratio of ADP/ATP. This, in turn, may 339 

have inhibited DNA synthesis or arrested the process of cellular proliferation at the anaphase, 340 

a phenomenon previously reported by Tan et al. [37]. Thus, it is plausible that the cells with 341 

indentations could not yet complete the division due to this arrested development. This 342 

phenomenon has been observed and reported by other researchers in different 343 

microorganisms, such as Salmonella [37] and Escherichia coli [38]. 344 

In conclusion, the four extracts from green, oolong, black and pu-erh teas used in this 345 

study did not kill or inhibit the growth of the tested Candida strains, but inhibited the 346 

attachment of two strains of C. krusei to glass surfaces, possibly due to a reduction in cell 347 

surface hydrophobicity. However, the biofilm development of three of the Candida strains 348 

tested was enhanced by the tea extracts. There was also a simultaneous morphological change 349 

in the biofilm cells of C. krusei, leading to the formation of a central indentation in the cell 350 

walls of each blastospore. Therefore, in practical terms, while tea consumption may not 351 

necessarily kill oral Candida spp., it is likely to affect the initial colonization of oral surfaces 352 

by species such as C. krusei, while simultaneously enhancing their biofilm development.  353 
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Future studies need to focus on purifying specific compounds from tea extracts and 354 

evaluating the effect of the isolated compounds on Candida biofilm formation by a larger 355 

variety of Candida species, to determine the effectiveness as well as to expand the current 356 

knowledge on the effect of specific tea components on oral candidal colonization. Also, the 357 

removal effects of tea extracts/components on pre-formed oral biofilms should be 358 

investigated in addition to studying the biofilm prevention effects. Furthermore, the 359 

ADP/ATP ratio could be measured by bioluminescent assays in order to confirm the 360 

assumption of cellular energy depletion induced by the tea extracts. 361 
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Figure Captions: 471 

Fig. 1 The effect of the tea extracts on cell surface hydrophobicity of C. albicans and C. 472 

krusei. For each strain, the values labelled with dissimilar letters indicate significant 473 

differences in hydrophobicity due to different types of tea treatment (p<0.05). The statistical 474 

comparisons were based on arcsine-transformed data (n=3). 475 

 476 

Fig. 2 The effects of the tea extracts on auto-aggregation of C. albicans and C. krusei. For 477 

each strain, the values labelled with dissimilar letters indicate significant differences in auto 478 

aggregation due to different types of tea treatment (p<0.05). The statistical comparisons were 479 

based on arcsine-transformed data (n=3). 480 

 481 

Fig. 3 The effects of the tea extracts on attachment of C. albicans and C. krusei to glass 482 

surfaces (OD reading; n=3). For C. krusei 27B and 37B, the values labelled with dissimilar 483 

letters indicate significant differences in attachment due to different types of tea treatment 484 

(p<0.05). Significant differences in attachment to glass surfaces were not observed after tea 485 

treatment for the remaining strains. 486 

 487 

Fig. 4 The effects of the tea extracts on biofilm formation by C. albicans and C. krusei on 488 

glass surfaces (OD reading; n=3). For each strain, the values labelled with dissimilar letters 489 

indicate significant differences in biofilm development after different types of tea treatment 490 

(p<0.05). 491 

 492 
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Fig. 5 Correlation between cell surface hydrophobicity (arcsine-transformed) and attachment 493 

(OD reading) upon tea treatments plotted using binomial regression. (A) C. krusei 27B and 494 

(B) C. krusei 37B. 495 

 496 

Fig. 6 SEM micrographs of control (untreated) C. krusei 37B biofilm (A: at 2,000 × 497 

magnification; B: at 5,000 × magnification; scale bar: 20 μm), green tea extract treated C. 498 

krusei 37B biofilm (C: 2,000 × magnification; D: 5,000 × magnification; scale bar: 20 μm); 499 

and confocal laser scanning microscopic images of untreated C. krusei 37B biofilm (E; scale 500 

bar: 50 μm), green tea extract treated C. krusei 37B biofilm (F; scale bar: 10 μm),  and pu-erh 501 

tea extract treated C. krusei 37B biofilm (G; scale bar: 10 μm). Red arrows indicate the cells 502 

with indentations (live-dead stain; yellow blastospores/cells indicate dead cells as opposed to 503 

the live cells which are green). 504 

 505 


