
May The Force Be With You: Force-Based Relay
Attack Detection

Iakovos Gurulian1, Gerhard P. Hancke2, Konstantinos Markantonakis1, and
Raja Naeem Akram1

1 Information Security Group Smart Card Centre, Royal Holloway, University of
London, Egham, United Kingdom

{Iakovos.Gurulian.2014, k.markantonakis, r.n.akram}@rhul.ac.uk
2 Department of Computer Science, City University of Hong Kong, 83 Tat Chee

Avenue, Kowloon, Hong Kong
gp.hancke@cityu.edu.hk

Abstract. Relay attacks pose a significant threat against communicating
devices that are required to operate within a short-distance from each
other and a restricted time frame. In the field of smart cards, distance
bounding protocols have been proposed as an effective countermeasure,
whereas, in the field of smartphones, many proposals suggest the use of
(natural) ambient sensing as an effective alternative. However, empirical
evaluation of the proposals carried out in existing literature has reported
negative results in using natural ambient sensing in distance- and time-
restricted scenarios, like EMV contactless payments that require the
proximity to be less than 3cm and the transaction duration to be under
500ms. In this paper, we propose a novel approach for Proximity and Relay
Attack Detection (PRAD), using bidirectional sensing and comparing
button presses and releases behaviour (duration of press and gap between
presses and releases), performed by a genuine user during the transaction.
We implemented a test-bed environment to collect training and analysis
data from a set of users, for both the genuine and attacker-involved
transactions. Analysis of the collection-data indicates a high effectiveness
of the proposed solution, as it was successful in distinguishing between
proximity and relay-attack transactions, using thresholds set after analysis
of genuine training transaction data. Furthermore, perfect classification of
genuine and relay-attack transactions was achieved by using well-known
machine learning classifiers.

Keywords: Mobile Payments, Relay Attacks, Contactless, Experimental Analy-
sis

1 Introduction

Relay attacks [6, 8, 34] are passive man-in-the-middle attacks, aiming to extend
the physical distance of devices involved in a transaction beyond their operating
environment. Contactless smart cards [8, 13, 14, 16, 18], as well as smartphones [6,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/141470394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 I. Gurulian, G. P. Hancke, K. Markantonakis, and R. N. Akram

20,23,24] are susceptible to relay attacks. Using such attacks, an attacker can
gain unauthorised access to services and facilities that a genuine user is eligible
for, like payments and access to buildings.

In the field of smart cards, distance-bounding protocols have been proposed
as an effective countermeasure [15, 28]. However, distance bounding protocols
may not be applicable in the field of smartphones due to unpredictable be-
haviour related to their multi-tasking architecture and the multitude of hardware
components [31].

In recent years, a number of proposals suggest the use of ambient sensing
as an alternative Proximity and Relay Attack Detection (PRAD) mechanism
against the off-the-shelf attacker [12, 19, 26, 30, 32, 33]. Such proposals rely on
the collection of data over a period of time from both transaction devices, using
ambient sensors, and subsequently comparing the collected data for similarity.

Specific scenarios susceptible to relay attacks, like EMV contactless payments
and transport ticketing, have industry-imposed time limits regarding the comple-
tion of a contactless transaction. In the case of EMV, the limit is 500ms [2–4],
and in the case of transport ticketing, typically between 300 and 500ms [1].
Recent evaluations of previously proposed PRAD techniques have yielded limited
evidence that ambient sensing can effectively counter relay attacks in contactless
transactions under 500ms [11,25]. The generation of an artificial ambient environ-
ment (AAE) has been proposed instead, and evaluated using infrared light, with
promising results [10]. However, attacks against ambient sensing (in sound, WiFi,
Bluetooth, temperature, humidity, gas, and altitude) have been demonstrated
in the presence of an attacker with context manipulating capabilities [27]. Even
though such attacks might not be able to cause a false positive in the case of using
infrared light as an AAE actuator, denial of service attacks might be achieved.

In this paper we propose a novel approach towards PRAD based on sensing
button presses on the user’s smartphone by both transaction devices (transaction
terminal and transaction ‘user’ smartphone) simultaneously. During the time
of the transaction, the user is requested to press four buttons randomly picked
by a smartphone application. The input button sequence, as well as timings of
button presses and between consequent button presses (referred to as ‘releases’ )
are captured by both transaction devices and used as features for similarity
comparison. Empirical evaluation demonstrated high success rate of the method
as a PRAD mechanism. Using threshold-based evaluation, all the attack attempts
were detected. Perfect classification was achieved by using the Support Vector
Machine classifier. Near-perfect classification (up to 99.8%) was achieved by other
well-known machine learning classifiers.

The main contributions of this paper are:

– Force Sensing Relay Attack Detection: A novel approach for PRAD based on
force sensing by the transaction devices (Section 4).

– Evaluation Frameworks: The design of two evaluation frameworks, for evalu-
ating the proposed solution as a proximity detection mechanism (Section 6),
and as a relay-attack detection mechanism, by subjecting it against a set of
volunteers attempting to attack the scheme (Section 7).
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Fig. 1. Overview of a Relay Attack

– Two-Fold Evaluation: Threshold- and machine learning-based evaluation of
the proposed system, in the presence of a relay-attacker.

2 Relay Attacks

A variety of applications are affected by relay attacks, like Near Field Commu-
nication (NFC) based contactless transactions. During a relay attack, the goal
of the attacker is to relay communication messages between two devices that
are located beyond their designated operational environment, without being
detected.

The relay of the communication messages is performed using some relay
equipment that the attacker possesses. For example, for the case of an NFC
contactless payment scenario (Figure 1), an attacker can present to a genuine
user a masquerading (malicious) payment terminal. At a distant location, the
attacker should present a masqueraded (malicious) payment instrument to a
genuine payment terminal. When the user attempts to perform a transaction, the
communication messages of the payment transaction will be relayed between the
attacker’s relay equipment. If the attack is successful, an unauthorised transaction
between two genuine parties will be performed.

Relay attacks against mobile devices have been demonstrated [7,23,24]. In
order to detect the existence of a relay attack, evidence regarding the co-presence
of the genuine transaction devices should be established. As already mentioned,
in the field of smartphones, establishment of proximity evidence by the assistance
of ambient sensing has demonstrated positive results. This technique requires
the two transaction devices to capture environmental data, using some ambient
sensor, for some predefined period of time.

An alternative approach, by generating an artificial ambient environment
(AAE) using the peripherals of the communicating devices has also demonstrated
positive results. This approach has demonstrated positive results when using
infrared light as an AAE actuator in transactions with industry imposed time
limits of up to 500ms, like EMV contactless payments and transport ticketing.

For both techniques, the data from the two devices is then compared for
similarity, based on which a decision is made regarding their co-presence. The
comparison process can be performed either by one of the communicating devices,
or by a trusted third party (TTP).
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3 Related Work

In this section, we identify and summarise key pieces of related work that have
suggested using natural ambient sensing as a PRAD mechanism.

Ma et al. [19] proposed the use of GPS (Global Positioning System) as a
means of co-location detection. A time frame of 10 seconds was used for data
collection, and values were recorded every second. High success rate was reported
by the authors for proximity detection.

Halevi et al. [12] proposed the use of ambient light and sound. Values were cap-
tured for 30 and two seconds, respectively. The authors used various comparison
algorithms, and high success rate was reported.

Varshavsky et al. [33] compared the WiFi networks, along with the signal
strengths, that the devices were able to detect. The main objective of this work
was device pairing, and positive results were reported.

Urien et al. [32] combined ambient temperature and an elliptic-curve based
RFID and/or NFC authentication protocol. No performance results were pre-
sented by the authors, as there was no practical implementation.

Mehrnezhad et al. [21] recorded values using the accelerometer of the devices
involved in a payment transaction in order to detect device co-location. A double
tap was required in their proposal. According to the authors, the transaction
time lasted between 0.6 and 1.5 seconds, and a high success rate was observed.

Truong et al. [30] assessed a variety of sensors for proximity detection. The
recording time frame was between 10 and 120 seconds, and positive results were
reported.

Shrestha et al. [26] used a Sensordrone and recorded multiple sensors. The
precise sample duration is not provided in this work, however the authors state
that recordings lasted for a few seconds.

Jin et al. [17] used the magnetometer in order to pair devices that are in
proximity. An average of 4.5s is required for the pairing to succeed. The authors
only focus on proximity detection, and do not claim that this method can be
used as an effective relay attack detection mechanism.

In [11] and [25], the effectiveness of recording the natural ambient environment
in short transactions (up to 500ms) was empirically evaluated, with different
results from the existing literature. Comparison algorithms used in previous
works, as well as machine learning techniques, produced very high false negative
results.

Gurulian [10] proposed a relay attack detection framework by using artificial
ambient environments (AAE). Infrared light was evaluated as an AAE actuator.
Relay attacks were successfully detected, while the false rejection rate was
approximately 2%.

4 Force-Sensing PRAD

In this section we present the theoretical foundation of the proposed framework,
and the threat model.
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4.1 PRAD Framework

During the course of a transaction, the user is called to position the Transaction
Instrument (TI) on an extension force-sensitive panel of the Transaction Terminal
(TT) in order to complete the PRAD procedure. A smartphone application
(running on TI) presents to the user an interface with buttons that the user
is called to tap. Alternative interface design approaches can be followed. For
example, the application might present buttons with numbers and ask the user
to input a provided 4 digit sequence. Alternatively, the application can present a
button at a time that the user has to press in order for the next button to appear,
until all the buttons of the sequence have been pressed. It should be stressed that
even though the aforementioned method was used during the evaluation of the
proposed framework (Section 5), it is not restrictive, as alternative approaches
can be used instead. Figure 2 presents the basic architecture of the framework,
when using the later application design method. Also, the use of a Personal
Identification Number (PIN) and other forms of user identification codes may
pose a threat, as an attacker could potentially capture them if the user attempts
to perform a transaction with a malicious terminal.

Each button is assigned an ID based on the location of the button (e.g. the
top left button is assigned the ID ‘1’ ). When the user taps on a button, both
transaction devices record the ID of the button that was pressed, and the duration
of the button press. The duration between subsequent button presses is also
recorded by the two devices. Further features can also potentially be used, like
the amount of pressure applied, but were not considered in this work due to
limitations inflicted by the architecture of the majority of modern smartphones
(further discussion in Section 8).

In order for device TI to recognise the buttons and timings, simple API calls
are required. Device TT can recognise the buttons and timings based on the
coordinates and duration of the detected pressure on the force-sensitive panel.

The assumption is that the two devices are going to record approximately the
same values, and that an attacker has a low probability of accurately replicating

Fig. 2. The Basic Framework Architecture
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the movement of a genuine user. The accuracy of the system should be at the
millisecond (ms) level. The captured data of the two devices should provide
sufficient proximity evidence when compared against each other, while data
captured when a relay attack is taking place should be detectable at a high rate,
in accordance to the requirements of the deployment scenario.

The proximity verification process can take place during the course of the
transaction by one of the communicating devices, or afterwards, by a Trusted
Third Party (TTP). The captured data should be communicated between the
devices or to the TTP in an encrypted and authenticated form, but discussion
regarding the trusted comparison party’s (i.e. the TTP or one of the transaction
devices) architecture is out of the scope of this work. As the main focus of
this work is to examine the effectiveness of the proposed solution as a PRAD
mechanism, we limit the discussion and do not investigate the integration with
existing applications.

4.2 Threat Model

In this paper, the attacker is of opportunistic nature and requires no prior
interaction or knowledge of neither TT nor TI. However, the potential implications
if TT or TI are compromised are out of the scope of this paper, since a relay
attack may not be necessary to achieve the same goals under these circumstances.
We focus primarily on the issue of genuine devices requiring proximity assurance
in order to conduct a legitimate transaction.

The attacker only has access to off-the-shelf relay equipment. Usually trans-
action limits apply on mobile transactions, for example a £30 limit on digital
payment transactions in the UK [5]. Moreover, an attacker that might be using
more advanced techniques, like a robotic arm that replicates the movement of a
genuine user with accuracy, is likely going to be detected by the genuine device
operators. Therefore, a very powerful attacker might not be a major concern.

5 Test-bed Architecture

We designed and built a test-bed in order to evaluate the proposed solution.
Android devices were used to represent TI, and an Arduino-based prototype was
developed and used as TT.

An Android application was built and installed on three devices; a light and
small Android smartphone, a heavier and larger Android smartphone, and an
Android tablet device. As the first, a Samsung Galaxy S5 Mini (SM-G800F) was
used. It features a 4.5-inch display, and weighs 120 grams. A Samsung Galaxy
S4 (GT-I9500) device was used as the second device. It features a 5-inch display
and weighs 130 grams. Finally, a Nexus 9 was used as the tablet. Its display is
8.9-inches and weighs 425 grams3.

The Android application, running on TI, displayed six equal size zones on the
touch screen (as in Figure 2). In this paper, we refer to these zones as ‘buttons’.

3 All device characteristics found at http://www.gsmarena.com/
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Initially, a random button on the screen was highlighted using a colour. This
indicated to the user to press the randomly highlighted button on the screen.
Releasing a button would trigger it to disappear, and the application would
randomly pick and highlight a second button. A total of four buttons were
randomly highlighted on each transaction. A random shared ID assigned to each
transaction, along with the button sequence IDs, and the timings of button
presses and interval duration between subsequent button presses were appended
to a local CSV file that was later extracted from the device for data comparison.

An Arduino Due was used for the TT prototyping. Four Force Sensitive
Resistors (FSRs) were connected to the board’s analog inputs (Figure 3a). FSRs
can be used to detect pressure or weight. The basic working principle is that the
resistive value of the sensor alternates depending on the amount of force that is
being applied on the sensor. Silicone buffer pads4 were manually attached to the
centre the sensors, as the force resistive area of the FSRs was not reachable by
the surface of the smart devices otherwise. Even though FSRs were used in this
prototype, other sensors might potentially also be used alternatively, for example
capacitive touch sensors.

Initially, when TI was placed on TT and the process started, a calibration
phase had to be conducted, in order to cancel the weight of the device. For one
second after the process initiation, TT would capture values from all four sensors
and the maximum recorded value of each sensor would be used as a reference
point. A LED would indicate the completion of the calibration phase.

After the calibration phase, the user was called to input the sequence on TI.
While a button was being pressed, the calibrated TT sensor(s) closest to that
button were recording the highest values (Figure 3). The indication used for
detecting that a button was being pressed was that some of the sensors were
recording values above their calibration point. The time during which higher
values than the calibration point were being recorded by some of the FSRs was
considered to be the pressing time. Similarly, the time between subsequent button
presses was the time during which none of the sensors were recording higher
values than the calibration threshold.

After a button was released, TT would estimate the button that was being
pressed. To achieve this, each sensor was assigned a value, which was the average
of all the values captured by that particular sensor during the button press period.
Six virtual buttons had to be detected, corresponding to the buttons presented
by TI. For the detection of the pressed button, the values that were assigned to
each of the four sensors were used.

Algorithm 1 lists pseudocode for detecting the pressed buttons when the
button ID numbers of device TI are per Figure 2, and the sensor ID numbers of
device TT as per Figure 3. The input sensor1 – sensor4 is the value assigned
on each of the sensors. Initially, the side (left or right) of the screen on which
the press was on was determined by comparing the sum of the sensor values
returned of each side. Once the side was determined, the proportion of the force

4 Example of buffer pads: https://www.amazon.co.uk/gp/product/B00P11D4VK/ref=
s9u_simh_gw_i2



8 I. Gurulian, G. P. Hancke, K. Markantonakis, and R. N. Akram

Fig. 3. Detection of Presses by TT

applied on the top sensor was calculated. The proportion was divided in three
equal parts. If the proportion was between 0.66 and 1, the top virtual button
ID was returned. Similarly, values between 0.33 and 0.66 corresponded to the
middle virtual button, and between 0 and 0.33 to the bottom one.

When four button presses were detected by the prototype, it would return
the pressed button sequence and the timings to a computer through Arduino’s
serial port. An application written in Python would request from the experiment
operator to manually input the ID that was assigned to the particular transaction
by TI. The returned values and the transaction ID would be appended to a CSV
file with the same format as the one on TI’s side.

Algorithm 1: Detection of Pressed Button

Input : int sensor1, int sensor2, int sensor3, int sensor4
Output : int pressedButtonID

1 leftSide ← sensor1 + sensor2;
2 rightSide ← sensor3 + sensor4;
3 if leftSide > rightSide then
4 force ← sensor1 / leftSide;
5 if force ≥ 0 and force < 0.33 then
6 return 5
7 else if force ≥ 0.33 and force < 0.66 then
8 return 3
9 return 1

10 end
11 force ← sensor3 / rightSide;
12 if force ≥ 0 and force < 0.33 then
13 return 6
14 else if force ≥ 0.33 and force < 0.66 then
15 return 4
16 return 2
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Two experimental frameworks were developed, for proximity and relay attack
evaluation. At the end of each phase, the stored data would be extracted form
each of the devices and moved to a computer for the evaluation of the results.

6 Proximity Detection Framework

In order to evaluate the performance of the proposed solution in a proximity
detection scenario, 100 transactions were performed with each of the three devices
listed in Section 5. A random sequence was generated and presented by TI on
each transaction. The FSRs were aligned in a set-up for the smallest device
(SM-G800F), and this set-up was maintained throughout the experimental phase,
regardless of the device being used. After the completion of the first phase, using
each of the three TI devices, the collected data in CSV format was extracted
from both transaction devices (the smartphone and the laptop on which the
Arduino was connected).

The aim of the framework was to assess whether sufficient information for
establishing proximity evidence is collected during the process. The results were
used to set acceptable upper and lower bounds for presses and releases.

6.1 Evaluation Methodology

A Python application was developed for the data analysis process, which would
compare the input sequence recorded by both devices, and calculate the difference
of individual corresponding features (button press and release timings). The
minimum and maximum press and release differences were detected for each of
the devices, and all 300 measurements combined. The minimum and maximum
press and release differences were used as limits for distinguishing genuine from
relay attack transactions in the relay attack detection framework.

6.2 Results and Discussion

The results of the proximity detection framework are listed in Table 1. They
refer to the time difference in milliseconds between the timings recorded by TT
and TI. For example, the difference of the first press for a single transaction is
calculated as:

DiffPress1 = TTPress1 − TIPress1

The maximum, minimum, and the average calculated values are listed, as well
as the span between the maximum and minimum observed values. The analysis
has been performed for each of the three devices, as well as for the combination
of all the recordings of the three (referred to as ‘Total’). Negative timings denote
that the measurement of a press or release by TI was longer than that of TT.

Differences among the devices were observed, likely related to their weight.
However, the measured time span was approximately the same for all three
devices. Therefore, a real-world deployment is recommended to take into account
the device model, in order to minimise the attack window approximately by half.
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Table 1. Proximity Detection Results – in ms (negative results indicate that TI’s
measurement durations were larger than TT’s)

Minimum Maximum Span Average
Press Release Press Release Press Release Press Release

SGS5 mini -46 11 -11 48 35 37 -29.09 28.71
SGS 4 -28 -8 9 30 37 38 -5.32 5.26
Nexus 9 -18 -8 12 23 30 31 -2.16 2.83

Total -46 -8 12 48 58 56 -12.19 12.27

High accuracy was also ascertained in the detection of the input pattern by
device TT. Prior to the initiation of the experimental phase, the pattern detection
of the smaller devices was very high. Failures occurred in a few occasions where
the buttons on device TI were pressed very close to neighbouring buttons. Slightly
reducing the size of the buttons effectively restricted this issue.

The detection of button presses on the tablet required longer presses than
on the smartphones, which had no special input requirements. Even though
perfect detection was recorded when longer button presses were applied, the use
of tablets is not recommended without readjustment of the underlying FSRs.

7 Relay Attack Detection Framework

We subsequently evaluated the effectiveness of the solution as an anti-relay
mechanism. We gathered 10 volunteers who attempted to attack the system in
two phases, explained below. A separate Android application was developed for
the purposes of the experiments, based on the application used in the proximity
evaluation framework. It was presenting predefined sequences instead of random
ones. Device TT’s architecture did not alter between the two frameworks.

During the first attack phase, a set of videos of a person inputting a sequence
(genuine user) were presented to the volunteers. The sequence timings entered
by the genuine user on TI were stored in a CSV file as per Section 6 for later
comparison against relay attack data. The videos were played on a large screen,
and the movement of the genuine user was evident. The camera used to record
the videos was placed on the left of the device, and at a 45 degree angle, in
order to make the presentation of the three dimensions more clear. Prior to the
initiation of the experiments, the volunteers were asked to choose the rotation
and flip of the video that they preferred. A set of 10 different patterns were
presented to each volunteer, who was asked to attempt to replicate/mimic the
movement of the genuine user with accuracy while the video was playing, or
afterwards. The same pattern was presented on both the video and the device
provided to the volunteers. Also, the same device (SM-G800F) was used on the
video and by the volunteers. Data from both devices was stored in separate CSV
files, separately for each volunteer.

All volunteers were university students and staff who had a good understanding
of security and relay attacks. Prior to the experiments, their goal and the principle
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on which the anti-relay mechanism was based were thoroughly explained to
them. Moreover, four of the volunteers had background in playing some musical
instrument (guitar, piano, or both), ranging from medium to advanced level.

During the second phase, the volunteers were asked to attempt and attack the
exact same video 10 times. Meaning, a genuine user entered a sequence that was
recorded, then the attacker was given 10 tries to train to replicate the sequence
as close to the genuine user as possible. This tested the possibility of whether an
attacker who watches the same pattern being entered a number of times, his/her
potential of replication would increase. The same set-up as in the previous phase
was used. In both phases the attacker was very powerful, as the input sequence
was known, and there was a clear view of the genuine user’s movements.

7.1 Evaluation Methodology

Measurements captured from the TI that the genuine user was using on the video
were compared against measurements from device TT used by the volunteers. In
a relay attack, these two devices would be the genuine devices, the other two,
the devices operated by the attacker.

In order to evaluate the performance of the volunteers, two methods were
used; threshold- and machine learning-based analyses. Initially, we set acceptable
minimum and maximum thresholds for presses and releases, based on the results
of the proximity evaluation framework (Section 6.2). The recorded presses and
releases from the two devices were sequentially compared against each other. If
the difference between a press or a release captured by TT and TI was within
the bounds, it was considered to be acceptable. Otherwise a relay attack was
detected. The point at which the inconsistency appeared was the detection point.
For example, if an attacker performed the first press and the first release correctly,
but the second press was out of bounds, the second press would be considered
as the detection point. This part of the evaluation was conducted in two phases.
We first subjected the relay attack data against the thresholds set when by all
the three devices, and then against device specific thresholds (SM-G800F).

Weka [9] was used to apply a suite of well-known classifiers. The classifiers
were trained on a set of feature vectors with corresponding binary labels (genuine
or relayed transaction), which were collected beforehand. The trained model
was used to classify subsequent transaction data streams as genuine or relayed.
We tested the Random Forest, Näıve Bayes, Logistic Regression, Decision Tree
(grown using the C4.5 algorithm), and Support Vector Machine with the RBF5

kernel (the SVM w/RBF hyper-parameters, C and γ, were established using
standard exhaustive grid search) classifiers. The threshold was based on the
probability estimate output by the learned classification model, i.e. the estimated
probability that a transaction is genuine. As genuine transactions were considered
transactions collected during the proximity evaluation phase (Section 6).

5 RBF: Radial Basis Function.
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Table 2. Threshold-Based Relay Attack Detection Results

Press 1 Release 1 Press 2 Release 2 Press 3 Release 3 Press 4 False Accept

General Threshold – Phase 1
Detected 73 24 0 2 1 0 0 0
Correct 27 10 37 10 24 5 31 —

Device Specific Threshold – Phase 1
Detected 84 16 0 0 0 0 0 0
Correct 16 7 25 9 9 4 23 —

General Threshold – Phase 2
Detected 57 37 5 1 0 0 0 0
Correct 43 11 29 24 26 9 20 —

Device Specific Threshold – Phase 2
Detected 65 33 2 0 0 0 0 0
Correct 35 6 21 22 20 6 9 —

7.2 Results and Discussion

A total of 200 relay transactions were evaluated. The results of both threshold-
and machine learning-based analyses are presented in this section.

Evaluation 1: Threshold-Based. The results of the threshold-based analysis
are listed in Table 2. ‘General Threshold’ refers to the threshold set by combining
the proximity results of all three tested devices, while ‘Device Specific Threshold’
to the threshold set by SM-G800F, as it was the device used for the relay attack
detection evaluation. ‘Detected’ refers to the percentage of relay attempts detected
at a particular press or release, because the attackers failed to accurately replicate
the movement of the genuine user at that point. ‘Correct’ refers to the percentage
of times that a single press or release was successfully replicated by the attacker.
Finally, the first phase refers to the user trying to attack a different video on each
try, and the second phase, the attacker trying to attack the same video 10 times.

None of the volunteers attempted to successfully attack the system, using
threshold-based analysis. Moreover, the volunteers with background in playing
a musical instrument did not present improvements over the rest of the user.
However the sample was limited, so further investigation is required.

The best attempt is presented in Figure 4. Device TI′ in the figure represents
the measurement recorder by the transaction instrument that the volunteer was
using. It illustrates the corresponding proximity transaction, for which all presses
and releases were within bounds. The relay attack was detected on the third
press, using the threshold set by the combination of the three devices. Using
device specific threshold, the attack was successfully detected on the first release.

The majority of the transactions were detected on the first press and release,
using both general, and device specific thresholds, even when the volunteers
attempted to attack the same video multiple times (second phase). During the
second phase, a small incline was observed in the user performance as the same
video was being attacked multiple times, most evident in the performance of
releases. Figure 5 depicts that incline, along with the average, maximum, and
minimum performance of each round’s presses and releases.
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Evaluation 2: Machine Learning-Based. The results of the machine learning-
based analysis, obtained by repeating stratified 10-fold cross-validation, are pre-
sented in Table 3. A training set of 300 genuine and 200 relay attack transactions
was used. The default settings of each algorithm were used on Weka. The metrics
listed are the classification accuracy (Accuracy), the Area Under the Receiver
Operating Characteristic (ROC) Curve (AUC), the F1-score, and the Equal
Error Rate (EER).

Perfect classification was achieved by using the Support Vector Machine
classifier. Near perfect classification (> 98%) was achieved by the Random Forest,
Näıve Bayes, and Decision Tree classifiers, with best performance observed by the
first three (> 99.5% accuracy). The Random Forest algorithm failed to accurately
classify two relay transactions, the Näıve Bayes one, and the Decision Tree six.
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Table 3. Machine Learning Classification Results Obtained by Repeating 10-Fold
Cross-Validation 10 Times

Random
Forest

Näıve
Bayes

Logistic
Regression

Decision
Tree

Support Vector
Machine

Accuracy (%) 99.62 99.80 86.58 98.78 100.00
AUC 0.9999 0.9996 0.8163 0.9873 1.0
F1-score 0.9969 0.9984 0.90 0.9901 1.0
EER 0.0022 0.0047 0.1993 0.104 0.0

8 Discussion and Outcome

The analysis of the experimental data indicated that the effectiveness of the
proposed solution as a PRAD mechanism was high. However, some usability
concerns might arise, especially for visually impaired users, and users with motor
difficulties. Compared to the majority of previous works, additional steps are
required by the user, including the correct placement of device TI on TT.

Since the positioning of device TI on TT is important for the later to accurately
detect the ID of the pressed button, device-specific positioning lines were presented
on the TI’s display prior to the process initiation. This assisted in more equally
dividing the mass across the four FSRs. The model of the device could be
determined through API calls, which was used to display the correct positioning.
It should be stressed that the positioning precision had to be performed with
only some degree of accuracy. The detection was found to be very accurate even
without perfect placement of the devices. Figure 6 depicts the guidelines and the
pattern input interface on a SM-G800F device.

Failure to click on the correct button (mistapping) will also lead to inconsis-
tencies between the captured data of the two devices, so the process will have to
be restarted. Moreover, a vibration of the phone during the process will cause
inconsistencies, so they should temporarily be disabled, until the completion of
the process. Finally, the performance of the solution might also degrade if phone

(a) Device Calibration (b) Pattern Entry

Fig. 6. The Evaluation Test-bed
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cases are used on TI, or the device’s camera is located above the point where an
FSR should touch. However, significant advantages over previous works exist, so
depending on the deployment scenario this technique might be preferable.

The relay attack detection rate was empirically found to be higher than
previously proposed solutions [12,22,26,29]. The detection rate can potentially
improve even further by considering more features, like the amount of pressure
detected by the two devices. Even though this is possible on TT, at the moment
the majority of smartphones are not capable of accurately measuring the amount
of pressure applied on their screen. Some Android devices estimate the amount
of pressure through the number of pixels being covered on the screen by the
user’s finger. This technique is not very accurate, and it is also not available on
all devices. The feature is not supported by the GT-I9500. On the other two
devices, the accuracy was highly dependant on the finger orientation rather than
the amount of pressure being applied on the screen. Moreover, inconsistencies
were observed among the values recorded by the two devices. We concluded that
the technology was not mature enough to provide quality data.

Moreover, no additional or non-standard hardware on the TI side is required,
like in many of the previously proposed solutions, as in [10], and [26]. Many of
the previously proposed solutions might also be vulnerable in the presence of an
attacker with context manipulating capabilities [27]. Since this solution is not
dependant upon the surrounding environment, such attacks do not apply, unless
the attacker physically tampers with the devices.

9 Conclusion and Future Directions

Communicating devices that require to operate within proximity are vulnerable
to relay attacks. Traditional distance bounding protocols that aim to counter such
attacks might not be applicable in the field of smartphones. Alternative approaches
against the off-the-shelf attacker have been proposed, mostly based on sensing of
the ambient environment. However, these might not be suitable or secure under
certain scenarios, like in the presence of an attacker with context manipulating
capabilities. In this work we presented a novel approach for Proximity and
Relay Attack Detection (PRAD) by using bidirectional sensing and comparing of
subsequent button presses and releases by the transaction devices.

A test-bed was designed and built for the evaluation of the proposed solution
as a PRAD mechanism. Initially, the effectiveness in proximity detection was
examined. Afterwards, the test-bed was subjected against a set of volunteers
who attempted to attack the system. All the attack attempts were successfully
detected through threshold-based analysis. Moreover, perfect classification was
achieved by using the Support Vector Machine classifier. Classification accuracy
of up to 99.8% was achieved by other well-known machine learning classifiers.

As part of our ongoing investigation, we are planning to conduct a more
extensive user study. We are also planning to examine the use of additional
features that would further minimise the potential of an attacker to perform a
relay attack, like pressure intensity.
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